正弦定理教案全

合集下载

正弦定理教案

正弦定理教案

正弦定理教案一、教学目标1.理解正弦定理的概念,掌握计算正弦定理的方法。

2.能够判断已知条件能否求解三角形的某个角或某个边。

3.能够运用正弦定理解决相关的实际问题。

二、教学重点1.正弦定理的公式和应用。

2.正弦定理与其他三角函数定理的关系。

三、教学难点1.运用正弦定理求解实际问题。

2.能够判断已知条件能否求解三角形的某个角或某个边。

四、教学内容1. 正弦定理的概念正弦定理是解决三角形中一个角和它所对的边以及另外两边之间的关系的定理。

在任意三角形ABC中,有如下公式成立:$a/\\sin A = b/\\sin B = c/\\sin C$其中,a,b,c分别为三角形的三条边,A,B,C分别为对应的三个内角。

2. 正弦定理的公式在上述公式中,如果已知三角形的两边和其中一个对角,则可以根据正弦定理求出第三边的长度。

也可以根据已知的三角形的三条边,利用正弦定理求出三个内角的大小。

3. 正弦定理的应用3.1. 求解三角形的边长已知三角形的两边和其中一个角,可以利用正弦定理求出第三边的长度。

具体地,设三角形ABC中,已知AB = 8cm,AC = 9cm,∠BAC = 30°,求BC的长度。

解:根据正弦定理的公式,有$BC/\\sin 30°=9/\\sin 150°$化简得,BC=18因此,BC的长度为18cm。

3.2. 求解三角形的角度已知三角形的三条边,可以根据正弦定理求出三个内角的大小。

具体地,设三角形ABC中,已知AB = 8cm,BC = 10cm,AC = 12cm,求∠A,∠B和∠C的大小。

解:根据正弦定理的公式,有$a/\\sin A = b/\\sin B = c/\\sin C$代入已知条件,得到:$8/\\sin A = 10/\\sin B = 12/\\sin C$化简得到:$\\sin A = 8/10=0.8, \\sin B=10/12=0.83, \\sin C=8/12=0.67$利用反正弦函数,可以求得:$\\angle A=\\arcsin{0.8}\\approx53.1°$$\\angle B=\\arcsin{0.83}\\approx60.4°$$\\angle C=\\arcsin{0.67}\\approx66.5°$因此,$\\angle A\\approx53.1°$,$\\angle B\\approx60.4°$和$\\angleC\\approx66.5°$。

《正弦定理》优秀教案

《正弦定理》优秀教案

《正弦定理》教学设计一、教学目标分析1、知识与技能:通过对锐角三角形中边与角的关系的探索,发现正弦定理;掌握正弦定理的内容及其证明方法;能利用正弦定理解三角形以及利用正弦定理解决简单的实际问题。

2、过程与方法:让学生从实际问题出发,结合以前学习过的直角三角形中的边角关系,引导学生不断地观察、比较、分析,采取从特殊到一般以及合情推理的方法发现并证明正弦定理,使学生体会完全归纳法在定理证明中的应用;让学生在应用定理解决问题的过程中更深入的理解定理及其作用。

3、情感态度与价值观:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,发现并证明正弦定理。

从发现与证明的过程中体验数学的探索性与创造性,让学生体验成功的喜悦,激发学生的好奇心与求知欲。

培养学生处理解三角形问题的运算能力和探索数学规律的推理能力,并培养学生坚忍不拔的意志、实事求是的科学态度和乐于探索、勇于创新的精神。

二、教学重点、难点分析重点:通过对锐角三角形边与角关系的探索,发现、证明正弦定理并运用正弦定理解决一些简单的三角形度量问题。

难点:①正弦定理的发现与证明过程;②已知两边以及其中一边的对角解三角形时解的个数的判断。

三、教法与学法分析本节课是教材第一章《解三角形》的第一节,所需主要基础知识有直角三角形的边角关系,三角函数相关知识。

在教法上,根据教材的内容和编排的特点,为更有效的突出重点,突破难点,教学中采用探究式课堂教学模式,首先从学生熟悉的锐角三角形情形入手,设计恰当的问题情境,将新知识与学生已有的知识建立起密切的联系,通过学生自己的亲身体验,使学生经历正弦定理的发现过程,激发学生的求知欲,调动学生主动参与的积极性,引导学生尝试运用新知识解决新问题,即在教学过程中,让学生的思维由问题开始,通过猜想的得出、猜想的探究、定理的推导等环节逐步得到深化。

教学过程中鼓励学生合作交流、动手实践,通过对定理的推导、解读、应用,引导学生主动思考、总结、归纳解答过程中的内在规律,形成一般结论。

正弦定理教案全

正弦定理教案全

正弦定理教课要求:经过对随意三角形边长和角度关系的研究,掌握正弦定理的内容及其证明方法; 会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题. 教课要点:正弦定理的研究和证明及其基本应用.教课难点:已知两边和此中一边的对角解三角形时判断解的个数.教课过程:一、复习引入 :1. 在随意三角形行中有大边对大角,小边对小角的边角关系?能否能够把边、角关系正确量化?2. 在 ABC 中,角 A 、 B 、 C 的正弦对边分别是 a, b,c ,你能发现它们之间有什么关系吗?结论★:。

二、解说新课: 研究一: 在直角三角形中,你能发现三边和三边所对角的正弦的关系吗?直角三角形中的正弦定理:sin A = a sin B = bsin =1 即 c = ab c c c C sin Asin B .sin C 研究二: 可否推行到斜三角形? (先研究锐角三角形,再研究钝角三角形)当 ABC 是锐角三角形时,设边 AB 上的高是 ,依据三角函数的定义,有CDCD a sin B bsin A ,则 a b . 同理, a c (思虑怎样作高?) ,进而sin BsinCabc sin Asin Asin A sin B.sin C研究三: 你能用其余方法证明吗?1. 证明一:(等积法)在随意斜△ ABC 中间S = 11 1 bcsin A .ab sin Cacsin B△ ABC222两边同除以1abc 即得: a = b = c .2sin A sin B sin C a a2.证明二:(外接圆法)如下图,∠A =∠ D ,∴CD 2R ,sin A sin D同理b=2R ,c= 2R .sin B sin Cruuur uuur uuur uuur r3.证明三:(向量法)过 A 作单位向量 j 垂直于 AC ,由 AC + CB = AB 边同乘以单位向量 j得 ..正弦定理: 在一个三角形中,各边和它所对角的正弦的比相等,即abcsin A sin Bsin C=2R[ 理解定理 ]1 公式的变形:(1) a 2R sin A, b 2R sin B, c 2R sin C (2) sin Aa,sin Bb, sin C c ,2R2R2R (3) a : b : c sinA : sinB : sin Cabacc b(4)sin B ,,sin Bsin A sin A sin C sin C2.正弦定理的基本作用为:①已知三角形的随意两角及其一边能够求其余边,如b sin A a;sin B②已知三角形的随意两边与此中一边的对角能够求其余角的正弦值,如sin A asin B。

《正弦定理》教案(含答案)

《正弦定理》教案(含答案)

《正弦定理》教案(含答案)章节一:正弦定理的引入教学目标:1. 让学生理解正弦定理的概念和意义。

2. 让学生掌握正弦定理的数学表达式。

3. 让学生了解正弦定理的应用场景。

教学内容:1. 引入正弦定理的背景和意义。

2. 介绍正弦定理的数学表达式:a/sinA = b/sinB = c/sinC。

3. 解释正弦定理的证明过程。

教学活动:1. 通过实际例子引入正弦定理的概念。

2. 引导学生推导正弦定理的数学表达式。

3. 让学生进行小组讨论,探索正弦定理的应用场景。

练习题:1. 解释正弦定理的概念。

2. 给出一个三角形,让学生计算其各边的比例。

章节二:正弦定理的应用教学目标:1. 让学生掌握正弦定理在三角形中的应用。

2. 让学生能够解决实际问题中涉及的三角形问题。

教学内容:1. 介绍正弦定理在三角形中的应用方法。

2. 讲解正弦定理在实际问题中的应用示例。

教学活动:1. 通过示例讲解正弦定理在三角形中的应用方法。

2. 让学生进行小组讨论,探讨正弦定理在实际问题中的应用。

练习题:1. 使用正弦定理计算一个三角形的面积。

2. 给出一个实际问题,让学生应用正弦定理解决问题。

章节三:正弦定理的证明教学目标:1. 让学生理解正弦定理的证明过程。

2. 让学生掌握正弦定理的证明方法。

教学内容:1. 介绍正弦定理的证明过程。

2. 解释正弦定理的证明方法。

教学活动:1. 通过几何图形的分析,引导学生推导正弦定理的证明过程。

2. 让学生进行小组讨论,理解正弦定理的证明方法。

练习题:1. 解释正弦定理的证明过程。

2. 给出一个三角形,让学生使用正弦定理进行证明。

章节四:正弦定理在实际问题中的应用教学目标:1. 让学生掌握正弦定理在实际问题中的应用。

2. 让学生能够解决实际问题中涉及的三角形问题。

教学内容:1. 介绍正弦定理在实际问题中的应用方法。

2. 讲解正弦定理在实际问题中的应用示例。

教学活动:1. 通过示例讲解正弦定理在实际问题中的应用方法。

正弦定理教学设计最新5篇

正弦定理教学设计最新5篇

正弦定理教学设计最新5篇正弦定理教学设计篇一《正弦定理》教学设计茂名市实验中学张卫兵一、教学目标分析1、知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理解决一些简单的三角形度量问题。

2、过程与方法:让学生从实际问题出发,结合初中学习过的直角三角形中的边角关系,引导学生不断地观察、比较、分析,采取从特殊到一般以及合情推理的方法发现并证明正弦定理;让学生在应用定理解决问题的过程中更深入地理解定理及其作用。

3、情感、态度与价值观:通过正弦定理的发现与证明过程体验数学的探索性与创造性,让学生体验成功的喜悦,激发学生的好奇心与求知欲并培养学生坚忍不拔的意志、实事求是的科学态度和乐于探索、勇于创新的精神。

二、教学重点、难点分析重点:通过对任意三角形边长和角度关系的探索,发现、证明正弦定理并运用正弦定理解决一些简单的三角形度量问题。

难点:正弦定理的发现并证明过程以及已知两边以及其中一边的对角解三角形时解的个数的判断。

三、教学基本流程1、创设问题情境,引出问题:在三角形中,已知两角以及一边,如何求出另外一边;2、结合初中学习过的直角三角形中的边角关系,引导学生不断地观察、比较、分析,采取从特殊到一般以及合情推理的方法发现并证明正弦定理;3、分析正弦定理的特征及利用正弦定理可解的三角形的类型;4、应用正弦定理解三角形。

四、教学情境设计五、教学研究1、新课标倡导积极主动、勇于探索的学习方式,使学生在自主探究的过程中提高数学思维能力。

本设计从生活中的实际问题出发创设了一系列数学问题情境来引导学生质疑、思考,让学生在“疑问”、“好奇”、“解难”中探究学习,激发了学生的学习兴趣,调动了学生自主学习的积极性,从而有效地培养学生了的数学创新思维。

2、新课标强调数学教学要注重“过程”,要使学生学习数学的过程成为在教师的引导下进行“再创造”过程。

本设计展示了一个先从特殊的直角三角形中正弦的定义出发探索A的正弦与B的正弦的关系从而发现正弦定理,再将一般的三角形与直角三角形联系起来(在一般的三角形中构造直角三角形)进而在一般的三角形发现正弦定理的过程,使学生不但体会到探索新知的方法而且体验到了发现的乐趣,起到了良好的教学效果。

高中数学正弦定理教案全套

高中数学正弦定理教案全套

高中数学正弦定理教案全套
一、教学目标:
1. 理解正弦定理的含义和应用;
2. 掌握正弦定理的推导过程;
3. 能够运用正弦定理解决相关问题。

二、教学重点:
1. 正弦定理的概念和推导过程;
2. 正弦定理解决问题的方法。

三、教学难点:
1. 正弦定理的应用;
2. 正弦定理与三角函数的关系。

四、教学准备:
1. 教材:高中数学教材;
2. 教具:黑板、彩色粉笔;
3. 视频资料。

五、教学过程:
1. 导入:
1)复习:回顾三角函数的基本概念和性质;
2)引入:介绍正弦定理的概念和应用。

2. 学习:
1)概念:讲解正弦定理的定义和表述;
2)推导:通过几何图形和三角函数的关系,推导正弦定理的公式; 3)应用:讲解如何运用正弦定理解决三角形的边长和角度问题。

3. 实践:
1)练习:布置一些练习题,让学生独立解答;
2)讲评:讲解练习题的解题过程和方法。

4. 总结:
总结正弦定理的概念、公式和应用,并与学生共同讨论解题方法。

六、作业:
1. 完成课堂练习题;
2. 阅读相关资料,了解正弦定理的历史和发展。

七、课后反思:
1. 教学内容安排是否合理;
2. 学生的学习情况和反馈;
3. 下节课的教学准备。

高中数学《正弦定理》教案4篇

高中数学《正弦定理》教案4篇

高中数学《正弦定理》教案4篇高中数学《正弦定理》教案1教材地位与作用:本节学问是必修五第一章《解三角形》的第一节内容,与学校学习的三角形的边和角的基本关系有亲密的联系与判定三角形的全等也有亲密联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。

因此,正弦定理的学问特别重要。

学情分析:作为高一同学,同学们已经把握了基本的三角函数,特殊是在一些特别三角形中,而同学们在解决任意三角形的边与角问题,就比较困难。

教学重点:正弦定理的内容,正弦定理的证明及基本应用。

教学难点:正弦定理的探究及证明,已知两边和其中一边的对角解三角形时推断解的个数。

(依据我的教学内容与学情分析以及教学重难点,我制定了如下几点教学目标)教学目标分析:学问目标:理解并把握正弦定理的证明,运用正弦定理解三角形。

力量目标:探究正弦定理的证明过程,用归纳法得出结论。

情感目标:通过推导得出正弦定理,让同学感受数学公式的干净对称美和数学的实际应用价值。

教法学法分析:教法:采纳探究式课堂教学模式,在老师的启发引导下,以同学自主和合作沟通为前提,以“正弦定理的发觉”为基本探究内容,以生活实际为参照对象,让同学的思维由问题开头,到猜测的得出,猜测的探究,定理的推导,并逐步得到深化。

学法:指导同学把握“观看——猜测——证明——应用”这一思维方法,实行个人、小组、集体等多种解难释疑的尝试活动,将自己所学学问应用于对任意三角形性质的探究。

让同学在问题情景中学习,观看,类比,思索,探究,动手尝试相结合,增添同学由特别到一般的数学思维力量,锲而不舍的求学精神。

教学过程(一)创设情境,布疑激趣“爱好是最好的老师”,假如一节课有个好的开头,那就意味着胜利了一半,本节课由一个实际问题引入,“工人师傅的一个三角形的模型坏了,只剩下如右图所示的部分,∠a=47°,∠b=53°,ab 长为1m,想修好这个零件,但他不知道ac和bc的长度是多少好去截料,你能帮师傅这个忙吗?”激发同学关心别人的热忱和学习的爱好,从而进入今日的学习课题。

正弦定理教案

正弦定理教案

正弦定理教案正弦定理教案「篇一」教学目标:1.让学生从已有的几何知识出发,通过对任意三角形边角关系的探索,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,实验,猜想,验证,证明,由特殊到一般归纳出正弦定理,掌握正弦定理的内容及其证明方法,理解三角形面积公式,并学会运用正弦定理解决解斜三角形的两类基本问题。

2.通过对实际问题的探索,培养学生观察问题、提出问题、分析问题、解决问题的能力,增强学生的协作能力和交流能力,发展学生的创新意识,培养创造性思维的能力。

3.通过学生自主探索、合作交流,亲身体验数学规律的发现,培养学生勇于探索、善于发现、不畏艰辛的创新品质,增强学习的成功心理,激发学习数学的兴趣。

4.培养学生合情合理探索数学规律的数学思想方法,通过平面几何、三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。

教学重点与难点教学重点:正弦定理的发现与证明;正弦定理的简单应用。

教学难点:正弦定理的猜想提出过程。

教学准备:制作多媒体,学生准备计算器,直尺,量角器。

教学过程:(一)结合实例,激发动机师生活动:师:每天我们都在科技楼里学习,对科技楼熟悉吗?生:当然熟悉。

师:那大家知道科技楼有多高吗?学生不知道。

激起学生兴趣!师:给大家一个皮尺和测角仪,你能测出楼的高度吗?学生思考片刻,教师引导。

生1:在楼的旁边取一个观测点C,再用一个标杆,利用三角形相似。

师:方法可行吗?生2:B点位置在楼内不确定,故BC长度无法测量,一次测量不行。

师:你有什么想法?生2:可以再取一个观测点D。

师:多次测量取得数据,为了能与上次数据联系,我们应把D点取在什么位置?生2:向前或向后师:好,模型如图(2):我们设正弦定理教学设计,正弦定理教学设计 ,CD=10,那么我们能计算出AB吗?生3:由正弦定理教学设计求出AB。

师:很好,我们可否换个角度,在正弦定理教学设计中,能求出AD,也就求出了AB。

正弦定理教案

正弦定理教案

正弦定理教案一、教案概述本教案旨在介绍高中数学中的正弦定理,帮助学生理解和掌握正弦定理的概念和应用。

通过本节课的学习,学生将了解到正弦定理在三角形中的应用,并能够正确地运用它来解决相关问题。

二、教学目标1. 了解正弦定理的概念和公式;2. 掌握正弦定理的推导过程;3. 能够灵活运用正弦定理解决相关问题;4. 培养学生的逻辑思维和解决问题的能力。

三、教学内容1. 正弦定理的概念介绍;2. 正弦定理的公式推导;3. 正弦定理的应用实例。

四、教学步骤1. 引入新知识通过一个生活场景引入正弦定理的概念,例如:在实际测量中,我们如何确定高楼的高度或是河流的宽度等等。

2. 学习正弦定理的公式推导a. 引导学生对三角形中的角和边进行编号,并介绍正弦定理的公式:$\\frac{a}{\\sin A}=\\frac{b}{\\sin B}=\\frac{c}{\\sin C}$;b. 利用几何图形和三角函数的知识,推导正弦定理的公式。

3. 练习应用a. 提供一些实际问题,并要求学生运用正弦定理解决;b. 引导学生分析问题,确定需要使用的公式和计算步骤;c. 让学生在小组内进行讨论和解决问题。

4. 总结与展示a. 总结正弦定理的概念和公式;b. 引导学生思考:正弦定理的应用范围和注意事项。

五、教学资源1. 教学板书:正弦定理的公式推导过程、实例问题和解决步骤;2. 视频或图片素材,用于引入新知识。

六、教学评估1. 对学生的学习态度和参与度进行评估;2. 对学生解决问题的能力进行评估;3. 对学生对正弦定理的理解和应用能力进行评估。

七、教学延伸1. 可以引入余弦定理的概念和公式,与正弦定理进行比较和应用;2. 可以安排学生进行实际测量,应用正弦定理求解一些实际问题;3. 可以组织学生进行小组讨论和展示,分享他们对正弦定理的理解和应用经验。

八、教学反思通过本节课的教学,学生对正弦定理有了更深入的了解,并能够熟练地运用它解决实际问题。

高中数学正弦定理优秀教案

高中数学正弦定理优秀教案

高中数学正弦定理优秀教案
教学目标:通过本节课的学习,学生将能够掌握正弦定理的概念,并能够灵活运用正弦定
理解决三角形相关问题。

教学重点:正弦定理的概念理解和运用。

教学难点:在实际问题中应用正弦定理解决问题。

一、导入(5分钟)
教师引入正弦定理的概念,通过一个简单的例子,让学生感受到正弦定理在解决三角形问
题中的重要性。

二、讲解(15分钟)
1. 正弦定理的定义:在一个三角形ABC中,对应顶点为A,B,C,对边长分别为a,b,c,边角分别为∠A,∠B,∠C,则有sinA/a=sinB/b=sinC/c。

2. 通过几个示例,讲解正弦定理的具体应用方法。

3. 解释为什么正弦定理成立。

三、练习(20分钟)
1. 让学生进行一些简单的计算练习,巩固正弦定理的应用。

2. 给学生几道实际问题,让他们尝试用正弦定理解决。

四、讨论与总结(10分钟)
1. 让学生展示自己解决实际问题的方法,并讨论解题过程中的不同思路。

2. 总结本节课的重点内容,强调正弦定理在解决三角形相关问题中的重要性。

五、作业布置(5分钟)
布置相关作业,让学生进一步巩固所学内容。

六、教学反思(5分钟)
结合教学过程,分析本节课的优点和不足之处,为下节课的教学做出合理安排。

通过以上教案设计,相信学生能够轻松掌握正弦定理的概念和应用,提高他们的数学解题
能力和思维能力。

初中正弦定理教案

初中正弦定理教案

初中正弦定理教案教学目标:1. 理解并掌握正弦的概念及学会运用正弦的概念或定义表求解相关题目。

2. 掌握正弦定理的证明及应用。

3. 培养学生的空间想象、推理论证能力和独立思考的能力。

教学重点:1. 正弦的概念及运用。

2. 正弦定理的证明。

教学难点:1. 正弦定理的证明。

2. 正弦定理在解三角形中的应用。

教学过程:一、导入(5分钟)1. 复习直角三角形的边角关系,引导学生得出正弦的概念。

2. 提问:是否所有的三角形都存在类似的边角关系呢?二、新课讲解(15分钟)1. 引导学生猜测任意三角形都存在边角关系,并引入正弦定理的概念。

2. 讲解正弦定理的证明过程,重点解释正弦定理的推导过程。

3. 举例说明正弦定理的应用,如解三角形边角问题。

三、课堂练习(10分钟)1. 让学生独立完成课本上的练习题,巩固对正弦定理的理解。

2. 引导学生思考正弦定理在实际问题中的应用。

四、拓展与应用(10分钟)1. 引导学生思考:如何利用正弦定理解决更复杂的问题?2. 举例讲解正弦定理在实际问题中的应用,如测量地球表面某点的海拔。

五、总结与反思(5分钟)1. 让学生总结本节课所学的内容,巩固记忆。

2. 引导学生反思:如何更好地运用正弦定理解决实际问题?教学评价:1. 课后作业:让学生完成课后练习题,检验对正弦定理的理解和掌握程度。

2. 课堂表现:观察学生在课堂上的参与程度、思考能力和合作交流能力。

教学反思:本节课通过引导学生思考和练习,让学生掌握正弦定理的概念和应用。

在教学过程中,要注意以下几点:1. 讲解正弦定理的证明过程时要清晰易懂,避免学生产生困惑。

2. 举例说明正弦定理的应用时要多样化,激发学生的兴趣。

3. 注重培养学生的空间想象和推理论证能力,提高学生的独立思考能力。

教学延伸:为进一步提高学生的数学素养,可以引导学生深入研究正弦定理的证明方法和应用领域,如在物理学、工程学等领域中的应用。

同时,可以引导学生探索其他三角函数的性质和定理,提高学生的数学思维能力。

《正弦定理》教案(含答案)

《正弦定理》教案(含答案)

一、教学目标1. 让学生理解正弦定理的定义和意义。

2. 让学生掌握正弦定理的推导过程。

3. 让学生能够运用正弦定理解决实际问题。

二、教学重点与难点1. 教学重点:正弦定理的定义、推导过程和应用。

2. 教学难点:正弦定理在实际问题中的应用。

三、教学方法1. 采用问题驱动法,引导学生思考和探索正弦定理的推导过程。

2. 通过实际例题,让学生掌握正弦定理的应用方法。

3. 利用多媒体辅助教学,直观展示正弦定理的应用场景。

四、教学内容1. 正弦定理的定义与推导正弦定理是指在一个三角形中,各边的长度与其对角的正弦值成正比。

具体来说,对于一个三角形ABC,有:a/sinA = b/sinB = c/sinC其中,a、b、c分别表示三角形ABC的边长,A、B、C分别表示三角形ABC 的对角。

2. 正弦定理的应用(1)求解三角形的边长:已知三角形的两个角和其中一个角的正弦值,求解第三边的边长。

(2)求解三角形的角度:已知三角形的两边和它们夹角的正弦值,求解第三个角的大小。

(3)求解三角形的面积:已知三角形的两边和它们夹角的正弦值,求解三角形的面积。

五、教学过程1. 引入新课:通过展示三角形模型,引导学生思考三角形中边长和角度的关系。

2. 讲解正弦定理的定义与推导:引导学生回顾正弦函数的定义,结合三角形的特点,推导出正弦定理。

3. 例题讲解:挑选一些典型的例题,讲解如何运用正弦定理解决问题。

4. 练习与讨论:让学生分组讨论,互相解答疑问,巩固正弦定理的应用。

5. 总结与拓展:对本节课的内容进行总结,提出一些拓展问题,激发学生的学习兴趣。

六、教学评价1. 课堂问答:检查学生对正弦定理的理解和掌握程度。

2. 练习题:布置一些有关正弦定理的应用题,检验学生运用知识解决问题的能力。

3. 小组讨论:评估学生在小组讨论中的参与程度和合作能力。

七、教学反思1. 教师需要反思教学过程中的优点和不足,如教学方法、课堂组织等。

2. 针对学生的学习情况,调整教学策略,提高教学效果。

关于正弦定理数学教案5篇

关于正弦定理数学教案5篇

关于正弦定理数学教案5篇关于正弦定理数学教案5篇本节内容是正弦定理教学的第一节课,其主要任务是引入并证明正弦定理.做好正弦定理的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识。

下面给大家分享正弦定理数学教案,欢迎阅读!正弦定理数学教案【篇1】一、教材分析《正弦定理》是人教版教材必修五第一章《解三角形》的第一节内容,也是三角形理论中的一个重要内容,与初中学习的三角形的边和角的基本关系有密切的联系。

在此之前,学生已经学习过了正弦函数和余弦函数,知识储备已足够。

它是后续课程中解三角形的理论依据,也是解决实际生活中许多测量问题的工具。

因此熟练掌握正弦定理能为接下来学习解三角形打下坚实基础,并能在实际应用中灵活变通。

二、教学目标根据上述教材内容分析,考虑到学生已有的认知结构心理特征及原有知识水平,制定如下教学目标:知识目标:理解并掌握正弦定理的证明,运用正弦定理解三角形。

能力目标:探索正弦定理的证明过程,用归纳法得出结论,并能掌握多种证明方法。

情感目标:通过推导得出正弦定理,让学生感受数学公式的整洁对称美和数学的实际应用价值。

三、教学重难点教学重点:正弦定理的内容,正弦定理的证明及基本应用。

教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时判断解的个数。

四、教法分析依据本节课内容的特点,学生的认识规律,本节知识遵循以教师为主导,以学生为主体的指导思想,采用与学生共同探索的教学方法,命题教学的发生型模式,以问题实际为参照对象,激发学生学习数学的好奇心和求知欲,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化,并且运用例题和习题来强化内容的掌握,突破重难点。

即指导学生掌握“观察——猜想——证明——应用”这一思维方法。

学生采用自主式、合作式、探讨式的学习方法,这样能使学生积极参与数学学习活动,培养学生的合作意识和探究精神。

五、教学过程本节知识教学采用发生型模式:1、问题情境有一个旅游景点,为了吸引更多的游客,想在风景区两座相邻的山之间搭建一条观光索道。

正弦定理教案

正弦定理教案

《正弦定理》教学方案一、教学目标掌握正弦定理的概念及其推导过程。

能够运用正弦定理解决三角形相关问题。

培养学生的逻辑推理能力和数学应用能力。

二、教学重难点重点:正弦定理的推导及其应用。

难点:正弦定理在不同三角形类型中的灵活应用。

三、教学准备教师准备:教学课件(含例题、练习题)、三角板、量角器、黑板、粉笔。

学生准备:笔记本、笔、草稿纸。

四、教学过程(一)导入新课提问引导:同学们,我们之前学过三角形的边长和角度之间的关系,你还记得有哪些吗?学生回顾三角形的性质,如三角形的内角和为180°等。

引出课题:今天我们要学习一个新的定理,它可以帮助我们更深入地了解三角形的边长和角度之间的关系,那就是正弦定理。

(二)新课讲解正弦定理的概念讲解定义:在任意三角形ABC中,边a、b、c分别对应角A、B、C,则有a/sinA = b/sinB = c/sinC = 2R,其中R为三角形的外接圆半径。

推导过程:通过构造三角形的外接圆,利用圆的性质进行推导。

正弦定理的应用例题讲解:例题1:在△ABC中,已知a = 5,b = 7,A = 30°,求角B。

解析:根据正弦定理,我们有a/sinA = b/sinB,代入已知数值,解得sinB = (b * sinA) / a,进一步求得角B。

例题2:在△ABC中,已知a = 3,c = 4,B = 60°,求边b的长度。

解析:同样利用正弦定理,我们有a/sinA = b/sinB = c/sinC,由于已知B的度数,我们可以先求出sinB的值,然后通过等式求解b。

(三)学生互动环节分组讨论:学生分组讨论正弦定理的推导过程及其应用,并尝试解决一些简单的例题。

实战演练:教师给出几个三角形的边长和角度信息,要求学生运用正弦定理求出未知量,并请几名学生上台展示解题过程。

互动提问:鼓励学生提问,针对学生在正弦定理应用过程中遇到的难题进行解答。

(四)巩固练习练习题:练习1:在△ABC中,已知a = 8,b = 10,A = 45°,求B。

《正弦定理》教案(含答案)

《正弦定理》教案(含答案)

《正弦定理》教案(含答案)第一章:正弦定理的引入1.1 实物的直观引入利用直角三角形和平行四边形模型,引导学生直观感受正弦定理的概念。

让学生通过观察和实验,发现正弦定理在几何图形中的普遍性。

1.2 数学定义与公式给出正弦定理的数学表达式:a/sinA = b/sinB = c/sinC,其中a, b, c分别为三角形的边长,A, B, C分别为对应的角度。

解释正弦定理的内涵,让学生理解各个参数之间的关系。

1.3 例题讲解选择具有代表性的例题,讲解正弦定理的应用方法。

引导学生通过正弦定理解决问题,培养学生的解题能力。

第二章:正弦定理的应用2.1 三角形内角和定理的推导利用正弦定理推导三角形内角和定理:A + B + C = 180°。

解释推导过程,让学生理解正弦定理与三角形内角和定理之间的关系。

2.2 三角形形状的判断利用正弦定理判断三角形的形状(直角三角形、锐角三角形、钝角三角形)。

引导学生通过正弦定理判断给定三角形的形状。

2.3 实际问题应用选择与生活实际相关的问题,引导学生利用正弦定理解决问题。

培养学生的实际问题解决能力,提高学生对正弦定理的应用意识。

第三章:正弦定理在测量中的运用3.1 角度测量讲解利用正弦定理进行角度测量的方法。

引导学生通过正弦定理进行角度测量,提高学生的实际操作能力。

3.2 距离测量讲解利用正弦定理进行距离测量的方法。

引导学生通过正弦定理进行距离测量,提高学生的实际操作能力。

3.3 实际测量案例提供实际测量案例,让学生利用正弦定理进行测量。

培养学生的实际测量能力,提高学生对正弦定理在测量中应用的理解。

第四章:正弦定理在三角函数中的应用4.1 三角函数的定义与关系讲解正弦定理与三角函数之间的关系。

引导学生理解正弦定理在三角函数中的应用。

4.2 三角函数图像的绘制利用正弦定理绘制三角函数图像。

培养学生的图像绘制能力,提高学生对正弦定理在三角函数中应用的理解。

4.3 三角函数问题的解决利用正弦定理解决三角函数问题。

正弦定理教案

正弦定理教案

1.1.1正弦定理三维目标:1.通过对任意三角形边长与角度关系的探索,引导学生用已有的几何知识总结、归纳出其边角关系,通过观察、推到、比较得出正弦定理。

2.通过对正弦定理的学习,培养学生提出问题、探索问题、解决问题的能力,激发学生学习数学的热情,培养学生思考、探究及创新的精神。

教学重点:正弦定理的证明及运用。

教学难点:应用正弦定理判断三角形解的个数。

教学过程:一、导入新课: 通过直角三角形的边角关系得到sin sin sin a b c A B C ==(正弦定理),对于任意三角形是否都有上述关系式成立?二、正弦定理的证明:1. 利用三角形的高证明(1)如图,当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定义,有CD=sin sin a B b A =,则sin sin a b =, C 同理可得sin sin c b C B =, 从而sin sin ab A B =sinc C= A D B (2)如图,当∆ABC 是钝角角三角形时,设边AB 上的高是CD ,点D 在AB 的延长线上,根据锐角三角函数的定义,有CD==∠=∠sin sin sin ,a B b CAD b CAB ,则=∠sin sin abCAB B , C同理可得=∠∠sin sin c a , 从而sin sin ab A B =sinc C = B A D2. 向量法证明过点A 作j AC ⊥, C由向量的加法可得 AB AC CB =+则()j AB j AC CB ⋅=⋅+∴j AB j AC j CB ⋅=⋅+⋅ j()()00cos 900cos 90-=+-j AB A j CB C ∴sin sin =c A a C ,即=a c 同理,过点C 作⊥j BC ,可得 sin sin =b c B C ,从而sin sin a b =sin c = 同理,当∆ABC 是钝角三角形时,由学生课后推导公式。

《正弦定理》教案(精选12篇)

《正弦定理》教案(精选12篇)

《正弦定理》教案(精选12篇)《正弦定理》教案篇1一、教学内容分析本节课是高一数学第五章《三角比》第三单元中正弦定理的第一课时,它既是学校“解直角三角形”内容的直接延拓,也是坐标法等学问在三角形中的详细运用,是生产、生活实际问题的重要工具,正弦定理揭示了任意三角形的边角之间的一种等量关系,它与后面的余弦定理都是解三角形的重要工具。

本节课其主要任务是引入证明正弦定理及正弦定理的基本应用,在课型上属于“定理教学课”。

因此,做好“正弦定理”的教学,不仅能复习巩固旧学问,使同学把握新的有用的学问,体会联系、进展等辩证观点,同学通过对定理证明的探究和争论,体验到数学发觉和制造的历程,进而培育同学提出问题、解决问题等讨论性学习的力量。

二、学情分析对高一的同学来说,一方面已经学习了平面几何,解直角三角形,任意角的三角比等学问,具有肯定观看分析、解决问题的力量;但另一方面对新旧学问间的联系、理解、应用往往会消失思维障碍,思维敏捷性、深刻性受到制约。

依据以上特点,老师恰当引导,提高同学学习主动性,留意前后学问间的联系,引导同学直接参加分析问题、解决问题。

三、设计思想:培育同学学会学习、学会探究是全面进展同学力量的重要方面,也是高中新课程改革的主要任务。

如何培育同学学会学习、学会探究呢?建构主义认为:“学问不是被动汲取的,而是由认知主体主动建构的。

”这个观点从教学的角度来理解就是:学问不仅是通过老师传授得到的,更重要的是同学在肯定的情境中,运用已有的学习阅历,并通过与他人(在老师指导和学习伙伴的关心下)协作,主动建构而获得的,建构主义教学模式强调以同学为中心,视同学为认知的主体,老师只对同学的意义建构起关心和促进作用。

本节“正弦定理”的教学,将遵循这个原则而进行设计。

四、教学目标:1、在创设的问题情境中,让同学从已有的几何学问和处理几何图形的常用方法动身,探究和证明正弦定理,体验坐标法将几何问题转化为代数问题的优越性,感受数学论证的严谨性。

正余弦定理完美教案

正余弦定理完美教案

正余弦定理完美教案第一章:正弦定理简介1.1 学习目标了解正弦定理的定义和基本性质学会运用正弦定理解决实际问题1.2 教学内容正弦定理的定义及公式正弦定理与三角形内角和的关系正弦定理在实际问题中的应用1.3 教学方法采用讲解、示例、练习相结合的方式进行教学引导学生通过观察、思考、讨论,发现正弦定理的规律1.4 教学步骤1. 引入正弦定理的概念,引导学生了解正弦定理的定义和公式2. 通过示例,讲解正弦定理在解决实际问题中的应用3. 安排练习题,巩固学生对正弦定理的理解和应用能力第二章:余弦定理简介2.1 学习目标了解余弦定理的定义和基本性质学会运用余弦定理解决实际问题2.2 教学内容余弦定理的定义及公式余弦定理与三角形内角和的关系余弦定理在实际问题中的应用2.3 教学方法采用讲解、示例、练习相结合的方式进行教学引导学生通过观察、思考、讨论,发现余弦定理的规律2.4 教学步骤1. 引入余弦定理的概念,引导学生了解余弦定理的定义和公式2. 通过示例,讲解余弦定理在解决实际问题中的应用3. 安排练习题,巩固学生对余弦定理的理解和应用能力第三章:正弦定理与余弦定理的综合应用3.1 学习目标学会运用正弦定理和余弦定理解决综合问题理解正弦定理和余弦定理之间的关系3.2 教学内容正弦定理和余弦定理的综合应用正弦定理和余弦定理之间的关系3.3 教学方法采用讲解、示例、练习相结合的方式进行教学引导学生通过观察、思考、讨论,发现正弦定理和余弦定理之间的关系3.4 教学步骤1. 通过示例,讲解正弦定理和余弦定理在解决综合问题中的应用2. 引导学生发现正弦定理和余弦定理之间的关系3. 安排练习题,巩固学生对正弦定理和余弦定理的综合应用能力第四章:正弦定理和余弦定理在几何中的应用4.1 学习目标学会运用正弦定理和余弦定理解决几何问题理解正弦定理和余弦定理在几何中的重要性4.2 教学内容正弦定理和余弦定理在几何中的应用正弦定理和余弦定理在几何中的重要性4.3 教学方法采用讲解、示例、练习相结合的方式进行教学引导学生通过观察、思考、讨论,发现正弦定理和余弦定理在几何中的重要性4.4 教学步骤1. 通过示例,讲解正弦定理和余弦定理在几何问题中的应用2. 引导学生理解正弦定理和余弦定理在几何中的重要性3. 安排练习题,巩固学生对正弦定理和余弦定理在几何中的应用能力第五章:正弦定理和余弦定理在实际问题中的应用5.1 学习目标学会运用正弦定理和余弦定理解决实际问题理解正弦定理和余弦定理在实际问题中的意义5.2 教学内容正弦定理和余弦定理在实际问题中的应用正弦定理和余弦定理在实际问题中的意义5.3 教学方法采用讲解、示例、练习相结合的方式进行教学引导学生通过观察、思考、讨论,发现正弦定理和余弦定理在实际问题中的意义5.4 教学步骤1. 通过示例,讲解正弦定理和余弦定理在实际问题中的应用2. 引导学生理解正弦定理和余弦定理在实际问题中的意义3. 安排练习题,巩固学生对正弦定理和余弦定理在实际问题中的应用第六章:正弦定理和余弦定理的综合练习6.1 学习目标巩固正弦定理和余弦定理的基本概念提高运用正弦定理和余弦定理解决综合问题的能力6.2 教学内容综合练习题,涵盖正弦定理和余弦定理的应用分析解题思路和方法6.3 教学方法提供综合练习题,引导学生独立解答分析解题思路,讨论解题方法6.4 教学步骤1. 提供综合练习题,要求学生独立解答2. 分析解题思路,引导学生运用正弦定理和余弦定理解决问题3. 讨论解题方法,总结正弦定理和余弦定理的应用技巧第七章:正弦定理和余弦定理在三角形中的应用7.1 学习目标深入学习正弦定理和余弦定理在三角形中的应用掌握正弦定理和余弦定理在解决三角形问题时的灵活运用7.2 教学内容正弦定理和余弦定理在三角形中的应用案例三角形特殊角度时的定理特殊性质7.3 教学方法采用案例教学,通过具体三角形问题讲解定理的应用引导学生通过几何画图工具直观理解定理的应用7.4 教学步骤1. 通过具体三角形问题,展示正弦定理和余弦定理的应用2. 引导学生利用几何画图工具,直观理解定理的应用过程3. 安排练习题,巩固学生对定理在三角形中应用的理解第八章:正弦定理和余弦定理在复杂三角形中的应用8.1 学习目标学习正弦定理和余弦定理在复杂三角形中的应用培养学生解决复杂三角形问题的能力8.2 教学内容复杂三角形问题中正弦定理和余弦定理的运用练习题及解题策略8.3 教学方法采用问题解决法,引导学生思考和探讨提供练习题,让学生通过实际操作解决问题8.4 教学步骤1. 引入复杂三角形问题,引导学生思考如何应用定理2. 提供练习题,让学生独立解决3. 讨论解题策略,引导学生总结解题技巧第九章:正弦定理和余弦定理在实际工程中的应用9.1 学习目标学习正弦定理和余弦定理在实际工程中的应用培养学生解决实际工程问题的能力9.2 教学内容正弦定理和余弦定理在工程测量、建筑等方面的应用案例实际工程问题中的解题方法9.3 教学方法采用案例教学,通过实际工程案例讲解定理的应用引导学生通过实际操作,理解定理在工程中的应用9.4 教学步骤1. 通过实际工程案例,展示正弦定理和余弦定理的应用2. 引导学生参与实际操作,理解定理在工程中的应用过程3. 安排练习题,巩固学生对定理在实际工程中应用的理解第十章:总结与复习10.1 学习目标总结正弦定理和余弦定理的主要内容和应用复习本门课程的知识点,为考试做好准备10.2 教学内容复习正弦定理和余弦定理的基本概念、性质和应用总结解题方法和技巧10.3 教学方法通过复习讲义和练习题,引导学生复习和巩固知识点组织复习课堂,鼓励学生提问和讨论10.4 教学步骤1. 发放复习讲义,让学生提前预习2. 组织复习课堂,引导学生复习重点知识点3. 提供练习题,让学生通过实际操作巩固知识点重点和难点解析第六章:正弦定理和余弦定理的综合练习环节:分析解题思路和方法重点和难点解析:此环节需要重点关注解题思路的培养和方法的多样性。

教案高中数学正弦定理

教案高中数学正弦定理

教案高中数学正弦定理
一、教学目标
1. 理解正弦定理的概念,能够准确地表述正弦定理;
2. 能够应用正弦定理解决实际问题;
3. 培养学生的数学分析和解决问题的能力。

二、教学重点
1. 掌握正弦定理的表述和使用方法;
2. 能够应用正弦定理解决实际问题。

三、教学内容
1. 正弦定理的概念及表述;
2. 正弦定理的应用。

四、教学过程
1. 引入:引导学生回顾三角函数的概念,了解正弦函数的定义和性质;
2. 讲解:介绍正弦定理的概念和表述,引导学生通过几何图形理解正弦定理;
3. 演示:通过一个具体的例子,演示如何应用正弦定理解决三角形的边长或角度问题;
4. 练习:让学生自主练习,巩固正弦定理的应用;
5. 拓展:提供一些拓展题,引导学生更深入地理解和应用正弦定理;
6. 总结:总结正弦定理的基本概念和应用方法,强化学生的理解和记忆。

五、课堂小结
本节课主要介绍了正弦定理的概念和应用方法,通过学习正弦定理可以帮助学生更好地理解三角形的性质和关系,提高解决三角形相关问题的能力。

六、布置作业
1. 完成课堂练习;
2. 自主选择一些相关的题目进行练习,加深对正弦定理的理解和掌握。

七、教学反思
本节课通过引导学生理解正弦函数的性质和正弦定理的应用,使学生更清晰地认识到三角形的结构和性质,培养了解决问题的能力。

在教学过程中,需要适当调整教学方法,让学生更好地掌握知识点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1.1 正弦定理教学要求:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题. 教学重点:正弦定理的探索和证明及其基本应用.教学难点:已知两边和其中一边的对角解三角形时判断解的个数. 教学过程:一、复习引入:1.在任意三角形行中有大边对大角,小边对小角的边角关系?是否可以把边、角关系准确量化?2.在ABC ∆中,角A 、B 、C 的正弦对边分别是c b a ,,,你能发现它们之间有什么关系吗? 结论★: 。

二、讲授新课:探究一:在直角三角形中,你能发现三边和三边所对角的正弦的关系吗?直角三角形中的正弦定理: sin A =c a sin B =c bsin C =1 即c =sin sin sin a b c A B C==. 探究二:能否推广到斜三角形? (先研究锐角三角形,再探究钝角三角形)当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据三角函数的定义,有sin sin CD a B b A ==,则sin sin a bA B=. 同理,sin sin a c A C =(思考如何作高?),从而sin sin sin a b cA B C==. 探究三:你能用其他方法证明吗? 1. 证明一:(等积法)在任意斜△ABC 当中S △ABC =111sin sin sin 222ab C ac B bc A ==.两边同除以12abc 即得:sin a A =sin b B =sin cC.2.证明二:(外接圆法)如图所示,∠A =∠D ,∴2sin sin a aCD R A D===, 同理sin b B =2R ,sin c C =2R . 3.证明三:(向量法)过A 作单位向量j 垂直于AC ,由AC +CB =AB 边同乘以单位向量j 得…..正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即sin sin abAB=sin cC==2R[理解定理] 1公式的变形:C R c B R b A R a sin 2,sin 2,sin 2)1(===C B A c b a sin :sin :sin ::)3(=,2sin ,2sin ,2sin )2(Rc C R b B R a A ===Bb Cc C c A a B b A a sin sin ,sin sin ,sin sin )4(===2.正弦定理的基本作用为:①已知三角形的任意两角及其一边可以求其他边,如sin sin b Aa B=; ②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如sin sin a A B b=。

一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形. 3.利用正弦定理解三角形使,经常用到:①π=++C B A ②C B A C B A sin )cos(,sin )sin(=+=+③C ab S abc sin 21=∆ 三、 教学例题:例1 已知在B b a C A c ABC 和求中,,,30,45,1000===∆.分析已知条件 → 讨论如何利用边角关系 → 示范格式 → 小结:已知两角一边 解:0030,45,10===C A c ∴00105)(180=+-=C A B由CcA a sin sin =得 21030sin 45sin 10sin sin 00=⨯==C A c a 由CcB b sin sin =得 256575sin 2030sin 105sin 10sin sin 000+==⨯==C B c b 评述:此类问题结果为唯一解,学生较易掌握,如果已知两角和两角所夹的边,也是先利用内角和180°求出第三角,再利用正弦定理.例2 C B b a A c ABC ,,2,45,60和求中,===∆解:23245sin 6sin sin ,sin sin 0=⨯==∴=aAc C C c A a0012060,1800或=∴︒<<︒C C1360sin 75sin 6sin sin ,75600+=====∴CBc b B C 时,当, 1360sin 15sin 6sin sin ,1512000-=====∴C B c b B C 时,当或0060,75,13==+=∴C B b 00120,15,13==-=C B b练习:P4 —— 1.2题例3在C A a c B b ABC ,,1,60,30和求中,===∆解:∵21360sin 1sin sin ,sin sin 0=⨯==∴=b B c C C c B b 00090,30,,60,==∴<∴=>B C C B C B c b 为锐角,∴222=+=c b a【变式】 02,135,3,ABC a A b B ∆===中,求 四、 小结:五、课后作业1在△ABC 中,k CcB b A a ===sin sin sin ,则k 为( 2A ) A 2R B RC 4RD 2(R 为△ABC 外接圆半径)2 在ABC ∆中,已知角334,2245===b c B , ,则角A 的值是 A. 15 B. 75 C.105 D.75或15 3、在△ABC 中,=︒=︒=c b a B A ::,60,30则若 2:3:14、在ABC ∆中,若14,6760===a b B ,,则A= 。

5、在△ABC 中,︒=︒==120,30,6B A AB ,则三角形ABC 的面积为 3 5、在ABC ∆中,已知 45,2,3===B b a ,解三角形。

六、心得反思1.1.1正弦定理学案学习目标:①发现并掌握正弦定理及其证明方法;②会用正弦定理解决三角形中的简单问题。

预习自测1. 正弦定理的数学表达式2. 一般地,把三角形的三个角A,B,C 和它们的对边 叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做 . 3.利用正弦定理可以解决两类三角形的问题 (1) (2)问题引入:1、在任意三角形行中有大边对大角,小边对小角的边角关系.是否可以把边、角关系准确量化?2、在ABC 中,角A 、B 、C 的正弦对边分别是c b a ,,,你能发现它们之间有什么关系吗? 结论★: 。

二 合作探究:1、探究一:在直角三角形中,你能发现三边和三边所对角的正弦的关系吗?2、探究二:能否推广到斜三角形? (先研究锐角三角形,再探究钝角三角形)3、探究三:你能用其他方法证明吗?4、正弦定理的变形:5、正弦定理的应用(能解决哪类问题):三例题讲解例1 已知在B b a C A c ABC 和求中,,,30,45,1000===∆例2 C B b a A c ABC ,,2,45,60和求中,===∆例3在C A a c B b ABC ,,1,60,30和求中,===∆【变式】02,135,3,ABC a A b B ∆===中,求思考:通过上面的问题,你对使用正弦定理有什么想法? 四 课堂练习:必修5课本P4 T1、2 五 课后作业:1在△ABC 中,k CcB b A a ===sin sin sin ,则k 为( ) A 2R B RC 4RD R 21(R 为△ABC 外接圆半径)2△ABC 中,sin 2A = sin 2B +sin 2C ,则△ABC 为( )A 直角三角形B 等腰直角三角形C 等边三角形D 等腰三角形3在ABC ∆中,已知角334,2245===b c B ,,则角A 的值是 A.15 B.75 C.105 D.75或154、在ABC ∆中,若14,6760===a b B ,,则A= 。

5、在ABC ∆中,已知 45,2,3===B b a ,解三角形。

六 心得反思1.1.2解三角形的进一步讨论教学目标掌握在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形;三角形各种类型的判定方法。

教学重点在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形; 三角形各种类型的判定方法。

教学过程 Ⅰ.课题导入 [创设情景]思考:在∆ABC 中,已知22a cm =,25b cm =,0133A =,解三角形。

(由学生阅读课本第9页解答过程)从此题的分析我们发现,在已知三角形的两边及其中一边的对角解三角形时,在某些条件下会出现无解的情形。

下面进一步来研究这种情形下解三角形的问题。

Ⅱ.讲授新课 [探索研究]探究一.在∆ABC 中,已知,,a b A ,讨论三角形解的情况分析:先由sin sin b AB a=可进一步求出B ; 则0180()C A B =-+ ,从而ACa c sin sin =1.当A 为钝角或直角时,必须a b >才能有且只有一解;否则无解。

2.当A 为锐角时,如果a ≥b ,那么只有一解; 3.如果a b <,那么可以分下面三种情况来讨论: (1)若sin a b A >,则有两解; (2)若sin a b A =,则只有一解; (3)若sin a b A <,则无解。

(以上解答过程详见课本第910页)评述:注意在已知三角形的两边及其中一边的对角解三角形时,只有当A 为锐角且 sin b A a b <<时,有两解;其它情况时则只有一解或无解。

探究二 你能画出图来表示上面各种情形下的三角形的解吗?三例题讲解例1.根据下列条件,判断解三角形的情况 (1) a =20,b =28,A =120°.无解 (2)a =28,b =20,A =45°;一解 (3)c =54,b =39,C =115°;一解 (4) b =11,a =20,B =30°;两解[随堂练习1](1)在∆ABC 中,已知80a =,100b =,045A ∠=,试判断此三角形的解的情况。

(2)在∆ABC 中,若1a =,12c =,040C ∠=,则符合题意的b 的值有_____个。

(3)在∆ABC 中,a xcm =,2b cm =,045B ∠=,如果利用正弦定理解三角形有两解,求x 的取值范围。

(答案:(1)有两解;(2)0;(3)222x <<)例2.在ABC ∆中,已知,cos cos cos a b cA B C==判断ABC ∆的形状. 解:令sin ak A=,由正弦定理,得sin a k A =,sin b k B =,sin c k C =.代入已知条件,得sin sin sin cos cos cos A B C A B C==,即tan tan tan A B C ==.又A ,B ,C (0,)π∈,所以A B C ==,从而ABC ∆为正三角形.说明:(1)判断三角形的形状特征,必须深入研究边与边的大小关系:是否两边相等?是否三边相等?还要研究角与角的大小关系:是否两角相等?是否三角相等?有无直角?有无钝角? (2)此类问题常用正弦定理(或将学习的余弦定理)进行代换、转化、化简、运算,揭示出边与边,或角与角的关系,或求出角的大小,从而作出正确的判断. [随堂练习2]1.△ABC 中, C B A 222sin sin sin += ,则△ABC 为( A )A.直角三角形B.等腰直角三角形C.等边三角形D.等腰三角形2. 已知∆ABC 满足条件cos cos a A b B =,判断∆ABC 的类型。

相关文档
最新文档