微生物细胞破碎原理和技术

合集下载

第四章 细胞破碎和分离技术

第四章 细胞破碎和分离技术

(一)双水相分离技术 1、双水相体系简介
1896年,荷兰微生物学家Beijerinck发现
明胶
琼脂(或可溶性淀粉)
传统的双水相体系是指高聚物双水相体系
憎水程度有所差异
2、常用双水相体系 (1)聚乙二醇(PEG)/葡聚糖; (2)聚乙二醇(PEG)/盐相(硫酸盐或者磷酸盐)
聚乙二醇(PEG) 无毒、无刺激性,具有良好的水溶性
洋葱质壁分离
2、冷冻-融化法
(1)方法:将细胞放在低温下冷冻,然后在 室温中融化,反复多次而达到破壁作用。
(2)原理:一方面破坏细胞膜的通透性,另 一方面胞内水结晶,形成冰晶粒,细胞液浓度 增高引起细胞溶胀而破裂。
大肠杆菌:可用液氮/37℃反复冻融法破壁
适用于细胞壁较脆弱的菌体,需反复 多次,速率慢,产量低,在冻融过程 中可能引起某些蛋白质变性。
举例
珠磨法 固体剪切作用 便宜 大规模处理
高压匀浆法 液体剪切作用 适中 大规模处理 超声波法 液体剪切作用 昂贵 小规模处理
(二)物理法 1、渗透压冲击法 2、冷冻-融化法
1、渗透压冲击法(最温和)
将细胞放在高渗溶液中(如高浓度蔗糖溶液),由 于渗透压的作用,细胞内水分便向外渗出,细胞发 生收缩,当达到平衡后,将细胞转入水或低渗缓冲 液中,由于渗透压的突然变化,胞外的水迅速渗入 胞内,引起细胞快速膨胀而破裂。 仅适用 2、酸处理 3、化学试剂法
1、碱处理 pH值=11.5---12.5碱处理可导致细胞溶解。
优点:价格便宜,适于任何规模 的操作,易使蛋白使活。
2、酸热法
盐酸对细胞壁中的某些成分(主要是多糖和 蛋白质)的水解作用,使细胞壁结构变疏松, 同时经沸水浴处理,细胞吸水膨胀破裂。
缺点:破壁效果差,后续处理难除HCl。

细菌反复冻融破碎方法-概述说明以及解释

细菌反复冻融破碎方法-概述说明以及解释

细菌反复冻融破碎方法-概述说明以及解释1.引言1.1 概述细菌反复冻融破碎方法是一种常用的实验技术,用于破碎细菌细胞以释放其内部物质。

该方法通过将细菌悬浮液在低温条件下冷冻,并在适当时机进行快速融化,重复多次冻融循环,使细菌细胞膜失去完整性,从而实现有效破碎。

这种方法已被广泛应用于生物学、微生物学和分子生物学等领域的研究中。

细菌冻融破碎方法的关键在于冷冻和融化的过程。

在冷冻过程中,细菌细胞受到低温的刺激,使得细胞内的水分分子形成冰晶,从而引起细胞膨胀和压力增加。

而在融化过程中,细胞内的冰晶破裂,导致细胞膜的破碎。

通过多次反复冻融循环,可以增加细菌细胞膜的破碎率,从而获得更高的细胞内物质释放效率。

细菌冻融破碎方法具有多种优点。

首先,这种方法简单易行,不需要复杂的设备和试剂,适用于各种细菌样品。

其次,通过冻融循环,可以有效破碎细菌细胞,释放细胞内的物质,如蛋白质、DNA和RNA等,为后续的研究提供了可靠的样品。

此外,细菌冻融破碎方法还可以有效地保存细菌样品,避免了细菌的死亡和变质。

然而,细菌冻融破碎方法也存在一些局限性。

首先,该方法对细菌样品的处理过程需要严格控制,过程中的温度、时间和次数等因素都会对破碎效果产生影响,需要经验丰富的操作者进行操作。

其次,在某些情况下,由于细菌的尺寸较小或细菌细胞膜较厚,冻融方法可能无法完全破碎细胞膜,从而影响后续的实验结果。

因此,在具体应用中需要针对不同的细菌样品进行优化和调整。

总之,细菌反复冻融破碎方法是一种简单有效的实验技术,通过冷冻和融化的过程破碎细菌细胞,释放细胞内的物质。

该方法在生物学、微生物学和分子生物学等领域的研究中有着广泛应用,并且具有多种优点。

然而,在具体应用中还需根据不同的细菌样品进行优化和调整,以确保实验结果的准确性和可靠性。

1.2文章结构1.2 文章结构本文将按照以下结构进行探讨细菌反复冻融破碎方法的要点:2.1 细菌冻融破碎方法要点1在本节中,我们将介绍细菌冻融破碎方法的第一个关键要点。

细胞破碎技术

细胞破碎技术

四、细胞破碎某些蛋白质在细胞培养时被宿主细胞分泌到培养液中,提取过程只需直接采用过滤和离心进行固液分离,然后将获得的澄清滤液再进一步纯化即可,其后续分离和纯化都相对简单。

但由于一些重组DNA(rDNA)产品结构复杂,必须在细胞内组装来获得生物活性,如果在培养时被宿主细胞分泌到培养液中,其生物活性往往有所改变,此类生物产品是细胞内产品(非分泌型),这些产品主要为医药和保健产品,对于这类产品的提取,需要先应用细胞破碎技术破碎细胞,使细胞内产物释放到液相中,然后再进行提纯,为后续的分离纯化做好准备工作。

细胞破碎技术是指利用外力破坏细胞壁和细胞膜,使细胞内容物包括目的产物成分释放出来的技术,是分离纯化细胞内合成的非分泌型生化物质(产品)的基础。

随着重组DNA技术和组织培养技术上的重大进展,以前认为很难获得的蛋白质现在都可以大规模生产。

微生物细胞和植物细胞外层均为细胞壁,细胞壁里面是细胞膜,细胞膜和它所包围的细胞浆合称为原生质体。

动物细胞没有细胞壁,仅有细胞膜。

通常情况下,细胞壁较坚韧,细胞膜脆弱,易受渗透压冲击而破碎,因此细胞破碎的阻力主要来自于细胞壁。

基于遗传和环境等因素,不同类型生化物质其细胞壁的结构和组成不完全相同,故细胞壁的机械强度不同,细胞破碎的难易程度也就不同。

此外,不同的生化物质其稳定性有较大差别,在破碎过程中应防止变性和被胞内的酶水解。

因此,破碎方法的选择和操作条件的优化是十分必要的。

(一)机械破碎法机械破碎法分为高压匀浆破碎法、高速搅拌珠研磨破碎法和超声波破碎法三种。

1.高压匀浆破碎法Manton Gaulin高压匀浆器是高压匀浆破碎法常用的设备,它由可产生高压的泵和排出阀组成,排出阀具有狭窄的小孔,其大小可以调节。

细胞浆液通过止逆阀进入泵体内,在高压下迫使其在排出阀的小孔中高速冲出,并射向撞击环上,由于突然减压和高速冲击,使细胞受到高的液相剪切力而破碎。

在操作方式上,可以采用单次通过匀浆器或多次循环通过等方式,也可连续操作。

生化分离技术 第二章 细胞的破碎

生化分离技术 第二章 细胞的破碎

第二节 细胞壁的破碎
破碎率是选择细胞破碎设备的重要依据之一. 在用球磨法破碎细胞的过程中,影响因素有以下几个方 面: (1)搅拌器外缘速率 搅拌器速度增加,剪切力增大, 细胞破碎量增大,但是高的能量消耗,高的热量产生和磨球 的磨损以及因剪切力引起产物失活,因此对于给定处理量和 对蛋白质的释放要求下,存在着最佳效率点.实际生产中, 搅拌器外缘速率控制在(5~15)m/s之间.
1 x = exp(kt )
式中 x——为释放蛋白质的分率; k——为蛋白质释放常数,min-1; t——为超声波发射时间,min.
(2-5)
蛋白质释放常数k取决于输入声能,由实验确定.对于 从啤酒酵母悬浮液中(200kg湿重/m3悬浮液),用190声瓦的 20HZ声频的超声波处理时: k=b(P-P0)0.9 (2-6)
第二节 细胞壁的破碎
式中 b——为常数; P——为输入功率,J/(kg.s); P0——为由超声波引起的空穴的临界功率,J/(kg.s). 当超声波声能通过探头向悬浮液传递能量,当产生的气 泡破裂时,绝大部分释放出的能量都以热的形式为液体吸收, 为避免高温,在破碎池中设计了冷却水夹套,并在开始时先 把悬浮液冷却至0℃~5℃,并不断将冷却液连续通过夹套, 短期的声波破碎与短期的冷却交替进行操作,以防止高温使 蛋白质变性. 为提高破碎效率,在破碎池中可添加细小的球粒(可以 是钢制的或玻璃的),以产生"研磨"效应,提高细胞破碎 率. 超声波破碎是实验室常用的一种普通方法,由于向大量 的悬浮液中输入足够的能量有一定的困难,因此在工业还未 采用.
第二节 细胞壁的破碎
Y % = [ ( N 0 N ) N 0 ] ×100%
式中 N0——原始细胞数量; N——经t时刻操作后保留下来的未受损害完整细胞的数 量. N0和N可由直接计数法和间接法求得. 直接计数法是直接对稀释后的样品用血球计数器或平板菌落计 数法进行计数. 间接计数法是在细胞破碎后,将悬浮液离心分离,除去细 胞碎片,未破碎的细胞及其他悬浮物,然后对清液进行蛋白质 含量或酶的活性进行分析.通过细胞释放出来的化合物的量R 与所有细胞理论最大释放量Rm的比值R/Rm,求出破碎率. (2-3)

微生物细胞的破碎

微生物细胞的破碎
❖ 荷兰著名特制陶瓷材料公司
❖ KOLER gmbh
❖ 德国著名特制合金材料公司
ATS的技术合作伙伴-意大利FBF
ATS的合作伙伴FBF
❖ 成立于1987年,位于意 大利帕尔马
❖ 2002年来,每年生产近 300台高压均质机
❖ 设备销往全世界50多个 国家,有超过2000台设 备在各地运行。
ATS的合作伙伴FBF
可达较高破碎率,可大规模操作,对于少 量物料<100ml,难操作
超声破碎法
液体剪切作用
对酵母菌效果较差,破碎过程升温剧烈, 不适合大规模操作
X-press法
固体剪切作用
破碎率高,活性保留率高,对冷冻敏感目 的产物不适合
非 酶溶法
酶分解作用
具有高度专一性,条件温和,浆液易分离,

溶酶价格高,通用性差
械 化学渗透法 改变细胞膜的渗透性 具一定选择性,浆液易分离,但释放率较
一、细胞壁的组成和结构
为了研究细胞的破碎,提高其破碎率,有必要了解 各种微生物细胞壁的组成和结构(表1):
微生物 壁厚/nm 层次
主要组 成
革兰氏阳性 革兰氏阴性 酵母菌
20-80
10-13
100-300
单层
多层
多层
肽聚糖
肽聚糖
葡聚糖
(40-90%) (5-10%) (30-40%)
多糖
脂蛋白
❖ 2002年开发了新的 TITAN系列大型高压均 质机,成为欧洲发展最 迅速的高压均质机制造 商。
高压细胞破碎机工作原理
❖ 电机驱动 ❖ 柱塞泵加压 ❖ 均质点破碎
❖ 空穴效应 ❖ 剪切效应 ❖ 撞击效应
破碎发生点
高压破碎的要点

生化工艺——第二章细胞破碎

生化工艺——第二章细胞破碎

²
第二节
细胞壁的破碎
一、珠磨破碎 破碎原理:利用在高速搅拌作用下, 破碎原理:利用在高速搅拌作用下,细胞和微球相 被破碎。 互磨擦碰撞而受剪切力被破碎。 破碎作用遵循一级动力学定律: 破碎作用遵循一级动力学定律:
1 ln = kt 1− x
特点:适用范围较广;但有效能量利用率很低, 特点:适用范围较广;但有效能量利用率很低,设 计操作时应充分考虑冷却系统的热交换能力; 计操作时应充分考虑冷却系统的热交换能力;影响破碎 率的操作参数较多,过程优化设计较复杂。 率的操作参数较多,过程优化设计较复杂。
1 − x = exp( − kt )
影响因素:细胞种类、浓度和超声波的能量等。 影响因素:细胞种类、浓度和超声波的能量等。 特点:是很强烈的破碎方法;适用范围广; 特点:是很强烈的破碎方法;适用范围广;但有效 能量利用率极低,对冷却要求相当苛刻,不易放大, 能量利用率极低,对冷却要求相当苛刻,不易放大,多 在实验室使用。 在实验室使用。
细胞壁的破碎方法总结
方法 机 械 法 技术 原理 效果 成本 举例 动物组织及 动物细胞 匀浆法(片型) 匀浆法(片型) 细胞被搅拌器 劈碎 研磨法 超声波法 细胞被研磨物 磨碎 用超声波的空 穴作用使细胞 破碎 适中 适中 适中 便宜 适中 昂贵 细胞悬浮液 小规模处理 细胞悬浮液 大规模处理
匀浆法(孔型) 匀浆法(孔型) 须使细胞通过 的小孔, 的小孔,使细 胞受到剪切力 而破碎 珠磨破碎法 细胞被玻璃珠 或铁珠捣碎
总结 A、在大规模cell破碎中,高压匀浆机和珠 磨机用得最多; B、高压匀浆机最适合于酵母和细菌; C、珠磨机适用范围较广,可用于酵母和细 菌,但对真菌菌丝和藻类更合适.
三、超声波破碎 破碎原理:超声波作用下液体发生空化作用, 破碎原理:超声波作用下液体发生空化作用,产生 使细胞破碎。 极大的冲击波和剪切力,使细胞破碎。 ²

微生物细胞的破碎及破碎率测定1

微生物细胞的破碎及破碎率测定1
细胞破碎的方法很多,归纳起来可分为机械破碎法、物 理破碎法、化学破碎法和酶学破碎法等。
(1) 研磨法
研磨:将细胞悬液与玻璃珠、石英砂或氧化铝一起快速 搅拌或研磨,使细胞破碎。
实验室设备:Mickle高速组织捣碎机和Braun匀浆器, 利用玻璃小珠撞击微生物细胞而破碎。
主要缺点:温度迅速升高,需冷却。 另外,较大量的细胞可用胶质磨来处理。
4. 超声波在液体中起空穴作用,使液体温度会快速 升高,可采用短时间的多次破碎,同时可补加冰 浴冷却。
思考题
1. 细胞破碎的方法有哪些? 2. 超声波破碎细胞时应注意的问题是什么? 3. 计算本次实验细胞破碎的破碎率。
实验步骤
1、研磨法
• 细胞培养和收集:将活化菌种接入肉汤液体培养基中, 37℃振荡培养。当到达对数少长期后(约18h),用离心 机收集细胞,3500rpm离心20min。
• 菌体悬液的制备;取湿细胞5-10g悬浮于30ml细胞破碎 缓冲液中。
• 研磨:在研钵中加入适量石英砂,与菌悬液混合,研 磨10min。
• 超声波破碎: 800W,工作6s,间歇6s,破碎75次。 • 破碎率的测定:革兰氏染色法(初染1’、媒染1’、
脱色20-30’’、复染4’)、镜检计数。
3、酶解法
• 细胞培养和收集:将活化的巨大芽孢杆菌种接入肉汤 液体培养基中,37℃振荡培养。当到达对数少长期后 (约18h),用离心机收集细胞,3500rpm离心20min。
例如,破碎的革兰氏阳性菌常可染色成阴性菌的颜 色,利用革兰氏染色法未受损害的酵母细胞呈现紫色, 而受损害的酵母细胞呈现亮红色。
(2)测定释放的蛋白质量或酶的活力
测定悬浮液中细胞内含物的增量来估算破碎率。 通常将破碎后的细胞悬浮液离心,测定上清液中 蛋白质的含量或酶的活力,并与100%破碎所获得的 标准数值比较。

浅谈常用细胞破碎方法

浅谈常用细胞破碎方法

浅谈常用细胞破碎方法随着生物技术的逐渐发展,生物所产生的各种代谢产物也逐渐被人们发现其有用的一面,但是在获得目的产物过程中,往往因为不同产物所处的生物个体不同,造成了个体差异性,所以为了获得大量,不被破坏的产物,往往针对不同生物个体选用不同的细胞破碎技术来做预处理。

现将几年来一直常用的细胞破碎技术介绍一下:关键词:细胞破碎机械法酶法(一)细胞破碎的定义1.细胞破碎(cell rupture)技术:利用外力破坏细胞膜和细胞壁,使细胞内容物包括目的产物成分释放出来的技术。

2.破碎各种细胞的主要阻力:2.1破碎细菌细胞的主要阻力:肽聚糖网状结构的致密程度和强度,取决于聚糖链上所存在的肽键的数量和其交联的程度;2.2 破碎酵母细胞的阻力:葡聚糖交联的紧密程度和它的厚度;2.3 破碎霉菌细胞的阻力:葡聚糖网状结构的交联度,几丁质或纤维素的纤维状结构。

(二) 细胞破碎的方法1.机械法1.1高压匀浆破碎法(homogenization)高压匀浆器(High pressure homogenizer)操作原理:在高压下迫使细胞浆液在排出阀的小孔中高速冲出,并射向撞击环上,使细胞受到高的液相剪切力而破碎。

操作方式:单次或多次循环出口温度:20℃左右压力:55-70Mpa适用范围:酵母和大多数细菌细胞的破碎。

料液细胞浓度:20%左右。

☆团状和丝状菌,不宜使用。

注意事项:(1)操作温度:↑2-3℃/10MPa(2)对料液作冷却处理。

(3)多组破碎操作中需要在级间设置冷却装置可有效防止温度上升,保护产物活性。

(4)较易造成堵塞的团状或丝状真菌,较小的革兰氏阳性菌以及有些亚细胞器,质地坚硬,易损伤匀浆阀,也不适合该法处理【1】。

1.2珠磨机研磨珠磨机研磨:将细胞悬浮液与玻璃小珠、石英砂或氧化铝等研磨剂一起快速搅拌,使细胞获得破碎。

工作原理:细胞的破碎是由剪切力层之间的碰撞和磨料的滚动而引起,磨室配有冷却夹套。

注意事项:操作参数较多,一般凭经验估计并且珠子之间的液体损失30%左右。

生物分离工程 第4章-细胞的破碎-

生物分离工程 第4章-细胞的破碎-
9
细胞壁的组成与结构
微生物 壁厚/nm 层次 主要组成 革兰氏阳性 细菌 20~80 单层 肽聚糖(40 %~90%)、 多糖、胞壁 酸、蛋白质、 脂多糖(1 %~4%) 革兰氏阴性 细菌 10~13 多层 酵母菌 100~300 多层 霉菌 100~250 多层
肽聚糖(5 葡聚糖(30 多聚糖(80 %~10%) %~40%) %~90%) 脂类、蛋白质 脂蛋白、脂 甘露聚糖 多糖(11 (30%)、 %~22%) 蛋白质(6 磷脂、蛋白 %~8%)、 质 脂类(8.5 %~13.5)
n
为了研究细胞的破碎,提高其破碎率,有必要了解各种微 生物细胞壁的组成和结构。
8
第一节 细胞壁的组成与结构
微生物细胞和植物细胞外层均为细胞壁,细胞 壁里面是细胞膜,动物细胞没有细胞壁,仅有 细胞膜。 通常细胞壁较坚韧,细胞膜脆弱,易受渗透压 冲击而破碎,因此细胞破碎的阻力主要来自于 细胞壁。 不同细胞壁的结构和组成不完全相同,故细胞 壁的机械强度不同,细胞破碎的难易程度也就 不同。
在细胞内沉积。 脂类物质和一些抗生素包含在生物体中。
对于胞内产物需要收集菌体或细胞进行破碎。
5
细胞破碎的必要性
表1 胞内酶举例
酶 L-天冬酰氨酶 过氧化氢酶 胆固醇氧化酶 β-半乳糖苷酶 葡萄糖氧化酶 葡萄糖-6-磷酸脱氢酶 来源 Eruinia Caratovora Escherichia Coli Aspergillus niger Nocardia hodochrous Kluyveromyces fragilis Saccharomyces lactis Aspergillus niger Penicilluim notatum Yeast 应用范围 治疗急性淋巴癌 牛奶灭菌后H2O2的清除 胆固醇浆液分析 在牛奶/乳清中乳糖的水解 作用 葡萄糖浆液分析 食品中氧的清除 临床分析

细胞破碎技术的研究进展和发展方向

细胞破碎技术的研究进展和发展方向
细胞破碎技术的研究进展和 发展方向
目录
01 一、细胞破碎技术的 分类
03
三、细胞破碎技术的 发展方向
02
二、细胞破碎技术的 研究进展
04 参考内容
内容摘要
细胞破碎技术是一种研究细胞内部结构和组成的重要手段,其应用范围广泛, 包括生物医药、生物技术、生物工程、环境科学等领域。随着科技的不断进步, 细胞破碎技术也在不断发展,本次演示将介绍细胞破碎技术的研究进展及发展方 向。
五、展望与建议
总之,高脂饮食对小鼠肠道菌群的影响及其与慢性疾病的关联为健康研究和 防治提供了新视角。我们应健康饮食习惯的培养和肠道微生物的维护,以促进人 类健康和预防慢性疾病的发生。
谢谢观看
三、细胞破碎技术的发展方向
放;通过采用可再生资源和可回收利用的设备材料,可以实现细胞的可持续 利用。
三、细胞破碎技术的发展方向
3、智能化和自动化:随着人工智能和机器人技术的不断发展,智能化和自动 化的细胞破碎技术也成为了未来的发展趋势。例如,通过引入传感器和自动化控 制系统,可以实现细胞的在线监测和控制;通过采用机器人技术,可以自动化地 完成细胞的收集
三、结果与讨论
1、对小鼠体重和血脂水平的影 响
1、对小鼠体重和血脂水平的影响
高脂饮食组小鼠的体重和血脂水平均显著高于标准饮食组。这表明高脂饮食 可能导致肥胖和血脂异常,从而增加心血管疾病等慢性疾病的发病风险。
2、对肠道菌群多样性的影响
2、对肠道菌群多样性的影响
通过比较两组小鼠的肠道菌群多样性,发现高脂饮食组小鼠的肠道菌群多样 性降低。这表明高脂饮食可能破坏了肠道菌群的平衡,导致某些有益菌减少而有 害菌增多。
一、研究背景
一、研究背景
近年来,高脂饮食的摄入成为引发肥胖、心血管疾病、糖尿病等多种慢性疾 病的重要因素。肠道菌群在消化、代谢、免疫等方面扮演着重要角色,而饮食是 调节肠道菌群的重要因素之一。因此,研究高脂饮食对小鼠肠道菌群的影响具有 重要意义。

微生物细胞破碎原理与技术

微生物细胞破碎原理与技术

对于含有酶的细胞破碎产物,酶的活性是评价产物质量的重要
指标。
细胞内重要代谢物
02
对于特定微生物细胞破碎产物,细胞内的重要代谢物的含量也
是评价产物活性的指标之一。
细胞免疫活性
03
对于具有免疫活性的细胞破碎产物,免疫活性是评价产物质量
的重要指标。
04
微生物细胞破碎技术的前景与挑战
微生物细胞破碎技术的发展前景
微生物细胞破碎的应用
80%
蛋白质提取
通过破碎微生物细胞,可以提取 和纯化细胞内的蛋白质,用于酶 工程、生物制药等领域。
100%
酶的提取
酶是微生物细胞中的重要组成部 分,通过破碎细胞可以提取各种 酶,用于催化化学反应和工业生 产。
80%
代谢产物的提取
微生物在生长过程中会产生许多 具有生物活性的代谢产物,通过 破碎细胞可以提取这些产物,用 于药物研发和生物技术领域。
颗粒物质,提高破碎效果;在破碎后进行后处理,如离心、过滤、纯化
等,提高产物的纯度和质量。
THANK YOU
感谢聆听
破碎能耗
破碎过程中的能量消耗也是评价破碎效率的指标之一。
细胞破碎产物纯度评价
02
01
03
杂质含量
破碎产物中杂质的含量越低,产物的纯度越高。
蛋白质含量
破碎产物中蛋白质的含量也是评价产物纯度的指标之 一。
细胞内含物残留
破碎产物中细胞内含物的残留量越少,产物的纯度越 高。
细胞破碎产物活性评价
酶活性
01
微生物细胞破碎原理与技术

CONTENCT

• 微生物细胞破碎概述 • 微生物细胞破碎技术 • 微生物细胞破碎效果评价 • 微生物细胞破碎技术的前景与挑战

微生物技术应用:第四章-微生物发酵产物的分离与纯化可编辑全文

微生物技术应用:第四章-微生物发酵产物的分离与纯化可编辑全文

3 工艺放大
发酵产物分离纯化工艺的建立一般都经过从 实验室、中试车间生产到形成工业规模生产线的 放大过程,这是一项工艺诞生、发展、成熟和完 善的一般规律。其中实验室研究是大规模生产的 第一步,小规模生产工艺是大规模生产工艺的基 础。尽管工艺放大过程中往往会有操作细节或条 件的改变,小规模生产工艺条件优化和工序综合 效果研究可为放大设计及工艺定型积累数据和提 供经验。
(一)发酵液的预处理和固液分离
1.高价无机离子的去除方法
(1)钙离子,可用草酸。草酸溶解度较小 ,故用量大时,可用其可溶性盐,如草酸钠。 反应生成的草酸钙还能促使蛋白质凝固,提高 滤液(也称为原液)质量。但草酸价格较贵,应 注意回收。如四环类抗生素废液中,加入硫酸 铅,在60℃下反应生成草酸铅。后者在 90~95℃下用硫酸分解,经过滤、冷却、结晶 后可以回收草酸。
一、建立分离纯化工艺的根据
1.微生物发酵产物的特点
➢另一个特点是欲提取的生物物质通常很不 稳定,遇热、极端pH、有机溶剂会引起失 活或分解。
➢发酵或培养都是分批操作、生物变异性大, 各批发酵液不尽相同,要求下游加工有一 定的弹性。
一、建立分离纯化工艺的根据
2.原理
(1)物理性质 ① 力学性质:重力、离心力、筛分; ② 热力学性质:状态变化、相平衡; ③ 传质性质:粘度、扩散、热扩散; ④ 电磁性质:电泳、电渗析、磁化;
WSK卧式高效全能珠磨机 ZM系列卧式密闭珠(砂)磨机
(2)高压匀浆器 采用高压匀浆器是大规模破碎细胞的常用
方法,利用高压迫使细胞悬浮液通过针形阀, 由于突然减压和高速冲击撞击环 造成细胞破裂。
JJ-2组织捣碎匀浆机
(2)高压匀浆器
各种菌体一次通过高压匀浆器的破碎率

细胞破碎的实验室方法

细胞破碎的实验室方法

酶解法破碎酵母细胞【实验目的】练习细胞破碎的各种方法,比较各种方法的优劣。

【实验原理】随着重组DNA 技术得到广泛应用以来,生物技术发生了质的飞跃。

很多基固工程产物都是胞内物质,必须将细胞破壁。

使产物得以释放。

才能进一步提取,因此细胞破碎是提取胞内产物的关键步骤。

破碎方法的得当与否,直接影响到所提取产品的产量、质量和生产成本。

我们就介绍一下酶解法的实验操作。

酶解法:利用不同水解酶,如溶菌酶、纤维素酶、蜗牛酶和酯酶等,于37℃,pH8,处理15分钟,可以专一性地将细胞壁分解,释放出细胞内含物,此法适用于多种微生物。

例如从某些细菌细胞提取质粒DNA时,可采用溶菌酶(来自蛋清)破细胞壁,而在破酵母细胞时,常采用蜗牛酶(来自蜗牛),将酵母细胞悬于0.1mmol/L 柠檬酸一磷酸氢二钠缓冲液(pH=5.4)中,加1%蜗牛酶,在30℃处理30分钟,即可使大部分细胞壁破裂,如同时加入0.2%疏基乙醇效果会更好。

此法可以与研磨法联合使用。

【实验材料】(一) 器材:离心机,水浴锅,普通光学显微镜,载玻片,盖玻片,酒精灯,接种环,双层瓶,擦镜纸,量筒,烧杯,移液管。

(二) 试剂(1) 柠檬酸一磷酸氢二钠缓冲液(pH=5.4)。

(2) 蜗牛酶。

(3) 疏基乙醇。

【实验步骤】1.细胞培养和收集将活化酵母菌株接入马铃薯培养基中,于30℃摇床培养。

在对数生长期离心收集细胞,制成湿菌体。

2.细胞的破碎1)取5ml菌液悬液于10ml的1号试管中,再取1%的蜗牛酶于2号试管中。

再取0.2%的疏基乙醇于3号试管中。

2)将三支都放入30℃的水浴中,预热30s后,将装有蜗牛酶的2号试管和装有疏基乙醇的3号试管均倒入盛有菌液的试管中,在水浴中处理30分钟。

3. 取一滴菌液镜检。

取5个视野数出破碎细胞的个数并算出平均值。

对比各种方法的破碎细胞数量。

微生物细胞破碎原理与技术

微生物细胞破碎原理与技术

酶解破碎
01
02
03
酶解破碎是利用酶分解细胞壁的 一种方法。酶能够特异性地分解 细胞壁中的蛋白质或糖类物质, 使细胞壁变得脆弱,最终破裂。
酶解破碎常用的酶有蛋白酶、糖 酶、胶原酶等。酶的种类和浓度、 反应温度、反应时间等因素都会 影响破碎效果。
酶解破碎的优点是破碎效果好、 细胞碎片小,适用于蛋白质、核 酸等生物大分子的提取。但缺点 是成本较高,需要严格控制反应 条件。
生物技术
利用基因工程和蛋白质工程技术 改造微生物细胞,提高细胞破碎 效率和产物的产量。
微流控技术
利用微流控芯片进行细胞破碎, 实现高通量、高效率和低能耗的 细胞破碎。
提高破碎效率和产物的纯度与活性
优化破碎条件
通过优化破碎条件,如压力、温度、破碎时间等,提 高破碎效率和产物的纯度与活性。
选择合适的破碎方法
THANKS FOR WATCHING
感谢您的观看
通过微生物细胞破碎,可以研 究细胞内蛋白质的表达、定位 和功能,有助于深入了解细胞 的生理和病理过程。
微生物细胞破碎技术还可以用 于病毒的分离和纯化,以及疫 苗的制备和研究。
05
未来展望与挑战
新技术的研发与应用
纳米技术
利用纳米材料和纳米技术提高细 胞破碎效率,减少能耗和成本, 同时提高产物的纯度和活性。
04
应用与实例
工业发酵过程中的应用
微生物细胞破碎在工业发酵过程 中主要用于提取和纯化胞内产物,
如酶、蛋白质、代谢产物等。
通过破碎微生物细胞壁,可以释 放出细胞内的物质,便于后续的
提取和纯化。
工业发酵过程中常用的细胞破碎 技术包括机械破碎、超声波破碎、
化学破碎等。
生物资源开发中的应用

第四章 细胞破碎和分离技术

第四章 细胞破碎和分离技术

(2)有机溶剂法
有机溶剂能溶解细胞壁的脂类,从而改变细 胞通透性。
(3)表面活性物质
能溶解膜结构中的脂蛋白,使细胞通透性增加。
化学法的优缺点 优点 细胞外形保持完整,碎片少,浆液粘度低,
易于固液分离和进一步提取。
①通用性差; 缺点 ②时间长,效率低,一般胞内物质释放率 不超过 80%。 ③有些化学试剂有毒,后续工作需设法分 离除去。
纳豆激酶
1980年,日本心脑血管专家须见洋行博士, 从事溶解血栓药物研究工作
“下午两点半”实验 下午两点半:纳豆提取物加入到人工 血栓中;
下午五点半:血栓溶解2厘米
纳豆的制作
1、泡豆蒸豆
大豆,加水浸泡一夜后,蒸烂。
2、接种纳豆菌
纳豆菌用热水溶解后,加入到大豆中,搅拌均匀,分装。
3、在恒温下发酵14-36小时 4、后熟(活菌低温休眠)
洋葱质壁分离
2、冷冻-融化法
(1)方法:将细胞放在低温下冷冻,然后在 室温中融化,反复多次而达到破壁作用。 (2)原理:一方面破坏细胞膜的通透性,另 一方面胞内水结晶,形成冰晶粒,细胞液浓度 增高引起细胞溶胀而破裂。
大肠杆菌:可用液氮/37℃反复冻融法破壁
适用于细胞壁较脆弱的菌体,需反复 多次,速率慢,产量低,在冻融过程 中可能引起某些蛋白质变性。
(二)膨胀床分离技术
1、膨胀床的定义
(1)固定床:又称填充床,填充的固体物通常呈 颗粒状,堆积成一定高度的床层。床层静止不动, 流体通过床层进行分离纯化。 (2)流化床:当流体通过床层的速度逐渐提高到 某值时,填料颗粒出现松动,颗粒间空隙增大,床 层体积出现膨胀,但是颗粒仍逗留在床层内而不被 流体带出。床层的这种状态和液体相似称为流化床
(5)柱床的再生和清洗

第七章之细胞破碎

第七章之细胞破碎
细胞壁的坚韧程度 、目标产品的性质 、破碎的规模 、方法 、费用等 .
细胞壁结构对破碎的影响
微生物细胞和植物细胞外层均为细胞壁,细胞 壁里面是细胞膜,动物细胞没有细胞壁,仅有 细胞膜。
通常细胞壁较坚韧,细胞膜脆弱,易受渗透压 冲击而破碎,因此细胞破碎的阻力主要来自于 细胞壁。
不同细胞壁的结构和组成不完全相同,故细胞 壁的机械强度不同,细胞破碎的难易程度也就 不同。
样品量可达80g
小型珠磨器
❖ 密闭容器可容纳1至 1.5ml的组织液或是一些细胞 悬浊液,通过1至3分钟的剧烈 搅拌,能使细胞彻底的破裂, 甚至一些骨头、微生物的孢子 通过玻璃珠的研磨也能有效的 磨碎。
❖ 玻璃珠适用性: ➢ 细菌用0.1mm的玻璃珠 ➢ 酵母、藻类和组织培养细胞用 0.5mm的玻璃珠
高压匀浆法-X-挤压器
改进的高压方法:将浓缩的菌体悬液冷却 至-25℃至-30℃形成冰晶体,利用500MPa 以上的高压冲击,冷冻细胞从高压阀小孔 中挤出。
细胞破碎是由于冰晶体在受压时的相变, 包埋在冰中的细胞变形所引起的。
主要用于实验室中。 优点是适用的范围广,破碎率高,细胞碎
片的粉碎程度低以及活性的保留率高 对冷冻一融解敏感的生化物质不适用。
高压匀浆器各种阀型设计
19.625.4MPa
适用于酵母和大多数细菌细胞的破碎
大、中、小型高压匀浆器
实验室级高压均质仪
高压细胞破碎机
高压匀浆法使用时注意事项
高压匀浆器的操作温度上升约2-3℃/10MPa 为了控制温度的升高,可在进口处用干冰调 节温度,使出口温度调节在20℃左右。
可以采用单次通过匀浆器或多次循环通过等 方式。
第七章之细胞破碎
生物分离过程的一般流程
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

该法对冷冰-融解敏感的生化物质不适用。
(4)超声波法
资料仅供参考,不当之处,请联系改正。
细胞的破碎是由于超声波的空穴作用,从而产生一
个极为强烈的冲击波压力,由它引起的粘滞性旋涡 在介质中的悬浮细胞上造成了剪切应力,促使细胞 内液体发生流动,从而使细胞破碎。
对于不同菌种的发酵液、超声波处理的效果不同,
2、非机械法
非机械方法很多,包括酶解、渗透压冲击、冻结和融化、 干燥法和化学法溶胞等。
(1) 酶解法 利用酶反应,分解破坏细胞壁上特殊的键,从而达 到破壁的目的。
外加酶法 常用的溶酶
资料仅供参考,不当之处,请联系改正。
溶菌酶、溶菌酶主要用于细菌类 β-1,3-葡聚糖酶、 β-1,6-葡聚糖酶、 蛋白酶、 甘露糖酶、 糖苷酶、 肽键内切酶、 壳多糖酶等
酶溶法的优点: 选择性释放产物,条件温和,核酸泄出量少,细胞外形完整。
资料仅供参考,不当之处,请联系改正。
另一种改进的高压方法是将浓缩的菌体悬浮液冷 却至-25℃至-30℃形成冰晶体,利用500MPa以上 的高压冲击,冷冻细胞从高压阀小孔中挤出。细胞 破碎是由于冰晶体的磨损,包埋在冰中的微生物的 变形所引起的。此法称为X-press法,主要用于实验 室中。
该法的优点是适用的范围广,破碎率高,细胞碎片 的粉碎程度低以及活性的保留率高。
一、细胞壁的组成和结构 资料仅供参考,不当之处,请联系改正。
为了研究细胞的破碎,提高其破碎率,有必要了解 各种微生物细胞壁的组成和结构
微生物 革兰氏阳性细 菌
壁厚/nm
20-80
层次
单层
主要组 成
肽聚糖 (40-90%) 多糖 胞壁酸 蛋白质 脂多糖 (1-4%)
革兰氏阴性细 菌
10-13
多层
肽聚糖 (5-10%) 脂蛋白 脂多糖 (11-22%) 磷脂 蛋白质
资料仅供参考,不当之处,请联系改正。
(2)高压匀浆器 采用高压匀浆器是大规模破碎细胞的常用方法。
利用高压迫使细胞悬浮液通过针形阀,由于突然减压 和高速冲击撞击环造成细胞破裂。
在工业规模的细胞破碎中,对于酵母菌等难破碎 的及浓度高或处于生长静止期的细胞,常采用多次循 环的操作方法。
(3)X-press法
细胞壁溶解酶是几种酶的复合物
溶菌酶是应用最多的酶,它能专一地分解细胞壁上糖蛋白分 子的α-1,4糖苷键,使脂多糖解离,经溶菌酶处理后的细胞 移至低渗溶液中使细胞破裂。
资料仅供参考,不当之处,请联系改正。
利用溶酶系统处理细胞时必须根据细胞壁的结构和化学 组成选择适当的酶,并确定相应的次序。
对酵母细胞采用酶法破碎时,先加入蛋白酶作用蛋白质-甘露聚糖 结构,使二者溶解,再加入葡聚糖酶作用裸露的葡聚糖层,最后 只剩下原生质体,这时若缓冲液的渗透压变化,则细胞膜破裂, 释出胞内产物。

低,通用性差
渗透压法 渗透压剧烈改变 破碎率较低,常与其他方法结合使用
冻结融化法 反复冻结-融化 破碎率较低,不适合对冷冻敏感目的产物
干燥法 改变细胞膜渗透性 条件变化剧烈,易引起大分子物质失活
资料仅供参考,不当之处,请联系改正。
细胞破碎机理图
资料仅供参考,不当之处,请联系改正。
1、机械方法 为了粉碎微生物细胞,常常选择机械的方法,因
杆菌比球菌易破碎、革兰氏阴性菌细胞比革兰氏阳 性菌细胞容易破碎,对酵母菌的效果极差。
超声波振荡容易引起温度的剧烈上升,操作时可以
在细胞悬浮液中投入冰或在夹套中通入冷却剂进行 冷却。
该法不适于大规模操作,因为放大后,要输入很高 的能量来提供必要的冷却,这是困难的。
资料仅供参考,不当之处,请联系改正。
为它们的处理量大,破碎速度较快。采用这些方法, 细胞受到由高压产生的高剪切力,但在大多数情况 下要采取冷却措施,以便除去由于消耗机械能而产 生的过多热量,防止生化物质破坏。
(1)珠磨机
资料仅供参考,不当之处,请联系改正。
研磨是常用的一种方法,它将细胞悬浮液与玻璃
小珠、石英砂或氧化铝一起快速搅拌或研磨,使达到 细胞的某种程度破碎。
酵母菌
霉菌
100-300 100-250
多层
多层
葡聚糖 多聚糖 (30-40%) (80-90%) 甘露聚糖 脂类 (30%) 蛋白质 蛋白质 (6-8%) 脂类
(8.513.5%)
资料仅供参考,不当之处,请联系改正。
细菌破碎的主要阻力来自于肽聚糖的网状结构, 网状结构越致密,破碎的难度越大,革兰氏阴性细 菌网状结构不及革兰氏阳性细菌的坚固;
酵母细胞壁破碎的阻力也主要决定于壁结构交联 的紧密程度和它的厚度;
由于霉菌细胞壁中含有几丁质或纤维素的纤维状 结构,其强度比细菌和酵母菌的细胞壁有所提高。
资料仅供参考,不当之处,请联系改正。
为了破碎细胞,必须克服的主要阻力是网状结构的共 价键。各种微生物的细胞壁的结构和组成差异很大, 壁结构不仅取决于遗传信息,也取决于生长的环境, 真菌的壁结构还随发酵罐中混合的机械作用而变化。
可达较高破碎率,可大规模操作,不适合 丝状菌和革兰氏阳性菌
超声破碎法
液体剪切作用
对酵母菌效果较差,破碎过程升温剧烈, 不适合大规模操作
X-press法
固体剪切作用
破碎率高,活性保留率高,对冷冻敏感目 的产物不适合
非 酶溶法
酶分解作用
具有高度专一性,条件温和,浆液易分离,

Hale Waihona Puke 溶酶价格高,通用性差械 化学渗透法 改变细胞膜的渗透性 具一定选择性,浆液易分离,但释放率较
在用酶法或化学法来溶解细胞壁时,细胞壁的结 构和组成显得特别重要,可用来作为选择溶菌酶和化 学方法的依据。
二、微生物细胞的破碎技术 资料仅供参考,不当之处,请联系改正。
====基本说出

类 作用机理
适应性
机 珠磨法
械 法 高压匀浆法
固体剪切作用 液体剪切作用
可达较高破碎率,可较大规模操作,大分 子目的产物易失活,浆液分离困难
高速组织捣碎机和Braun匀浆器是实验室规模的细 胞破碎设备,利用玻璃小珠撞击微生物细胞而达到破 碎的目的。
这些装置的主要缺点是在破碎期间样品温度迅速 升高,通过用二氧化碳来冷却容器可得到部分解决。
资料仅供参考,不当之处,请联系改正。
在工业规模的破碎中,可以采用高速珠磨机。在 这种设备中,由于圆盘的高速旋转,使细胞悬浮液 和玻璃珠相互搅动,细胞的破碎是由剪切力层之间 的碰撞和磨料的滚动而引起的。
相关文档
最新文档