实验四 验证戴维南定理和诺顿定理
戴维南定理和诺顿定理的验证实验报告
![戴维南定理和诺顿定理的验证实验报告](https://img.taocdn.com/s3/m/8e7e91d1900ef12d2af90242a8956bec0875a57d.png)
戴维南定理和诺顿定理的验证实验报告戴维南定理和诺顿定理是电路分析中最为重要的定理之一,可用于简化电路分析并找出电路中各元件的电流和电压。
本文将介绍验实验过程和实验结果。
实验材料和器材1.直流电源2.多用万用表3.电流表4.电压表5.R1=2ohm的电阻6.R2=3ohm的电阻7.R3=4ohm的电阻8.R4=3ohm的电阻9.R5=2ohm的电阻10.基板11.导线实验方法:1.按照电路图连接电路2.将电压表和电流表依次连接到电路中的各个位置,记录下各个元件的电流和电压大小。
3.分别用戴维南定理和诺顿定理计算电路中各电阻负载的电流和电压大小,并与实验结果进行比对,验证定理的正确性。
实验结果:1.使用万用表分别测量R1,R2,R3,R4,R5电阻每个电阻的电阻值。
2.将R1,R2和R3按照电路图所示连接到基板上,并将电路接到电源。
3.使用电压表和电流表测量电路中各个电阻的电压和电流值,记录下来。
记录表格如下:元件名称测量电压(V)测量电流(A)R1R2R34.根据测量结果和欧姆定律,可以得到R1,R2和R3的电阻值分别为2ohms,3ohms和4ohms。
戴维南定理验证:按照戴维南定理的步骤,将电路图中的电源和R1电阻两端截开,得到下图所示的电路。
[图片]按照戴维南定理的公式计算,可得到R1电阻负载的电流为1.5A,电压为3V。
比对实验结果,可得到实验测量结果和戴维南定理计算结果一致。
通过本次实验,我们验证了戴维南定理和诺顿定理的正确性,证明了这两个定理在电路分析中的作用和重要性。
在实际应用中,可以结合这些定理来简化电路分析,减少计算量和提高分析效率。
验证戴维南定理实验报告
![验证戴维南定理实验报告](https://img.taocdn.com/s3/m/012a5063b84ae45c3b358c4f.png)
一、实验目的1. 验证戴维南定理和诺顿定理的正确性,加深对该定理的理解。
2. 掌握测量有源二端网络等效参数的一般方法。
二、原理说明1. 任何一个线性含源网络,如果仅研究其中一条支路的电压和电流,则可将电路的其余部分看作是一个有源二端网络(或称为含源一端口网络)。
戴维南定理指出:任何一个线性有源网络,总可以用一个电压源与一个电阻的串联来等效代替,此电压源的电动势Us等于这个有源二端网络的开路电压Uoc,其等效内阻R0等于该网络中所有独立源均置零(理想电压源视为短接,理想电流源视为开路)时的等效电阻。
诺顿定理指出:任何一个线性有源网络,总可以用一个电流源与一个电阻的并联组合来等效代替,此电流源的电流Is等于这个有源二端网络的短路电流I SC,其等效内阻R0定义同戴维南定理。
Uoc(Us)和R0或者I SC(I S)和R0称为有源二端网络的等效参数。
2. 有源二端网络等效参数的测量方法(1) 开路电压、短路电流法测R0在有源二端网络输出端开路时,用电压表直接测其输出端的开路电压Uoc,然后再将其输出端短路,用电流表测其短路电流Isc,则等效内阻为如果二端网络的内阻很小,若将其输出端口短路则易损坏其内部元件,因此不宜用此法。
(2) 伏安法测R0用电压表、电流表测出有源二端网络的外特性曲线,如图3-1所示。
根据外特性曲线求出斜率tgφ,则内阻图3-1也可以先测量开路电压Uoc,再测量电流为额定值I N时的输出端电压值U N,则内阻为(3) 半电压法测R0如图3-2所示,当负载电压为被测网络开路电压的一半时,负载电阻(由电阻箱的读数确定)即为被测有源二端网络的等效内阻值。
图3-2(4) 零示法测U OC在测量具有高内阻有源二端网络的开路电压时,用电压表直接测量会造成较大的误差。
为了消除电压表内阻的影响,往往采用零示测量法,如图3-3所示。
零示法测量原理是用一低阻的稳压电源与被测有源二端网络进行比较,当稳压电源的输出电压与有源二端网络的开路电压相等时,电压表的读数将为“0”。
戴维南定理和诺顿定理实验报告
![戴维南定理和诺顿定理实验报告](https://img.taocdn.com/s3/m/0409de54cd7931b765ce0508763231126edb77e4.png)
戴维南定理和诺顿定理实验报告戴维南定理和诺顿定理是电路理论中非常重要的两个定理,它们为我们理解和分析电路提供了重要的理论支持。
本次实验旨在通过实际操作验证戴维南定理和诺顿定理,并对实验结果进行分析和讨论。
实验一,验证戴维南定理。
首先,我们搭建了一个包含多个电阻的电路,并通过测量电路中各个电阻的电压和电流,得到了电路的电压-电流特性曲线。
然后,我们通过改变电路中的电阻值,重新测量电路的电压-电流特性曲线。
最后,我们根据戴维南定理,将电路简化为一个等效的电压源和电阻,通过比较原始电路和简化电路的特性曲线,验证了戴维南定理的有效性。
实验二,验证诺顿定理。
在这个实验中,我们利用相同的电路,通过测量电路中的电压和电流,得到了电路的电压-电流特性曲线。
然后,我们将电路简化为一个等效的电流源和电阻,重新测量电路的电压-电流特性曲线。
通过比较原始电路和简化电路的特性曲线,验证了诺顿定理的有效性。
实验结果分析。
通过实验验证,我们发现戴维南定理和诺顿定理在实际电路中具有很高的适用性。
戴维南定理告诉我们,任何线性电路都可以用一个等效的电压源和电阻来表示,而诺顿定理则告诉我们,任何线性电路都可以用一个等效的电流源和电阻来表示。
这些定理为我们分析复杂电路提供了便利,使得我们可以通过简化电路结构来更好地理解电路的特性和行为。
结论。
通过本次实验,我们验证了戴维南定理和诺顿定理在实际电路中的有效性,这些定理为我们理解和分析电路提供了重要的理论基础。
在今后的电路设计和分析中,我们可以充分利用这些定理,简化复杂电路的分析过程,提高工作效率,更好地理解电路的行为。
总结。
戴维南定理和诺顿定理是电路理论中的重要定理,通过本次实验,我们验证了它们在实际电路中的有效性。
这些定理为我们提供了简化电路分析的方法,为电路设计和分析提供了重要的理论支持。
希望通过本次实验,能够加深对这些定理的理解,提高电路分析能力,为今后的学习和工作打下良好的基础。
戴维南定理与诺顿定理实验报告
![戴维南定理与诺顿定理实验报告](https://img.taocdn.com/s3/m/50609e96ce2f0066f53322b5.png)
4、可调电阻
R=1K 1个
5、戴维南定理与诺顿定理实验挂箱
戴维南定理与诺顿定理
三、实验原理
1、戴维南定理:
任何一个线性有源二端网络,对外电路来说, 总可以用一个理想电压源和电阻串联的有源支路代 替, 其中理想电压源的电压值等于原网络端口 的开路电压Uoc,电阻R0为原网络中所有独立电源为 零时的等效电阻。
Uoc = Isc × Ro
戴维南定理与诺顿定理
四、实验内容: 实验电路如图所示:
1、利用戴维南定理和诺顿定理分别计算该 网络的开路电压U’oc、等效电阻R’o和短路 电流I’sc。
戴维南定理与诺顿定理
2、调节可调直流稳压电源Us=12V、可调 直流恒流源Is=10mA,接入实验电路,测 量该网络的开路电压Uoc、等效内阻Ro和 短路电流Isc,分别填入表2.3.3中。 (注:本实验中开路电压Uoc、等效内阻 Ro 的测量均采用直接测量法。)
戴维南定理与诺顿定理
戴维南定理与诺顿定理
一、实验目的 1、通过验证戴维南定理与诺顿定
理,加深对等效概念的ቤተ መጻሕፍቲ ባይዱ解;
2、学习测量有源二端网络的开路电 压和等效内阻的方法。
戴维南定理与诺顿定理
二、实验仪器
1、可调直流稳压电源 0~30V 1个
2、可调直流恒流源 0~200mA 1个
3、指针式万用表 MF-47型 1块
3、测量原网络的外特性:
将可变电阻RL接入原网络端口A、B之 间,每改变一次电阻值,测量RL上的电流 和其两端电压,并记入表2.3.4中。
戴维南定理与诺顿定理
4、测量戴维南等效电路 的外特性:
自行连接如右图电 路,每改变一次电阻 值,测量RL上的电流 和其两端电压,并记 入表2.3.4中。
戴维宁定理和诺顿定理的实验报告
![戴维宁定理和诺顿定理的实验报告](https://img.taocdn.com/s3/m/beba3c296d175f0e7cd184254b35eefdc8d3153e.png)
戴维宁定理和诺顿定理的实验报告1. 引言戴维宁定理和诺顿定理是电路理论中的两个重要定理,它们可以用来简化复杂的电路分析问题。
本实验旨在通过实际测量和计算,验证戴维宁定理和诺顿定理的正确性,并理解它们在电路分析中的应用。
2. 实验目的- 验证戴维宁定理和诺顿定理的正确性;- 掌握运用戴维宁定理和诺顿定理简化电路分析问题的方法。
3. 实验原理3.1 戴维宁定理戴维宁定理指出,任何线性电路都可以用一个等效电源和一个等效电阻来代替。
等效电源称为戴维宁电流源,等效电阻称为戴维宁电阻。
戴维宁电流源的大小等于戴维宁电阻两端的电压除以电阻本身的值。
3.2 诺顿定理诺顿定理是戴维宁定理的一种特殊情况,即等效电源为电流源。
诺顿定理指出,任何线性电路都可以用一个等效电流源和一个等效电阻来代替。
等效电流源称为诺顿电流源,等效电阻称为诺顿电阻。
诺顿电流源的大小等于诺顿电阻两端的电压除以电阻本身的值。
4. 实验装置和步骤4.1 实验装置本实验所需的主要装置包括直流电源、可变电阻箱、电流表、电压表、万用表等。
4.2 实验步骤4.2.1 利用直流电源、可变电阻箱和电压表搭建一个简单的电路。
4.2.2 测量电路中的电流和电压值,并记录下来。
4.2.3 根据测量结果,计算出电路的等效电流源和等效电阻。
4.2.4 利用戴维宁定理和诺顿定理,将原始电路简化为一个等效电路。
4.2.5 比较简化后的等效电路和原始电路的电流和电压值,验证定理的正确性。
5. 实验结果与分析通过测量和计算,得到了原始电路的电流和电压值,同时计算出了等效电流源和等效电阻。
将原始电路简化为等效电路后,再次测量等效电路的电流和电压值。
通过比较两者的结果,可以发现它们非常接近,验证了戴维宁定理和诺顿定理的正确性。
6. 实验总结本实验通过实际测量和计算,验证了戴维宁定理和诺顿定理的正确性。
戴维宁定理和诺顿定理是电路分析中常用的工具,可以简化复杂的电路分析问题,提高计算效率。
戴维南定理和诺顿定理实验报告
![戴维南定理和诺顿定理实验报告](https://img.taocdn.com/s3/m/2df01123a26925c52cc5bfab.png)
戴维南定理和诺顿定理实验报告文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]戴维南定理和诺顿定理一、实验目的1、掌握有源二端网络代维南等效电路参数的测定方法。
2、验证戴维南定理、诺顿定理和置换定理的正确性。
二、原理说明1、任何一个线性含源网络,如果仅研究其中一条支路的电压和电流,则可将电路的其余部分看作是一个有源二端网络(或称为含源二端网络)。
2、戴维南定理:任何一个线性有源网络,总可以用一个理想电压源与一个电阻的串联支路来等效代替,此电压源的电压等于该有源二端网络的开路电压U 0C ,其等效内阻R 0等于该网络中所有独立源均置零(理想电压源视为短路,理想电流源视为开路)时的等效电阻。
这一串联电路称为该网络的代维南等效电路。
3、诺顿定理:任何一个线性有源网络,总可以用一个理想电流源与一个电阻的并联组合来等效代替,此电流源的电流等于该有源二端网络的短路电流 I SC ,其等效内阻R 0定义与戴维南定理的相同。
4、有源二端网络等效参数的测量方法U 0C 、I SC 和R 0称为有源二端网络的等效电路参数,可由实验测得。
(一)开路电压U OC 的测量方法 (1)可直接用电压表测量。
(2)零示法测U OC在测量具有高内阻有源二端网络的开路电压时,用电压表直接测量会造成较大的误差。
为了消除电压表内阻的影响,往往采用零示测量法,如图 3-1所示。
零示法测量原理是用一低内阻的稳压电源与被测有源二端网络进行比较,当稳压电源的输出电压与有源二端网络的开路电压相等时,电压表的读数将为“0”。
然后将电路断开,测量此时稳压电源的输出电压, 即为被测有源二端网络的开路电压。
图3-1 图3-2(二)等效电阻R 0的测量方法 (1)开路电压、短路电流法测R 0该方法只实用于内阻较大的二端网络。
因当内阻很小时,若将其输出端口短路则易损坏其内部元件,不宜用此法。
该测量方法是:在有源二端网络输出端开路时,用电压表直接测其输出端的开路电压U 0C ,然后将其输出端短路,用电流表测其短路电流I SC ,则等效内阻为 SCOCO I U R =(2)伏安法测R 0用电压表、电流表测出有源二端网络的外特性如图3-2所示。
戴维宁定理和诺顿定理实验报告
![戴维宁定理和诺顿定理实验报告](https://img.taocdn.com/s3/m/d15a449077a20029bd64783e0912a21615797f4c.png)
戴维宁定理和诺顿定理实验报告戴维宁定理和诺顿定理实验报告引言:在物理学领域,有两个重要的定理被广泛应用于电路分析和设计中,它们分别是戴维宁定理和诺顿定理。
本文将通过实验报告的形式,对这两个定理进行探讨和验证。
实验一:戴维宁定理的验证戴维宁定理是电路分析中的重要定理之一,它指出在直流电路中,电流分支与电压分支之间的关系可以通过电流和电压的比值来表示。
为了验证戴维宁定理,我们设计了以下实验。
实验装置:1. 直流电源2. 电阻器3. 电流表4. 电压表5. 连接线实验步骤:1. 将直流电源连接到电路的一端,另一端接地。
2. 将电阻器连接到电路中,形成一个简单的直流电路。
3. 将电流表和电压表分别连接到电路的不同位置,测量电流和电压数值。
4. 记录电流和电压的数值。
实验结果:根据戴维宁定理,我们可以通过电流和电压的比值来计算电阻的阻值。
通过实验测量得到的电流和电压数值,我们可以得出电阻的阻值,并与理论值进行比较。
实验结果表明,实测值与理论值相符,验证了戴维宁定理的准确性。
实验二:诺顿定理的验证诺顿定理是电路分析中另一个重要的定理,它指出在直流电路中,任意两个电路元件之间的电流可以通过等效电流源来表示。
为了验证诺顿定理,我们进行了以下实验。
实验装置:1. 直流电源2. 电阻器3. 电流表4. 连接线实验步骤:1. 将直流电源连接到电路的一端,另一端接地。
2. 将电阻器连接到电路中,形成一个简单的直流电路。
3. 将电流表连接到电路中,测量电流数值。
4. 移除电流表,用一个等效电流源连接到电路中,调整其电流大小与实测值相同。
5. 记录等效电流源的电流数值。
实验结果:根据诺顿定理,我们可以通过等效电流源来表示电路中的电流。
通过实验测量得到的等效电流源的电流数值与实测值相同,验证了诺顿定理的准确性。
讨论:戴维宁定理和诺顿定理在电路分析和设计中起到了重要的作用。
它们使得我们能够通过简化电路的结构和参数,更方便地进行电路分析和计算。
戴维南定理和诺顿定理试验报告
![戴维南定理和诺顿定理试验报告](https://img.taocdn.com/s3/m/320f0ae701f69e314332949a.png)
.戴维南定理和诺顿定理一、实验目的1、掌握有源二端网络代维南等效电路参数的测定方法。
2、验证戴维南定理、诺顿定理和置换定理的正确性。
二、原理说明1、任何一个线性含源网络,如果仅研究其中一条支路的电压和电流,则可将电路的其余部分看作是一个有源二端网络(或称为含源二端网络)。
2、戴维南定理:任何一个线性有源网络,总可以用一个理想电压源与一个电阻的串联支路来等效代替,此电压源的电压等于该有源二端网络的开路电压U,其等效内阻R等00C于该网络中所有独立源均置零(理想电压源视为短路,理想电流源视为开路)时的等效电阻。
这一串联电路称为该网络的代维南等效电路。
3、诺顿定理:任何一个线性有源网络,总可以用一个理想电流源与一个电阻的并联组合来等效代替,此电流源的电流等于该有源二端网络的短路电流I,其等效内阻R定义0SC与戴维南定理的相同。
4、有源二端网络等效参数的测量方法U、I和R称为有源二端网络的等效电路参数,可由实验测得。
00CSC(一)开路电压U的测量方法OC(1)可直接用电压表测量。
(2)零示法测U OC在测量具有高内阻有源二端网络的开路电压时,用电压表直接测量会造成较大的误差。
为了消除电压表内阻的影响,往往采用零示测量法,如图3-1所示。
零示法测量原理是用一低内阻的稳压电源与被测有源二端网络进行比较,当稳压电源的输出电压与有源二端网络的开路电压相等时,电压表的读数将为“0”。
然后将电路断开,测量此时稳压电源的输出电压,即为被测有源二端网络的开路电压。
3-2图图3-1的测量方法(二)等效电阻R0 R1()开路电压、短路电流法测01 / 4.若将其输出端口短路则易损坏因当内阻很小时,该方法只实用于内阻较大的二端网络。
其内部元件,不宜用此法。
该测量方法是:在有源二端网络输出端开路时,用电压表直接测其输出端的开路电压U OC I,则等效内阻为U,然后将其输出端短路,用电流表测其短路电流?R0C SCO I SC R(2)伏安法测0根据外特性曲线求出斜率电流表测出有源二端网络的外特性如图3-2所示。
戴维南定理与诺顿定理的验证实验
![戴维南定理与诺顿定理的验证实验](https://img.taocdn.com/s3/m/b9c3fb5a59eef8c75fbfb3e2.png)
戴维南定理与诺顿定理的验证实验一、实验目的1、掌握有源二端网络代维南等效电路参数的测定方法。
2、验证戴维南定理、诺顿定理和置换定理的正确性。
3、进一步学习常用直流仪器仪表的使用方法。
二、原理说明1、任何一个线性含源网络,如果仅研究其中一条支路的电压和电流,则可将电路的其余部分看作是一个有源二端网络(或称为含源二端网络)。
2、戴维南定理:任何一个线性有源网络,总可以用一个理想电压源与一个电阻的串联支路来等效代替,此电压源的电压等于该有源二端网络的开路电压U0C,其等效内阻R0等于该网络中所有独立源均置零(理想电压源视为短路,理想电流源视为开路)时的等效电阻。
这一串联电路称为该网络的代维南等效电路。
3、诺顿定理:任何一个线性有源网络,总可以用一个理想电流源与一个电阻的并联组合来等效代替,此电流源的电流等于该有源二端网络的短路电流I SC,其等效内阻R0定义与戴维南定理的相同。
4、有源二端网络等效参数的测量方法U0C、I SC和R0称为有源二端网络的等效电路参数,可由实验测得。
(一)开路电压U OC的测量方法(1)可直接用电压表测量。
(2)零示法测U OC在测量具有高内阻有源二端网络的开路电压时,用电压表直接测量会造成较大的误差。
为了消除电压表内阻的影响,往往采用零示测量法,如图3-1所示。
零示法测量原理是用一低内阻的稳压电源与被测有源二端网络进行比较,当稳压电源的输出电压与有源二端网络的开路电压相等时,电压表的读数将为“0”。
然后将电路断开,测量此时稳压电源的输出电压,即为被测有源二端网络的开路电压。
图3-1 图3-2(二)等效电阻R 0的测量方法 (1)开路电压、短路电流法测R 0该方法只实用于内阻较大的二端网络。
因当内阻很小时,若将其输出端口短路则易损坏其内部元件,不宜用此法。
该测量方法是:在有源二端网络输出端开路时,用电压表直接测其输出端的开路电压U 0C ,然后将其输出端短路,用电流表测其短路电流I SC ,则等效内阻为 SCOCO I U R = (2)伏安法测R 0用电压表、电流表测出有源二端网络的外特性如图3-2所示。
戴维南定理和诺顿定理实验报告
![戴维南定理和诺顿定理实验报告](https://img.taocdn.com/s3/m/b741a86b26284b73f242336c1eb91a37f111322e.png)
戴维南定理和诺顿定理实验报告戴维南定理实验总结戴维南定理和诺顿定理实验报告篇一:戴维南定理和诺顿定理实验报告实验一、戴维南定理一、实验目的:1、深刻理解和掌握戴维南定理。
2、初步掌握用Multisim软件绘制电路原理图。
3、初步掌握Multisim软件中的Multimeter、Voltmeter、Ammeter 等仪表的使用以及DC Operating Point、Parameter Sweep等SPICE仿真分析方法。
4、掌握电路板的焊接技术以及直流电源、万用表等仪表的使用。
二、实验内容:1、计算等效电压和等效电阻;2、用Multisim软件测量等效电压和等效电阻;3、用Multisim软件仿真验证戴维南定理;4、在实验板上测试等效电压和等效电阻;5、在实验板上验证戴维南定理;三、实验步骤1、计算等效电压V=US(R3//R33)/((R1//R11)+(R3//R33))=2.613 V ;等效电阻R=((R1//R3)+R2)//((R11//R33)+R22)=250 .355Ω2、软件仿真(1)实验电路在Multisim软件上绘制实验电路,如图11图1 实验电路参数测试负载RL短路时的短路电流Isc 10.42mA 负载RL开路时的开路电压Uoc 2.609V调节负载RL时的数据如表1所示。
(2)等效电路在Multisim软件上绘制等效电路,如图2图2 等效电路参数测试负载RL短路时的短路电流Isc 10.41mA 负载RL开路时的开路电压Uoc 2.60V调节负载RL时的数据如表1所示。
23、电路实测(1)实验电路负载RL短路时的短路电流Isc 10.01mA 负载RL开路时的开路电压Uoc 2.58V调节负载RL时的数据如表1所示。
(2)等效电路负载RL短路时的短路电流Isc 10.1mA 负载RL开路时的开路电压Uoc 2.58V调节负载RL时的数据如表1所示。
表1负载电阻0~5KΩ变化时的仿真及实测数据四、实验数据处理1、分别画出仿真(2组)与实测(2组)的V-I特性曲线(负载电流为横坐标,负载电压为纵坐标分别画原电路和等效电路的V-I特性曲线),如图3以及图4:3图3 原电路仿真与实测数据的V-I 特性曲线图4 原电路仿真与实测数据的V-I 特性曲线2、数据分析(1)分析导致仿真数据与实测数据有差别的原因第一、等效电路中等效电阻是用电位器替代的,而电位器调解时是手动调节,存在较大误差;第二、仪器测量存在误差。
戴维南定理和诺顿定理的验证实验+数据
![戴维南定理和诺顿定理的验证实验+数据](https://img.taocdn.com/s3/m/b79c037cdc36a32d7375a417866fb84ae45cc3d0.png)
戴维南定理和诺顿定理的验证实验+数据在电子电路的世界里,有两个超级明星——戴维南定理和诺顿定理。
今天,我们就来聊聊这两个家伙是怎么在实验室里大显身手的,看看它们的魔力到底有多强。
一、理论基础1.1 戴维南定理的定义戴维南定理,简单来说,就是任何复杂的线性电路都能被一个等效的电压源和一个电阻串联起来。
这就像你用一块小小的巧克力就能代替一大盘甜品,虽然外形不一样,但味道还是很棒。
我们实验的第一步,就是搭建一个电路,试试这个定理能否成立。
1.2 诺顿定理的定义接下来,诺顿定理也是个不错的家伙。
它告诉我们,复杂电路可以被看作一个等效的电流源和一个电阻并联。
这就像你一开始看到的复杂拼图,实际上只需找到几个关键的块,就能轻松搞定。
我们将把两个定理放在一起,看看它们的不同与相似。
二、实验步骤2.1 实验准备首先,我们准备了一些基本的元件,包括电压源、电阻、导线,还有一个多用表。
听起来简单,但细节可不少。
电路图纸得画好,布局得讲究,不然可就麻烦了。
我们选用的电压源是9V,电阻值则有1kΩ、2kΩ、3kΩ等,确保能覆盖多个组合。
简直像调味品,调调就能变出不同的味道。
2.2 构建电路把这些元件一一连接起来,脑海中回想着戴维南和诺顿的理论。
小心翼翼地连接,确保没有短路,也没有虚接。
电路搭建好后,开始测量输出电压和电流。
那一瞬间,心里小鹿乱撞,兴奋之余也有点紧张。
我们把输出端的电压连接到多用表上,仔细记录下每一个读数。
2.3 数据记录与分析通过不同组合测得的数据,就像一张宝藏地图。
通过计算等效电压和等效电流,开始验证我们的理论。
数据清晰地展示出,戴维南和诺顿的确为我们打开了一扇新世界的大门。
它们不是纸上谈兵,而是真正能够在现实中应用的原理。
三、实验结果3.1 戴维南定理的验证经过一番测量,我们的实验结果显示,计算出的等效电压和实测电压几乎一模一样。
那种成功的感觉,简直不能用言语来形容。
电流的流动如同一首美妙的乐章,每一个音符都在诉说着电路的故事。
验证戴维南定理和诺顿定理实验报告
![验证戴维南定理和诺顿定理实验报告](https://img.taocdn.com/s3/m/d10ad04691c69ec3d5bbfd0a79563c1ec5dad7ab.png)
验证戴维南定理和诺顿定理实验报告戴维南定理(Kirchhoff's theorem)和诺顿定理(Norton's theorem)是电路理论中重要的基本定理。
为了验证这两个定理,可以进行以下实验。
实验步骤:1. 准备一个简单的直流电路,包括电源、电阻等元件。
2. 使用万用表测量电路中的各个元件的参数,如电流、电压等。
验证戴维南定理:1. 在电路中选择一个节点,将其它节点与该节点相连。
2. 测量该节点处的电流,记为I。
3. 将电流源连接到该节点,同时将电阻连接到电流源的另一头。
4. 测量电流源的电压,记为U。
5. 在电路中测量其它节点处的电压和电流,确保测量连接正确。
6. 计算I-U,即节点处进出的电流差异。
如果差异接近于零,说明实验结果符合戴维南定理。
验证诺顿定理:1. 在电路中选择一个支路,断开该支路的导线。
2. 测量该支路两个断开导线处的电压,记为U1和U2。
3. 计算U1-U2,即支路两端电压差。
确保测量连接正确。
4. 在电路中测量该支路断开导线处的电流,记为I。
5. 计算(U1-U2)/I,即支路两端电压差除以电流。
如果结果接近于零,说明实验结果符合诺顿定理。
实验注意事项:1. 实验过程中要注意安全,避免触电等危险。
2. 对于测量仪器的使用,要按照操作说明正确使用,避免误差产生。
3. 在连接电路时,要保证连接牢固,避免导线接触不良导致的测量错误。
4. 实验数据的精确性和准确性对于验证定理的结果有着重要影响,需要仔细测量和计算。
总结:通过以上实验步骤的操作和数据测量,可以验证戴维南定理和诺顿定理是否成立。
如果实验结果符合定理的要求,说明定理的基本原理得到了验证。
实验四戴维南定理和诺顿定理的验证
![实验四戴维南定理和诺顿定理的验证](https://img.taocdn.com/s3/m/777526a8f021dd36a32d7375a417866fb84ac038.png)
实验四戴维南定理定理的验证一、实验目的1. 验证戴维南定理的正确性,加深对该定理的理解。
2.学习线性有源单口网络等效电路参数的测量方法。
二、原理说明任何一个线性含源网络,如果仅研究其中一条支路的电压和电流,则可将电路的其余部分看作是一个有源二端网络(或称为含源一端口网络)。
戴维南定理指出:任何一个线性有源网络,总可以用一个电压源与一个电阻的串联来等效代替,此电压源的电动势U s等于这个有源二端网络的开路电压U oc,其等效内阻R eq等于该网络中所有独立源均置零(理想电压源视为短接,理想电流源视为开路)时的等效电阻。
三、实验设备四、实验内容被测有源二端网络如图4-1所示。
图4-1 实验电路图和等效图1.将负载电阻R L(=1kΩ)开路,用万用表或示波器测量开路电压U OC,将测量结果填入表4-1;2. 将负载电阻R L (=1k Ω)短路,测量电阻R 2两端的电压U R2,用这个电压除以R 2的测量电阻值,计算短路电流,I SC =U R2/R 2,将测量结果填入表4-1;3. 计算此端口等效电阻R eq =U R2/I SC ,将计算结果填入表4-1表4-14. 等效电阻的测量:接上R L =1k Ω的负载电阻,测试此时负载两端的电压U RL ,利用OC eq L RL 1U R R U ⎛⎫=- ⎪⎝⎭,将测量结果填入表4-1;5. 在原始电路中,接入负载电阻R L ,同时调节负载电阻的值,将测量结果填入表4-2,利用测量值,绘制电路的U -R 曲线;表4-26. 在等效电路中调节电源电压到开路电压U OC 的值,同时接入和R eq 相等的电阻,即图4-1中的R o ,接入负载电阻R L ,同时调节负载电阻的值,将测 量结果填入表4-3,利用测量值,绘制电路的U -R 曲线; 表4-37、比较得到的两条曲线,验证两个电路的等效性。
五、实验注意事项1. 注意电压的极性和电流的方向2. 注意检查电路连接的正确性。
戴维南定理和诺顿定理的验证实验数据完整版
![戴维南定理和诺顿定理的验证实验数据完整版](https://img.taocdn.com/s3/m/f3e28bc3284ac850ad024282.png)
戴维南定理和诺顿定理的验证实验数据HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】戴维南定理和诺顿定理的验证一、实验目的1、掌握有源二端网络代维南等效电路参数的测定方法。
2、验证戴维南定理、诺顿定理和置换定理的正确性。
3、进一步学习常用直流仪器仪表的使用方法。
二、原理说明1、任何一个线性含源网络,如果仅研究其中一条支路的电压和电流,则可将电路的其余部分看作是一个有源二端网络(或称为含源二端网络)。
2、戴维南定理:任何一个线性有源网络,总可以用一个理想电压源与一个电阻的串联支路来等效代替,此电压源的电压等于该有源二端网络的开路电压U0C ,其等效内阻R等于该网络中所有独立源均置零(理想电压源视为短路,理想电流源视为开路)时的等效电阻。
这一串联电路称为该网络的代维南等效电路。
3、诺顿定理:任何一个线性有源网络,总可以用一个理想电流源与一个电阻的并联组合来等效代替,此电流源的电流等于该有源二端网络的短路电流 ISC ,其等效内阻R定义与戴维南定理的相同。
4、有源二端网络等效参数的测量方法U0C 、ISC和R称为有源二端网络的等效电路参数,可由实验测得。
(一)开路电压UOC的测量方法(1)可直接用电压表测量。
(2)零示法测UOC在测量具有高内阻有源二端网络的开路电压时,用电压表直接测量会造成较大的误差。
为了消除电压表内阻的影响,往往采用零示测量法,如图 3-1所示。
零示法测量原理是用一低内阻的稳压电源与被测有源二端网络进行比较,当稳压电源的输出电压与有源二端网络的开路电压相等时,电压表的读数将为“0”。
然后将电路断开,测量此时稳压电源的输出电压, 即为被测有源二端网络的开路电压。
图3-1 图3-2(二)等效电阻R 0的测量方法 (1)开路电压、短路电流法测R 0该方法只实用于内阻较大的二端网络。
因当内阻很小时,若将其输出端口短路则易损坏其内部元件,不宜用此法。
戴维南定理和诺顿定理验证实验报告
![戴维南定理和诺顿定理验证实验报告](https://img.taocdn.com/s3/m/82d41fdc846a561252d380eb6294dd88d1d23d78.png)
戴维南定理和诺顿定理验证实验报告一、实验介绍戴维南定理和诺顿定理是电路基础中经常用到的定理,它们可以方便地推算出电路中的电压、电流和电阻等参数,因此在电路分析和设计中具有重要的作用。
本次实验旨在验证戴维南定理和诺顿定理的正确性,并让学生更深刻地理解它们的原理和应用。
实验器材和材料:变压器、直流电源、电阻、万用表、电路板等。
二、实验步骤1. 对所给的电路进行连线,并将其接入变压器或直流电源。
2. 记录电路中电流、电压和电阻等参数的数值。
3. 分别应用戴维南定理和诺顿定理对电路进行分析计算。
4. 比较实验结果和计算结果,检验戴维南定理和诺顿定理的正确性。
三、实验结果实验数据如下:电流:1.5A 电压:5V 电阻:3Ω应用戴维南定理计算得到电流为1.5A,电压为5V,电阻为3Ω。
应用诺顿定理计算得到电流为1.5A,电压为5V,电阻为3Ω。
通过比较实验数据和计算结果,我们可以很明显地发现,两种方法得到的数值完全一致,证明了戴维南定理和诺顿定理的正确性。
四、实验分析戴维南定理和诺顿定理的基本原理是在复杂电路中简化电路模型,从而方便计算和分析电路参数。
戴维南定理是通过等效电源的方式将多个电阻器简化为一个等效电阻器,用于正向分析电路;而诺顿定理则是通过等效电流的方式将多个电阻器简化为一个等效电流源,用于反向分析电路。
在本次实验中,我们成功地应用了戴维南定理和诺顿定理计算电路参数,并验证了定理的正确性。
实验结果表明,这两种方法可以简化计算过程,提高计算的精度和效率。
因此,掌握这两种定理对于学习和应用电路知识都有着重要的意义。
五、实验总结本次实验通过实际操作和计算得出了戴维南定理和诺顿定理的正确性,并对其应用和意义进行了更深入的理解和分析。
同时,这也是一次探究电路基础的良好机会,让学生能更好地理解电路中的各种参数,帮助学生建立起良好的电路分析的基础。
在今后的学习和应用中,我们应该进一步加深对戴维南定理和诺顿定理的理解,掌握基本的电路分析和设计方法,从而更好地应用它们进行工程实践和应用创新。
实验4 戴维南定理的验证
![实验4 戴维南定理的验证](https://img.taocdn.com/s3/m/01a62d74a26925c52cc5bf26.png)
二、实验前准备 1、把与实验无关的物品收起,把HE-12 、HE-19挂箱放在实验台上; 2、用导线把恒流源短接,输出粗调开关放在20mA档,微调旋钮到底,打 开恒流源的电源开关,顺时针旋调节微调旋钮直到显示10 mA,关闭恒流 源电源和拔掉短接导线; 3、调节可调直流稳压电源UA,使其为12V,然后关闭其电源。 4、按图4 -2接入恒流源IS和恒压源US,注意极性,红对红,黑对黑。
表4—5
RL/Ω U/V I/mA 100 200 300 500 800 900
四、实验报告 做P20的“七、实验报告”的1和2题。
A
B
负 载
HE-12挂箱
2、负载实验 用HE-19挂箱作为负载,按表4-3调节相应旋钮,接到HE-12挂箱的RL端, 测出对应的RL两端的电压U和流过的电流,记录在表4-3中 。
RL/Ω U/V I/mAΒιβλιοθήκη 100200300
400
500
600
700
800
900
HE-12挂箱
3、验证戴维南定理 在挂箱HE-19中选取在实验步骤1计算出的R0(约520欧姆) 的值,调节直流可调电源使其为步骤1测到的UOC(约17伏), RL也从挂箱HE-19中选取,电阻值按表3-3,然后按下图连接, 测电流时用实验台的电流插座,把测到的对应电压和电流值记 录在表4-4中。注意R0可以用箱上端的固定电阻和下端的可调 电阻配合,避开×100档,
表4—5
RL/Ω U/V 100 200 300 500 800 900
I/mA
负 载
B
A
4.验证诺顿定理 调节实验台上的恒流源,使其输出的电流为表4—2中 Isc的值,用HE-19挂箱调好在表4—2中计算的 R0, 然后按下面虚框并联,再在A、B点右边接上毫安表、 负载电阻RL和电压表,如下图,注意R0可以用箱上端的固定 电阻和下端的可调电阻配合,避开×100档,调节RL,按表4—5 要求,记录相应的电压和电流值
戴维南定理和诺顿定理的验证实验+数据
![戴维南定理和诺顿定理的验证实验+数据](https://img.taocdn.com/s3/m/ce56d99a6037ee06eff9aef8941ea76e58fa4ae4.png)
戴维南定理和诺顿定理的验证实验+数据在电路分析中,戴维南定理和诺顿定理是非常重要的两个定理,它们为复杂电路的分析和简化提供了有力的工具。
为了更深入地理解这两个定理,我们进行了一系列的验证实验,并对实验数据进行了详细的分析。
一、实验目的本次实验的主要目的是验证戴维南定理和诺顿定理的正确性,并通过实际测量和计算,加深对这两个定理的理解和应用。
二、实验原理1、戴维南定理任何一个线性含源一端口网络,对外电路来说,可以用一个电压源和电阻的串联组合来等效替代。
其中电压源的电压等于该一端口网络的开路电压 Uoc,电阻等于该一端口网络中所有独立源置零后的等效电阻 Ro。
2、诺顿定理任何一个线性含源一端口网络,对外电路来说,可以用一个电流源和电阻的并联组合来等效替代。
其中电流源的电流等于该一端口网络的短路电流 Isc,电阻等于该一端口网络中所有独立源置零后的等效电阻 Ro。
三、实验设备1、直流稳压电源2、直流电流表3、直流电压表4、电阻箱5、导线若干四、实验步骤1、按图 1 连接电路,测量含源一端口网络的开路电压 Uoc。
图 1将电阻 RL 开路,用电压表测量 AB 两端的电压,即为开路电压Uoc。
记录测量数据。
2、按图 2 连接电路,测量含源一端口网络的短路电流 Isc。
图 2将电阻 RL 短路,用电流表测量短路电流 Isc。
记录测量数据。
3、按图 3 连接电路,测量含源一端口网络中所有独立源置零后的等效电阻 Ro。
图 3将电压源短路,电流源开路,用电阻箱测量 AB 两端的电阻,即为等效电阻 Ro。
记录测量数据。
4、按图 4 连接电路,验证戴维南定理。
图 4将一个电压源(电压等于 Uoc)和一个电阻(电阻等于 Ro)串联,作为含源一端口网络的等效电路,接入电阻 RL,测量电阻 RL 两端的电压和电流。
记录测量数据。
5、按图 5 连接电路,验证诺顿定理。
图 5将一个电流源(电流等于 Isc)和一个电阻(电阻等于 Ro)并联,作为含源一端口网络的等效电路,接入电阻 RL,测量电阻 RL 两端的电压和电流。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验四验证戴维南定理和诺顿定理
一、实验目的
(1)进一步熟悉PSPICE 仿真软件中绘制电路图,初步掌握符号参数、分析类型的设置。
(2)学习Probe窗口的简单设置。
(3)加深对戴维宁定理与诺顿定理的理解。
二、原理与说明
戴维南定理指出,任一线性有源一端口网络,对外电路来说,可以用一个电压源与电阻串联的支路来代替,该电压源的电压U S等于原网络的开路电压U OC,电阻R O等于原网络的全部独立电源置零后的输入电阻Req。
原网络如图4-1(a),其等效变换如图4-1(b)。
诺顿定理指出,任一线性有源一端口网络,对外电路来说,可以用一个电流源与电导并联的支路来代替,该电流源的电流I S等于原网络的短路电流I SC,其电导G O等于原网络的全部独立电源置零后的输入电导Geq ( Geq=1/Req )。
其等效变换如图4-1(c)。
等效内阻的测量图如图4-2所示。
图4-1 实验原理与说明图4-2 等效内阻的测量
三、实验设备
个人计算机、OrCAD/PSpice9.2软件。
四、实验内容
(1)测量有源一端口网络(如图4-3)等效入端电阻Req和对外电路的伏安特性。
其中U1= 5V,R1= 100Ω,U2= 4V,R2= 50Ω,R3=150Ω。
(2)根据(1)中测出的开路电压U OC、输入电阻Req,组成图4-1(b) 的等效
有源一端口网络,测量其对外电路的伏安特性。
(3)根据(1)中测出的短路电流I SC、输入电阻Req,组成图4-1(c) 的等
效有源一端口网络,测量其对外电路的伏安特性。
图4-3 原理图
五、实验步骤
R1 100R2
50
R3
150
RL
{v ar}
V1
5v
V2
4v
PARAMETERS:
v ar = 1K
R0
1k
RLd
1k
V3
Is
G0
1k
RLn
1k
图4-4 绘制的电路图
(1)在Capture环境下绘制图4-4电路原理图,包括取元件、连线、输入参数和设置节点等。
分别编辑原电路、戴维宁等效电路和诺顿等效电路(等效参数待定,电压源和电流源默认值为0),检查无误后存盘。
(2)为测量原网络的伏安特性,图4-4 中的R L是电阻值需改变。
为此,R L 的阻值要在“PARAM”中定义一个全局变量var(参数值可任意选择如10Ω、1kΩ,同时把R L的阻值也设为该变量{var}。
注:PARAM设置方法是从special库中选取PARAM放置在电路图上,双击该器件在属性栏左上角的New Column,输入名称var,值1k。
如要显示该名称和值在电路图上,在数据栏上右键单击,修改display属性。
(3)为测电路的开路电压U OC及短路电流I SC,设定分析类型为“DC Sweep”,扫描变量为全局变量var,并具体设置线性扫描的起点、终点和步长。
因需要测短路电流,故扫描的起点电阻要尽量小,但不能是0。
而欲测开路电压,扫描的
终点电阻要尽量大。
所以线性扫描的起点可设为1P,终点设为1G,步长设为1MEG,如图4-5。
此时不需要中间数据,为了缩短分析时间,步长还可以设置大一些。
图4-5 DC Sweep设置
(4)启动分析后,系统自动进入Probe 窗口。
启动分析后,系统自动进入Probe窗口。
选择Plot=>Add Plot to Window增加一坐标轴,选择Trace=>Add Trace分别在两轴上加I(R L) 和V(R L:2) 变量,显示如图4-6。
然后执行Trace=>Cursor=>Display 启动光标测量功能,从而读取电流的最大值和电压的最大值。
通过读取波形测得I(R L)最大值即短路电流I SC=130mA,V(R L:2)最大值即U OC为3.5455V,则输入端电阻Req=3.5455/0.13=27.273Ω。
图4-6 开路电压和短路电流波形图
回到绘图界面,按测得的等效参数修改电路参数值,如图4-7所示。
R1100R250
R3150
RL {v ar}
V15v
V2
4v
PARAMETERS:
v ar = 1K
R027.273RLd
{v ar}
V3
3.5455
Is
130mA
G027.273
RLn {v ar}
图4-7 修改参数后的电路图
重新设定扫描参数,扫描变量仍为全局变量var ,线性扫描的起点为1P ,终点为10K ,步长为10K 。
重新启动分析,进入Probe 窗口。
选择Plot=>Add Plot to window 增加两个波形显示区, 选择Plot=> Axis Settings (X 坐标) =>Axis Variable ,设置横轴为V(R L :2) , 选择Trace=>Add Trace 分别在三个轴上加I(R L )、I(RLd)和I(RLn)变量。
显示结果如图4-8。
图4-8 原电路及等效电路外特性的显示结果
选择Trace=>Cursor=>Display显示坐标值列表,点击I(RL)、I(RLd)和I(RLn)前面的小方块,数值列表中将显示相应坐标中的坐标值。
用鼠标拖动十字交叉线,可显示不同电压时的相应电流值。
六、思考与讨论
1、比较三条伏安特性曲线,验证戴维南定理和诺顿定理。
七、预习要求
1、复习有关维南定理和诺顿定理等有关内容。
2、熟悉Pspice有关直流扫描的设置和分析方法以及Probe波形的查看。
八、实验心得。