直流PWM调速系统的MATLAB仿真++
基于MATLAB的直流调压调速控制系统的仿真
三、MATLAB仿真环境搭建
MATLAB提供了Simulink仿真工具,可以方便地进行控制系统的建模和仿真。在搭建直流调压调速控制系统的仿真环境时,首先需要对电机的特性进行建模,包括电机的电动力学方程、电机的转矩-转速特性曲线等。然后,设计控制器的结构和参数,通过Simulink建立相应的控制模型,最后进行仿真验证。MATLAB还提供了丰富的工具箱和函数库,如控制系统工具箱、电机控制工具箱等,能够方便地进行控制系统设计和分析。
2. 控制系统模型
在直流调压调速控制系统中,控制器起着至关重要的作用。常见的控制器包括PID控制器和模糊控制器。这些控制器可以根据电动机的工作状态和需求信号进行控制,实现对电动机速度和输出电压的精准控制。在进行仿真时,需要将控制器的数学模型结合到整个系统中,以实现对电动机的系统级控制。
在MATLAB中进行直流调压调速控制系统的仿真时,可以利用Simulink工具箱进行建模和仿真。Simulink是MATLAB的一个附加工具箱,提供了丰富的模块和功能,可以方便地对控制系统进行仿真和分析。以下是基于MATLAB的直流调压调速控制系统的仿真步骤:
五、实验结果与分析
通过MATLAB的仿真实验,我们可以得到直流调压调速控制系统的性能指标,如电机的转速曲线、电机的输出功率曲线等。根据仿真结果,我们可以对控制系统进行性能分析和优化,调整控制器的参数,改进控制策略,提高系统的稳定性和响应性能。通过仿真实验可以验证控制系统的设计是否满足实际要求,指导工程实践中的系统调试和优化。
基于MATLAB的直流调压调速控制系统的仿真
基于MATLAB的直流调压调速控制系统的仿真引言本文将介绍如何利用MATLAB进行直流调压调速控制系统的仿真,并对系统的性能进行分析和优化。
我们将对直流调压调速控制系统的原理进行简要介绍,然后利用MATLAB进行仿真分析,最后对仿真结果进行评估和优化。
直流调压调速控制系统原理直流调压调速控制系统通常由直流电源、整流器、电动机、控制器和负载组成。
整流器将交流电源转换为直流电源,控制器通过对电动机的电流和电压进行调节,实现对电动机的调压调速控制,从而达到满足负载的要求。
MATLAB仿真分析在MATLAB中,对直流调压调速控制系统进行仿真分析,可以使用Simulink工具箱来模拟实际系统的行为。
Simulink提供了丰富的模块和函数,用户可以方便地构建控制系统的模型,并对系统的性能进行仿真和优化。
我们需要建立直流调压调速控制系统的模型,包括直流电源、整流器、电动机、控制器和负载。
控制器的设计是关键,它需要根据负载要求和环境条件对电动机进行调压调速控制。
在Simulink中,用户可以通过对模块的连接和参数的设定,快速构建控制系统的模型,并对系统的性能进行仿真。
接下来,我们需要对仿真结果进行分析,包括电动机的输出转速、输出转矩和功率等性能指标。
通过对这些性能指标的分析,可以评估控制系统的稳定性和效率,并对系统的参数进行优化。
仿真结果评估和优化在仿真过程中,我们可以对控制系统的参数进行调节和优化,以提高系统的稳定性和效率。
可以对控制器的参数进行调节,以实现对电动机的更精准的调压调速控制;也可以对整流器和负载的参数进行调节,以提高系统的整体性能。
还可以通过引入反馈控制和预测控制等先进的控制策略,对控制系统进行优化。
可以根据负载的变化和环境的变化,动态调整控制器的参数,实现对系统的实时优化。
我们需要对优化后的控制系统进行再次仿真分析,以评估优化效果。
通过对优化后的系统性能的评估,可以确定控制系统是否满足负载的要求,并产生良好的控制效果。
直流调速系统的MATLAB仿真(参考程序)
直流调速系统的MATLAB 仿真一、开环直流速系统的仿真开环直流调速系统的电气原理如图1所示。
直流电动机的电枢由三相晶闸管整流电路经平波电抗器L 供电,通过改变触发器移相控制信号c U 调节晶闸管的控制角α,从而改变整流器的输出电压,实现直流电动机的调速。
该系统的仿真模型如图2所示。
图1 开环直流调速系统电气原理图图2 直流开环调速系统的仿真模型为了减小整流器谐波对同步信号的影响,宜设三相交流电源电感s 0L =,直流电动机励磁由直流电源直接供电。
触发器(6-Pulse )的控制角(alpha_deg )由移相控制信号c U 决定,移相特性的数学表达式为minc cmax9090U U αα︒-=︒-在本模型中取min 30α=︒,cmax 10V U =,所以c 906U α=-。
在直流电动机的负载转矩输入端L T 用Step 模块设定加载时刻和加载转矩。
仿真算例1 已知一台四极直流电动机额定参数为N 220V U =,N 136A I =,N 1460r /min n =,a 0.2R =Ω,2222.5N m GD =⋅。
励磁电压f 220V U =,励磁电流f 1.5A I =。
采用三相桥式整流电路,设整流器内阻rec 0.3R =Ω。
平波电抗器d 20mH L =。
仿真该晶闸管-直流电动机开环调速系统,观察电动机在全压起动和起动后加额定负载时的电机转速n 、电磁转矩e T 、电枢电流d i 及电枢电压d u 的变化情况。
N 220V U =仿真步骤:1)绘制系统的仿真模型(图2)。
2)设置模块参数(表1) ① 供电电源电压N rec N 2min 2200.3136130(V)2.34cos 2.34cos30U R I U α++⨯==≈⨯︒② 电动机参数 励磁电阻:f f f 220146.7()1.5U R I ===Ω 励磁电感在恒定磁场控制时可取“0”。
电枢电阻:a 0.2R =Ω电枢电感由下式估算:N a N N 0.422019.119.10.0021(H)2221460136CU L pn I ⨯==⨯≈⨯⨯⨯电枢绕组和励磁绕组间的互感af L :N a N e N 2200.21360.132(V min/r)1460U R I K n --⨯==≈⋅T e 60600.132 1.262π2πK K ==⨯≈ T af f 1.260.84(H)1.5K L I === 电机转动惯量2222.50.57(kg m )449.81GD J g ==≈⋅⨯③ 额定负载转矩L T N 1.26136171.4(N m)T K I ==⨯≈⋅表1 开环直流调速系统主要模型参数3)设置仿真参数:仿真算法odel5s ,仿真时间5.0s ,直流电动机空载起动,起动2.5s 后加额定负载L 171.4N m T =⋅。
PWM脉宽直流调速系统设计及matlab仿真验证
PWM脉宽直流调速系统设计及matlab仿真验证————————————————————————————————作者:————————————————————————————————日期:目录1.MATLAB简介 (3)3系统设计及参数计算 (5)3.1系统总体设计 (5)3.1.1 H型双极式PWM原理 (5)3.1。
2双闭环调速系统结构图 (7)3.1。
3双闭环调速系统启动过程分析 (8)3。
2电流调节器设计及参数计算 (9)3。
3转速调节器设计及参数计算 (11)4 MATLAB仿真验证 (14)4.1稳定运行时电流环突然断线仿真分析 (14)参考文献 (19)PWM脉宽直流调速系统设计及matlab仿真验证1.MATLAB简介MATLAB是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。
它将数值分析、矩阵计算科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言的编辑模式,代表了当今国际科学计算软件的先进水平。
[MATLAB和MATHEMATICA、MAPLE并称为三大数学软件。
它在数学类科技应用软件中在数值计算方面首屈一指。
MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且MATLAB也吸收了像MAPLE等软件的优点,使MATLAB成为一个强大的数学软件。
2 设计分析直流双闭环调速系统调节器包括转速调节器(ASR)和电流调节器(ACR),从而分别引入了转速负反馈和电流负反馈以调节转速和电流,二者之间实行串级连接.把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE。
PWM脉宽调制直流调速系统设计及MATLAB仿真验证
PWM 脉宽调制直流调速系统设计及MATLAB 仿真验证第一章 系统概述1.1 设计目的1. 掌握转速,电流双闭环控制的双极式PWM 直流调速原理。
2. 掌握并熟练运用MATLAB 对系统进行仿真。
1.2 设计题目转速,电流双闭环控制的H 型双极式PWM 直流调速系统,已知:直流电动机:48, 3.7,200/min,nom nom nom U V I A n r ===允许过载倍数λ=2;时间常数:L T =0.015s ,m T =0.2s ;PWM 环节的放大倍数:S K =4.8,;电枢回路总电阻:R=3Ω;电枢电阻Ra=2Ω。
调节器输入输出电压**nm im U U ==10V.采用MATLAB 对双闭环系统进行仿真,绘制直流调速系统(Id=const )稳定运行时转速环突然断线(1、有ACR 限幅值;2、无ACR 限幅值)仿真框图,仿真得出启动转速,起动电流,直流电压Ud ,ASR,ACR 输出电压的波形。
并对结果进行分析。
1.3 设计内容1 简述设计题目及对题目的分析;2 简述双极式PWM 直流调速系统原理;3 简述电流环,转速环的控制原理;4 对电流环、转速环的参数进行计算选取;5 根据电流环、转速换的参数进行MATLAB 仿真;第二章 转速、电流双闭环式的双极式PWM 直流调速系统2.1 双极式PWM 调速原理可逆PWM 变换器主电路有多种形式,最常用的是桥式(亦称H 形)电路,如图2-1所示,电动机M 两端电压AB U 的极性随全控型电力电子器件的开关状态而改变。
图2-1 桥式可逆PWM 变换电路双极式控制可逆PWM 变换器的四个驱动电压的关系是:1423g g g g U U U U ==-=-。
在一个开关周期内,当0≤t<on t 时 ,AB S U U =,电枢电流id 沿回路1流通;当on t ≤t<T 时,驱动电压反号,id 沿回路2经二极管续流,AB S U U =-。
基于PWM控制的直流电动机调速系统设计及MATLAB仿真
┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊摘要在电力拖动系统中,调节电压的直流调速是应用最广泛的一种调速方法,除了利用晶闸管整流器获得可调直流电压外,还可利用其它电力电子元件的可控性,采用脉宽调制技术,直接将恒定的直流电压调制成极性可变,大小可调的直流电压,用以实现直流电动机电枢两端电压的平滑调节,构成直流脉宽调速系统,随着电力电子器件的迅速发展,采用门极可关断晶体管GTO、全控电力晶体管GTR、P-MOSFET、绝缘栅晶体管IGBT等一些大功率全控型器件组成的晶体管脉冲调宽型开关放大器(Pulse Width Modulated),已逐步发展成熟,用途越来越广。
本文主要讨论了直流调速系统的基本概念,在此基础上系统地介绍了转速负反馈单闭环调速系统,转速电流负反馈双闭环调速系统的组成,工作原理,脉宽调速系统的原理和控制方法,介绍了直流脉宽调速系统的控制电路和系统构成。
最后应用MATLAB的Simulink,采用面向电气原理结构图的仿真技术,对直流脉宽调速系统进行了仿真分析。
关键词:调速,PWM控制,直流电动机,仿真┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊目录第一章引言1.1 直流调速系统简介 (5)1.2 PWM直流调速的研究背景和发展状况 (5)1.3 本设计的主要内容 (6)第二章直流电机调速系统2.1 直流电机调速系统的概述 (7)2.1.1 旋转变流机组直流电机调速系统 (7)2.1.2 静止式可控整流器调速系统 (7)2.1.3 直流斩波器或脉宽调速 (8)2.2 电机基本调速方法 (9)2.2.1 电枢串电阻调速 (9)2.2.2 弱磁调速 (9)2.2.3 调压调速 (10)2.3 转速控制的要求和调速指标 (10)2.4 闭环直流调速系统 (11)2.4.1单闭环直流调速系统 (11)2.4.2 转速电流双闭环调速系统 (14)2.4.2.1 双闭环系统的稳态结构图和静特性 (16)2.4.2.2 各变量的稳态工作点和稳态参数计算 (17)2.4.2.3 双闭环直流调速系统的启动过程分析 (18)2.4.2.4 转速和电流两个调节器的作用 (20)第三章PWM调制技术与PWM变换器3.1 PWM调制技术 (21)3.1.1 模拟式PWM控制 (21)3.1.2 数字式PWM控制 (22)3.2 PWM变换器 (23)3.2.1 简单的不可逆PWM变换器 (23)3.2.2 制动不可逆PWM变换器 (24)3.2.3 H型双极式PWM变换器 (26)第四章PWM直流电动机调速系统的设计4.1 PWM-M直流调速系统的控制电路 (28)4.2 系统设计方案的选择 (29)4.2.1主电路供电方案选择 (29)4.2.2主电路形式的选择 (30)4.2.3控制电路方案的选择 (32)4.3 直流脉宽调速系统的MATLAB仿真 (33)┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊4.3.1 引言 (33)4.3.2双闭环控制的脉宽调速系统的仿真模型 (33)4.3.3 系统的仿真、仿真结果的输出及结果分析 (36)总结 (39)参考文献 (40)┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊第一章引言1.1 直流调速系统简介调速系统包括直流调速系统和交流调速系统两大类。
双闭环可逆直流脉宽PWM调速系统设计及MATLAB仿真验证
双闭环可逆直流脉宽PWM调速系统设计及MATLAB仿真验证双闭环可逆直流脉宽调制(PWM)调速系统是一种常见的电机调速控制方案。
该系统通过两个闭环来实现电机的速度控制和电流控制,从而实现精准的调速效果。
本文将介绍双闭环可逆直流脉宽PWM调速系统的设计原理,并使用MATLAB进行仿真验证。
设计原理:该系统由以下几个主要部分组成:1.输入信号:输入信号一般是一个速度设定值,表示期望电机的转速。
该信号可以通过人机界面或其他控制系统输入。
2.速度控制环:速度控制环根据输入信号和反馈信号之间的差异来控制电机的转速。
常见的速度控制算法有比例控制、积分控制和微分控制。
3.脉宽调制器:脉宽调制器根据速度控制环输出的控制信号来生成PWM信号,控制电机的转速。
通常使用的脉宽调制算法有定时器计数法和比较器法。
4.电流控制环:电流控制环根据PWM信号和反馈信号之间的差异来控制电机的电流。
常见的电流控制算法有比例控制、积分控制和微分控制。
5.电机驱动器:电机驱动器将电流控制环输出的控制信号转换为电机驱动信号,驱动电机正常运转。
MATLAB仿真验证:为了验证双闭环可逆直流脉宽PWM调速系统的性能,可以使用MATLAB进行仿真。
以下是一种基本的MATLAB仿真流程:1.定义电机模型:根据电机的参数和特性,定义一个数学模型来表示电机的动态响应,例如通过电机的转矩-转速曲线或电机的方程。
2.设计速度控制器:根据系统要求和电机模型,设计一个适当的速度控制器。
可以使用PID控制器或其他控制算法。
3.设计PWM调制器:根据速度控制器输出的控制信号,设计一个PWM调制器来生成PWM信号。
根据电机模型和控制要求,选择合适的PWM调制算法。
4.设计电流控制器:根据PWM信号和电机模型,设计一个电流控制器。
可以使用PID控制器或其他控制算法。
5. 仿真验证:将以上设计参数输入到MATLAB仿真模型中,并进行仿真验证。
可以使用Simulink工具箱来搭建仿真模型,并通过逐步增加负载或改变速度设定值等方式来验证系统的性能。
基于MATLAB的直流调压调速控制系统的仿真
基于MATLAB的直流调压调速控制系统的仿真1. 引言1.1 研究背景直流调压调速系统作为电力电子领域中的重要研究方向,其控制技术的研究一直备受关注。
随着工业自动化的发展和能源需求的增加,直流调压调速系统在工业控制和电力传输中发挥着重要作用。
传统的直流调压调速系统在控制精度、响应速度和稳定性方面存在一定的不足,因此需要不断改进和优化。
在这样的背景下,基于MATLAB的直流调压调速控制系统的仿真研究变得尤为重要。
利用MATLAB这一强大的工具,研究人员可以对系统进行建模、设计控制器、分析系统稳定性并进行仿真验证,从而实现对系统性能的优化和提升。
本文旨在通过对直流调压调速控制系统的建模、PID控制器设计与仿真、系统稳定性分析、参数优化与性能评价以及系统仿真结果分析等方面进行研究,进一步探讨如何通过MATLAB工具来实现直流调压调速系统的优化和控制。
希望通过本文的研究,能够为直流调压调速系统的控制技术研究提供一定的参考和借鉴,促进该领域的发展与进步。
1.2 研究目的直流调压调速控制系统是电气工程中常见的控制系统,在工业生产和实验研究中有着广泛的应用。
研究的目的在于通过MATLAB进行仿真,探究系统的建模、PID控制器设计、系统稳定性分析、参数优化以及性能评价等方面的问题。
通过深入研究直流调压调速控制系统的各种特性及其影响因素,可以更好地理解控制系统的工作原理和性能特点,为实际工程应用提供指导。
通过仿真实验,可以降低实验成本、提高实验效率,并能够在设计过程中进行多次调试和优化,从而得到更加理想的控制效果。
研究直流调压调速控制系统的仿真具有重要的现实意义和理论价值。
通过本研究的深入探讨,不仅可以加深对控制系统理论的理解,还可以为工程实践提供有益的借鉴和指导。
1.3 研究意义直流调压调速控制系统作为工业控制领域中的重要组成部分,其研究具有重要的理论价值和实际应用意义。
首先,在工业生产中,直流调压调速控制系统广泛应用于电动机、风电变流器、UPS电源等设备中,能够实现对电压和速度的精确控制,提高设备的运行效率和稳定性。
基于MATLAB的直流调压调速控制系统的仿真
基于MATLAB的直流调压调速控制系统的仿真本文将介绍基于MATLAB的直流调压调速控制系统的仿真。
直流调压调速控制器是一种常见的工业控制器。
在某些工业环境下,电机的转速和负载的变化需要由直流电机进行自动调整。
为了实现这个功能,需要用到直流调压调速控制系统。
对于大多数直流电机的应用来说,目标是精确地调整电机的转速并保持工作状态的稳定。
调节电机的转速需要对电机的所需磁场强度进行精确定义。
磁场强度的调整可以通过改变电机的额定电压来实现。
调节电机的负载需要改变电机的电流。
为了控制电机的转速和负载,需要通过控制电压和电流来实现。
在本文中,我们将演示如何使用MATLAB来模拟直流调压调速控制系统。
首先,需要建立模型。
模型的实现需要输入直流电源,与之并联的电机和控制器。
需要考虑电机的机械负载和电机本身的内阻。
控制器将根据设置的目标转速和负载来控制电机的电压和电流。
其次,需要选择适当的控制方法。
控制方法可以分为开环控制和闭环控制两种。
开环控制是将电压和时间作为输入,并根据预设的参数和控制算法来输出电机的电压和电流。
闭环控制是通过测量电机的实际转速和负载来调整电机的电压和电流,从而使其逼近预设值。
在实际应用中,通常使用闭环控制。
最后,需要设置实验参数并进行仿真。
实验参数包括直流电源和电机的额定电压、电阻和电感,以及控制器的控制参数。
仿真过程中,需要记录电机的转速、电压和电流参数,并对其进行分析和优化。
在进行仿真前,需要安装MATLAB和Simulink软件。
以下是MATLAB代码示例:```%% Define motor parametersRa = 2; % armature resistance in ohmsLa = 0.5e-3; % armature inductance in HJ = 2.5e-6; % rotor moment of inertia in kg*m^2B = 0.5e-6; % rotor viscous damping in N*m*s/rad%% Simulate the systemsim('dc_motor_control');```Simulink模型可以包括以下组件:- 直流电源模块- 直流电机模块- 控制器模块- 仿真时钟模块控制器模块可以使用PID控制器或其他类型的控制器。
matlab直流电动机调速系统仿真实训心得
一、概述在现代工业生产中,直流电动机广泛应用于各种设备和机械中,其调速控制系统的稳定性和性能直接影响到整个生产线的效率和质量。
为了提高学生的实践操作能力和掌握直流电动机调速系统的原理和方法,我校开设了相关的仿真实训课程。
在本次实训中,我主要使用Matlab 软件,进行了直流电动机调速系统的仿真实验,获得了丰富的经验和收获,现将心得体会整理如下。
二、理论基础1. 直流电动机调速原理直流电动机调速系统是通过调节电动机的电流或电压来实现转速的调节。
常用的调速方法包括电阻调速、调速励磁和PWM调速等。
2. Matlab在仿真中的应用Matlab是一种功能强大的科学计算软件,广泛用于工程技术领域。
其仿真环境和信号处理工具箱可以方便地进行电机控制系统的建模和仿真。
三、实训内容与步骤1. 系统建模我根据直流电动机的特性和调速原理,进行了系统的建模工作。
通过Matlab的Simulink工具,搭建了直流电动机的数学模型,包括电动机的等效电路、控制系统和负载模型等。
2. 参数设置与仿真在建立完毕电机系统模型后,我对电机的各项参数进行了设置,包括额定转速、额定电流、负载惯量等。
利用Matlab进行了系统的仿真实验,观察了不同调速方法对电机性能的影响。
3. 实验结果分析通过对仿真实验数据的分析,我发现了不同调速方法的优缺点,比较了电机在不同负载和控制参数下的性能表现,提出了一些改进和优化控制策略的建议。
四、心得体会与经验总结1. 对仿真实验的认识通过本次实训,我深刻体会到仿真实验的重要性。
在实际工程中,通过仿真可以事先评估系统设计的合理性,降低试错成本,提高工程质量。
2. 对Matlab的认识与应用Matlab作为工程领域的标准软件之一,其强大的建模和仿真能力为工程师提供了便利。
在实训中,我更加熟练地掌握了Matlab的使用技巧,对其在电机控制系统仿真中的应用有了更深刻的理解。
3. 对直流电动机调速系统的认识通过本次实训,我对直流电动机调速系统的原理和方法有了更加深入的了解,认识到了控制系统设计和参数调节对电机性能的影响,为今后的工程实践打下了坚实的基础。
基于MATLAB的直流调压调速控制系统的仿真
基于MATLAB的直流调压调速控制系统的仿真直流调压调速控制系统是工业自动化领域中常见的一种控制系统,它可以实现对直流电机的电压和速度进行精确的控制。
本文基于MATLAB软件对直流调压调速控制系统进行了仿真,主要包括建立电路模型、设计控制器、进行系统仿真等步骤。
通过仿真分析,可以验证控制系统的性能和稳定性,为实际工程应用提供参考。
一、直流电机数学模型直流电机是直流调压调速控制系统的执行元件,其数学模型可以基于电路和机械原理进行建模。
直流电机的数学模型主要包括电动势方程和机械方程,可以用下面的公式表示:1)电动势方程:\[E_a = K_e \omega\]\(E_a\)是电机的电动势,\(K_e\)是电机的电机常数,\(\omega\)是电机的角速度。
综合考虑电动势方程和机械方程,可以得到直流电机的传递函数:\[G(s) = \frac{k}{(s+a)(s+b)}\]\(k\)是传递函数的增益,\(a\)和\(b\)是传递函数的两个极点。
二、控制器设计在直流调压调速控制系统中,通常采用PID控制器来实现对电压和速度的精确控制。
PID控制器的传递函数可以表示为:\[C(s) = K_p + K_i \frac{1}{s} + K_d s\]\(K_p\)、\(K_i\)和\(K_d\)分别是比例环节、积分环节和微分环节的增益。
为了实现对电压和速度的精确控制,可以设计两个PID控制器,分别用于电压环和速度环。
电压环的PID控制器可以根据电机的电动势方程进行设计,速度环的PID控制器可以根据电机的机械方程进行设计。
三、系统仿真基于MATLAB软件,可以建立直流调压调速控制系统的仿真模型,对系统进行模拟和分析。
需要建立直流电机的数学模型,包括电动势方程和机械方程,并将其转化为传递函数形式。
然后,设计电压环和速度环的PID控制器,确定各个环节的增益参数。
将电机模型和控制器模型进行组合,得到整个系统的开环传递函数。
PWM脉宽直流调速系统设计及matlab仿真验证
1设计任务1.1双闭环调速系统结构图 图1 转速、电流反馈控制直流调速系统原理图为了使转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别引入转速负反馈和电流负反馈以调节转速和电流,二者之间实行嵌套链接,如图1所示。
把转速调节器的输出当做电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE 。
从闭环结构上看,电流环在里面,称作内环;转速环在外边,称作外环。
这就形成了转速、电流反馈控制直流调速系统。
1.2双闭环直流调速系统的稳态结构图图2 双闭环直流调速系统的稳态结构图双闭环直流调速系统的稳态结构图如图2所示,两个调节器均采用带限幅作用的PI 调节器。
转速调节器ASR 的输出限幅电压*im U 决定了电流给定的最大值,电流调节器ACR 的输出限幅电压cm U 限制了电力电子变换器的最大输出电压dm U 。
当调节器饱和时,输出打到限幅值,输入量的变化不再影响输出,除非有反向的输入信号使调节器退出饱和。
当调节器不饱和时,PI 调节器工作在线性调节状态,其作用是使输入偏差电压U ∆在稳态时为零。
为了实现电流的实时控制和快速跟随,希望电流调节器不要进入饱和状态,因此对于静特性来说,只有转速调节器饱和与不饱和两种情况。
1.3双闭环直流调速系统的动态结构图图3 双闭环直流调速系统的动态结构图双闭环直流调速系统的动态结构图如图3所示,图中)(s W ASR 和)(s W ACR 分别表示转速调节和电流调节器的传递函数。
双闭环直流调速系统起动过程的转速和电流波形如图所示:图4 双闭环直流调速系统起动过程的转速和电流波形如图4所示,电机的起动过程中转速调节器ASR 经历了不饱和、饱和、退饱和三种情况: 第Ⅰ阶段(0-1t )是电流上升阶段;第Ⅱ阶段(1t -2t )是恒流升速阶段;第Ⅲ阶段(2t 以后)是转速调节阶段。
双闭环直流调速系统的起动过程有以下三个特点:1)饱和非线性控制2)转速超调3)准时间最优控制1.4系统参数选取1.4.1整流电路平均失控时间常数s T设定PWM 的开关频率为z KH 1,故H 型双极式PWM 整流的调制周期为:T=1/f=0.001s1.4.2电流滤波时间常数和转速滤波常数H 桥式电路每个波头的时间为ms 5.0,为了基本滤平波头,应有ms T oi 5.0)2~1(=,因此取s T oi 0004.0=。
数字化PWM可逆直流调速系统MATLAB仿真
1.要求
设计一个转速、电流双闭环控制PWM可逆直流调速系统。电动机控制电源采用H型PWM功率放大器,其占空比变化为0~0.5~1时,对应输出电压为-264V~0~264V,为电机提供最大电流25A。速度检测采用光电编码器(光电脉冲信号发生器),且其输出的A、B两相脉冲经光电隔离辩相后获得每转1024个脉冲角度分辨力和方向信号。电流传感器采用霍尔电流传感器,其原副边电流比为1000:1,额定电流50A。已知:
Keywords:DCTimingSystem; PWM;Double CloseLoop; PI Adjust
六、成绩评定
指导教师评语:
指导教师签字:
2012年月日
项目
评价
项目
评价
调查论证
工作量、工作态度
实践能力
分析、解决问题能力
质量
创新
得分
七、答辩记录
答辩意见及答辩成绩:
答辩小组教师(签字):
2012年月日
5.肖阳.基于DSP的伺服电机的调速系统的控制设计[D].武汉:武汉理工大学硕士论文,2009.
6.洪乃刚.电力电子和电力拖动控制系统的MATLAB仿真.北京:机械工业出版社,2006.
四、课程设计(学年论文)摘要(中文)
本文介绍双闭环PWM直流调速系统原理基础上,根据系统的动、静态性能指标采用工程设计方法设计调节器参数。调速方案的优劣直接关系到系统调速的质量,根据电机的型号及参数选择最优方案,以确保系统能够正常,稳定地运行。并运用MATLAB的Simulink和Power System工具箱、面向系统电气原理结构图的仿真方法,实现了转速电流双闭环PWM直流调速系统的建模与仿真。文章重点介绍了调速系统的建模和PWM发生器、直流电机模块互感等参数的设置。给出了PWM直流可逆调速系统的仿真模型和仿真结果,验证了仿真模型及调节器参数设置的正确性。
基于MATLAB的直流调压调速控制系统的仿真
基于MATLAB的直流调压调速控制系统的仿真一、直流调压调速控制系统的原理直流调压调速控制系统主要由电压控制回路和速度控制回路组成。
电压控制回路用于控制电动机的电压,从而实现电动机的调压;速度控制回路用于调整电动机的转速,实现电动机的调速。
电压控制回路和速度控制回路之间是相互联系的,二者协同工作才能使电动机达到预定的工作状态。
在本文的仿真中,我们将重点关注电压控制回路和速度控制回路的设计和性能。
二、仿真模型的建立在MATLAB中,我们可以通过Simulink工具建立直流调压调速控制系统的仿真模型。
我们需要建立电动机的数学模型,包括转矩方程、速度方程和电压方程;我们需要设计电压控制回路和速度控制回路的控制算法和参数。
将电动机模型和控制回路结合在一起,形成直流调压调速控制系统的仿真模型。
三、电压控制回路的仿真分析电压控制回路的主要任务是根据速度控制回路的信号要求,生成电压信号并送往电动机,控制电动机的转矩。
在仿真中,我们可以通过改变输入信号的幅值和频率,观察电压控制回路的响应特性,比如超调量、调节时间等。
我们也可以通过引入一些干扰信号,例如负载扰动,来观察电压控制回路的抗扰性能。
通过仿真分析,我们可以得出电压控制回路设计的满意度和稳定性。
五、整体系统的仿真分析经过对电压控制回路和速度控制回路的单独仿真分析后,我们可以将两者结合在一起,形成整体的直流调压调速控制系统的仿真模型。
通过整体系统的仿真分析,我们可以评估控制系统的性能和稳定性。
我们可以观察系统在不同工作状态下的响应特性,比如启动、调压和调速的过程中的响应速度、控制精度和稳定性。
我们也可以引入一些复杂的工况和干扰信号,例如负载变化和电网故障,来观察整体系统的鲁棒性和抗干扰能力。
通过仿真分析,我们可以评估整体系统的设计合理性和可靠性。
六、结论通过MATLAB的仿真分析,我们可以对直流调压调速控制系统的性能和稳定性进行全面评估。
我们可以深入了解电压控制回路和速度控制回路的设计和性能,找出设计的不足和改进的方向。
侯成成PWM可逆直流调速系统matlab仿真报告
本科生课程论文课程名称运动控制系统学院机自学院专业电气工程及其自动化学号 ********学生姓名侯成成指导教师杨影分数《运动控制系统仿真》课程设计——PWM直流单闭环调速系统的动态建模与仿真一、课程设计的目的及任务《运动控制系统》是自动化专业的一门主干专业课程,在该课程学习中单独安排了1周的控制系统仿真课程设计。
其目的是要求学生针对某个电机控制系统功能模块或整个控制系统进行设计与实现,使学生能进一步加深对课堂教学内容的理解,了解典型的电机控制系统基本控制原理和结构,掌握基本的调试方法,提高综合应用知识的能力、分析解决问题的能力和工程实践能力,并初步培养实事求是的工作作风和撰写科研总结报告的能力。
二、课程设计的基本要求《运动控制系统》被控对象是交、直流电动机,能量转换是由电力电子器件构成的变换器,微机构成控制器。
因此控制系统仿真课程设计学生应掌握以下基本内容:(1)交、直流电动机;(2)电力电子变换器;(3)微机控制器;(4)转速、电流等检测电路;(5)输入输出转换电路、调理电路和功放电路等。
三.课程设计的内容及基本要求1.设计内容(1)设计系统各单元电路和主控电路;(2)分析并测定系统各环节的输入输出特性及其参数,调试各单元电路;(3)系统性能分析与程序设计;(4)系统校正,修正系统静、动态性能。
2. 控制对象参数直流电动机:型号为Z4-132-1,额定电压V,额定电流A,额定转速为2610r/min ,反电动势系数=0.1459 Vmin/r ,允许过载倍数=1.5;PWM 变换器开关频率:8KHz ,放大系数:=107.5;(538/5=107.5),直流母线电压为538V 。
电枢回路总电阻: ;时间常数:电枢回路电磁时间常数=0.0144s ,电力拖动系统机电时间常数=0.18s ;转速反馈系数();对应额定转速时的给定电压。
3.设计要求(1)在matlab/simulink 仿真平台下搭建系统仿真模型。
Matlab直流调速系统仿真
MATLAB仿真技术大作业实验报告题目:直流调速系统仿真永磁直流电机参数如下:电枢电阻0.2Ω,电枢电感2.4mH,电动势系数0.1V/rpm,转动惯量0.43kg•m2。
仿真中其余电机参数设置为0。
电机负载情况如下:0~1s,电机空载,即负载转矩TL为0;1s~2s,电机满载运行,负载转矩TL为145N•m。
该电机由降压变换器供电。
斩波器使用两个IGBT及其反并联二极管构成单相桥臂,两个IGBT的驱动信号互补,如下图所示。
开关频率2.5kHz,输入电压600V,通过改变IGBT 导通占空比而改变电机端电压(即PWM方式工作)。
仿真使用ode23t求解器。
1、电机开环特性通过斩波器给电机供电,电机端电压平均值420V,计算PWM脉冲占空比。
画出转速的波形,画出电机电枢电流的波形。
记录电机起动时的最大电流,记录负载时的稳态电枢电流。
根据仿真结果求出空载和负载时的转速。
(注意电机模型m端口输出的转速单位是rad/s,请将其转为以rpm为单位的波形。
)解:1)斩波器的占空比为V o/Vd,也就是2)以下为转速波形以及电枢电流波形图(经过单位换算,单位为rpm);3)记录电机起动时的最大电流,记录负载时的稳态电枢电流。
由图可知:电机起动时的最大电流为1452A,负载时的稳态电枢电流为153A。
4)根据仿真结果求出空载和负载时的转速。
空载时转速:4200rpm 负载时转速:345.149rad/s = 3900rpm。
2、转速闭环控制为了改善电机调速性能,对该直流电机系统加入转速闭环控制。
转速控制器使用比例-积分控制器,转速指令为4200rpm,控制器输出量为斩波器的调制波(即占空比)。
调节控制器的比例和积分环节参数以实现较好的动、静态性能。
画出转速的波形,画出电机电枢电流的波形。
记录电机起动时的最大电流,记录负载时的稳态电枢电流。
选取P = 1,I = 7.5 得到如图所示图形,可得转速波形以及电枢电流波形如下图所示记录下电机起动时的最大电流I = 2388.372A ,负载时的稳态电枢电流I = 160.435A 。
直流电机调速matlab仿真报告
直流电机调速仿真报告1. 背景直流电机是一种常见的电动机类型,广泛应用于工业生产和家庭设备中。
在实际应用中,为了满足不同工况下的需求,需要对直流电机进行调速控制。
调速控制可以实现电机转速的精确控制,提高系统的稳定性和效率。
本报告旨在通过Matlab仿真分析直流电机调速控制系统,在理论与实践结合的基础上,提出相应的建议。
2. 分析2.1 直流电机调速原理直流电机调速原理主要基于改变电源的电压或者改变外加负载来实现对电机转速的控制。
常见的直流电机调速方法有:•电压调制法:通过改变直流电源的输出电压来改变转矩和转速;•变阻器分压法:通过改变外接阻值来改变转矩和转速;•变极数法:通过改变励磁回路中串联或并联的励磁线圈数目来改变转矩和转速;•PWM调制法:通过脉冲宽度调制技术来控制输入给定功率。
2.2 直流电机调速控制系统直流电机调速控制系统由电源、电机、传感器、控制器和负载组成。
其中,传感器用于测量电机的转速和位置,控制器根据测量值计算出合适的控制信号,通过电源提供给电机。
负载则影响电机的转速和转矩。
常见的直流电机调速控制方法有:•比例积分(PI)控制:根据误差信号进行比例和积分运算,生成合适的输出信号;•模糊控制:基于模糊推理原理,根据输入变量和规则库生成输出信号;•自适应控制:根据系统动态特性自动调整参数以实现最优性能。
2.3 仿真建模与参数设置本次仿真采用Matlab/Simulink软件进行建模与仿真。
首先需要确定直流电机的基本参数,如额定功率、额定转速、额定电压等。
然后根据实际情况设置仿真模型中的参数。
本次仿真设置了一个基于PWM调制法的直流电机调速系统模型。
具体参数如下:•额定功率:100W•额定转速:1500rpm•额定电压:220V•PWM调制频率:1kHz•控制器采样周期:0.01s3. 结果与分析3.1 仿真结果展示在进行仿真之后,我们得到了直流电机调速系统的仿真结果。
以下是部分结果的展示:•转速曲线图:•转矩曲线图:3.2 结果分析根据仿真结果,可以对直流电机调速系统进行分析。
基于MATLAB的直流调压调速控制系统的仿真
基于MATLAB的直流调压调速控制系统的仿真直流调压调速系统是一种常见的电气控制系统,广泛应用于工业领域中。
在直流调压调速系统中,直流电机作为执行器,通过对电机的电压进行调节,可以实现对电机的速度、扭矩等参数的控制。
本文基于MATLAB平台对直流调压调速系统进行了仿真分析,包括建立系统模型、设计控制系统、进行性能分析等方面。
一、直流调压调速系统模型的建立直流调压调速系统可以简化为如下模型:e(t)--->u(t)--->Gv(s)---->X(s)----->e(t)是输入信号,表示期望电机速度;u(t)是输出信号,表示电机输出的转矩;Gv(s)是电机的传递函数,表示电机的速度与输入电压的关系;X(s)是控制系统的输出信号,表示根据输入信号e(t)和反馈信号u(t)计算得出的输出。
电机的传递函数Gv(s)可以通过实验测定或者理论计算得到,其具体形式为:Gv(s) = K / (Js+b)K是电机的增益;J是电机的惯性矩;b是电机的摩擦系数。
二、直流调压调速系统的控制器设计对于直流调压调速系统,可以采用比例-积分-微分(PID)控制器来控制电机的速度。
PID控制器的输出计算式为:u(t) = Kp * e(t) + Ki * ∫e(t) * dt + Kd * de(t)/dtKp、Ki、Kd分别是比例、积分、微分控制器的参数,e(t)是输入信号与输出信号之差,de(t)/dt是e(t)的导数。
在MATLAB中,可以使用pid函数设计PID控制器,并使用feedback函数将控制器与直流调压调速系统进行连接。
具体步骤如下:1. 建立直流调压调速系统的模型;2. 调用pid函数,设计PID控制器,并设置控制器的参数;3. 调用feedback函数,将控制器与直流调压调速系统进行连接;4. 设计输入信号e(t);5. 运行模拟程序,观察系统的输出信号u(t)。
三、直流调压调速系统的性能分析在直流调压调速系统的仿真中,可以通过观察系统的输出信号u(t)来评估系统的性能。
MATLAB直流调速系统仿真
MATLAB仿真技术大作业直流调速系统仿真1、电机开环特性计算PWM脉冲占空比:D=V O/Vd=420/600=70%画出转速的波形、电机电枢电流的波形:电机起动时的最大电流:I max=1708A 负载时的稳态电枢电流:I a=143.2A 空载时转速:n=4200rpm 负载时的转速:n=3896rpm2、转速闭环控制设置比例-积分环节,k P=0.01,k I=0.01,k D=0画出转速的波形、电机电枢电流的波形:电机起动时的最大电流:I max=2425A 负载时的稳态电枢电流:I a=141.6A 3、改善电机起动特性用斜坡函数加限幅(ramp--saturation)代替转速指令:斜坡斜率设为8400,限幅设为4200。
画出转速的波形、电机电枢电流的波形:电机起动时的最大电流:I max=619.7A4、简化降压斩波器降压斩波器只使用一只IGBT和一只二极管时,再次进行仿真。
画出电机电枢电流的波形与第3问的波形进行比较:与第3问的波形进行比较:t=0.3s时,I a(3)=379.3A I a(4)=379.3At=0.8s时,I a(3)=-8.92A I a(4)=-0.02107At=1.5s时,I a(3)= 143.4A I a(4)=143.8A通过对比,可知三段波形的数值几乎无差别或差别非常小可忽略不计;但波形显示在t=0.5s 左右时第四问波形的纹波值比第三问波形的纹波值小。
因为器件替换后,各部分的功能并未发生变化,电路的正常工作状态并未受到影响,因此用不同的降压斩波器波形几乎无差别。
纹波的区别可能是因为二极管与带反并联二极管的IGBT、不带反并联二极管的IGBT与带反并联二极管的IGBT结构上的区别所导致。
基于Matlab的直流电机PWM调速仿真
%限流电阻
% 电源电压
%转速状态方程 %通过PWM器件调制后的输出电压
%电流状态方程
6
五、matlab仿真结果
分析:在以上参数选取的条件下 ①电流i=3.5A(此时电机启动尖峰电流为18A,持续时 间小于2s因此电机启动是安全的) ②转速为23.5r/s=1410r/min(转速也在额定转速内)
谢谢大家
i R
i
n
2
di =(-R ii + k Rn - u) / L (3) dt dn =(k ii - k nn2 ) / J dt (4)
图一、系统简化电路图
(3)(4)即为电路系统微分方程表达式,由于(4) 为非线性的,所以,不能写成状态方程形式。
2
二、电路系统参数设置
① ② ③ ④ ⑤ 电源电压u设为:U0=30V 额定转速n设为: Nm=1500转/分=25转/秒 回路参数设为: L=0.065H; Ri=0.72Ω; 转动惯量设为: J=0.36 PD参数设为: kr=1.0; ki=0.5;kn=0.0027; kp=0.05;kd=0.33;
图一、系统简化电路图
3
三、电路系统原理分析
仿真时PD参数的选取是难点,其对系统的影响至关 重要。在选择PD参数时应综合考虑kp、ki、kd 的 变化给系统带来的影响,具体可以按照先比例后积 分再微分的顺序反复调试参数。
电网电源 速度指令 速度 U* n 调节器 + ASR Un * Ui + Ui La 电流 Uc 调节器 ACR 电流内环 电力开关 变流装置 UPE 电流反馈 速度反馈 U d Id Ra M
5
四、matlab仿真程序
f%子函数定义 unction [dx]=F(x,Nm) L=0.065; J=0.36; R=0.72; kr=1.0; ki=0.5; kn=0.0027; U0=30; i=x(1); n=x(2); kp=0.05; kd=0.33; dn=(ki*i-kn*n^2)/J; du=kd*(kp*(Nm-n)-dn); P=du; di=(-R*i-kr*n+P)/L; dx(1)=di; dx(2)=dn; if(P>U0) P=U0; end if(P<U0) P=0;直流调速系统的一般结构
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《单片机原理及接口技术》课程设计报告课题名称直流PWM调速系统的MATLAB仿真学院自动控制与机械工程学院专业机械设计制造及自动化班级姓名(学号)时间2016-1-9摘要直流电机具有良好的启动性能和调速特性,它的特点是启动转矩大,能在宽广的范围内平滑、经济地调速,转速控制容易,调速后效率很高。
本文设计的直流电机调速系统,主要由51单片机、电源、H桥驱动电路、LED液晶显示器、霍尔测速电路以及独立按键组成的电子产品。
电源采用78系列芯片实现+5V、+15V对电机的调速采用PWM波方式,PWM是脉冲宽度调制,通过51单片机改变占空比实现。
通过独立按键实现对电机的启停、调速、转向的人工控制,LED实现对测量数据(速度)的显示。
电机转速利用霍尔传感器检测输出方波,通过51单片机对1秒内的方波脉冲个数进行计数,计算出电机的速度,实现了直流电机的反馈控制。
关键词:直流电机调速;H桥驱动电路;LED显示器;51单片机ABSTRACTDC motor has a good startup performance and speed characteristics, it is characterized by starting torque, maximum torque, in a wide range of smooth, economical speed, speed, easy control, speed control after the high efficiency. This design of DC motor speed control system, mainly by the microcontroller 51, power supply, H-bridge driver circuits, LED liquid crystal display, the Hall velocity and independent key component circuits of electronic products. Power supply with 78 series chip +5 V, +15 V for motor speed control using PWM wave mode, PWM is a pulse width modulation, duty cycle by changing the MCU 51. Achieved through independent buttons start and stop the motor, speed control, turning the manual control, LED realize the measurement data (speed) of the display. Motor speed using Hall sensor output square wave, by 51 seconds to 1 microcontroller square wave pulses are counted to calculate the speed of the motor to achieve a DC motor feedback control.Keywords: DC motor speed control;H bridge driver circuit;LED display目录摘要 (2)ABSTRACT (3)目录 (4)第1章引言 (5)1.1 概况 (5)1.2 国内外发展现状 (5)1.3 要求 (6)1.4 设计目的和意义 (7)第2章方案论证和选择 (9)2.1 电机调速控制模块 (9)2.2 PWM调速工作方式 (9)2.3 PWM调脉宽方式............................. 错误!未定义书签。
2.4 PWM软件实现方式........................... 错误!未定义书签。
第3章系统硬件电路设计. (10)3.1信号输入电路 (10)3.2电机PWM驱动模块的电路 (11)第4章系统的软件设计 (12)4.1 单片机选择 (12)4.2系统软件设计分析 (12)第5章单片机系统综合调试 (15)5.1 PROTEUS设计与仿真平台...................... 错误!未定义书签。
5.2 PROTEUS设计与单片机传统开发过程比较........ 错误!未定义书签。
5.3 仿真结果与分析 (15)结束语 (18)致谢 (19)参考文献 (20)附录 (21)第1章引言1.1 概况现代工业的电力拖动一般都要求局部或全部的自动化,因此必然要与各种控制元件组成的自动控制系统联系起来,而电力拖动则可视为自动化电力拖动系统的简称。
在这一系统中可对生产机械进行自动控制。
随着近代电力电子技术和计算机技术的发展以及现代控制理论的应用,自动化电力拖动正朝着计算机控制的生产过程自动化的方向迈进。
以达到高速、优质、高效率地生产。
在大多数综合自动化系统中,自动化的电力拖动系统仍然是不可缺少的组成部分。
另外,低成本自动化技术与设备的开发,越来越引起国内外的注意。
特别对于小型企业,应用适用技术的设备,不仅有益于获得经济效益,而且能提高生产率、可靠性与柔性,还有易于应用的优点。
自动化的电力拖动系统更是低成本自动化系统的重要组成部分。
在如今的现实生活中,自动化控制系统已在各行各业得到广泛的应用和发展,其中自动调速系统的应用则起着尤为重要的作用。
虽然直流电机不如交流电机那样结构简单、价格便宜、制造方便、容易维护,但是它具有良好的起、制动性能,宜于在广泛的范围内平滑调速,所以直流调速系统至今仍是自动调速系统中的主要形式。
现在电动机的控制从简单走向复杂,并逐渐成熟成为主流。
其应用领域极为广泛,例如:军事和宇航方面的雷达天线、火炮瞄准、惯性导航等的控制;工业方面的数控机床、工业机器人、印刷机械等设备的控制;计算机外围设备和办公设备中的打印机、传真机、复印机、扫描仪等的控制;音像设备和家用电器中的录音机、数码相机、洗衣机、空调等的控制。
随着电力电子技术的发展,开关速度更快、控制更容易的全控型功率器件MOSFET和IGBT成为主流,脉宽调制技术表现出较大的优越性:主电路线路简单,需要用的功率元件少;开关频率高,电流容易连续,谐波少,电机损耗和发热都较小;低速性能好,稳速精度高,因而调速范围宽;系统快速响应性能好,动态抗扰能力强;主电路元件工作在开关状态,导通损耗小,装置效率较高;近年来,微型计算机技术发展速度飞快,以计算机为主导的信息技术作为一崭新的生产力,正向社会的各个领域渗透,直流调速系统向数字化方向发展成为趋势。
1.2 国内外发展现状电力电子技术、功率半导体器件的发展对电机控制技术的发展影响极大,它们是密切相关、相互促进的。
近30年来,电力电子技术的迅猛发展,带动和改变着电机控制的面貌和应用。
驱动电动机的控制方案有三种:工作在通断两个状态的开关控制、相位控制和脉宽调制控制,在单向通用电动机的电子驱动电路中,主要的器件是晶闸管,后来是用相位控制的双向可控硅。
在这以后,这种半控型功率器件一直主宰着电机控制市场。
到70和80年代才先后出现了全控型功率器件GTO晶闸管、GTR、POWER-MOSFET、IGBT和MCT等。
利用这种有自关断能力的器件,取消了原来普通晶闸管系统所必需的换相电路,简化了电路结构,提高了效率,提高了工作频率,降低了噪声,也缩小了电力电子装置的体积和重量。
后来,谐波成分大、功率因数差的相控变流器逐步由斩波器或PWM变流器所代替,明显地扩大了电机控制的调运范围,提高了调速精度,改善了快速性、效率和功率因数。
直流电机脉冲宽度调制(Pulse Width Modulation-简称PWM)调速系统产生于70年代中期。
最早用于不可逆、小功率驱动,例如自动跟踪天文望远镜、自动记录仪表等。
近十多年来,由于晶体管器件水平的提高及电路技术的发展,同时又因出现了宽调速永磁直流电机,它们之间的结合促使PWM技术的高速发展,并使电气驱动技术推进到一个新的高度。
在国外,PWM最早是在军事工业以及空间技术中应用。
它以优越的性能,满足那些高速度、高精度随动跟踪系统的需求。
近八、九年来,进一步扩散到民用工业,特别是在机床行业、自动生产线及机器人等领域中广泛应用。
如今,电子技术、计算机技术和电机控制技术相结合的趋势更为明显,促进电机控制技术以更快的速度发展着。
随着市场的发展,客户对电机驱动控制要求越来越高,希望它的功能更强、噪声更低、控制算法更复杂,而可靠性和系统安全操作也摆上了议事日程,同时还要求马达恒速向变速发展,还要符合全球环保法规所要求的严格环境标准。
进入21世纪后,可以预期新的更高性能电力电子器件还会出现,已有的各代电力电子元件还会不断地改进提高。
1.3要求一、设计任务基于MCS-51系列单片机AT89C52,设计一个单片机控制的直流电动机PWM 调速控制装置。
二、设计要求1)在系统中扩展直流电动机控制驱动电路L298,驱动直流测速电动机。
2)使用定时器产生可控的PWM波,通过按键改变PWM占空比,控制直流电动机的转速。
3)设计一个4个按键的键盘。
K1:“启动/停止”。
K2:“正转/反转”。
K3:“加速”。
K4:“减速”。
4)手动控制。
在键盘上设置两个按键----直流电动机加速和直流电动机减速键。
在手动状态下,每按一次键,电动机的转速按照约定的速率改变。
5)*测量并在LED显示器上显示电动机转速(rpm).6)实现数字PID调速功能。
三、设计提示:1)参考L298说明书,在系统中扩展直流电动机控制驱动电路。
2)使用定时器产生可控PWM波,定时时间建议为250us。
3)编写键盘控制程序,实现转向控制,并通过调整PWM波占空比,实现调速;4)参考Protuse仿真效果图:1.4 设计目的和意义本文设计的直流PWM调速系统采用的是调压调速。
系统主电路采用大功率GTR为开关器件、H桥单极式电路为功率放大电路的结构。
PWM调制部分是在单片机开发平台之上,运用汇编语言编程控制。
由定时器来产生宽度可调的矩形波。
通过调节波形的宽度来控制H电路中的GTR通断时间,以达到调节电机速度的目的。
增加了系统的灵活性和精确性,使整个PWM脉冲的产生过程得到了大大的简化。
本设计以AT89C51单片机为核心,以键盘作为输入达到控制直流电机的启停、速度和方向,完成了基本要求和发挥部分的要求。
在设计中,采用了PWM 技术对电机进行控制,通过对占空比的计算达到精确调速的目的。