5.4二维形式的柯西不等式1 课件(人教A版选修4-5)
合集下载
5.4柯西不等式与排序不等式 课件(人教A版选修4-5)
等的正数,证明:
a b c d >ab+bc+cd+da.
2 2 2 2
例3 已知x+2y+3z=1,求 的最小值。
x y z
2 2
2
例4:设a、b、c为正数且各不相等。 求证: 2 2 2 9 ab bc ca abc 1 1 1 证明: 2(a b c)( ) ab bc ca 1 1 1 [(a b) (b c) (c a)]( ) ab bc ca
例2 设a1,a2,…,an是n个互不相等的正整数, 求证:
an a2 a3 1 1 1 1 ... a1 2 2 ... 2 2 3 n 2 3 n
证明:设b1,b2,…,bn是a1,a2,…an的一个排列, 且有 b1<b2<…<bn 因为b1,b2,…,bn是互不相等的正整数, 所以b1≥1,b2≥2,…,bn≥n.
第三讲
柯西不等式与 排序不等式
一 二维形式的 柯西不等式
定理1(二维形式的柯西不等式):
若a,b,c,d都是实数,则
(a2+b2)(c2+d2)≥(ac+bd)2
当且仅当ad=bc时,等号成立.
你能证明吗?
推论
a 2 b2 c 2 d 2 ac bd a 2 b2 c 2 d 2 ac | | bd
当且 仅当 (i=1, 2,…, n) 或存 在一
ai kbi
bi 0
一般形式的三角不等式
x y z
2 1 2 1 2 1
x y z
2 2 2 2 2
2 2 2
( x1 x2 ) ( y1 y2 ) ( z1 z 2 )
a b c d >ab+bc+cd+da.
2 2 2 2
例3 已知x+2y+3z=1,求 的最小值。
x y z
2 2
2
例4:设a、b、c为正数且各不相等。 求证: 2 2 2 9 ab bc ca abc 1 1 1 证明: 2(a b c)( ) ab bc ca 1 1 1 [(a b) (b c) (c a)]( ) ab bc ca
例2 设a1,a2,…,an是n个互不相等的正整数, 求证:
an a2 a3 1 1 1 1 ... a1 2 2 ... 2 2 3 n 2 3 n
证明:设b1,b2,…,bn是a1,a2,…an的一个排列, 且有 b1<b2<…<bn 因为b1,b2,…,bn是互不相等的正整数, 所以b1≥1,b2≥2,…,bn≥n.
第三讲
柯西不等式与 排序不等式
一 二维形式的 柯西不等式
定理1(二维形式的柯西不等式):
若a,b,c,d都是实数,则
(a2+b2)(c2+d2)≥(ac+bd)2
当且仅当ad=bc时,等号成立.
你能证明吗?
推论
a 2 b2 c 2 d 2 ac bd a 2 b2 c 2 d 2 ac | | bd
当且 仅当 (i=1, 2,…, n) 或存 在一
ai kbi
bi 0
一般形式的三角不等式
x y z
2 1 2 1 2 1
x y z
2 2 2 2 2
2 2 2
( x1 x2 ) ( y1 y2 ) ( z1 z 2 )
5.4.1 n维柯西不等式 课件(人教A版选修4-5)
2 1 2 2 2 n
2
n(a a a ) (a1 a2 an ) 1 2 2 2 2 (a1 a2 an ) a1 a2 an n
2
例2 已知x, y, z R , 且x y z 1, 求证 : 1 4 9 36 x y z
2 1 2 n 2
二次函数f ( x )的判别式 0, 即 4( a1b1 a2b2 anbn )
2 ( b1 2 b2 2 bn ) 2 2 4( a1
又f ( x) (a1 x b1 ) (a2 x b2 ) (an x bn ) 0
2 2 2 2
(a b c d )
2 2
2 2 2
即4(16 e ) (8 e ) , 即64 4e 64 16e e 16 2 5e 16e 0, 故0 e 5
1. 设x1 , x2 , xn R , 且x1 x2 xn 1,
例1 已知a1 , a2 , , an都是实数, 求证 1 2 2 2 2 (a1 a2 an ) a1 a2 an n
证 明: (1 1 1 )(a a a )
2 2 2 2 1 2 2 2 n
(1 a1 1 a2 1 an )
定理1(二维形式的柯西不等式): 若a,b,c,d都是实数,则 (a2 +b2)(c2 +d2)≥(ac +bd)2 当且仅当ad =bc时,等号成立. 思考:能否把上述结论推广至一般形式?
猜想
2 1 2 1
(a a a )(b b b )
2
n(a a a ) (a1 a2 an ) 1 2 2 2 2 (a1 a2 an ) a1 a2 an n
2
例2 已知x, y, z R , 且x y z 1, 求证 : 1 4 9 36 x y z
2 1 2 n 2
二次函数f ( x )的判别式 0, 即 4( a1b1 a2b2 anbn )
2 ( b1 2 b2 2 bn ) 2 2 4( a1
又f ( x) (a1 x b1 ) (a2 x b2 ) (an x bn ) 0
2 2 2 2
(a b c d )
2 2
2 2 2
即4(16 e ) (8 e ) , 即64 4e 64 16e e 16 2 5e 16e 0, 故0 e 5
1. 设x1 , x2 , xn R , 且x1 x2 xn 1,
例1 已知a1 , a2 , , an都是实数, 求证 1 2 2 2 2 (a1 a2 an ) a1 a2 an n
证 明: (1 1 1 )(a a a )
2 2 2 2 1 2 2 2 n
(1 a1 1 a2 1 an )
定理1(二维形式的柯西不等式): 若a,b,c,d都是实数,则 (a2 +b2)(c2 +d2)≥(ac +bd)2 当且仅当ad =bc时,等号成立. 思考:能否把上述结论推广至一般形式?
猜想
2 1 2 1
(a a a )(b b b )
5.4柯西不等式与排序不等式 课件(人教A版选修4-5)
(a1b1 a2b2 ... anbn )
2
定理 设 a1, a2 , a3 ,...,an , b1, b2 , b3 ,...,bn 是实数,则
2 2 2 2 (a12 a2 ... an ) (b12 b2 ... bn )
(a1b1 a2b2 ... anbn ) 2
例2 设a1,a2,…,an是n个互不相等的正整数, 求证:
an a2 a3 1 1 1 1 ... a1 2 2 ... 2 2 3 n 2 3 n
证明:设b1,b2,…,bn是a1,a2,…an的一个ቤተ መጻሕፍቲ ባይዱ列, 且有 b1<b2<…<bn 因为b1,b2,…,bn是互不相等的正整数, 所以b1≥1,b2≥2,…,bn≥n.
x y x y ( x1 x2 ) ( y1 y2 )
2 1 2 1 2 2 2 2 2
2
例题
例1.已知a,b为实数,证明:
(a4+b4) (a2+b2)≥ (a3+b3)2
例2.求函数y 5 x 1 10 2 x的最大值.
例3.设a,b∈R+,a+b=1,求证
练习
1.设a1 , a2 ,..., an为实数,证明: a1c1 a2c2 ... an cn a a ... a ,
2 1 2 2 2 n
其中c1 , c2 ,..., cn是a1 , a2 ,..., an的任一排列。
练习
2.已知a, b, c为正数,用排序不等式证明 2(a b c ) a (b c) b (a c) c (a b).
3 3 3 2 2 2
2
定理 设 a1, a2 , a3 ,...,an , b1, b2 , b3 ,...,bn 是实数,则
2 2 2 2 (a12 a2 ... an ) (b12 b2 ... bn )
(a1b1 a2b2 ... anbn ) 2
例2 设a1,a2,…,an是n个互不相等的正整数, 求证:
an a2 a3 1 1 1 1 ... a1 2 2 ... 2 2 3 n 2 3 n
证明:设b1,b2,…,bn是a1,a2,…an的一个ቤተ መጻሕፍቲ ባይዱ列, 且有 b1<b2<…<bn 因为b1,b2,…,bn是互不相等的正整数, 所以b1≥1,b2≥2,…,bn≥n.
x y x y ( x1 x2 ) ( y1 y2 )
2 1 2 1 2 2 2 2 2
2
例题
例1.已知a,b为实数,证明:
(a4+b4) (a2+b2)≥ (a3+b3)2
例2.求函数y 5 x 1 10 2 x的最大值.
例3.设a,b∈R+,a+b=1,求证
练习
1.设a1 , a2 ,..., an为实数,证明: a1c1 a2c2 ... an cn a a ... a ,
2 1 2 2 2 n
其中c1 , c2 ,..., cn是a1 , a2 ,..., an的任一排列。
练习
2.已知a, b, c为正数,用排序不等式证明 2(a b c ) a (b c) b (a c) c (a b).
3 3 3 2 2 2
高中数学 二维形式的柯西不等式课件 新人教A版选修4-5
一、二维形式的柯西不等式 (第二课时)
一. 课前复习
(一)定理1(二维形式的柯西不等式):
若a,b,c,d都是实数,则 (a2+b2)(c2+d2)≥(ac+bd)2
当且仅当ad=bc时,等号成立.
二维形式的柯西不等式经过变 形后可得到两个比较重要的不
等式:
a2b2 c2d2 acbd
a2b2 c2d2 ac||bd
问题:
你能否利用柯西不等式,从代数的角度 证明这个不等式?
例3.设a,b∈R+,a+b=1,求证
11 4 ab
注意应用公式: (a b)(1 1 ) 4
ab
练习巩固:
练习一:
设a,b为正数,求
(a 1)(2b 1 )
b
2a
的最小值
练习二: P37 第6题
小结:
• 本节课实际上是柯西不等式的一些简单应 用,柯西不等式是一个经典不等式,是一 个重要的数学结论,在以后的证明某些不 等式和求最值时有重要作用,要学会灵活 运用。
谢谢观赏
You mad业: P37 第 8 题
•1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月4日星期五2022/3/42022/3/42022/3/4 •2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于独 立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/42022/3/42022/3/43/4/2022 •3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/42022/3/4March 4, 2022 •4、享受阅读快乐,提高生活质量。2022/3/42022/3/42022/3/42022/3/4
一. 课前复习
(一)定理1(二维形式的柯西不等式):
若a,b,c,d都是实数,则 (a2+b2)(c2+d2)≥(ac+bd)2
当且仅当ad=bc时,等号成立.
二维形式的柯西不等式经过变 形后可得到两个比较重要的不
等式:
a2b2 c2d2 acbd
a2b2 c2d2 ac||bd
问题:
你能否利用柯西不等式,从代数的角度 证明这个不等式?
例3.设a,b∈R+,a+b=1,求证
11 4 ab
注意应用公式: (a b)(1 1 ) 4
ab
练习巩固:
练习一:
设a,b为正数,求
(a 1)(2b 1 )
b
2a
的最小值
练习二: P37 第6题
小结:
• 本节课实际上是柯西不等式的一些简单应 用,柯西不等式是一个经典不等式,是一 个重要的数学结论,在以后的证明某些不 等式和求最值时有重要作用,要学会灵活 运用。
谢谢观赏
You mad业: P37 第 8 题
•1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月4日星期五2022/3/42022/3/42022/3/4 •2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于独 立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/42022/3/42022/3/43/4/2022 •3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/42022/3/4March 4, 2022 •4、享受阅读快乐,提高生活质量。2022/3/42022/3/42022/3/42022/3/4
5.4二维形式的柯西不等式1 课件(人教A版选修4-5)
可以体会到,运用柯西不等式,思路一步到 位,简洁明了!解答漂亮!
定理 1(二维形式的柯西不等式) 若 a, b, c, d 都 是实数,则 (a2 b2 )(c2 d 2 ) ≥ (ac bd )2 . 当且仅当 ad bc 时,等号成立.
变变形……,可得下面两个不等式:
⑴ 若 a, b, c, d 都 是实数 ,则 (a 2 b 2 ) (c 2 d 2 ) ≥ ac bd . 当且仅当 ad bc 时,等号成立. 当且仅当 ad bc 时,等号成立. 这两个结论也是非常有用的.
(发现)定理 3(二维形式的三角不等式) 设 x1 , y1 , x2 , y2 R, 那么
( x12 y12 ) ( x22 y22 ) ≥ ( x1 x2 )2 ( y1 y2 )2 . 当 且 仅 当
当且仅当 x1 y2 x2 y1 时,等号成立.
x1 y2 x2 y1 时,等号成立.
⑵若 a, b, c, d 都是实数,则 (a 2 b 2 ) (c 2 d 2 ) ≥ ac bd .
另外由这两个结论,你和以前学过的什么知识 会有联想.
定理 2(柯西不等式的向量形式) 若 , 是两个向量,则 ≥ . 当且仅当 是零向量或存在实数 k ,使 k 时,等号成立. 注:若 ( x1 , y1 ) , ( x2 , y2 ) ,则 x1 x2 y1 y2 cos , 2 2 2 2 x1 y1 x2 y2
1 1 1 2 ≥ a b bc ca 1 1 1 9 ab bc ca 2 2 2 9 ≥ ab bc ca abc a,b,c 各不相等, 等号不可能成立,从而原不等式成立。
人教A版选修4-5 第三章 一 二维形式的柯西不等式 课件(29张)
【解】 (1)设 m=coas θ,sinb θ,n=(cos θ,sin θ),
则|a+b|=coas
θ·cos
θ+sinb
θ·sin
θ
=|m·n|≤|m||n|
=
a cos
θ2+sinb
θ2·
1
= coas22θ+sibn22θ,
所以(a+b)2≤coas22θ+sibn22θ.
栏目 导引
第三讲 柯西不等式与排序不等式
利用柯西不等式求最值 (1)先变形凑成柯西不等式的结构特征,是利用柯西不等式求解 的先决条件; (2)有些最值问题从表面上看不能利用柯西不等式,但只要适当 添加上常数项或和为常数的各项,就可以应用柯西不等式来解, 这也是运用柯西不等式解题的技巧; (3)有些最值问题的解决需要反复利用柯西不等式才能达到目 的,但在运用过程中,每运用一次前后等号成立的条件必须一 致,不能自相矛盾,否则就会出现错误.多次反复运用柯西不 等式的方法也是常用技巧之一.
栏目 导引
第三讲 柯西不等式与排序不等式
已知 a,b∈R+,且 a+b=1,求证:(ax+by)2 ≤ax2+by2. 证明:设 m=( ax, by),n=( a, b), 则|ax+by|=|m·n|≤|m||n| = ( ax)2+( by)2· ( a)2+( b)2 = ax2+by2· a+b = ax2+by2, 所以(ax+by)2≤ax2+by2.
栏目 导引
第三讲 柯西不等式与排序不等式
已知 a,b 都是正实数,且 ab=2, 求证:(1+2a)(1+b)≥9. 证明:因为 a,b 都是正实数, 所以由柯西不等式可知(1+2a)(1+b) =[12+( 2a)2][12+( b)2]≥(1+ 2ab)2, 当且仅当 a=1,b=2 时取等号. 因为 ab=2, 所以(1+ 2ab)2=9, 所以(1+2a)(1+b)≥9.
5.4二维形式的柯西不等式 课件(人教A版选修4-5)
(发现)定理 3(二维形式的三角不等式) 设 x1 , y1 , x2 , y2 R, 那么
( x12 y12 ) ( x22 y22 ) ≥ ( x1 x2 )2 ( y1 y2 )2 . 当 且 仅 当
当且仅当 x1 y2 x2 y1 时,等号成立.
x1 y2 x2 y1 时,等号成立.
课堂练习:P36 第1,3,4
课堂练习:P36 第 5 题: R ,a+b=1, x1 , x2 R , 已知 a,b
求证: ax1 bx2 bx1 ax2 ≥ x1 x2
分析:如果对不等式左端用柯西不等式,就得不到所 要证明的结论.若把第二个小括号内的前后项对调一 下,情况就不同了. 证明:∵ ax1 bx2 bx1 ax2 = ax1 bx2 ax2 bx1 由柯西不注: 这里是利用其取等号的充分必要条件来达到目的
你能简明地写出这个定理的证明吗?
思考解答
变形
运用这个定理,我们可以解决以前感觉棘手的问题. 1 1 思考 1:设 a, b R , a b 1, 求证: ≥ 4 . a b 证明:由于 a , b R ,根据柯西不等式,得 1 1 1 1 2 (a b)( ) ≥ ( a b ) 4 a b a b 又 a b 1, 1 1 ∴ ≥4 a b
5
变式 1.已知 4 x 2 9 y 2 36 ,求 x 2 y 的最大值.2 5
变式 2.已知 3 x 2 y 6 ,求 x 2 y 2 的最小值. 2 变式 3.已知 3 x 2 y 6 ,求 x 2 y
2 2
36 的最小值. 11
思考 3.求函数 y 5 x 1 10 2 x 的最大值.
( x12 y12 ) ( x22 y22 ) ≥ ( x1 x2 )2 ( y1 y2 )2 . 当 且 仅 当
当且仅当 x1 y2 x2 y1 时,等号成立.
x1 y2 x2 y1 时,等号成立.
课堂练习:P36 第1,3,4
课堂练习:P36 第 5 题: R ,a+b=1, x1 , x2 R , 已知 a,b
求证: ax1 bx2 bx1 ax2 ≥ x1 x2
分析:如果对不等式左端用柯西不等式,就得不到所 要证明的结论.若把第二个小括号内的前后项对调一 下,情况就不同了. 证明:∵ ax1 bx2 bx1 ax2 = ax1 bx2 ax2 bx1 由柯西不注: 这里是利用其取等号的充分必要条件来达到目的
你能简明地写出这个定理的证明吗?
思考解答
变形
运用这个定理,我们可以解决以前感觉棘手的问题. 1 1 思考 1:设 a, b R , a b 1, 求证: ≥ 4 . a b 证明:由于 a , b R ,根据柯西不等式,得 1 1 1 1 2 (a b)( ) ≥ ( a b ) 4 a b a b 又 a b 1, 1 1 ∴ ≥4 a b
5
变式 1.已知 4 x 2 9 y 2 36 ,求 x 2 y 的最大值.2 5
变式 2.已知 3 x 2 y 6 ,求 x 2 y 2 的最小值. 2 变式 3.已知 3 x 2 y 6 ,求 x 2 y
2 2
36 的最小值. 11
思考 3.求函数 y 5 x 1 10 2 x 的最大值.
5.4二维形式的柯西不等式1 课件(人教A版选修4-5)
2
2 a b c a b b c c a 这 样就 给我 们利 用柯 西不等式提供了条件。证明: 1 1 1 1 1 1 2a b c a b b c c a a b b c c a ab bc ca 1 2 1 2 1 2 a b 2 b c 2 c a 2 a b b c c a
2 2
2 2
x x x x2 ≥ x1 x2 xn x2 x3 xn x1 (1984 年全国高中数学联赛题)
作业:课本 P 习题 3.1 第 1、3、7、8 题 37
2 1
2
2 n 1
2 n
已知 a 1 b2 b 1 a 2 1, 求证: a 2 b2 1 。 证明:由柯西不等式,得 2 2 a 2 1 a 2 b2 1 b 2 1 a 1 b b 1 a ≤
1 1 1 2 ≥ a b bc ca 1 1 1 9 ab bc ca 2 2 2 9 ≥ ab bc ca abc a,b,c 各不相等, 等号不可能成立,从而原不等式成立。
x1 x2 xn ,
2
2 2 2 xn1 xn x1 x22 于是 ≥ x1 x2 xn . x2 x3 xn x1
课堂练习
课堂练习 1: 已知 a,b R ,a+b=1, x1 , x2 R ,
求证: ax1 bx2 bx1 ax2 ≥ x1 x2
2 a b c a b b c c a 这 样就 给我 们利 用柯 西不等式提供了条件。证明: 1 1 1 1 1 1 2a b c a b b c c a a b b c c a ab bc ca 1 2 1 2 1 2 a b 2 b c 2 c a 2 a b b c c a
2 2
2 2
x x x x2 ≥ x1 x2 xn x2 x3 xn x1 (1984 年全国高中数学联赛题)
作业:课本 P 习题 3.1 第 1、3、7、8 题 37
2 1
2
2 n 1
2 n
已知 a 1 b2 b 1 a 2 1, 求证: a 2 b2 1 。 证明:由柯西不等式,得 2 2 a 2 1 a 2 b2 1 b 2 1 a 1 b b 1 a ≤
1 1 1 2 ≥ a b bc ca 1 1 1 9 ab bc ca 2 2 2 9 ≥ ab bc ca abc a,b,c 各不相等, 等号不可能成立,从而原不等式成立。
x1 x2 xn ,
2
2 2 2 xn1 xn x1 x22 于是 ≥ x1 x2 xn . x2 x3 xn x1
课堂练习
课堂练习 1: 已知 a,b R ,a+b=1, x1 , x2 R ,
求证: ax1 bx2 bx1 ax2 ≥ x1 x2
5.4柯西不等式与排序不等式 课件(人教A版选修4-5)
3 3 3 2 2 2
练习
3.设a1 , a2 ,..., an为正数,求证 a1a2 a2 a3 a3 a1 a1 a2 a3 . a3 a1 a2
练习
4.设a1 , a2 ,..., an为正数,试分别用柯西 不等式与排序不等式证明 a a a a ... a1 a2 ... an . a2 a3 an a1
又因
1 1 1 1 ... 2 2 2 3 n2
由排序不等式,得:
an bn a2 a3 b2 b3 a1 2 2 ... 2 b1 2 2 ... 2 2 3 n 2 3 n 1 1 1 1 1 1 11 2 2 3 2 ... n 2 1 ... 2 3 n 2 3 n
例2 已知a,b,c,d是不全相等的正数,证明:
a b c d >ab+bc+cd+da.
2 2 2 2
例3 已知x+2y+3z=1,求 的最小值。
x y z
2 2
2
例4:设a、b、c为正数且各不相等。 求证: 2 2 2 9 ab bc ca abc 1 1 1 证明: 2(a b c)( ) ab bc ca 1 1 1 [(a b) (b c) (c a)]( ) ab bc ca
1 1 4 a b
注意应用公式: 1 1 ( a b )( ) 4 a b
练习:
1.已知2x 3 y 6,
2 2
求证x 2 y 11 2.已知a b 1,
2 2
求证|a cos b sin | 1
作业
练习
3.设a1 , a2 ,..., an为正数,求证 a1a2 a2 a3 a3 a1 a1 a2 a3 . a3 a1 a2
练习
4.设a1 , a2 ,..., an为正数,试分别用柯西 不等式与排序不等式证明 a a a a ... a1 a2 ... an . a2 a3 an a1
又因
1 1 1 1 ... 2 2 2 3 n2
由排序不等式,得:
an bn a2 a3 b2 b3 a1 2 2 ... 2 b1 2 2 ... 2 2 3 n 2 3 n 1 1 1 1 1 1 11 2 2 3 2 ... n 2 1 ... 2 3 n 2 3 n
例2 已知a,b,c,d是不全相等的正数,证明:
a b c d >ab+bc+cd+da.
2 2 2 2
例3 已知x+2y+3z=1,求 的最小值。
x y z
2 2
2
例4:设a、b、c为正数且各不相等。 求证: 2 2 2 9 ab bc ca abc 1 1 1 证明: 2(a b c)( ) ab bc ca 1 1 1 [(a b) (b c) (c a)]( ) ab bc ca
1 1 4 a b
注意应用公式: 1 1 ( a b )( ) 4 a b
练习:
1.已知2x 3 y 6,
2 2
求证x 2 y 11 2.已知a b 1,
2 2
求证|a cos b sin | 1
作业
二维形式的柯西不等式-PPT课件
(2)推论:对于任意的 x1,x2,x3,y1,y2,y3∈R,有 x1-x32+y1-y32+ x2-x32+y2-y32
≥ x1-x22+y1-y22. 事实上,在平面直角坐标系中,设点 P1、P2、P3 的坐标 分别为(x1,y1)、(x2,y2)、(x3,y3),根据△P1P2P3 的边长关系 有|P1P3|+|P2P3|≥|P1P2|,当且仅当三点 P1、P2、P3 共线,并 且点 P1、P2 在 P3 点的异侧时,等号成立.
3.设 a,b,c 为正数,
求证: a2+b2+ b2+c2+ a2+c2≥ 2(a+b+c). 证明:由柯西不等式:
a2+b2· 12+12≥a+b,
Байду номын сангаас
即 2· a2+b2≥a+b.
同理: 2· b2+c2≥b+c,
2· a2+c2≥a+c,
将上面三个同向不等式相加得:
2
a2+b2+
∴ a2+b2+
2.已知 a1,a2,b1,b2 为正实数. 求证:(a1b1+a2b2)(ab11+ab22)≥(a1+a2)2. 证明:(a1b1+a2b2)(ab11+ba22)=[( a1b1)2+( a2b2)2][( ba11)2 +( ab22)2]≥ ( a1b1· ab11+ a2b2· ab22)2=(a1+a2)2.
6.求函数 f(x)= x-6+ 12-x的最大值及此时 x 的值.
解:函数的定义域为[6,12],由柯西不等式得 ( x-6+ 12-x)2≤(12+12)[( x-6)2+( 12-x)2]=2(x -6+12-x)=12, 即 x-6+ 12-x≤2 3. 故当 x-6= 12-x时 即 x=9 时函数 f(x)取得最大值 2 3.
5.4柯西不等式与排序不等式 课件(人教A版选修4-5)
即可
三 排序不等式
定理(排序不等式,又称排序定理) 设a1 a2 ... an,b1 b2 ... bn为两组 实数c1 , c2 是b1 , b2 ...bn的任一排列, 那么: a1bn a2bn 1 ... anb1 a1c1 a2 c2 ... an cn a1b1 a2b2 ... anb.n 当且仅当a1 a2 ... an或b1 b2 ... bn时, 反序和等于顺序和。
第三讲
柯西不等式与 排序不等式
一 二维形式的 柯西不等式
定理1(二维形式的柯西不等式):
若a,b,c,d都是实数,则
(a2+b2)(c2+d2)≥(ac+bd)2
当且仅当ad=bc时,等号成立.
你能证明吗?
推论
a b c d ac bd
2 2 2 2 2 2 2 2
a b c d ac | | bd
| m n || m | | n | | cos || m | | n | m n || m | | n | |
ac bd a b c d
2 2 2 2
定理2: (柯西不等式的向量形式)
2 2 2 2 (a12 a2 ... an ) (b12 b2 ... bn )
(a1b1 a2b2 ... anbn )
2
当且 仅当 (i=1, 2,…, n) 或存 在一
ai kbi
bi 0
一般形式的三角不等式
x y z
2 1 2 1 2 1
2 2
求证|a cos b sin | 1
5.4.1 n维柯西不等式 课件(人教A版选修4-5)
例1 已知a1 , a2 , , an都是实数, 求证 1 2 2 2 2 (a1 a2 an ) a1 a2 an n
证 明: (1 1 1 )(a a a )
2 2 2 2 1 2 2 2 n
(1 a1 1 a2 1 an )
2 2 2
2 (b12 b22 bn )
2 a2
2 an )
0
定理4 (一般形式的柯西不等式) 设n为大于1的自然数, ai , bi为任意实数, 则
a b
i 1 2 i i 1
n
n
2 i
( ai bi ) ,
2 i 1
n
当且仅当bi 0( i 1, 2, , n)或存在一个实数 k , 使得ai kbi ( i 1, 2, , n)时, 等号成立.
2 2 xn x12 x2 1 求证 : 1 x1 1 x2 1 xn n 1
补充作业:
2. 设a , b, c为正数, 且a b c 1, 求证 : 1 2 1 2 1 2 100 (a ) (b ) (c ) a b c 3
备用:已知a 0, b 0, 且a b 1, 求证 : 1 2 1 2 25 (1) ( a ) ( b ) a b 2 1 1 25 (2)( a )( b ) a b 4
2 1 2 n 2
二次函数f ( x )的判别式 0, 即 4( a1b1 a2b2 anbn )
2 ( b1 2 b2 2 bn ) 2 2 4( a1
又f ( x) (a1 x b1 ) (a2 x b2 ) (an x bn ) 0
人教A版数学选修4-5《二维形式的柯西不等式》 (共15张PPT)课件
2
+ −
2
.
分析:平方 → 应用柯西不等式
.
2
+ 2
2
+ 2
2
证明:∵
+
= 2 + 2 + 2 2 + 2 • 2 + 2 + 2 + 2
≥ 2 + 2 + 2| + | + 2 + 2
≥ 2 + 2 − 2( + ) + 2 + 2
.
二、讲授新课:
1. 二维形式的柯西不等式:
定理1 (二维形式的柯西不等式
) 若a , b, c , d都是
实数, 则 (a 2 b 2 )(c 2 d 2 ) (ac bd )2
当且仅当ad bc时, 等号成立.
你能简明地写出这个定理的其它证明?
∵(a2+b2)(c2+d2)
当且仅当ad bc时, 等号成立.
( 2) a 2 b 2
c 2 d 2 ac bd
( 3) a 2 b 2
c 2 d 2 ac bd
(4)柯西不等式的向量形式 .当且仅当
是零向量, 或存在实数k , 使 k 时,等号成立.
证明:
= a2c2+b2d2+a2d2+ b2c2
=(ac+bd)2+(ad-bc)2
∵(ad-bc)2≥0,
∴ (a2+b2)(c2+d2)≥(ac+bd)2
(1)
当且仅当ad=bc时,等号成立.
)
二维形式的柯西不等式的变式:
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ax1 bx2 bx1 ax2 ≥ a
2
x1 x2 b x1 x2
2
= a b x1 x2 x1 x2 .得证 作业:课本 P 习题 3.1 第 1、3、7、8 题
37
课外思考: 1.已知 a 1 b b 1 a 1, 求证: a b 1 . 2.设 a,b,c 为正数且不相等,求证: 2 2 2 9 . ab bc ca abc 3. 设 x1 , x2 , , xn R , 求证:
2
2 a b c a b b c c a 这 样就 给我 们利 用柯 西不等式提供了条件。证明: 1 1 1 1 1 1 2a b c a b b c c a a b b c c a ab bc ca 1 2 1 2 1 2 a b 2 b c 2 c a 2 a b b c c a
2 2
2 2
x x x x2 ≥ x1 x2 xn x2 x3 xn x1 (1984 年全国高中数学联赛题)
作业:课本 P 习题 3.1 第 1、3、7、8 题 37
2 1
2
2 n 1
2 n
已知 a 1 b2 b 1 a 2 1, 求证: a 2 b2 1 。 证明:由柯西不等式,得 2 2 a 2 1 a 2 b2 1 b 2 1 a 1 b b 1 a ≤
课堂练习
课堂练习 1: 已知 a,b R ,a+b=1, x1 , x2 R ,
求证: ax1 bx2 bx1 ax2 ≥ x1 x2
分析:如果对不等式左端用柯西不等式,就得不到所 要证明的结论.若把第二个小括号内的前后项对调一 下,情况就不同了. 证明:∵ ax1 bx2 bx1 ax2 = ax1 bx2 ax2 bx1 由柯西不等式可知
y
P ( x1 , y1 ) 1
y
P ( x1 , y1 ) 1
| y1 - y2 |
x
P2 ( x2 , y2 )
O
这个图中有什么 不等关系?
P ( x2 , y2 ) 2
O
|Байду номын сангаасx1 - x2 |
x
柯西不等式的应用举例: 思考 2.已知 4 x 2 9 y 2 36 ,求 x 2 y 的最大值.
变式 1.已知 4 x 2 9 y 2 36 ,求 x 2 y 的最大值.
变式 2.已知 3 x 2 y 6 ,求 x 2 y 2 的最小值. 变式 3.已知 3 x 2 y 6 ,求 x 2 2 y 2 的最小值.
思考 3.求函数 y 5 x 1 10 2 x 的最大值.
二维形式的柯西不等式
有些不等式不仅形式优美而且具有重要的应用价值, 人们称它们为经典不等式. 如均值不等式: a1 a2 an ≥ n a1a2 an (ai R , i 1, 2, , n) . n 本节,我们来学习数学上两个有名的经典不等式:柯 西不等式与排序不等式,知道它的意义、背景、证明方法 及其应用,感受数学的美妙,提高数学素养.
可以体会到,运用柯西不等式,思路一步到 位,简洁明了!解答漂亮!
定理 1(二维形式的柯西不等式) 若 a, b, c, d 都 是实数,则 (a2 b2 )(c2 d 2 ) ≥ (ac bd )2 . 当且仅当 ad bc 时,等号成立.
变变形……,可得下面两个不等式:
⑴ 若 a, b, c, d 都 是实数 ,则 (a 2 b 2 ) (c 2 d 2 ) ≥ ac bd . 当且仅当 ad bc 时,等号成立. 当且仅当 ad bc 时,等号成立. 这两个结论也是非常有用的.
1 b2 当且仅当 时,上式取等号, a 1 a2 b
ab 1 a 2 1 b2 ,
a b 1 a
2 2 2
1 b ,
2
a 2 b2 1 。 于是 注: 这里是利用其取等号的充分必要条件来达到目的
分析:我们利用 9 与 2 这两个常数进行巧拆,9= 1 1 1 ,
2
3.证明:在不等式的左端嵌乘以因式 x2 x3 xn x1 , 也即嵌以因式 x1 x2 xn ,由柯西不等式,得
2 2 2 xn1 xn x1 x22 x2 x3 xn x1
( x2 x3 xn x1 )
⑵若 a, b, c, d 都是实数,则 (a 2 b 2 ) (c 2 d 2 ) ≥ ac bd .
另外由这两个结论,你和以前学过的什么知识 会有联想.
定理 2(柯西不等式的向量形式) 若 , 是两个向量,则 ≥ . 当且仅当 是零向量或存在实数 k ,使 k 时,等号成立. 注:若 ( x1 , y1 ) , ( x2 , y2 ) ,则 x1 x2 y1 y2 cos , 2 2 2 2 x1 y1 x2 y2
2 2 2 2 x x x1 x2 n 1 n x x x2 x3 n 1 x 2 x 2 x 2 x 2 2 3 n 1 x xn 1 xn x2 1 ≥ x2 x3 xn x1 x x3 xn x1 2
思考:阅读课本第 31 页探究内容.
由 a 2 b2 ≥ 2ab 两个实数的平方和与乘积 的大小关系,类比考虑与下面式子有关的有什 么不等关系:
设 a, b, c, d 为任意实数.
(a b )(c d )
2 2 2 2
联
想
发现定理: 定理 1(二维形式的柯西不等式) 2 2 2 2 2 若 a, b, c, d 都是 实数,则 (a b )(c d ) ≥ (ac bd ) . 当且仅当 ad bc 时,等号成立.
x1 x2 xn ,
2
2 2 2 xn1 xn x1 x22 于是 ≥ x1 x2 xn . x2 x3 xn x1
你能简明地写出这个定理的证明?
运用这个定理,我们可以解决以前感觉棘手的问题. 1 1 思考:设 a, b R , a b 1, 求证: ≥ 4 . a b
思考解答
变形
运用这个定理,我们可以解决以前感觉棘手的问题. 1 1 思考 1:设 a, b R , a b 1, 求证: ≥ 4 . a b 证明:由于 a , b R ,根据柯西不等式,得 1 1 1 1 2 (a b)( ) ≥ ( a b ) 4 a b a b 又 a b 1, 1 1 ∴ ≥4 a b
(发现)定理 3(二维形式的三角不等式) 设 x1 , y1 , x2 , y2 R, 那么
( x12 y12 ) ( x22 y22 ) ≥ ( x1 x2 )2 ( y1 y2 )2 . 当 且 仅 当
当且仅当 x1 y2 x2 y1 时,等号成立.
x1 y2 x2 y1 时,等号成立.
定理 1(二维形式的柯西不等式) 若 x1 , y1 , x2 , y2 都是实数,则 ( x12 y12 )( x22 y22 ) ≥( x1 x2 y1 y2 )2 . 当且仅当 x1 y2 x2 y1 时,等号成立.
三角不等式
定理 1(二维形式的柯西不等式) 若 x1 , y1 , x2 , y2 都是实数,则 ( x12 y12 )( x22 y22 ) ≥( x1 x2 y1 y2 )2 .
1 1 1 2 ≥ a b bc ca 1 1 1 9 ab bc ca 2 2 2 9 ≥ ab bc ca abc a,b,c 各不相等, 等号不可能成立,从而原不等式成立。