单电源互补对称电路(OTL电路)

合集下载

(完整版)OCL,OTL,BTL,甲类,乙类,甲乙类各种放大电路的原理详解,优缺点分析,以及应用说明

(完整版)OCL,OTL,BTL,甲类,乙类,甲乙类各种放大电路的原理详解,优缺点分析,以及应用说明

OCL,OTL,BTL,甲类,乙类,甲乙类各种放大电路的原理详解,优缺点分析,以及应用说明清华大学张小斌(教授)一.OCL电路OCL(output capacitor less)的英文本意是说没有电容的输出级(这样可以使输出在低频时变得平滑),你一定认为这个称谓怪怪的,那是因为OCL不是最早的职业输出级电路而是最终的。

OTL(OCL从它发展而来)电路的标配有上一句所说的奇怪的电容。

OTL在后面谈论。

之所以说OCL是“最终的”是因为它是最迎合集成电路趋势的(集成电路中最容易制造的类型)。

OCL电路的基本形式如下图所示:它的最重要的特点是双电源,注意电源在集成电路中可不是什么难题。

正是这个双电源的结构特点让电容下岗了。

Ui作为输出信号,在正的时候T1管发生作用;在负的时候T2管发生作用。

于是能产生一个连续的输出,信号如右图所示。

但是,当信号的电压在-0.6V 到0.6V之间(以硅管为例),T1和T2管的导通就成了问题了,这种状况会造成信号输出的交越失真。

面对这个问题,我们只能设置合适的静态工作点,目的就是,在没有Ui时,T1和T2就已经微导通了,那么这个时候来一点点Ui就可以自由的让T1或T2导通。

这是个很有逻辑的想法。

见下面的电路:这个旨在消除交越失真的电路在从正电源+VCC经R1、D1、D2、R2到负电源——VCC 形成一个直流电流的旅行中,必然使T1和T2的两个基极之间产生电压,电压的大小等于两个二极管的压降之和。

这样T1和T2管就均处于微导通状态了。

这种结构稍显幼稚,我们在实际中喜欢采用(b)中的形式,学名Ube倍增电路(注意要是I2远大于Ib),意思是说,合理选择R3、R4的阻值,可以使Ub1、b2得到(1+R3/R4)Ube的直流电压。

为了增大T1和T2管的电流放大系数,减小前级的驱动电流,常采用复合管的架构,复合管前面已经由gemfield讨论过了。

现在就该讨论OTL的情况了,电路如下图:很明显的是,和OCL相比,它的特点是输出端多了个电容,而且是单电源供电。

OTL电路工作原理

OTL电路工作原理

OTL功率放大电路发布时间:2011-8-31 14:14:33 访问次数:1984(一)什么是OTL功率放大电路?NE605N互补对称电路通过容量较大的电容器与负载耦合时,称为无输出变压器电路,简称OTL电路。

如果互补对称电路直接与负载相连,就成为无输出电容电路,简称OCL电路。

两种电路的基本原理相同,这里只对OTL电路作简要分析。

图3-31是OTL电路的原理图,它由两只特性相近的三极管VT1(NPN型)、VT2(PNP型)组成。

静态时,A点的电位为1/2V CC,耦合电容C L上的电压也等于1/2V CC。

由于两管的基极无偏置电压,VT l、VT2均处于截止状态。

动态工作时,电路的交流通路如图3-32所示。

在输入信号的正半周,VT1管的发射结正偏而导通,VT2管的发射结反偏而截止。

电源VCC 经VT1管、RE1和负载RL对耦合电容C L充电,形成充电电流ic1,其方向和波形如图3-32中实线所示。

在μi的负半周,情况刚好相反,VT1截止,VT2导通。

此时,已充电的电容C L代替电源向VT2供电,形成放电电流i C2,其方向和波形如图3-32中虚线所示。

在输入信号μi的一个周期内,输出电流i C1、i C2以相反的方向交替流过负载电阻R L,在负载上合成而得出按正弦规律变化的输出电压μo。

为保证输出波形对称,即i Cl-i C2,必须保持C L上的电压为1/2V CC,当电容C L放电时,其电压不能下降过多,因此C L的容量必须足够大。

(二)OTL功率放大电路为什么会产生交越失真?MAC3085EESA在图3-31所示的电路中,由于VT1、VT2工作在乙类状态,当输入信号小于三极管的发射结死区电压时,两个三极管仍不能导通,这样使输出电压μO在过零点的一小段时间内为零。

波形产生了失真。

把这种失真称为交越失真,如图3-33所示。

实际使用的OTL电路如图3-34所示。

与原理电路相比较,增加了VT3组成的推动级,使功率放大电路有尽可能大的输出功率。

第二节-互补对称式功率放大电路资料

第二节-互补对称式功率放大电路资料

π
RL
4= 78.5% 与OCL一样
25
上页 下页 首页
第二节 互补对称式功率放大电路
(3)功率三极管的极限参数 ▼ 集电极最大允许电流ICM
Icm
VCC
UCES RL
VCC RL
Icm
VCC
/ 2 UCES RL
VCC 2 RL
ICM
VCC 2 RL
▼ 集电极最大允许反向电压U(BR)CEO
3.对于OCL或OTL电路,当负载电阻 减小时,最大输出功率( 增加 ) 。 4.当功率管的饱和压降VCES增大时, 各 指 标 的 变 化 为 Pomax( 减小 ) , ηmax( 减小 )。
ηmax =
pomax = π pVmax 4
V2 om max VCC2
28
第二节 互补对称式功率放大电路
(2)效率
当输出最大功率时,放大电路的效率等于最大输
出功率Pom与直流电源提供的功率PV之比。
PV =
VCC
×
1 π
π
0 Icmsinωtd(ωt) =
2VπCCIcm≈
2V2CC πRL
当忽略饱和管压降UCES 时,OCL乙类和甲乙类互补 对称电路的效率为
η=
Pom PV

π 4= 78.5%
如果考虑三极管的饱和管压降UCES ,则OCL乙类和 甲乙类互补对称电路的效率将低于此值。
则:Vom
=
2 π VCC
0.6VCC
即VOm= 0.6VCC时PT1最大,所以每管的最大管耗为
PT1m
=
1 VCC2 π2 RL
0.2Pom
注:Pom
VCC2 2RL

功率放大器的OTL及自举电路

功率放大器的OTL及自举电路

功率放大器的OTL及自举电路现代电影技术功率放大器的OTL及自举电路吉林省广播电视技术中心台刘国刚电影扩音机的功率器电路多采用OTI电路或 OCL电路,而在OTL电路中经常加入与其相适应的自举电路.1,OTL电路的结构OTL电路是一种利用电容耦合而无输出变压器的甲乙类互补对称式推挽功率放大电路.它的电路特点是:采用单电源供电方式,输出端两只功放管的中点直流电位为电源电压的一半;输出端与负载之间采用大容量电容器耦合,负载(扬声器)一端接电容器的输出端,另一端接地.其电路如图1所示: 图1OTL电路结构图在电路中,输出端通过一个大容量电容器C与负载电阻R连接,对交流信号可视为短路,省掉了输出变压器.同时,电容器又将两功放管的中点直流电位与负载隔断.电路采用单电源E供电, 为了消除交越失真,由D,D.(或其他方式)构成 VT和VTz的基极偏置电路.虽然VT为NPN型管,而VT.为PNP型管,但由于两管的特性一致并对称,故静态时两管的集电极电流相等(即I一 Iz).调整基极偏置电阻R和R.,可使A点电位 (VT和VT.的发射极电位)为E/2,即中点电保养维护改造位.由于扬声器的直流电阻很小,并且静态时无电流,其两端直流电位相同(地电位),所以,输出电容C两端的电压也为E/2.静态时,输入端无输入信号,VT,VT.有较小的正向偏置,导通电流较小,中点电位为E/2, 输出电容C两端的电压也为E/2.输出电流无变化,所以无输出电压.当输入信号为正半周时,VT加正向信号电压而导通,对信号电流进行放大,VT.因加反向信号电压而截止,由于输出电容C容量较大,对交流信号而言视为通路,其信号电流如图1中实线方向: +E一VT集电极一VT发射极一电容C一扬声器一地;扬声器两端得到放大的正半周信号. 当输入信号为负半周时,VT加反向信号电压而截止,VT.加正向电压信号而导通,对信号进行放大,支持其导通的电源是输出电容器上的充电电压.其信号电流如图1中虚线方向:c正端一VT.发射极一VT.集电极一地一扬声器一c负端;扬声器两端得到放大的负半周信号. 通过VT和VT.的交替推挽工作,使两只功放管输出的两个半波信号在负载上合成为一个完整的信号.输出电容C在OTL电路中的作用主要有三个: 一是为VT.管在输入信号的负半周时提供电源;二是为交流信号提供通路;三是隔断直流(防止因负载的直流电阻很小对中点电位影响). 2,OTL电路中的自举电路在OTL电路工作时,当输入信号的正半周使 VT导通时,随着正半周信号的增大,VT的基极电位上升,使A点电位上升.当A点电位接近电源一55—现代电影技术No.12/2007ADVANCEDM0N尸J开ETECHNOLOGY电压Ec时,VT的基极电流受限而不能增加很多, 造成激励不足,甚至影响信号的正常放大.OTI电路中的自举电路就是解决输入信号正半周时的激励: 不足问题.OTI电路中的自举电路如图2所示图2OTI电路中的自举电路如图所示,在功放管的基极偏置电路中串入一个电阻R.,在R.与R的串联点上接入一个自举电容C,这样就构成了由C和R.组成自举电路.由于C的容量比较大,静态时,C两端充有U电压,由于R阻值比R小,所以U接近Ec/2. 当输入信号正半周时,大信号的输入会使A点电位上升,由于C和R的时间常数较大,电容C 两端的电压基本恒定,即不随输入信号的增大而改变.也就址说,靠C上的充电电压U激励VT 工作.由于c的自举作用,输入信号的正半周B 点电位随之升高,保证了VT管有足够的激励电流使VT充分导通.自举电路的思路就是使VT基极偏置中B点的电位能随A点电位升高而升高.由于OTL电路采用单电源供电,供电电压的大小受到一定制约,而且功放电路的负载电流又很大, 为保证足够大的输出功率,输出电容的容量选取的很大,一般都在几千微法.但大电容通常具有电感效应,在高频时容易产生相移,在低频时又影响放大(对低频信号的容抗大),而且大容量的电容不能采用集成电路制作.为解决这些问题,在大功率的电影扩音机中多采用无输出电容器的OCL电路. 3,自举电路在OCL 电路中的应用电路中去掉了大电容后将两只功放管的发射极直接与输出端的负载(扬声器)相连.由于扬声器阻值较小,必然会对VT和VT和的工作状态以保养维护改造.为保证中点电位的准确, 及中点电位A产生影响OCL电路通常采用双电源供电.用两组大小相等的正,负电源加在电路的两端,以两电源串联的中点电位A点作为零电位点.负载(扬声器)直接接在中点A与地之间,即用+E和一E分别对VT (NPN型)管和VT.(PNP型)管供电.在没有信号输入时,VT和VT的电压降都是E,因此中点A的直流电位是零,负载(扬声器)两端电位相同,没有电流流过.由于双电源供电的电压足够,通常情况下OCL 电路中不需要自举电路,但有些电路为了提高功率输出,增加功率管的激励,也有加入自举电路的. 例如,与井冈山牌2000型流动放映机配套的K2000 型扩音机的功率放大电路就加入了自举电路.其功率放大电路如图3所示:输出图3K2000型扩音机的功翠放大电路功率放大级采用5只晶体管组成甲乙类OCL互补推挽电路.VT,VT.,VT三管复合成NPN 型管作为推挽的上臂功放管;VT.,VH复合成 PNP型管作为推挽的下臂功放管.由于功放级采用38V的双电源对称供电,输出端与地的静态电位都为零电位.输出端与负载(扬声器)之间直接相连,所以电路属OC[电路. (下转第62页)56现代电影技术No.12/2007ADVANGIiiDMOTION尸lCn艉ETEG/'WOLOGYAutodesk为好莱坞业界巨头EFILM提供数字调色配光服务…………………………………… Autodesk和EF1LM达成专业服务协议…………… 中影首钢环球数码数字影院建设有限公司在京成立… 电影科研所成功安装我国第一套JPEG2000数字影院编解码系统等消息5则…………………… 电影器材技术分会举办首期影院放映技术骨干培训班…………………………………………… 现代多厅影院应用新技术讲座召开………………… 日本数字电影技术代表团来访中国电影科研所…… 电影器材技术分会一届理事会二次会议召开……… 第五届数字电影论坛召开在即重量级嘉宾座谈会先行论道………………………………………… 来自《NAB2007》的信息………………………… DOREMI的DCP一2000服务器进行FIPS140—2 第3级安全认证………………………………… AccessIT数字影院的主要进展…………………… 英国电影委员会制定扶持电影的基金计划………… 英国电影与电视艺术学院选用杜比数字影院播放系统……………………………………………… 欧洲第一个商业数字影院虚拟拷贝费协议签署…… BIRTV2007报道等8篇……………………………发行放映协会城市影院协会在京召开2007年度年中工作会议…………… 电影制片厂希望3D电影的复兴能够重振电影行业... 杜比3D数字影院技术.................................... 英国组织讨论欧洲电影业数字化急待解决的问题...... 派拉蒙向装备杜比3D的数字影院提供3D影片 (559)55963652007年总目录Autodesk推出新版视觉效果与剪辑完成系统…… 焦作在全市推广农村数字电影……………………… 以科学发展观统领电影技术工作——记2007'全国电影科技工作会议暨电影专业委员会七届四次会议……………… 亚洲博览会2007(CINEASIA2007)在澳门召开等7篇十一,其它《中国电影技术百年纪事》补正……………………… 武警部队影视工作管理信息化初探………………… 强化实践教学培养高技能的影视技术兵………… 从书看人从人看书——戈永良与上影特技人……………………… "移动式多功能野战宣传文化箱"的研制和应用…… 对武警部队文化装备管理机制的思考……………… 军队影视发行放映管理系统及数据库设计………… 加强电影放映企业在电影消费市场中的竞争力……此时无色胜有色——影视画面中消色的运用…………………… 坚持以人为本,积极稳妥地做好企业改制中的职工思想政治工作,促进企业健康快速发展……… 部队电影发行放映也要强化"市场"意识…………… SolidEdge用于电影机械网络教学的尝试………… 2007影视学会优秀论文奖揭晓…………………… 注重细节精益求精一一哈影厂采取1O项措施打造精品放映机… 科普影院资源共享的思考与实践…………………… 1O4311381231251期页16O2213563624414585954056362O7287398619541O21(上接第56页)为了便于选取参数较一致的大功率管,VT.和 VT采用同型号NPN管,VT.和VT..采用同型号的PNP管.这样上,下两臂电路性能一致,形成两臂同相工作,为此,上臂必须采用一只NPN管(VT) 与其组合进行倒相,使上,下两臂反相工作.由于功放输出是射极跟随电路,R…R?为负反馈电阻,所以上,下两臂各管的J3值应适当选择以获得对称工作. 为保证偏置电压的精确和稳定,在电路中,一方面在两个复合管射极接人适当的电阻(R.,R)作为负反馈,稳定直流工作点;另一方面还采用VT.,w.,R.组成具有放大调节功能的偏置电路,通过调整w.,改变R3与 w.的比值,使功放级获得适当的静态偏置,并使功放工作在甲乙类状态,以减小功放电路输出级的交越失真.由于VT.集电极与发射极之问的交流阻抗非常小,VT.和VT.两基极成为交流同电位.即加到功率复合管的正,负半周信号幅度一致.R,,C组成了自举电路.利用大电容C两端电压不能突变,并借助于R的隔离作用,使功放管的基极电位升高,保证功放管在大信号输入时, 能有足够的基极电流,使信号得到有效的放大. 一62一0卯弘?鸺们0鼹?00?66778888888999。

3.4互补对称功率放大电路

3.4互补对称功率放大电路

Icm
二、性能分析
2. 电源功率

π I cm 1 由于 I C1 AV) = I C2 AV) = ( ( ∫ I cm sinω t d(ω t ) = π 2π 0
) 故得 PDC = IC1(AV)VCC + IC2(AV)VEE = 2IC1 (AV) VCC ( ) ( )
2VCCUom = 2IcmVCC/π = π π RL
OTL 单电源 交流 fL 较复杂
2 1 Uom
1 U2om 2 RL

1 V 2CC 2 RL
2 RL
1 (VCC / 2)2 ≈ 2 RL
3.4 复习要点
主要要求: 主要要求:
1. 了解功放的特点、类型。 了解功放的特点、类型。 2. 理解乙类和甲乙类功放电路的组成、工作原理、 理解乙类和甲乙类功放电路的组成、工作原理、 乙类和甲乙类功放电路的组成 功率与效率的计算,功率管的选用。 功率与效率的计算,功率管的选用。 3. 理解复合管的组成与特点。 理解复合管的组成与特点。
2 om m 2
2 CC
只有充分激励,才能输出最大不失真功率。 只有充分激励,才能输出最大不失真功率。
二、性能分析
2. 电源功率

π I cm 1 由于 I C1 AV) = I C2 AV) = ( ( ∫ I cm sinω t d(ω t ) = π 2π 0
iC1 O iC2 O t t
Icm
V1

V2
+
通常要接泄放电 阻,以减小等效 穿透电流。 穿透电流。
复合管的特点
类型同首管。 类型同首管。 β ≈ β1 β2 同型复合管输入电阻增大,异型复合管输入电阻同首管。 同型复合管输入电阻增大,异型复合管输入电阻同首管。 输出电流和饱和压降同末管。 输出电流和饱和压降同末管。 V1 V2 V2 NPN PNP + PNP PNP

功率放大电路习题二

功率放大电路习题二

功率放大电路习题二1. 乙类互补对称功率放大电路会产生交越失真的原因是( A )。

A 晶体管输入特性的非线性 B 三极管电流放大倍数太大 C 三极管电流放大倍数太小 D 输入电压信号过大2. OTL 电路中,若三极管的饱和管压降为U CE(sat),则最大输出功率P o(max)≈( B )。

A L2CE(sat)CC 2)(R U V - BL 2CE(sat)CC 212)(R U V - C L2CE(sat)CC 212)(R U V - 3. 在准互补对称放大电路所采用的复合管,其上下两对管子组合形式为( A )。

A NPN —NPN 和PNP —NPN B NPN —NPN 和NPN —PNP C PNP —PNP 和PNP —NPN4. 关于复合管的构成,下述正确的是( A ) A 复合管的管型取决于第一只三极管 B 复合管的管型取决于最后一只三极管C 只要将任意两个三极管相连,就可构成复合管D 可以用N 沟道场效应管代替NPN 管,用P 沟道场效应管代替PNP 管 5.复合管的优点之一是( B )。

A 电压放大倍数大B 电流放大系数大C 输出电阻增大D 输入电阻减小 6. 图示电路( B )A 等效为PNP 管B 等效为NPN 管C 为复合管,第一只管子的基极是复合管的基极、发射极是复合管的集电极 7. 图示电路( C )A .等效为PNP 管,电流放大系数约为(β1+β2)B .等效为NPN 管,电流放大系数约为(β1+β2)C .等效为PNP 管,电流放大系数约为β1β2D .等效为NPN 管,电流放大系数约为β1β2E .连接错误,不能构成复合管8. 功率放大电路的最大输出功率是在输入功率为正弦波时,输出基本不失真的情况下,负载上可能获得的最大( C )。

A 平均功率B 直流功率C 交流功率9. 一个输出功率为8W 的扩音机,若采用乙类互补对称功放电路,选择功率管时,要求P CM ( A )。

甲乙类单电源互补对称功率放大电路

甲乙类单电源互补对称功率放大电路

模拟电子技术知识点:甲乙类单电源互补对称功率放大电路静态时,V K=V CC/2输出通过电容C与负载耦合,而不用变压器——OTL电路(OutputTransformerless) V CC/21.基本电路2.原理分析v i负半周-+充电+v i 正半周-+放电•只要R L C 足够大,电容C 就能起到电源的作用。

-2.原理分析v i 为负半周最大值时接近饱和CCK V v +≈2.原理分析•理想情况下,负载R L 两端得到的交流输出电压幅值V om ≈V CC /2v i 为正半周最大值时接近饱和≈=CES K V v 2.原理分析•在单电源互补对称电路中,计算输出功率、效率、管耗和电源供给的功率,可借用双电源互补对称电路的计算公式,但要用V CC /2代替原公式中的V CC 。

2.原理分析+V CC T 4T 7T 6T 1T 2R 2R 5R 3R L R 7u iu o T 5R 6T8D 1D 4T 3R 4R 1D 310k Ω( c )56D 2243R50μF C ( a )50μF C 21k Ω18Ω(+12V)例题图(b )所示为某集成功率放大器的简化电路图。

已知输入电压为正弦波;三极管T 6、T 8的饱和管压降=2V ;C 和C 2对交流信号均可视为短路。

填空:+V CC T 4T 7T 6T 1T 2R 2R 5R 3R L R 7u iu o T 5R 6T8D 1D 4T 3R 4R 1D 310k Ω( c )56D 2243R50μF C ( a )50μF C 21k Ω18Ω(+12V)例题2①为了驱动扬声器,将图(b)与图(a)、图(c)合理连接,可以增加一个元件,使电路正常工作;此时引入的交流负反馈的组态为,在深度负反馈条件下的电压放大倍数≈。

电压串联负反馈1+R 6/R=11-+-+++例题+V CC T 4T 7T 6T 1T 2R 2R 5R 3R L R 7u iu o T 5R 6T8D 1D 4T 3R 4R 1D 310k Ω( c )56D 2243R50μF C ( a )50μF C 21k Ω18Ω(+12V)例题2②D 2、D 3和D 4作为输出级偏置电路的一部分,作用是。

第7章功率放大电路习题与解答

第7章功率放大电路习题与解答

习题1. 选择题。

(1)功率放大电路的转换效率是指。

A.输出功率与晶体管所消耗的功率之比B.输出功率与电源提供的平均功率之比C.晶体管所消耗的功率与电源提供的平均功率之比(2)乙类功率放大电路的输出电压信号波形存在。

A.饱和失真B.交越失真C.截止失真(3)乙类双电源互补对称功率放大电路中,若最大输出功率为2W,则电路中功放管的集电极最大功耗约为。

A.0.1W B.0.4W C.0.2W(4)在选择功放电路中的晶体管时,应当特别注意的参数有。

A.βB.I CM C.I CBO D.U(BR)CEO E.P CM(5)乙类双电源互补对称功率放大电路的转换效率理论上最高可达到。

A.25% B.50% C.78.5%(6)乙类互补功放电路中的交越失真,实质上就是。

A. 线性失真B. 饱和失真C. 截止失真(7) 功放电路的能量转换效率主要与有关。

A. 电源供给的直流功率B. 电路输出信号最大功率C. 电路的类型解:(1)B (2)B (3)B (4)B D E (5)C (6)C (7)C2. 如图7.19所示电路中,设BJT的β=100,U BE=0.7V,U CES=0.5V,I CEO=0,电容C对交流可视为短路。

输入信号u i为正弦波。

(1)计算电路可能达到的最大不失真输出功率P om?(2)此时R B应调节到什么数值?(3)此时电路的效率η=?ou 12V+图7.19 题2图解:(1)先求输出信号的最大不失真幅值。

由解题2图可知:ωt sin om OQ O U U u += 由C C om OQ V U U ≤+与C ES om OQ U U U ≥-可知:C ES C C om 2U V U -≤即有2C ESC C om U V U -≤因此,最大不失真输出功率P om 为:()W 07.2818122C ES C C L2om om ≈⨯-=⎪⎪⎭⎫ ⎝⎛=U V R U P (2)当输出信号达到最大幅值时,电路静态值为: ()C ES C C C ES C ES C C OQ 212U V U U V U +=+-= 所以 A 72.0825.0122L CES CC L OQ CC CQ≈⨯-=-=-=R U V R U V Im A 2.7CQ BQ==βII k Ω57.12.77.012BQ BE CC B ≈-=-=I U V R (3) %24%10072.01207.2CQ CC om V om ≈⨯⨯===I V P P P η 甲类功率放大电路的效率很低。

功率放大电路习题二

功率放大电路习题二

功率放大电路习题二1. 乙类互补对称功率放大电路会产生交越失真的原因是( A )。

A 晶体管输入特性的非线性 B 三极管电流放大倍数太大 C 三极管电流放大倍数太小 D 输入电压信号过大2. OTL 电路中,若三极管的饱和管压降为U CE(sat),则最大输出功率P o(max)≈( B )。

A L2CE(sat)CC 2)(R U V - BL2CE(sat)CC212)(R U V - C L2CE(sat)CC 212)(R U V - 3. 在准互补对称放大电路所采用的复合管,其上下两对管子组合形式为( A )。

A NPN —NPN 和PNP —NPN B NPN —NPN 和NPN —PNP C PNP —PNP 和PNP —NPN4. 关于复合管的构成,下述正确的是( A ) A 复合管的管型取决于第一只三极管 B 复合管的管型取决于最后一只三极管C 只要将任意两个三极管相连,就可构成复合管D 可以用N 沟道场效应管代替NPN 管,用P 沟道场效应管代替PNP 管 5.复合管的优点之一是( B )。

A 电压放大倍数大B 电流放大系数大C 输出电阻增大D 输入电阻减小 6. 图示电路( B )A 等效为PNP 管B 等效为NPN 管C 为复合管,第一只管子的基极是复合管的基极、发射极是复合管的集电极 7. 图示电路( C )A .等效为PNP 管,电流放大系数约为(β1+β2)B .等效为NPN 管,电流放大系数约为(β1+β2)C .等效为PNP 管,电流放大系数约为β1β2D .等效为NPN 管,电流放大系数约为β1β2E .连接错误,不能构成复合管8. 功率放大电路的最大输出功率是在输入功率为正弦波时,输出基本不失真的情况下,负载上可能获得的最大( C )。

A 平均功率B 直流功率C 交流功率9. 一个输出功率为8W 的扩音机,若采用乙类互补对称功放电路,选择功率管时,要求P CM ( A )。

3甲乙类互补对称功率放大电路

3甲乙类互补对称功率放大电路
西藏·嘎拉错
封返回面
引引言言
由两个射随器组成的乙类互补对称电路 , 实际 并不能使输出很好地反映输入的变化。这是由于没 有直流偏置(即静态时UBEQ= 0 ) , 电路出现了一种称 为 “交越失真”的失真。要解决这个问题 , 必须使 用甲乙类互补对称电路。
本页完 返回
本 理解什么是交越失真

学 甲乙类OCL的电路特点及作用
ui
Rc3 b1
C1 R2 b2 b3 R1 Re3
+VCC
D1
T1
+
C-
D2
VCC/2 K
T2
uo
T3
RL
Ce
Po
=
—12
·U—2om RL
Pom
—1 8
·V—2CC RL

PT
=
2 PT 1
=
2 RL

VCCUom 2p
- U 2 om 4
P = VCCUom
V
p RL
PVm=
VC2C 2pRL
本继页续完
甲乙类互补对称功率放大电路
一、乙类互补对称功率放大电路的交越失真
二、甲乙类双电源互补对称放大电路(OCL)
三、甲乙类单电源互补对称放大电路(OTL)
1、基本电路 uc12、工作原理
T1正 偏导通
单击此进入OTL 原理演示
0
t
D
Rc3
+VCC
(2)交流工作过程和 输出电容C的作用。
ui 0
RL12..-u电消o 路除形交所稍式越以大失在于0静真.5态V原.时理应有 UBE1Q = UBE2Q
本继页续完
甲乙类互补对称功率静态放工大作电点路

模拟电子技术基础甲乙类互补对称功率放大电路

模拟电子技术基础甲乙类互补对称功率放大电路
研究的重点是如何在允许的失真情况下,尽可 能提高输出功率和效率。
2、与甲类功率放大电路相比,乙类互补对称功放 的主要优点是效率高,在理想情况下,其最大效率 约为78.5%。为保证BJT安全工作,双电源互补对称
电路工作在乙类时,器件的极限参数必须满足:PCM >PT1≈0.2Pom,|V(BR)CEO|>2VCC,ICM>VCC/RL。
# 在怎样的条件下,电容C才可充当负电源的角色?
RLC足够大,应满足RLC>(5-10)/2πfL。
4. 带自举电路的单电源功放
静态时
1 VK 2 VCC
VD VCC IC 3 R3
C3充电后,其两端
有一固定电压,不随vi
而改变
VC3
1 2
VCC
I C 3 R3
动态时
自举电路
C3充当一个电源 # 在怎样的条件下,电容C3才能起到电源的作用? R3C3足够大
(电3路)的电特源点供是给:的功率PV PV
A 1,u u ,i u (4)效v率 Voom R 4 VCC
当 iVom
=
Po
PT
i
oVCC
时,
L
2VCCVom
RL
78.5% 4
5.2.2 乙类单电源互补对称功率放大电路
无输出变压器的互补对称功放电路(OTL电路)
(P1O)m最ax 大 不12 失VO真ma输xI出Om功ax率P8VomRCa2CxL
举例
一个功率放大电路如图所示。已知Vcc=20V, -Vcc=-20V, 负载电阻RL=8Ω。设晶体管T1、T2特性一致,死区影响及VCES 忽略不计。
(1)求R=0、vi=10 2 sinωtV时的 Po、Pv、PT及η。 (2)求R=0时电路的最大输出功 率Pom及此时的Pv、PT及η。

OTL 设计

OTL 设计

一设计任务1.1设计目的和意义1.1.1目的本课题主要设计一个OCL和OTL功率放大器把微弱的音频信号进行功率放大足以推动外接负载,如扬声器、音响等。

提供设计并制作一个双路(±12V)线性直流稳压电源(可选用78XX和79xx系列三端稳压模块)。

这样就组成一个完整的音频放大器(如用在扩音器电路中)。

1.1.2意义熟练掌握二极管、三极管、电阻、电容、电位器等器件的测试判断以及参数的查阅与运用。

通过OTL和OCL功放电路的制作,熟悉OTL和OCL功放的工作原理,掌握电子产品的制作和调试方法,提高实践动手能力,培养工程实践观念1.2初始参数和要求设计一个OCL和OTL功率放大器,要求如下:1)最大不失真输出功率PLM>5W(RL=8)。

2)输入为标准音频线路输入 RO=600Ω,1mW(0.500V)3)放大器的效率优于50%。

4)放大器的频响特性:1Hz——100 KHz。

5)设计并制作一个双路(±12V)线性直流稳压电源(可选用78XX和79xx系列三端稳压模块)。

二OC L系统设计2.1系统工作原理2.1.1 OCL互补对称电路特点1)双电源供电;2)输出端不加隔直电容。

C的作用:隔直通交;储存电能,代替一个电源。

2.1.2 静态分析如图2-1所示:静态时,ui = 0V? T1、T2均不工作?uo = 0VUCE1=+Vcc, UCE2=-Vcc2.1.3 动态分析图2-1 消除交越失真的OCL电路ui>0,T1导通T2截止,iL=iC1,RL上得到上正下负的电压;ui<0,T1截止T2导通,iL=iC2,RL上得到上负下正的电压。

设三极管T1、T2特性曲线对称,则Icm1=Icm2=Icm, Ucem1=|Ucem2|=Ucem,则集电极最大输出电压为 Ucem=Vcc-UCES集电极最大输出电流为 Icem=(Vcc-UCES)/RL每个三极管的最大功耗:PTm=0.2Pom优点:电路省掉大电容,改善了低频响应,又有利于实现集成化。

单电源互补对称推挽功放OTL功放

单电源互补对称推挽功放OTL功放

U om U CC 效率达最大 理想情况下,
Po 78.5% PCC 4
图4-42
OCL电路的图解分析
二、双电源互补对称推挽功放(OCL功放)
2.性能分析
(4)管耗
2U CCU om U om PT = PCC Po πRL 2 RL 两个功放管的总管耗:
2
图4-42
OCL电路的图解分析
二、双电源互补对称推挽功放(OCL功放)
3.功放管的选择
功放管的极限参数应满足下列条件:
PCM 0.2Pom
U ( BR)CEO 2U CC
I CM
U CC RL
以上三式可作为选择功放管的依据。
二、双电源互补对称推挽功放(OCL功放)
4.交越失真及消除方法
产生原因:当输 入信号很小时, 达不到三极管的 开启电压,三极 管不导通。因此 在负载上合成的 输出电压将在两 个半波交界处, 跨越正、负半波 时发生失真,
(二)功率放大器的分类
1. 按静态工作点位置不同分
(1)甲类放大状态 (2)乙类放大状态
(3)甲乙类放大状态
甲类功放结构简单,线性好 ,失真小,但管耗大,输出 功率小、效率低。乙类和甲 乙类则是由两个功放管组成 的“推挽”功率放大器,静 态时电流小,降低了静态损 耗,效率较高,理想效率可 达78.5%。所以功率放大器 常采用双管推挽式电路。
二、双电源互补对称推挽功放(OCL功放)
2.性能分析
图4-42
OCL电路的图解分析
二、双电源互补对称推挽功放(OCL功放)
2.性能分析
(1)输出功率 Po
U om U om 1 U 2 om Po U o I o 2 2 RL 2 R L

OTL功放

OTL功放

OTL系统设计3.1系统工作原理3.1.1 OTL互补对称电路特点1)单电源供电;2) 输出加有大电容。

2.静态分析静态时,电源通过T1向C充电,调整参数使得三极管发射极电位:则3.1.2动态分析图3-1 OTL乙类互补对称电路ui>0,T1导通T2截止,iL=iC1,RL上得到上正下负的电压;ui<0,T1截止T2导通,C两端的电压为T2、RL提供电源, iL=iC2,RL上得到上负下正的电压。

OTL乙类互补对称电路如图3-1所示设三极管T1、T2特性曲线对称,则Icm1=Icm2=Icm, Ucem1=|Ucem2|=Ucem,则集电极最大输出电压为Ucem=Vcc/2-UCES集电极最大输出电流为Icem=(Vcc/2-UCES)/RL每个三极管的最大功耗:PTm=0.2PomOTL 乙类互补对称电路的主要优点是效率高;其缺点是会出现交越失真,可采用甲乙类互补对称电路。

3.2 器件选择1)OTL功率放大电路采用单电源供电分别是+12v和-12v,由后面设计的+12v/-12v稳压直流电源供电。

2)三极管Q1为NPN型选用TN2219A,三极管Q3为PNP型选用TN2905A,三极管Q2为NPN型选用TN2219A。

3)电阻R1为滑动变阻器大小是10千欧姆,电阻R2为2.4千欧姆R3为300欧姆R4为3.3千欧姆,R6为500欧姆R7为100欧姆R8为8欧姆R9为滑动变阻器大小事1千欧姆。

4)二极管D1为IN4001。

5)电容C1为100uF,电容C2为100uF,电容C4为1000uF,电容C5为10uF。

3.3电路设计具体电路设计如图3-2所示:图3-2 OTL仿真电路3.4 电路仿真测试1)仿真电路中输入音频信号用函数发生器代替频率100Hz振幅500mv 2)当输入为正弦信号时输入输出波形如图3-3所示:图3-3正弦波测试波形当R1为100%时仿真测得输入功率为188.921uW,输出功率为5.506W,功率放大倍数为29144.463)当输入为三角波信号时输入输出波形如图3-4所示图3-4三角波测试波形当R1为100%时仿真测得输入功率为137.985uW,输出功率为5.604W,功率放大倍数为40613.114)当输入为三角波信号时输入输出波形如图3-5所示:图3-5方波测试波形当R9为5%,R1为70%时仿真测得输入功率为760.75uW,输出功率为4.167W,功率放大倍数为6069.13四电源设计4.1系统工作原理4.1.1 LM78XX的应用图4-1 LM7812CT和LM7912CT如图4-1所示,在voltage line端输入限定范围内的交流电压,commen端接地,可在wreg端输出指定的电压。

6.3 OTL互补对称功率放大电路

6.3 OTL互补对称功率放大电路

(3)
2020/6/3
6
对称功率放大电路。
2020/6/3
2
OTL互补对称功率放大电路
3. 电路存在的问题 T1 管 输入信号正半周幅值越大 ,T1 导通越充分
A点电位升高,当 A 点电位向VCC 接近时 T1管基 极电位升高受限T1输出波形正半周幅值减小,造成 电压的正负半周不对称。
2020/6/3
3
OTL互补对称功率放大电路
2020/6/3
5
OTL互补对称功率放大电路
解:(1)R、C 组成自举电路,其中R为隔离电阻、 C为自举电容。作用是增大输出波形正半周的幅度。
(2)电阻 R1 通过直流负反馈的方式为 T3 提供偏置 且稳定静态工作点;调节R1使A点直流电位达到VCC/2; R1引入的交流电压负反馈起稳定输出电压的作用。电阻 R4为T1、T2提供偏置电压,以克服交越失真。电容C2使 加在 T1、T2 管基极的交流信号 相等 ,有助于输出波形 正、负半周对称。
模拟电子技术基础
6.3 OTL互补对称功率放大电路
2020/6/3
1
OTL互补对称功率放大电路
1. 电路组成 电容C4 上静态电压为VCC/2,
取代了OCL功放中的负电源-VCC。 2. 工作原理 与OCL电路相似 负载电流最大值为:
此电路的输出通过电容与负载相耦合,故称为OTL 甲乙类互补对称功率放大电路,也称单电源甲乙类互补
乙类功放的计算公式中的VCC全部改为VCC/2即可。
2020/6/3
4
OTL互补对称功率放大电路
例6.3.1 单电源互补功率放大电路如图所示。 (1)电路中R、C的作用是什么? (2)R1、R4、C2的作用是什么? (3)如果VCC=15V,RL=8, |UCES|=1V,试求电路 的输 不变(约为VCC/2),A点电位 升高 B点电位升高,在新增 电阻 R 的隔离下,使 uB > VCC (即自举T1基极电位升高并 充分导通增大了输出波形正 半周幅值。

OTL甲乙类互补对称电路

OTL甲乙类互补对称电路

OTL 甲乙类互补对称电路
图Z0408 采用一个电源供电的互补对称电路,它去掉了负电源,在输出端接入一个容量较大的电容器CL,输出信号通过电容CL 耦合到负载RL,而
不用变压器,故称无输出变压器电路,简称OTL 电路。

[ OTL 是Output Transformarle less(无输出变压器)的缩写。

]
静态时,一般只要适当调节电位器RP 活动头的位置,就可使IC1、UB2
和UB3 适当变化,从而使UE = Ec / 2,适当选择R2 的数值,前置放大级T1 管的静态电流IC1 在R2 上产生的压降为T2 和T3 提供一个合适的偏置。

为了使加到T2 和T3 的基极信号相等,常在R2 两端接上容量适当的旁路电容C2 。

R2 的取值通常由实验调试决定。

当输入信号ui 处于正半周时,T3 导通,T2 截止,于是T3 以射极输出的形式将信号传输给负载,同时向CL 充电;在ui 处于负半周时,T2 导通,T3 截止,已充电的CL 充当T2 的电源,同时通过RL 放电,T2 也以射极输出形式将信号传输给负载。

这样就实现了双向跟随,在RL 上得到完整的
输出波形。

只要选择RL、CL 足够大,CL 上电压就基本上维持Ec/2 值,
就可以用电容CL 代替负电源的作用,只不过这时两管的工作电压是Ec /2,而不是Ec 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题单电源互补对称电路(OTL电路)所属章节第三章:集成运算放大器
教学目的1、熟知OTL电路的结构
2、掌握OTL电路的工作原理
教学重点1、电路结构
2、工作原理
3、复合管的组成原则
4、实用电路分析
教学方法讲授法、多媒体课件教学
课题引入
OCL电路具有线路简单,效率高等特点,但要两上电源供电,目前使用更为广泛的是OTL电路。

授课内容
一、基本电路
特点:
与 OCL 电路相比,省去了负电源,输出端加接了一个大容量电容器。

二、工作原理
①v1 > 0, V1 导通, V2 截止。

R L 上得到被放大的正半周电流信号,C 充电。

②v1 <0 , V1 截止, V2 导通。

R L 上得到被放大的负半周电流信号,C 放电。

在一个周期内,两只管子轮流放大正负半周电流信号,实现完整周期波形。

电容C 不仅耦合输出信号,还起到负电源的作用。

三、实用电路
授课内容V1:激励级,向 V2、 V3 组成的互补对称电路提供激励信号。

R1:为 V1 的偏置电阻,与输出端相连,起交、直流负反馈作用。

C1 、R3 :组成具有升压功能的自举电路。

只要C1 足够大,其上交流电压很小,因而 C 点电位跟随输出 O 点电位而变化,相当
于 V1 管的电流供电电压自动升高,确保 V1 管输出足够的激励电
压。

四、采用复合管的 OTL 电路
(1)复合管:指用两只或多只三极管按一定规律的组合,等效成一只三极管。

如图所示。

复合管组成的原则:
①保证参与复合的每只管子三个电极的电流按各自的正确方向
流动。

②复合管的类型取决于前一只管子。

由两只三极管组成的复合管的电流放大倍数约为两只管子电流放大倍数系数的乘积。

复合管提高了电流放大倍数,增大了穿透电流,稳定性变差。

改进电路如图所示。

授课内容(2)实用电路
复合管的 OTL 实用电路如图所示。

V2、V4:组成 NPN 管。

V3、V5:组成 PNP 管。

R9、R10 :负反馈电阻,用于稳定工作点和减小失真;C3、C6:消振电容,消除电路可能产生的自激;
C2、C6:组成自举电路。

课堂练习
OTL功放电路如图,请回答:
1)静态时A点的对地电位;
2)电容C的作用;
3)电容C两端的直流电压;
4)若V
1
、V
2
饱和压降为2V,求输出电压的最大值V
OM

5)若V
1
、V
2
饱和压降为0V,求P
OM
的计算公式。

小结
OTL 电路输出端不用电容耦合,低频特性优良,在高保真的音响设备中广泛应用。

作业布置
改错题:指出下图中的错误,并画出正确的电路图。

相关文档
最新文档