狄拉克算符汇编
量子力学之狄拉克符系统与表格象
D i r a c 符号系统与表象一、Dirac 符号1. 引言我们知道任一力学量在不同表象中有不同形式,它们都是取定了某一具体的力学量空间,即某一具体的力学量表象。
量子描述除了使用具体表象外,也可以不取定表象,正如几何学和经典力学中也可用矢量形式 A 来表示一个矢量,而不用具体坐标系中的分量(A x , A y , A z )表示一样。
量子力学可以不涉及具体表象来讨论粒子的状态和运动规律。
这种抽象的描述方法是由 Dirac 首先引用的,本质是一个线性泛函空间,所以该方法所使用的符号称为 Dirac 符号。
2. 态矢量(1). 右矢空间力学量本征态构成完备系,所以本征函数所对应的右矢空间中的右矢也组成该空间的完备右矢(或基组),即右矢空间中的完备的基本矢量(简称基矢)。
右矢空间的任一矢量 |ψ> 可按该空间的某一完备基矢展开。
例如:(2). 左矢空间右矢空间中的每一个右矢量在左矢空间都有一个相对应的左矢量,记为 < |。
右矢空间和左矢空间称为伴空间或对偶空间,<ψ | 和 |ψ> 称为伴矢量。
<p ’ |, <x’ |, <Q n | 组成左矢空间的完备基组,任一左矢量可按其展开,即左矢空间的任一矢量可按左矢空间的完备基矢展开。
(3). 伴矢量<ψ | 和 |ψ>的关系|ψ >按 Q 的左基矢 |Q n > 展开:|ψ > = a 1 |Q 1> + a 2 |Q 2> + ... + a 3 |Q 3 > + ...展开系数即相当于 Q 表象中的表示:<ψ| 按 Q 的左基矢 <Q n | 展开:<ψ| = a*1 <Q 1 | + a*2 <Q 2 | + ... + a*n <Q n | + ...展开系数即相当于 Q 表象中的表示:ψ+= (a*1, a*2, ..., a*n , ... )同理 某一左矢量 <φ| 亦可按 Q 的左基矢展开:<φ| = b*1 <Q 1 | + b*2 <Q 2 | +... + b*n <Q n | + ...定义|ψ>和 <φ| 的标积为:*n n nb a ψ=∑。
4-1 狄拉克符号
,
F
根据内积的性质
x
Fy x Fx x Fy x ,
aFx x aFx x
(13)
Fx x Fy x x, x y, x x y, x Fx y x
将(19)式定义的泛函记为 Fx ,并将所有 Fx 的集合记为 B X
。根据 Riesz 定理,
B X
包括了希尔伯特空间上所有的连续线性泛函,按照(2)式定义的加法和数乘成为
X 的对偶空间,记为 X ,即
X Fx x X
按照加法和数乘的定义(2), x X , (20)
4-1 狄拉克符号
~6~
线性子空间, 但 C a, b 根据由内积导出的度量不完备, 因此不是希尔伯特空间。 将 L2 a, b 中的泛函的定义域限制在 C a, b 上,确实可以得到新的泛函。比如,考虑如下分段函数
i 1
n
(12)
n
这是一个将
n
的映射,由内积的性质 Fx x 可知它是
上的线性泛函。将所有这样
n
的线性泛函的集合记为 B
n
。同样,我们很快会知道,B
n
包含了
n
n
上所
有的连续线性泛函。因此, B
按照(2)式定义的加法和数乘成为
n
的对偶空间。
按照加法和数乘的定义(2), x
(17)
n
或写为 T x Fx 。与 线性的
的情况不同,根据(16)式可知这个映射不是线性的,而是复共轭
T ax by Faxby a Fx b Fy
狄拉克算符
又 因此
n n n n
n n
n
n
n 1
比如 引入算符
dx x x 1
ˆ Pn n n
因为
P n n n n n
m
a
m
m
m am n n m
m
am n nm an n
显然,该算符对任何矢量的运算,相当于把这个矢量投影到基矢 n
n n
kj
i
ˆ H t ˆ F n n
i
ˆ x H x t ˆ F x n x n
(F
j
kj )a j 0
m
k
j
ˆ F j kj j 0
nm
u ( x)u
* n
( x)dx nm
n m nm
这就是薛定格方程的狄拉克符号表示。 定态薛定格方程 在 Q 表象下
ˆ H E
ˆ n H E n
ˆ nHm
m
m E n
ቤተ መጻሕፍቲ ባይዱ
即
H
m
nm
am Ean
六、平均值公式的狄拉克符号表示
在 Q 表象下
* ˆ ˆ F F m m F n n am Fmn an
定一组基矢,即选定表象后,态矢量可以用在这组基矢
上的投影(即矢量的分量)表示,这就是波函数。与数 学中表示一个矢量可以不引入坐标系不用它的分量而直
接用矢量表示相似,在量子力学中表示一个量子态也可
以不引进具体的表象,直接用矢量符号表示。这就是狄 拉克符号(Dirac bracket notation)。
a an
P(四章第四讲)狄拉克符号课件
n
n
n
( na*nbn n )* *
n
P(四章第四讲)狄拉克符号
波函数归一化
(,)2d3r*d3r1
本征矢的正交归一化
x | x
x|x' (x',x)(xx') ' (-')
p |p ') (p ',p )(p ' p ) qq' (q-q')
n | n
mn(um,un)m n lm |l'm ')(Y l'm ',Y lm )ll' m m '
t
P(四章第四讲)狄拉克符号
定义波函数演化算符:
U ˆ(t,t0)(t0)(t) (1 )
作用于 t 0 时刻的态 (t0 ) 得到t时刻的态 (t )
分析:
(1) Uˆ(t0,t0)I
U ˆ(t0,t0)(t0) (t0),
(2)求它的具体形式
i (t) H ˆ(t)
t
i tU ˆ(t,t0 ) (t0 ) H ˆU ˆ(t,t0 ) (t0 ) P(四章第四讲)狄拉克符号
算符的矩阵
设态矢 经算符 F ˆ 的作用后变成态矢 ,即
Fˆ
|1|nn n
F ˆ n n n
mmF ˆnn n
Fmn mFˆ n
bm Fmnan n
b1 F11 F12
b2
F21
F22
P(四章第四讲)狄拉克符号源自a1 a2Schrödinger方程的矩阵形式
P(四章第四讲)狄拉克符号
态矢量在具体表象中的表示 (x) x (p) p
本征态上的展开系数(投影)
n | n
mathtype狄拉克符号
Mathtype狄拉克符号1. 简介Mathtype是一款常用的数学公式编辑器,可以在Microsoft Office等文档中插入各种数学公式。
其中,狄拉克符号(Dirac notation)是一种特殊的数学表示方法,常用于量子力学和量子信息领域。
本文将详细介绍Mathtype中如何使用狄拉克符号。
2. 狄拉克符号的基本表示狄拉克符号由英国物理学家保罗·狄拉克(Paul Dirac)于20世纪提出,用于描述量子力学中的态和算符。
它采用了右尖括号和左尖括号来表示态矢量和其对应的共轭转置,形如|ψ>和<ψ|。
在Mathtype中,可以通过以下步骤插入狄拉克符号: 1. 打开Mathtype编辑器;2. 在编辑器中选择”Insert”(插入)选项;3. 在弹出菜单中选择”Brackets & Delimiters”(括号与分隔符);4. 在下拉菜单中选择”Angle Brackets”(尖括号);5. 选择右尖括号”<“,并输入需要表示的态矢量或共轭转置;6. 选择左尖括号”>“,并输入需要表示的态矢量或共轭转置。
例如,表示一个态矢量|ψ>,可以使用以下代码:< | ψ >表示其共轭转置<ψ|,可以使用以下代码:< ψ | >3. 狄拉克符号的运算狄拉克符号不仅可以用于表示态矢量和共轭转置,还可以进行运算。
下面介绍几种常见的运算方法。
3.1 内积(Inner Product)内积是狄拉克符号中常用的一种运算,用于计算两个态矢量之间的相似度。
在Mathtype中,可以通过以下步骤插入内积表达式: 1. 打开Mathtype编辑器; 2. 在编辑器中选择”Insert”(插入)选项; 3. 在弹出菜单中选择”Brackets & Delimiters”(括号与分隔符); 4. 在下拉菜单中选择”Angle Brackets”(尖括号); 5. 选择右尖括号”<“,并输入第一个态矢量; 6. 输入一个竖线”|“,用于分隔两个态矢量; 7. 选择左尖括号”>“,并输入第二个态矢量。
狄拉克符号
狄拉克符号
把希尔伯特空间一分为二,互为对偶的空间,就是狄拉克符号的优点。
用右矢|α>表示态矢,左矢<α|表示其共厄矢量,<α|β>是内积,<α|α>大于等于0,称为模方。
|β><α|是外积。
注意的是:几种表示的意义:|α> 右矢,<α| 左矢,A表示算符,A|α>表示一个右矢,<α|A表示一个左矢,而且,A总是从左方作用于右矢,从右方作用于左矢的。
<α|A|β>是一个复数,可以看成(<α|A|)|β>即一个左矢与一个右矢的内积;或者<α|(A|β>),即一个右矢与一个左矢的内积。
狄拉克符号与希尔伯特空间一起,构成了量子力学形式体系,是非常重要的基本概念。
狄拉克(Dirac)符号
< n | F | ψ >=< n | ϕ > < n | ϕ >= ∑ < n | F | m >< m | ψ >= ∑ Fnm < m | ψ >
m m
∧
注意 : )式是抽象的算符方程 , ) )式是具体表象中的算符方程, 意: ( 24 24) 程, ( 25 25) , ( 26 26) < m | ψ >, < n | ϕ > 是算符作用前、后的态矢在 {| n >}表象中的分量, Fnm 也是具体表象中 的矩阵元。 1.4.2 连续谱 (1)算符作用在基矢 | λ > 上
(6)
n
这里 < B | A >=< A | B > * 1.2 基矢的狄拉克符号表示 1.2.1 离散谱
| n >, | λ > 仍为抽象的本征矢
力学量完全集的本征函数 {u n } 具有离散的本征值 {Qn }时,对应的本征矢 | 1 >, | 2 >,⋯ | n > 或 | nlm > 等,构成正交归一化的完全系,可以作为矢量空间的基矢,作为基矢可表示为 ⎛1⎞ ⎜ ⎟ ⎜0⎟ | 1 >= ⎜ ⎟ 0 ⎜ ⎟ ⎜⋮⎟ ⎝ ⎠ ⎛0⎞ ⎜ ⎟ ⎜1⎟ | 2 >= ⎜ ⎟ 0 ⎜ ⎟ ⎜⋮⎟ ⎝ ⎠ ⎛ 0⎞ ⎜ ⎟ ⎜⋮⎟ | n >= ⎜ 1 ⎟ ← 第 n 行 ⎜ ⎟ ⎜ 0⎟ ⎜⋮⎟ ⎝ ⎠ (8)
∧ ∧
) (29 29) (30 ) 30) ) (31 31)
< λ ′ | ϕ >=< λ ′ | F | ψ >
< λ ′ | ϕ >= ∫ | < λ ′ | F | λ > dλ < λ | ψ >= ∫ Fλ ′λ < λ | ψ > dλ 例如 < x ′ | ϕ >=< x ′ | F | ψ >= ∫ Fx′x < x | ψ > dx 即为 x 表象中方程
量子力学知识:量子力学与狄拉克符号
量子力学知识:量子力学与狄拉克符号这篇文章并不是关于费恩曼讲义书中任何一章的笔记,只是单独的一篇讲狄拉克符号含义和用法的文章。
我在看书的过程中对狄拉克这个简洁又多功能的符号产生过很多疑惑,今天就尝试将这些疑惑和自己找到的答案写出来,希望对其他同学有些许帮助。
如果大家有发现错误也希望可以进行批评指正。
狄拉克符号在量子力学中是一个很神奇的符号,它的外观非常的简洁、洋气,在量子力学中的作用就像路标对开车的作用一样重要,所以受到大量学习量子力学的人的喜爱。
其含义非常简单,最基本的狄拉克符号如下所示<状态2|状态1>狄拉克符号是从右往左看的,<状态2|状态1>表示的是从状态1到状态2的概率幅(关于概率幅的含义可以看我之前的推送量子力学笔记——电子在晶格中的传播)。
状态(state)在量子力学可以用来表示很多信息,比如一个粒子它处于某一位置可以称为处于某一状态,相应的它的特定的动量、角动量等信息都可以描述为状态(因为更多人直接称之为“态”,所以下文会直接简写为态)。
值得注意的是,态是矢量,具有方向性,<态2|为左矢量,|态1>为右矢量。
狄拉克符号还可以有各种“拆卸组装转换”的方法:1、狄拉克符号可以拆分成局部,比如:<态2|,或者|态1>拆分好处一来可以减少字数,二来空缺的那一部分要补充时可以填入任何态,增加使用的灵活性。
2、狄拉克符号还可以连着使用,比如:<态3|态2><态2|态1>表示为态1到态2,然后从态2再到态3的概率幅。
3、狄拉克符号转换前后位置时需要取复数共轭:<态2|态1> = <态1|态2>*(变换的原理会在下文讲到)4、狄拉克符号还可以量化两个状态跳转的过程:<态2|Q|态1>Q的含义为一个算符(operator),意思是态1经过算符变换到态2,这个算符可以是施加外力、旋转、使粒子穿过一个特殊设备、甚至静置一段时间,等等……对比一下同样表示概率幅的波函数,狄拉克符号没有像指数、复数这些复杂的东西,而且可以任意“拆分组装”,所以显得非常友好。
狄拉克函数
引入 函数后,位于 x0处、电量为q的点电荷的线电荷密度为: (x) q (x x0)。位于坐标原点,质量为 m 的质点的质量线 密度为: (x) m (x 0) m (x)
数学物理方法
说明:
1. 函数并不是通常意义下的函数,而是广义函数:
它没有给出函数与自变量之间的对应关系,仅给出
(x)
第八章 狄拉克 函数
在物理和工程技术中, 常常会碰到狄拉克函数(单 位脉冲函数)。因为有许多物理现象具有脉冲性质, 如 在电学中, 要研究线性电路受具有脉冲性质的电势作用 后产生的电流; 在力学中, 要研究机械系统受冲击力作 用后的运动情况等。 研究此类问题就会产生我们要介 绍的狄拉克函数。下面我们将从物理实例出发引入狄 拉克函数,并介绍函数的基本知识。
( xk )
(1) 当(xk ) 0时,在区间xk , xk 中,积分上限大于积
分下限(xk ) (xk ),积分变为
Ck
1
(xk )
(xk ) [(x)]d(x) 1
( xk )
(xk )
(2) 当(xk ) 0时,在区间xk , xk 中,积分上限小于积
(xk ) [(x)] d(x)
( xk )
(x)
利用第二中值定理得Ck
1
( )
(xk ) [(x)]d(x)
( xk )
当 0, xk ,( ) (xk ),上式可写为
Ck
1
( xk
)
(xk ) [(x)]d(x)
( xk )
数学物理方法
Ck
1
(xk )
(xk ) [(x)]d(x)
数学物理方法
3.用拉普拉斯算符表示: 3(r ) 1 2 1 4 r
狄拉克符号(Dirac)
狄拉克符号(Dirac )1狄拉克符号量子体系状态的描述,前述波动力学和矩阵力学两种方法,其共同特点是:与体系有关的所有信息都有波函数给出;极为重要的是波函数可以写成各类力学量的本征函数的线性组合,而展开系数模平方具有力学量概率的含义。
问题:能否不从单一角度描述体系,而用统一的方式全面概括体系的所有性质及概念?狄拉克从数学理论方面,构造了一个抽象的、一般矢量--态矢,并引进了一套“狄拉克符号”,简洁、灵活地描述量子力学体系的状态。
1.1狄拉克符号的引入 1.1.1 态空间任何力学量完全集的本征函数系{})(x u n 作为基矢构成希尔伯特空间(以离散谱为例),微观体系的状态波函数ψ作为该空间的一个态矢,有∑=nn n u a ψ (1)n a 即为态矢ψ在基矢n u 上的分量,态矢ψ在所有基矢{}n u 上的分量{}n a 构成了态矢在{}n u 这个表象中的表示(矩阵)⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛= n a a a 21ψ () ,,,,**2*1n a a a =+ψ (2) 微观体系所有可以实现的状态都与此空间中某个态矢相对应,故称该空间为态空间注意:(1)式中的n u 只是表示某力学量的本征态,而抛开其具体表象;(2)式的右方是ψ的{}n u表象1.1.2 态空间中内积(标积)的定义设态空间中两个任意态矢A ψ与B ψ在同一表象{}n u 中的分量表示各为{}n a 与{}n b ,则两态矢内积的定义为()∑=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=+n n n n n B A b a b b b a a a *21**2*1,,,, ψψ (3)注意:A B B Aψψψψ++≠ 1.1.3狄拉克符号的引入态空间中的ψ与+ψ在形式上具有明显的不对称性,狄拉克认为它们应该分属于两个不同的空间⇒伴随空间 引入符号>,称为右矢 [Ket 矢,Bra 矢(Bracket 括号><)]微观体系的一个量子态ψ用>ψ表示,>ψ的集合构成右矢空间,>ψ在右矢空间中的分量表示可记为矩阵⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=> n a a a 21ψ (4)约定:右矢空间的态矢 ,,,B A ψψψ一律用字母 ,,,>>>B A ψψψ表示力学量的本征态矢一律用量子数 ,,,2,1>>>>nlm n ,或连续本征值>λ表示 引入符号 <,称为左矢 微观体系的一个量子态ψ也可用ψ<表示,但在同一表象中>ψ与ψ<的分量互为共轭复数(),,,,**2*1n a a a =<ψ (5)ψ<的集合构成左矢空间引入狄拉克符号后,任意两个态矢>>B A ,的内积定义为同一表象下伴随空间中相应分量之积的和∑=++>=<nn n n n b a b a b a A B ***11| (6)这里*||>>=<<B A A B >>λ|,|n 仍为抽象的本征矢1.2 基矢的狄拉克符号表示 1.2.1 离散谱力学量完全集的本征函数{}n u 具有离散的本征值{}n Q 时,对应的本征矢>>>n |,2|,1| 或>nlm |等,构成正交归一化的完全系,可以作为矢量空间的基矢,作为基矢可表示为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛>= 0011| ⎪⎪⎪⎪⎪⎭⎫⎝⎛>= 0102| …… ←⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛>= 010|n 第n 行 (7)(1)基矢具有正交归一性 mn n m δ>=<| (8) (2)展开定理 ∑>>=nn n a ||ψ (9)两边同时左乘|m <得∑∑==><>=<nm mn n nn a a n m a m δψ|| (10)说明展开系数是态矢在基矢上的分量 (3)封闭性 把>=<ψ|n a n 代入>ψ|中得,><>>=∑ψψ|||n n n所以1||=<>∑n n n(11)称为基矢的封闭性 ※狄拉克符号运算中非常重要的关系式 1.2.2 连续谱当力学量本征值构成连续谱λ时,对应的基矢记为{}>λ|(1)正交归一性 )(|λλδλλ'->='< (12) (2)展开定理 ⎰'>'>=λλψλd a || (13) >=<ψλλ|a (14) (3)封闭性 1||=<>⎰λλλd (15)注意: >>>λ|,|,|nlm n 只表示某力学量抽象的本征矢,例如>'x |只表示本征值为x '的力学量x 的本征矢,而具体的基矢形式为:x 表象中)()(|x x x u x x '-=>='<δ,动量表象中px ip e x u x p-=>=<2/1)2(1)(|π,同理 )(|x u n x n >=< )(|p u n p n >=< 1|>=<n n ),,(|ϕθψr nlm x nlm >=< px ie p x2/1)2(1|π>=<1.3 态矢在基矢下的形式 1.3.1 离散谱基矢为{}>n |,态矢记为>ψ|或 ,|,|>>B A ,用基矢展开><>>=⋅>=∑ψψψ|||1|n n n(16)展开系数>=<ψ|n a n 构成>ψ|在>n |表象中的分量,也可写成⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛><><><=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛>=ψψψψ||2|1|21n a a a n (17) 相应的左矢 ∑><<=<nn n |||ψψ (18)()()><><><==<n a a a n |2|1||**2*1ψψψψ (19)1.3.2 连续谱⎰><>>=ψλλλψ|||d (20) 或 ⎰<><=<|||λλλψψd (21)1.3.3 注意:>ψ|只表示一个抽象的态矢,只有),(|t x x ψψ>=<为x 表象的波函数;n a n >=<ψ| 为>n |表象的波函数1.4 线性厄米算符的作用 1.4.1 离散谱(1)算符作用在基矢上∑∑>>=><>=∧∧nnnm n F m F n n m F ||||| (22)算符矩阵元 >=<∧m F n F nm || (23) (2)算符作用在态矢上(算符方程)>>=∧ϕψ||F (24) 即有 >>=<<∧ϕψ|||n F n (25) 或 ∑∑><>=><<>=<∧mmnm m F m m F n n ψψϕ||||| (26)注意:(24)式是抽象的算符方程,(25),(26)式是具体表象中的算符方程,><><ϕψ|,|n m 是算符作用前、后的态矢在{}>n |表象中的分量,nm F 也是具体表象中的矩阵元。
量子力学教程 第二版 4.5 狄拉克符号.
于是: A n n A
n
(完全性关系)
(上式复数共轭)
()
同样可得 A A n n
所以: n n 1
n
n
Q 的本征矢 n 的封闭性,即插入算符(恒等算符) 此即为力学量 。
' ' 说明: n n 1在 x 表象中的表示为 u 。 x u x x x n n n n
表示为 m ,其正交归一性为: , m ' , m ' ' mm'
4. 封闭性 (a)连续谱情况:任何一态矢 A 在坐标表象中用波函数 x ' , t
描写, x ' , t x ' A 就是刃 A 在 x 表象中的分量。
ˆ 在自身表象中的基矢 x ' x x ' 组成完全系,则 A 由于 x
可按 x
展开,即:
'
A x ' dx ' x ' , t
x t A x
'
用 x 与 A 作标积,得:
x A x x ' dx ' x ' , t x x ' dx ' x ' , t x, t
所以展开系数为:
ˆ 的本 征值为分立谱Q n 1,2, ,本征 刃 Q (b) 分立谱情况: n
ˆ n 具有完全性,可将任意刃矢 A 按 Q A n Cn n 而 m A m n C C
n m n
的本征刃展开,即:
即展开系数 Cn n A ( C ,它表示 A 在基矢 n 上 n A n ) 的投影。
量子力学之狄拉克符号系统与表象
Dirac符号系统与表象一、Dirac符号1.引言我们知道任一力学量在不同表象中有不同形式,它们都是取定了某一具体的力学量空间,即某一具体的力学量表象。
量子描述除了使用具体表象外,也可以不取定表象,正如几何学和经典力学中也可用矢量形式A来表示一个矢量,而不用具体坐标系中的分量(Ax ,Ay,Az)表示一样。
量子力学可以不涉及具体表象来讨论粒子的状态和运动规律。
这种抽象的描述方法是由Dirac首先引用的,本质是一个线性泛函空间,所以该方法所使用的符号称为Dirac 符号。
2.(1).(或基组)(2(3<ψ|按定义有:ψψa)在同一确定表象中,各分量互为复共轭;b)由于二者属于不同空间所以它们不能相加,只有同一空间的矢量才能相加;c)右矢空间任一右矢可以和左矢空间中任一左矢进行标积运算,其结果为一复数。
(4).本征函数的封闭性a)分立谱展开式:可得:因为|ψ>是任意态矢量,所以:b)连续谱对于连续谱|q>,q取连续值,任一状态|ψ>展开式为:因为|ψ>是任意态矢量,所以:这就是连续本征值的本征矢的封闭性。
c )投影算符|Q n ><Q n |或|q><q|的作用相当一个算符,它作用在任一态矢|ψ>上,相当于把|ψ>投影到左基矢|Q n >或|q>上,即作用的结果只是留下了该态矢在|Q n >上的分量<Q n |ψ>或<q|ψ>。
故称|Q n ><Q n |和|q><q|为投影算符。
因为|ψ>在X 表象的表示是ψ(x,t),所以显然有:在分立谱下:所以*(')()(')n n nu x u x x x δ=-∑。
在连续谱下:所以*(')()(')u ⎰。
3.(1X 即Q (2即有:4.到目前为止,体系的状态都用坐标(x,y,z)的函数表示,也就是说描写状态的波函数是坐标的函数。
量子力学中的算符和Dirac符号
二、Dirac符号的引入
• 量子力学的语言是Dirac符号法,它有两个优点: 一是无需采用具体表象来讨论问题; 二是运算简洁。
• Dirac符号法,也称为q数理论,而q数理论核心 内容之一就是表象可以用以坐标为变量的波函数 Ψ (x ,t )来描写, 力学量则以作用在这种波函数上的算符来表示,这是 量子力学中态和力学量的一种具体表述方式。态还可 以用其他变量的函数作为波函数来描写体系的状态。 • 微观粒子体系的状态(量子态)和力学量的具体表示 形式称为表象。
• 线性算符的充分条件:
ˆ [ f ( x) g ( x)] A ˆ f ( x) A ˆ g ( x) A ˆ [cf ( x)] cA ˆ f ( x) A
量子力学的一个基本假设:力学量用线性厄米算符表 示,即,量子力学中表示力学量的算符一定是线性厄 米算符。 利用力学量的算符可以预言在给定状态里测量这一力 学量所得结果的期望值——平均值。 可得到给定状态里该力学量的表象
• 算符的加法满足通常的代数法则; • 算符的乘法满足通常的结合律和分配率,但一般 不满足交换律。 ˆ和B ˆB ˆ ,则称算符 A ˆ =B ˆA ˆ 是可对易的。 如果A
算符的对易
定义算符的对易关系:
ˆ与 B ˆ 满足交换律,那么就称算符可对 • 如果算符 A ˆ ,B ˆ ]= 0 易,即 [A ˆ 和B ˆ 有共同的本征函 ˆ 、 ˆ 相互对易,则 A 若A B 数系; ˆ 和B ˆ 有共同的本征函数系,则A ˆ 相互对 ˆ 和B 若A 易。 如果两个算符之间不对易,则它们不能同时有确 ˆ p和 r 定值。 如 ˆ
a , a , , a ,
* 1 * 2 * n
• 力学量 O的狄拉克符号表示:
狄拉克方程深度解析
狄拉克方程深度解析
狄拉克方程是量子力学中描述自旋1/2粒子行为的方程,由英国物理学家狄拉克于1927年提出。
它是一种相对论性的波动方程,可以描述电子和其他费米子的运动和性质。
狄拉克方程的形式如下:
(iγ^μ_μ - m)ψ = 0
其中,i是虚数单位,γ^μ是一组4x4的矩阵(称为狄拉克矩阵),_μ是四维导数算符,m是粒子的质量,ψ是波函数。
狄拉克方程的解释和深度解析需要涉及相对论、量子场论和代数学等多个领域的知识。
简单来说,狄拉克方程描述了自旋1/2粒子的运动和性质,通过解这个方程可以得到粒子的波函数,从而获得粒子在空间和时间上的分布和演化规律。
狄拉克方程的重要性在于它提供了描述电子行为的框架,并且成功地预测了反物质存在的可能性。
此外,狄拉克方程还为量子场论的发展奠定了基础,成为现代粒子物理学的重要理论工具。
然而,要真正理解和掌握狄拉克方程需要深入研究相对论、量子力学和量子场论等相关领域的数学和物理知识。
它是高级物理学和理论物理学的内容,需要通过系统学习和实践来逐步理解和应用。
9第4章概念1-狄拉克符号、矩阵表示、表象变换
则 因此
ˆ ψ 1 F ψ 2 = λ2 ψ 1 ψ 2
ˆ ψ 1 F ψ 2 = λ1 ψ 1 ψ 2
ψ1 ψ 2 = 0
7.基矢组
1 、 、 、 、 为态矢空间中一组正交归一完备基矢组,则 2 ⋯ n ⋯ 为态矢空间中一组正交归一完备基矢组,
k n = δ kn
ψ = ∑ an n
n
n
ˆ A∑ cn ψ n
ˆ ˆ 都没有意义。 A ψ 和 ψ A都没有意义。
n
ˆ ψ B= Ψ ˆ = ∑ cn A ψ n
n
4.左矢和右矢互为共轭 + ψ = ψ
+
ψ
+
=ψ
* cn ψ n = ∑ cn ψ n ∑ n n
因为 又 所以
(
ˆˆ BA ψ
) ( ) ˆˆ ( BA ψ ) = ψ
n n
ˆ Lkn = k L n
ˆ 表象中的矩阵元。 即 L 在F表象中的矩阵元。 表象中的矩阵元 表象中, 在F表象中,对任意态矢 ψ ,有 表象中
ak Lkn an L= ψ L
k ,n
k ,n
* = ( a1
* a2
L11 ⋯) L21 ⋯
ˆ Fkn = Fnδ kn = k F n
ˆ 表象中的矩阵表示如何? 另一力学量算符 L 在F表象中的矩阵表示如何? 表象中的矩阵表示如何 ˆ ˆ 若 L ψ = Φ 且 F n = Fn n 有
ψ = ∑ an n
n
an = n ψ
bk = k Φ
Φ = ∑ bk k
k
则算符方程的矩阵表示为 L11 L12 ⋯ ⋯ Lk1 Lk 2 ⋯ ⋯ 所以
狄拉克符号
k
ak k
(4.5.7) (4.5.8)
k k
展开系数 a k 为
ak k
代入(4.5.7)式得:
定义算符 Pk 为
k
(4.5.9) (4.5.10)
Pk k
k
4.5 狄拉克符号
它对任何矢量的运算,相当于把这个矢量投影到基矢 去,使它变成在基矢 k 方向上的分量,即
Pk k k ak k
i
( x) t
i
H
H ( x )
i
t
x
x H
4.5 狄拉克符号
一般表示
本征方程
F n (x) n (x)
狄拉克符号表示
F n n F x n k F x n j ] j 0
j
( Fkj kj ) a j 0
的本征方程
4.5 狄拉克符号
在 Q 表象中的表示是 即 或写成
k F k
(4.5.20) (4.5.21) (4.5.22)
j
j
k F
j
j
j k
j
F kj a j a k
0
[
k F
j ] j
平均值公式
F
F
(4.5.23)
k
上
(4.5.11)
Pk
称为投影算符。由(4.5.9) 式可以看出,由于 任意,
有
k
k
k 1
(4.5.12)
这就是本征函数的完备性。如果在坐标表象下,上式可 写为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
mn
mn
七、表象变换的狄拉克符号表示
设表象A、表象B的基矢分别为 、m ,则
m m Sm m
m
m
其中, Sm m。
在A表象、B表象的表示 am m b
有
b m m Smam
m
m
其中, Sm 。 m
一般表示与狄拉克符号表示对照表
一一一一
一一一一一一一
一一一
三、算符的狄拉克符号表示
在 表Q象下
am m
m
Fˆ
am m bn n
n
bn n
显然有
n n Fˆ n Fˆ m m
m
即 bn Fnmam
m
其中,Fnm n F为ˆ m算符 在 表F象ˆ 中Q的矩阵元。
特别地, 在Qˆ自身表象中的矩阵元
Qmn m Qˆ n n m n nmn
一一一 一一
(x) Fˆ (x) (x)
x
Fˆ
x Fˆ x
一一一一一 一一一一 一一一一一一
i (x) Hˆ (x) t Fˆun (x) un (x)
(Fkj kj )a j 0 j
un* (x)um (x)dx nm
i Hˆ t Fˆ n n
i x Hˆ x t Fˆ x n x n
k Fˆ j kj j 0 j
n m nm
n x x m dx nm
一一一一一一
(x) anun (x) n
an un* (x) (x)dx
x x n n n
n n x x dx
一 一 一 一 Sm um* (x) (x)dx
Sm m m x x dx
狄拉克算符
(Dirac bracket notation)
目录
七、表象 变换的狄 拉克符号
表示
一、ቤተ መጻሕፍቲ ባይዱ矢 和左矢
六、平均值 公式的狄拉 克符号表示
五、薛定 格方程的 狄拉克符
号表示
四、本征 方程的狄 拉克符号
表示
二、标量积 和基矢组
三、算符 的狄拉克 符号表示
狄拉克算符定义
一个量子态相当于一个态矢量。在希尔伯特空间中选 定一组基矢,即选定表象后,态矢量可以用在这组基矢 上的投影(即矢量的分量)表示,这就是波函数。与数 学中表示一个矢量可以不引入坐标系不用它的分量而直 接用矢量表示相似,在量子力学中表示一个量子态也可 以不引进具体的表象,直接用矢量符号表示。这就是狄 拉克符号(Dirac bracket notation)。
所以
(BˆAˆ ) Aˆ Bˆ
二、标量积和基矢组
1. 标量积
和 的标量积定义为
标量积是一个数,可以在运算中随意移动位置。
显然
在同一表象中, 和 的标量积是相应的分量的乘积之和。
比如:
在 表x象中
* (x) (x)dx
在 表Q象中
bn*an
n
2.基矢组
力学量算符 Qˆ 的本征方程为
但右矢和左矢不能叠加。
3.右矢和左矢互为共轭
(c1 1 c2 2 ) c1* 1 c2* 2 1 c1* 2 c2* (Aˆ ) Aˆ
注意: Aˆ 和 Aˆ 都没有意义。
因为
(BˆAˆ ) (Aˆ ) Bˆ Aˆ Bˆ
另一方面
(BˆAˆ ) (BˆAˆ)
n n n n
n
n
n n 1
n
比如
dx x x 1
引入算符
Pˆn n n
因为
Pn n n n n am m am n n m
m
m
am n nm an n m
显然,该算符对任何矢量的运算,相当于把这个矢量投影到基矢 n 上去,使它变成在基矢 n方向上的分量。所以此算符称为投影算符。
t
m
即
i
t
an
m
H nmam
这就是薛定格方程的狄拉克符号表示。
定态薛定格方程
Hˆ E
在 表Q象下
n Hˆ E n
n Hˆ m m E n
m
即
H nm am Ean
m
六、平均值公式的狄拉克符号表示
在 表Q象下
F Fˆ m m Fˆ n n am* Fmnan
一、右矢和左矢
1.量子力学体系的一切可能状态构成一个希尔伯特 空间即态空间,态空间包括一个右矢空间和一个相应的 左矢空间。
右矢空间中矢量A写成,左矢 空A间的矢量B 写成 。 B
如 :x 表示坐标的本征态,对应的本征值为 x;
p表示动量的本征态,对应的本征值为 ; En或 表n 示能量的本征态,对应本征值为 ;En
四、本征方程的狄拉克符号表示
Fˆ的本征方程
Fˆ
它在 Q表象中的表示
n Fˆ n
n Fˆ m m n
m
即
Fnmam an
m
n Fˆ m nm m 0 m
这就是的 Fˆ本征方程的狄拉克符号表示。
五、薛定格方程的狄拉克符号表示
在 表Q象下
i Hˆ
t
i n n Hˆ n Hˆ m m
lm 表示 Lˆ2 和 Lˆ z 的本征态;
力学量算符 满Aˆ 足的本征方程为
Aˆ n An n 或 Aˆ n An n
n或 代n 表 对A应n 的本征态。
2.态叠加原理
右矢空间中的任意态矢可以表示成若干个右矢叠加,左矢空间中 的任意态矢可以表示成若干个左矢叠加,即
c1 1 c2 2 c1 1 c2 2 1 c1 2 c2
Qˆ n n n 或 Qˆ n n n
n 构成一正交归一完备基矢组。
正交归一性
m n
* m
(
x)
n
(
x)dx
mn
比如
x x (x x) p p ( p p)
完备性
an n
n
上式两边左乘 m ,则
m an m n anmn am
所以,展开系数
n
n
an n
又 因此