初中数学中考专题复习试题(3)
初中数学中考复习 第3关 多结论的几何及二次函数问题为背景的选择填空题(原卷版)

第3关 多结论的几何及二次函数问题为背景的选择填空题【考查知识点】以多结论的几何图形为背景的选择填空题题,主要考察了学生对三角形、四边形、圆知识的综合运用能力;以二次函数为背景的选择填空题,主要考察了二次函数的性质及二次函数系数与图象的关系。
【解题思路】1.以多结论的几何图形为背景的选择填空题题中,用“全等法”和“相似法”证题应该是两个基本方法,为了更好掌握这两种方法,应该熟悉一对全等或一对相似三角形的基本图形,下图中是全等三角形的基本图形。
大量积累基本图形,并在此基础上“截长补短”,“能割善补”,是学习几何图形的一个诀窍,每一个重要概念,重要定理都有一个基本图形,三线八角可以算做一个基本图形.2. 以二次函数为背景的选择填空题中,根据图象的位置确定a 、b 、c 的符号,a >0开口向上,a <0开口向下.抛物线的对称轴为x=2ba-,由图像确定对称轴的位置,由a 的符号确定出b 的符号.由x=0时,y=c ,知c 的符号取决于图像与y 轴的交点纵坐标,与y 轴交点在y 轴的正半轴时,c >0,与y 轴交点在y 轴的负半轴时,c <0.确定了a 、b 、c 的符号,易确定abc 的符号;根据对称轴确定a 与b 的关系;根据图象还可以确定△的符号,及a+b+c 和a -b+c 的符号。
【典型例题】【例1】(2019·新疆中考真题)如图,正方形ABCD 的边长为2,点E 是BC 的中点,AE 与BD 交于点P ,F 是CD 上的一点,连接AF 分别交BD ,DE 于点M ,N ,且AF ⊥DE ,连接PN ,则下列结论中:①4ABMFDM SS=;②PN =;③tan ∠EAF=34;④.PMN DPE ∽正确的是()A .①②③B .①②④C .①③④D .②③④【名师点睛】此题考查三角函数,相似三角形的判定与性质,全等三角形的判定与性质,正方形的性质难度较大,解题关键在于综合掌握各性质【例2】(2019·湖北中考真题)抛物线2y ax bx c =++的对称轴是直线1x =-,且过点(1,0).顶点位于第二象限,其部分图像如图所示,给出以下判断: ①0ab >且0c <; ②420a b c -+>; ③8>0+a c ; ④33c a b =-;⑤直线22y x =+与抛物线2y ax bx c =++两个交点的横坐标分别为12x x 、,则12125x x x x ++⋅=-.其中正确的个数有( )A .5个B .4个C .3个D .2个【名师点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax 2+bx+c (a≠0),当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab>0),对称轴在y 轴左侧;当a 与b 异号时(即ab<0),对称轴在y 轴右侧;常数项c 决定抛物线与y 轴交点,抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2-4ac>0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac<0时,抛物线与x 轴没有交点.【例3】(2019·辽宁中考真题)如图,正方形ABCD 和正方形CGFE 的顶点C ,D ,E 在同一条直线上,顶点B ,C ,G 在同一条直线上.O 是EG 的中点,∠EGC 的平分线GH 过点D ,交BE 于点H ,连接FH 交EG 于点M ,连接OH .以下四个结论:①GH ⊥BE ;②△EHM ∽△GHF;③BCCG =﹣1;④HOM HOGS S =2)A.①②③B.①②④C.①③④D.②③④【名师点睛】本题考查了正方形的性质,以及全等三角形的判定与性质,相似三角形的判定与性质,正确求得两个三角形的边长的比是解决本题的关键.【例4】(2018·广西中考真题)如图,抛物线y=14(x+2)(x﹣8)与x轴交于A,B两点,与y轴交于点C,顶点为M,以AB为直径作⊙D.下列结论:①抛物线的对称轴是直线x=3;②⊙D的面积为16π;③抛物线上存在点E,使四边形ACED为平行四边形;④直线CM与⊙D相切.其中正确结论的个数是()A.1B.2C.3D.4【名师点睛】本题考查了二次函数与圆的综合题,涉及到抛物线的对称轴、圆的面积、平行四边形的判定、待定系数法、两直线垂直、切线的判定等,综合性较强,有一定的难度,运用数形结合的思想灵活应用相关知识是解题的关键.【方法归纳】1.多结论的几何选择填空题考查的知识点较多,如相似三角形的判定与性质、等腰直角三角形的性质、平行线的性质、直角三角形的性质、四边形的知识、圆的知识、等腰三角形的判定与性质以及特殊角三角函数等知识.这类题目的综合性很强,难度较大,解题的关键是注意数形结合思想的应用.2. 多结论的二次函数选择题主要考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.数形结合思想贯穿这类题目的始终,解题时应时时注意.【针对练习】1.(2018·四川中考真题)如图,在矩形ABCD 中,E 是AB 边的中点,沿EC 对折矩形ABCD ,使B 点落在点P 处,折痕为EC ,连结AP 并延长AP 交CD 于F 点,连结CP 并延长CP 交AD 于Q 点.给出以下结论:①四边形AECF 为平行四边形; ②∠PBA=∠APQ ; ③△FPC 为等腰三角形; ④△APB ≌△EPC ;其中正确结论的个数为( )A .1B .2C .3D .42.(2018·辽宁中考真题)已知抛物线y=ax 2+bx+c (0<2a≤b )与x 轴最多有一个交点.以下四个结论: ①abc >0;②该抛物线的对称轴在x=﹣1的右侧; ③关于x 的方程ax 2+bx+c+1=0无实数根; ④a b cb++≥2. 其中,正确结论的个数为( ) A .1个B .2个C .3个D .4个3.(2019·四川中考真题)如图,在正方形ABCD 的对角线AC 上取一点E .使得15CDE ︒∠=,连接BE 并延长BE 到F ,使CF CB =,BF 与CD 相交于点H ,若1AB =,有下列结论:①BE DE =;②CE DE EF +=;③14DEC S ∆=-;④1DH HC =-.则其中正确的结论有( )A .①②③B .①②③④C .①②④D .①③④4.(2019·广西中考真题)如图,E 是正方形ABCD 的边AB 的中点,点H 与B 关于CE 对称,EH 的延长线与AD 交于点F ,与CD 的延长线交于点N ,点P 在AD 的延长线上,作正方形DPMN ,连接CP ,记正方形ABCD ,DPMN 的面积分别为1S ,2S ,则下列结论错误的是( )A .212S S CP +=B .2AF FD =C .4CD PD = D .3cos 5HCD ∠=5.(2019·山东中考真题)如图,在正方形ABCD 中,E 、F 分别是BC 、CD 上的点,且∠EAF =45°,AE 、AF 分别交BD 于M 、N ,连按EN 、EF 、有以下结论:①AN =EN ,②当AE =AF 时,BEEC=2,③BE+DF =EF ,④存在点E 、F ,使得NF >DF ,其中正确的个数是( )A .1B .2C .3D .46.(2019·黑龙江中考真题)如图,在正方形ABCD 中,E F 、是对角线AC 上的两个动点,P 是正方形四边上的任意一点,且42AB EF =,=,设AE x =.当PEF 是等腰三角形时,下列关于P 点个数的说法中,一定正确的是( )①当0x =(即E A 、两点重合)时,P 点有6个②当02x <<时,P 点最多有9个③当P 点有8个时,x =﹣2④当PEF 是等边三角形时,P 点有4个 A .①③B .①④C .②④D .②③7.(2019·广东中考真题)如图,正方形ABCD 的边长为4,延长CB 至E 使2EB =,以EB 为边在上方作正方形EFGB ,延长FG 交DC 于M ,连接AM 、AF ,H 为AD 的中点,连接FH 分别与AB 、AM 交于点N 、K .则下列结论:①ANH GNF ∆≅∆;②AFN HFG ∠=∠;③2FN NK =;④:1:4AFN ADM S S ∆∆=.其中正确的结论有( )A .1个B .2个C .3个D .4个8.(2019·湖北中考真题)如图所示,已知二次函数2y ax bx c =++的图象与x 轴交于,A B 两点,与y 轴交于点C ,OA OC =,对称轴为直线1x =,则下列结论:①0abc <;②11024a b c ++=;③10ac b -+=;④2c +是关于x 的一元二次方程20ax bx c ++=的一个根.其中正确的有( )A .1个B .2个C .3个D .4个9.(2018·黑龙江中考真题)抛物线()2y ax bx c a 0=++≠的部分图象如图所示,与x 轴的一个交点坐标为()4,0,抛物线的对称轴是x 1.=下列结论中:abc 0>①;2a b 0+=②;③方程2ax bx c 3++=有两个不相等的实数根;④抛物线与x 轴的另一个交点坐标为()2,0-;⑤若点()A m,n 在该抛物线上,则2am bm c a b c ++≤++. 其中正确的有( )A .5个B .4个C .3个D .2个10.(2018·黑龙江中考真题)如图,平行四边形ABCD 的对角线AC 、BD 相交于点O ,AE 平分∠BAD ,分别交BC 、BD 于点E 、P ,连接OE ,∠ADC=60°,AB=12BC=1,则下列结论:①∠CAD=30°②③S 平行四边形ABCD =AB•AC ④OE=14AD ⑤S △APO =12,正确的个数是( )A .2B .3C .4D .511.(2018·山东中考真题)如图,在矩形ABCD 中,∠ADC 的平分线与AB 交于E ,点F 在DE 的延长线上,∠BFE=90°,连接AF 、CF ,CF 与AB 交于G ,有以下结论: ①AE=BC ②AF=CF ③BF 2=FG•FC ④EG•AE=BG•AB其中正确的个数是( )A .1B .2C .3D .412.(2019·四川中考真题)二次函数2(0)y ax bx c a =++≠的部分图象如图所示,图象过点(1,0)-,对称轴为直线x =1,下列结论:①0abc <;②b c <;③30a c +=;④当0y >时,13x -<<其中正确的结论有( )A .1个B .2个C .3个D .4个13.(2019·山东中考真题)如图,正方形ABCD ,点F 在边AB 上,且:1:2AF FB =,CE DF ⊥,垂足为M ,且交AD 于点E ,AC 与DF 交于点N ,延长CB 至G ,使12BG BC =,连接CM .有如下结论:①DE AF =;②4AN AB =;③ADF GMF ∠=∠;④:1:8ANF CNFB S S ∆=四边形.上述结论中,所有正确结论的序号是( )A .①②B .①③C .①②③D .②③④14.(2018·湖北中考真题)如图,在四边形ABCD 中,AB=AD=5,BC=CD 且BC >AB ,BD=8.给出以下判断:①AC 垂直平分BD ;②四边形ABCD 的面积S=AC•BD ;③顺次连接四边形ABCD 的四边中点得到的四边形可能是正方形; ④当A ,B ,C ,D 四点在同一个圆上时,该圆的半径为256; ⑤将△ABD 沿直线BD 对折,点A 落在点E 处,连接BE 并延长交CD 于点F ,当BF ⊥CD 时,点F 到直线AB 的距离为678125. 其中正确的是_____.(写出所有正确判断的序号)15.(2019·广西中考真题)我们定义一种新函数:形如2y ax bx c =++(0a ≠,且240b a ->)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|x 2-2x -3|223y x x =--的图象(如图所示),并写出下列五个结论:①图象与坐标轴的交点为()1,0-,()3,0和()0,3;②图象具有对称性,对称轴是直线1x =;③当11x -≤≤或3x ≥时,函数值y 随x 值的增大而增大;④当1x =-或3x =时,函数的最小值是0;⑤当1x =时,函数的最大值是4.其中正确结论的个数是______.16.(2018·新疆中考真题)如图,已知抛物线y 1=﹣x 2+4x 和直线y 2=2x .我们规定:当x 取任意一个值时,x 对应的函数值分别为y 1和y 2,若y 1≠y 2,取y 1和y 2中较小值为M ;若y 1=y 2,记M=y 1=y 2.①当x >2时,M=y 2;②当x <0时,M 随x 的增大而增大;③使得M 大于4的x 的值不存在;④若M=2,则x=1.上述结论正确的是_____(填写所有正确结论的序号).17.(2018·黑龙江中考真题)如图,抛物线y=ax 2+bx+c (a≠0)的对称轴为直线x=﹣1,下列结论中: ①abc <0;②9a ﹣3b+c <0;③b 2﹣4ac >0;④a >b , 正确的结论是_____(只填序号)18.(2019·湖南中考真题)如图,函数ky x=(k 为常数,k >0)的图象与过原点的O 的直线相交于A ,B 两点,点M 是第一象限内双曲线上的动点(点M 在点A 的左侧),直线AM 分别交x 轴,y 轴于C ,D 两点,连接BM 分别交x 轴,y 轴于点E ,F .现有以下四个结论:①△ODM 与△OCA 的面积相等;②若BM ⊥AM于点M ,则∠MBA =30°;③若M 点的横坐标为1,△OAM 为等边三角形,则2k =④若25MF MB =,则MD =2MA .其中正确的结论的序号是_______.19.(2019·辽宁中考真题)如图,点P 是正方形ABCD 的对角线BD 延长线上的一点,连接PA ,过点P 作PE ⊥PA 交BC 的延长线于点E ,过点E 作EF ⊥BP 于点F ,则下列结论中:①PA =PE ;②CE PD ;③BF ﹣PD =12BD ;④S △PEF =S △ADP ,正确的是___(填写所有正确结论的序号)20.(2019·内蒙古中考真题)如图,在Rt ABC ∆中,90,3,ABC BC D ︒∠==为斜边AC 的中点,连接BD ,点F 是BC 边上的动点(不与点B C 、重合),过点B 作BE BD ⊥交DF 延长线交于点E ,连接CE ,下列结论:①若BF CF =,则222CE AD DE +=;②若,4BDE BAC AB ∠=∠=,则158CE =; ③ABD ∆和CBE ∆一定相似;④若30,90A BCE ︒︒∠=∠=,则DE =其中正确的是_____.(填写所有正确结论的序号)21.(2018·湖北中考真题)如图,已知∠MON=120°,点A ,B 分别在OM ,ON 上,且OA=OB=a ,将射线OM 绕点O 逆时针旋转得到OM′,旋转角为α(0°<α<120°且α≠60°),作点A 关于直线OM′的对称点C ,画直线BC 交OM′于点D ,连接AC ,AD ,有下列结论:①AD=CD ;②∠ACD 的大小随着α的变化而变化;③当α=30°时,四边形OADC 为菱形;④△ACD a 2;其中正确的是_____.(把你认为正确结论的序号都填上).。
(江西专版)中考数学复习方案 阶段检测卷03-人教版初中九年级全册数学试题

阶段检测卷(三)(测试X围:第四单元、第五单元满分:120分考试时间:120分钟)题号一二三四五六总分总分人核分人得分一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.如图C3-1,经过刨平的木板上的A,B两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线.能解释这一实际应用的数学知识是()图C3-1A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直2.如图C3-2,▱ABCD中,全等三角形的对数共有 ()图C3-2A.2对B.3对C.4对D.5对3.将一副三角板按如图C3-3的位置摆放在直尺上,则∠1的度数为()图C3-3A.60°B.65°C.75°D.85°4.下列命题是假命题的是()A.三角形两边的和大于第三边B.正六边形的每个中心角都等于60°C.半径为R的圆内接正方形的边长等于√2RD.只有正方形的外角和等于360°5.如图C3-4,在正方形ABCD中,AB=4.若以CD边为底边向外作等腰直角三角形DCE,连接BE,则BE的长为()图C3-4A.4√5B.2√2C.2√10D.2√36.如图C3-5,在边长为√3的菱形ABCD中,∠B=30°,过点A作AE⊥BC于点E,现将△ABE沿直线AE翻折至△AFE的位置,AF与CD交于点G.则CG等于()图C3-5A.√3-1B.1C.12D.√32二、填空题(本大题共6小题,每小题3分,共18分)7.如图C3-6,E为△ABC边CA延长线上一点,过点E作ED∥BC,若∠BAC=70°,∠CED=50°,则∠B=.图C3-68.如图C3-7,以正方形ABCD的AB边向外作正六边形ABEFGH,连接DH,则∠ADH=°.图C3-79.如图C3-8,在△ABC中,D在AC边上,AD∶DC=1∶2,O是BD的中点,连接AO并延长交BC于E,则BE∶EC=.图C3-810.如图C3-9,在矩形ABCD中,AD=8,对角线AC与BD相交于点O,AE⊥BD,垂足为E,且AE平分∠BAC,则AB的长为.图C3-911.如图C3-10,一轮船在M 处观测灯塔P 位于南偏西30°方向,该轮船沿正南方向以15海里/时的速度匀速航行2小时后到达N 处,再观测灯塔P 位于南偏西60°方向,若该轮船继续向南航行至距离灯塔P 最近的位置T 处,此时轮船与灯塔之间的距离PT 为海里(结果保留根号).图C3-1012.把边长为2的正方形纸片ABCD 分割成如图C3-11的四块,其中点O 为正方形的中心,点E ,F 分别是AB ,AD 的中点.用这四块纸片拼成与此正方形不全等的四边形MNPQ (要求这四块纸片不重叠无缝隙),则四边形MNPQ 的周长是.图C3-11三、(本大题共5小题,每小题6分,共30分)13.(1)计算:|-√3|-(4-π)0+2sin60°+14-1.(2)如图C3-12,在四边形ABCD 中,AB ∥DC ,点E 是CD 的中点,AE=BE. 求证:∠D=∠C.图C3-1214.如图C3-13,点O 是线段AB 的中点,OD ∥BC 且OD=BC. (1)求证:△AOD ≌△OBC ;(2)若∠ADO=35°,求∠DOC 的度数.图C3-1315.如图C3-14,在菱形ABCD 中,AC 为对角线,点E ,F 分别在AB ,AD 上,BE=DF ,连接EF. (1)求证:AC ⊥EF ;(2)延长EF 交CD 的延长线于点G ,连接BD 交AC 于点O ,若BD=4,tan G=12,求AO 的长.图C3-1416.图C3-15①、②、③均是6×6的正方形网格,每个小正方形的顶点称为格点,小正方形的边长为1,点A,B,C,D,E,F均在格点上.在图①、图②、图③中,只用无刻度的直尺,在给定的网格中按要求画图,所画图形的顶点均在格点上,不要求写出画法.(1)在图①中以线段AB为边画一个△ABM,使其面积为6.(2)在图②中以线段CD为边画一个△CDN,使其面积为6.(3)在图③中以线段EF为边画一个四边形EFGH,使其面积为9,且∠EFG=90°.图C3-1517.如图C3-16,AC=8,分别以A,C为圆心,以长度5为半径作弧,两条弧分别相交于点B和D.依次连接A,B,C,D,连接BD交AC于点O.(1)判断四边形ABCD的形状,并说明理由;(2)求BD的长.图C3-16 四、(本大题共3小题,每小题8分,共24分)18.如图C3-17,在△ABC中,AB=6,AC=8,D,E分别在AB,AC上,连接DE,设BD=x(0<x<6),CE=y(0<y<8).(1)当x=2,y=5时,求证:△AED∽△ABC;(2)若△ADE和△ABC相似,求y与x的函数表达式.图C3-1719.如图C3-18,矩形ABCD中,AB=8,AD=6,点O是对角线BD的中点,过点O的直线分别交AB,CD边于点E,F.(1)求证:四边形DEBF是平行四边形;(2)当DE=DF时,求EF的长.图C3-1820.某市政府为了方便市民绿色出行,推出了共享单车服务.图C3-19①是某品牌共享单车放在水平地面上的实物图,图②是其示意图,其中AB,CD都与地面l平行,车轮半径为32 cm,∠BCD=64°,BC=60cm,坐垫E与点B的距离BE为15 cm.(1)求坐垫E到地面的距离.(2)根据经验,当坐垫E到CD的距离调整为人体腿长的0.8时,坐骑比较舒适.小明的腿长约为80 cm,现将坐垫E调整至坐骑舒适高度位置E',求EE'的长.(结果精确到0.1 cm,参考数据:sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)图C3-19五、(本大题共2小题,每小题9分,共18分)21.如图C3-20,在▱ABCD中,点E在边BC上,连接AE,EM⊥AE,垂足为E,交CD于点M,AF⊥BC,垂足为F,BH⊥AE,垂足为H,交AF于点N,点P是AD上一点,连接CP.(1)若DP=2AP=4,CP=√17,CD=5,求△ACD的面积;(2)若AE=BN,AN=CE,求证:AD=√2CM+2CE.图C3-20 22.图C3-21①是实验室中的一种摆动装置,BC在地面上,支架ABC是底边为BC的等腰直角三角形,摆动臂AD可绕点A旋转,摆动臂DM可绕点D旋转,AD=30,DM=10.(1)在旋转过程中:①当A,D,M三点在同一直线上时,求AM的长;②当A,D,M三点在同一直角三角形的顶点时,求AM的长.(2)若摆动臂AD顺时针旋转90°,点D的位置由△ABC外的点D1转到其内的点D2处,连接D1D2,如图②,此时∠AD2C=135°,CD2=60,求BD2的长.①②图C3-21六、(本大题共12分)23.折纸是同学们喜欢的手工活动之一,通过折纸我们可以得到许多美丽的图形,同时折纸的过程还蕴含着丰富的数学知识.折一折:如图C3-22①,把边长为4的正方形纸片ABCD对折,使边AB与CD重合,展开后得到折痕EF.如图②,点M为CF上一点,将正方形纸片ABCD沿直线DM折叠,使点C落在EF上的点N处,展开后连接DN,MN,AN.图C3-22(一)填一填,做一做:(1)图②中,∠CMD=°,线段NF=.(2)图②中,试判断△AND的形状,并给出证明.剪一剪、折一折:将图②中的△AND剪下来,将其沿直线GH折叠,使点A落在点A'处,分别得到图③,图④.图C3-22(二)填一填:(3)图③中,阴影部分的周长为. (4)图③中,若∠A'GN=80°,则∠A'HD=°.(5)图③中的相似三角形(包括全等三角形)共有对.(6)如图④,点A'落在边ND上,若A'NA'D=mn,则AGAH=.(用含m,n的代数式表示)【参考答案】1.A2.C[解析]∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,OD=OB,OA=OC.∵OD=OB,OA=OC,∠AOD=∠BOC,∴△AOD≌△COB(SAS).同理可得△AOB≌△COD(SAS).∵BC=AD,CD=AB,BD=BD,∴△ABD≌△CDB(SSS).同理可得△ACD≌△CAB(SSS).因此共有4对全等三角形,故选C.3.C[解析]如图,由题意知∠BAC=180°-60°-45°=75°.又因为直尺的上下两边平行,所以∠1=∠BAC=75°.故选C.4.D[解析]三角形的任意两边之和大于第三边,故选项A正确,是真命题;正六边形的每个中心角都等于360°6=60°,故选项B是真命题;半径为R的圆内接正方形的边长等于√2R,故选项C是真命题;任何多边形的外角和都等于360°,故选项D错误,是假命题.5.C[解析]如图,连接BD.因为四边形ABCD为正方形,所以∠BDC=45°,AD=AB=4,∠A=90°,所以BD=√mm2+mm2=4√2.因为△DCE是等腰直角三角形,所以∠CDE=45°,所以∠BDE=∠BDC+∠CDE=90°,DE=EC=√22CD=2√2,所以BE=√mm2+mm2=2√10.6.A[解析]∵AE ⊥BC ,∴∠AEB=90°.∵菱形ABCD 的边长为√3,∠B=30°,∴AE=12AB=12√3,BE=EF=√mm 2-mm 2=1.5,BF=3,CF=BF -BC=3-√3.∵AD ∥CF ,∴△AGD ∽△FGC , ∴mm mm =mm mm ,∴√3-mmmm=√33-√3,解得CG=√3-1.故选A .7.60° 8.159.1∶3[解析]过点D 作DF ∥AE ,则mm mm =mm mm =1,mm mm =mm mm =12,∴BE ∶EF ∶FC=1∶1∶2,∴BE ∶EC=1∶3.10.83√3[解析]∵四边形ABCD 是矩形, ∴∠BAD=90°,OA=12AC ,OB=12BD ,AC=BD. ∴OA=OB.∵AE ⊥BD ,∴∠AEB=∠AEO=90°.∵AE 平分∠BAC ,∴∠BAE=∠OAE.在△ABE 和△AOE 中,{∠mmm =∠mmm ,mm =mm ,∠mmm =∠mmm ,∴△ABE ≌△AOE.∴AB=AO.∴AB=AO=OB.∴△ABO 是等边三角形,∴∠ABO=60°.在Rt △ABD 中,tan ∠ABO=mmmm , ∴AB=mm tan∠mmm =8tan60°=√3=83√3.11.15√3[解析]由题意得,MN=15×2=30(海里).∵∠PMN=30°,∠PNT=60°,∴∠MPN=∠PMN=30°,∴PN=MN=30海里,∴PT=PN ·sin∠PNT=15√3(海里). 12.10或6+2√2或8+2√2[解析]通过动手操作可得如图①,②,③,再根据周长的定义即可求解.图①的周长为1+2+3+2√2=6+2√2; 图②的周长为1+4+1+4=10; 图③的周长为3+5+√2+√2=8+2√2.故四边形MNPQ 的周长是6+2√2或10或8+2√2.故答案为:6+2√2或10或8+2√2. 13.(1)解:原式=√3-1+2×√32+4=2√3+3. (2)证明:∵AE=BE ,∴∠EAB=∠EBA. ∵DC ∥AB ,∴∠DEA=∠EAB ,∠CEB=∠EBA , ∴∠DEA=∠CEB.在△DEA 和△CEB 中,{mm =mm ,∠mmm =∠mmm ,mm =mm ,∴△DEA ≌△CEB (SAS),∴∠D=∠C. 14.解:(1)证明:∵点O 是线段AB 的中点, ∴AO=BO. ∵OD ∥BC , ∴∠AOD=∠OBC.在△AOD 与△OBC 中,{mm =mm ,∠mmm =∠mmm ,mm =mm ,∴△AOD ≌△OBC (SAS). (2)∵△AOD ≌△OBC , ∴∠OCB=∠ADO=35°.∵OD ∥BC ,∴∠DOC=∠OCB=35°. 15.解:(1)证明:∵四边形ABCD 为菱形, ∴AB=AD ,AC 平分∠BAD. ∵BE=DF ,∴AB -BE=AD -DF , ∴AE=AF ,∴△AEF 是等腰三角形. ∵AC 平分∠BAD ,∴AC ⊥EF.(2)∵四边形ABCD 为菱形, ∴CG ∥AB ,BO=12BD=2. 易知EF ∥BD ,∴四边形EBDG 为平行四边形, ∴∠G=∠ABD ,∴tan ∠ABD=tan G=12,∴tan ∠ABD=mm mm =mm 2=12, ∴AO=1.16.解:(1)如图.(答案不唯一)(2)如图.(答案不唯一)(3)如图.17.解:(1)四边形ABCD 是菱形. 理由:由作法得,AB=BC=CD=DA=5, ∴四边形ABCD 是菱形. (2)∵四边形ABCD 是菱形,AC=8, ∴OA=12AC=4,BD=2BO.∵AB=5,∴在Rt △AOB 中,BO=√52-42=3, ∴BD=6.18.解:(1)证明:∵AB=6,BD=2,∴AD=4. ∵AC=8,CE=5,∴AE=3. ∴mm mm =36=12,mm mm =48=12,∴mm mm =mmmm. ∵∠EAD=∠BAC ,∴△AED ∽△ABC. (2)①若△ADE ∽△ABC ,则6-m 6=8-m 8,∴y=43x (0<x<6). ②若△ADE ∽△ACB ,则6-m 8=8-m 6,∴y=34x +72(0<x<6).19.解:(1)证明:∵四边形ABCD 是矩形, ∴AB ∥CD , ∴∠DFO=∠BEO. 又∵∠DOF=∠BOE ,OD=OB , ∴△DOF ≌△BOE (AAS),∴DF=BE.又∵DF ∥BE ,∴四边形DEBF 是平行四边形.(2)∵DE=DF ,四边形BEDF 是平行四边形,∴四边形BEDF 是菱形, ∴DE=BE ,EF ⊥BD ,OE=OF.设AE=x ,则DE=BE=8-x.在Rt △ADE 中,根据勾股定理,得AE 2+AD 2=DE 2,∴x 2+62=(8-x )2, 解得x=74, ∴DE=8-74=254.在Rt △ABD 中,根据勾股定理,得AB 2+AD 2=BD 2,∴BD=√62+82=10, ∴OD=12BD=5.在Rt △DOE 中,根据勾股定理,得DE 2-OD 2=OE 2, ∴OE=√(254) 2-52=154, ∴EF=2OE=152.20.解:(1)如图①,过点E 作EM ⊥CD 于点M.由题意知∠BCM=64°,EC=BC +BE=60+15=75(cm),∴EM=EC sin ∠BCM=75sin64°≈67.5(cm). 故坐垫E 到地面的距离为67.5+32=99.5(cm). (2)如图②,过点E'作E'H ⊥CD 于点H.由题意知E'H=80×0.8=64(cm), 则E'C=m 'm sin∠mmm =64sin64°≈71.1(cm),∴EE'=CE -CE'=75-71.1=3.9(cm).21.[解析](1)过点C 作CQ ⊥AD 于点Q ,利用勾股定理,建立关于PQ 的方程,求出PQ 的值,进而求得AD 边上的高,即可求得△ACD 的面积.(2)连接NE.首先由EM ⊥AE ,AF ⊥BC ,BH ⊥AE ,得到∠EAF=∠NBF=∠MEC ,再证明△BFN ≌△AFE ,从而BF=AF ,NF=EF.于是∠ABC=45°,∠ENF=45°,FC=AF=BF.然后通过证明△ANE ≌△ECM ,得到CM=NE.最后在等腰直角三角形EFN 中,由NF=√22NE=√22CM ,加上AD=2AF ,AF=AN +NF ,AN=EC ,即可锁定答案.解:(1)如图①,过点C 作CQ ⊥AD 于点Q.∵DP=2AP=4, ∴AP=2,AD=6.设PQ=x ,则DQ=4-x ,根据勾股定理,得CP 2-PQ 2=CD 2-DQ 2,即17-x 2=52-(4-x )2,解得x=1,从而CQ=√52-32=4,故S △ACD =12AD ·CQ=12×6×4=12. (2)证明:如图②,连接NE.∵EM ⊥AE ,AF ⊥BC ,BH ⊥AE ,∴∠AEB +∠FBN=∠AEB +∠EAF=∠AEB +∠MEC=90°, ∴∠EAF=∠NBF=∠MEC.在△BFN 和△AFE 中,{∠mmm =∠mmm ,∠mmm =∠mmm ,mm =mm ,∴△BFN ≌△AFE (AAS). ∴BF=AF ,NF=EF.∴∠ABC=45°,∠ENF=45°,FC=AF=BF.∴∠ANE=∠BCD=135°,AD=BC=2AF. 在△ANE 和△ECM 中,{∠NAE =∠CEM,AN =EC,∠ANE =∠ECM,∴△ANE ≌△ECM (ASA). ∴CM=NE.又∵NF=√22NE=√22CM , ∴AF=√22CM +CE. ∴AD=√2CM +2CE.22.解:(1)①AM=AD +DM=40,或AM=AD -DM=20. ②显然∠MAD 不能为直角. 当∠AMD 为直角时,AM 2=AD 2-DM 2=302-102=800,∴AM=20√2. 当∠ADM 为直角时,AM 2=AD 2+DM 2=302+102=1000,∴AM=10√10. (2)如图,连接CD 1.由题意得∠D 1AD 2=90°,AD 1=AD 2=30,∴∠AD 2D 1=45°,D 1D 2=30√2. 又∵∠AD 2C=135°,∴∠CD 2D 1=90°,∴CD 1=√mm 22+m 1m 22=30√6.∵∠BAC=∠D 2AD 1=90°,∴∠BAC -∠CAD 2=∠D 2AD 1-∠CAD 2, 即∠BAD 2=∠CAD 1. 又∵AB=AC ,AD 2=AD 1, ∴△ABD 2≌△ACD 1, ∴BD 2=CD 1=30√6.23.解:(1)754-2√3[解析]由折叠的性质得,四边形CDEF 是矩形,∴EF=CD ,∠DEF=90°,DE=AE=12AD. ∵将正方形纸片ABCD 沿直线DM 折叠,使点C 落在EF 上的点N 处,∴DN=CD=2DE ,MN=CM , ∴∠EDN=60°,∴∠CDM=∠NDM=15°,EN=√32DN=2√3,∴∠CMD=75°,NF=EF -EN=4-2√3. (2)△AND 是等边三角形. 证明:在△AEN 与△DEN 中,{mm =mm ,∠mmm =∠mmm =90°,mm =mm ,∴△AEN ≌△DEN (SAS),∴AN=DN. ∵∠EDN=60°,∴△AND 是等边三角形.(3)12[解析]∵将图②中的△AND 沿直线GH 折叠,使点A 落在点A'处, ∴A'G=AG ,A'H=AH ,∴图③中阴影部分的周长=△ADN 的周长=3×4=12.(4)40[解析]∵将图②中的△AND 沿直线GH 折叠,使点A 落在点A'处, ∴∠AGH=∠A'GH ,∠AHG=∠A'HG. ∵∠A'GN=80°,∴∠AGH=50°, ∴∠AHG=∠A'HG=70°,∴∠A'HD=180°-70°-70°=40°.(5)4[解析]如图,设A'G 与ND 的交点为P ,A'H 与ND 的交点为Q. ∵∠N=∠D=∠A'=60°,∠NPG=∠A'PQ ,∠A'QP=∠DQH , ∴△NPG ∽△A'PQ ∽△DHQ ,∵△AGH ≌△A'GH ,∴题图③中的相似三角形(包括全等三角形)共有4对. (6)2m +mm +2m[解析]∵m 'm m 'm =mm,∴设A'N=am (a>0),则A'D=an.∵∠N=∠D=∠A=∠GA'H=60°,∴∠NA'G +∠A'GN=∠NA'G +∠DA'H=120°, ∴∠A'GN=∠DA'H ,∴△A'GN ∽△HA'D , ∴m 'm m 'm =m 'm mm =mmm 'm. 设A'G=AG=x ,A'H=AH=y ,则GN=4-x ,DH=4-y ,∴m m =mm 4-m =4-mmm , 解得m m =mm +44+mm , ∴mm mm =m m =mm +44+mm =mm +mm +mm mm +mm +mm =2m +mm +2m.。
中考数学最新题型精选(三)-初中三年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学试卷-试

中考数学最新题型精选(三)-初中三年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学试卷-试卷下载---------------------------------------中考数学最新题型精选(三)1、如图1所示,一张三角形纸片ABC,∠ACB=,AC=8,BC=6。
沿斜边AB的中线CD把这张纸片剪成两个三角形(如图2所示)。
将纸片沿直线方向平移(点始终在同一直线上),当点与点B重合时,停止平移。
在平移的过程中,交于点E,与分别交于点F、P。
∠当平移到如图3所示位置时,猜想的数量关系,并证明你的猜想;∠设平移距离为x,重复部分面积为y,请写出y与x的函数关系式,以及自变量的取值范围;∠对于∠中的结论是否存在这样的x,使得重复部分面积等于原∠ABC纸片面积的?若存在,请求出x的值;若不存在,请说明理由。
2、现有一张长和宽之比为2:1的长方形纸片,将它折两次(第一次折后也可打开铺平再者第二次),使得折痕将纸片分为面积相等且不重叠的四个部分(称为一次操作),如图甲(虚线表示折痕).除图甲外,请你再给出三种不同的操作,分别将折痕画在图①至图③中(规定:一个操作得到的四个图形,和另一个操作得到的四个图形,如果能够“配对”得到四组全等的图形,那么就认为是(乙)相同的操作,如图乙和图甲示相同的操作).3、有四张背面相同的纸牌A,B,C,D,其正面分别划有四个不同的稽核图形(如图).小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸出一张.(1)用树状图(或列表法)表示两次模牌所有可能出现的结果(纸牌可用A、B、C、D表示);(2)求摸出两张牌面图形都是中心对称图形的纸牌的概率.4、如图所示,在直角坐标系中,矩形ABCD的边AD在x轴上,点A在原点,AB=3,AD=5.若矩形以每秒2个单位长度沿x轴正方向作匀速运动.同时点P从A点出发以每秒1个单位长度沿A-B-C-D的路线作匀速运动.当P点运动到D点时停止运动,矩形ABCD也随之停止运动.(1)求P点从A点运动到D点所需的时间;(2)设P点运动时间为t(秒)。
中考数学专题复习之三——捆绑旋转(瓜豆原理)

中考数学专题复习之三——捆绑旋转(瓜豆原理)初中数学有一类动态问题叫做主从联动,这类问题应该说是网红问题,原因是它在很多名校模考的时候经常出现,有的老师叫他瓜豆原理,也有的老师叫他捆绑旋转或旋转相似,这类问题在解答的时候需要有轨迹思想,就是先要明确主动点的轨迹,然后要搞清楚主动点和从动点的关系,进而确定从动点的轨迹来解决问题,但在解答问题时,要符合解不超纲的原则,所以最后解决问题还是用到了旋转相似的知识,也就是动态手拉手模型,下面整理一些练习集中训练一下这类问题,希望对你能有所帮助。
一、轨迹之圆篇:引例1:如图,P是⊙O上一个动点,A为定点,连接AP,Q为AP中点.考虑:当点P在⊙O上运动时,Q点轨迹是?AO,取AO中点M,则M点即为Q点轨迹圆圆心,半径MQ是OP一半,任意时刻,均有△AMQ∽△AOP,QM:PO=AQ:AP=1:2.即Q点运动轨迹应该是以A为位似中心,将⊙O按2:1缩小一半得到的⊙M。
引例2:如图,P是⊙O上一个动点,A为定点,连接AP,作AQ⊥AP且AQ=AP.考虑:当点P在⊙O上运动时,Q点轨迹是?【分析】Q点轨迹是一个圆,可理解为将AP绕点A逆时针旋转90°得AQ,故Q点轨迹与P点轨迹都是圆.考虑AP⊥AQ,可得Q点轨迹圆圆心M满足AM⊥AO;考虑AP=AQ,可得AM=AO,且可得半径MQ=PO,从而△APO ≌△AQM.即点Q的运动轨迹应该是将⊙O绕点A逆时针旋转90°的⊙M。
引例3:如图,△APQ Q点轨迹是?【分析】考虑AP⊥AQ,可得Q点轨迹圆圆心M满足AM⊥AO;考虑AP:AQ=2:1,可得Q点轨迹圆圆心M满足AO:AM=2:1,即可确定⊙M位置,△APO∽△AQM,且相似比为2:1.即点Q的运动轨迹应该是将⊙O绕点A逆时针旋转90°后,再以A为位似中心缩小一半得到的⊙M。
引例4:如图,P 是⊙O 上一个动点,A 为定点,连接AP ,以AP 为一边作等边△APQ . 考虑:当点P 在⊙O 上运动时,Q 点轨迹是?【分析】Q 点满足(1)∠PAQ=60°;(2)AP=AQ ,故Q 点轨迹是个圆。
中考数学试题-初中数学总复习3——代数式与整式 最新

(3)代数式与整式〖考试内容〗代数式,代数式的值.整式,整式的加减法,整式乘除,整数指数幂.乘法公式:22))((b a b a b a -=-+.2222)(b ab a b a ++=+〖考试要求〗①理解用字母表示数的意义.②能分析简单问题的数量关系,并用代数式表示.③能解释一些简单代数式的实际背景或几何意义.④会求代数式的值;能根据特定的问题查阅资料,找到所需要的公式,并会代入具体的值进行计算. ⑤了解整数指数幂的意义和基本性质.⑥了解整式的概念,会进行简单的整式加、减运算;会进行简单的整式乘法运算(其中的多项式相乘仅指一次式相乘).⑦会推导乘法公式,了解公式的几何背景,并能进行简单计算.〖考点复习〗1.幂的运算[例1] (2018日照)下列运算正确的是( )(A )(B ) (C ) (D )2.整式的四则运算[例2] (2018厦门)计算:3x 2y +2x 2y = 。
[例3](2018四川)化简: 1)()1(2+÷-+-m m m m m .3.乘法公式及几何意义[例4]化简(1)(3x+2y )(3x -2y )(2)(2a -3b )2[例5](2018福州)如图6,在边长为a 的正方形中剪去一个边长为b 的小正方形(a >b ),把剩下的部分拼成一个梯形,分别计算这两个图形阴影部分的面积,验证了公式_____。
4.列代数式[例6] (2018厦门)为鼓励节约用电,某地对居民用户用电收费标准作如下规定:每户每月用电如果不超过100度,那么每度电价按a 元收费;如果超过100度,那么超过部分....每度电价按b 元收费.某户居民在一个月内用电160度,他这个月应缴纳电费是 元(用含a 、b 的代数式表示).5.代数式的值[例7] (2018厦门)已知:a +b =m ,ab =-4, 化简(a -2)(b -2)的结果是A 、6B 、2 m -8C 、2 mD 、-2 m〖考题训练〗1.(2018四川)计算:63a a ⋅=_____2.(2018枣庄)下列运算正确的是( )(A) a 3+ a 3=2 a 3 (B) a 3- a 2= a(C) a 3·a 3=2 a 6 (D) a 6÷a 2= a 33.(2018无锡)下列各式中,与y x2是同类项的是( ) A 、2xy B 、2xy C 、-y x 2 D 、223y x4.(2018温州)计算:2xy +3xy =_______。
2020初中数学中考专题复习——四边形中的线段最值问题专项训练3(附答案详解)

(1)如图①,当点 落在 边上时,求点 的坐标;
(2)如图②,当点 落在线段 上时, 与 交于点 .求点 的坐标;
(3)记 为矩形 对角线的交点, 为 的面积,求 的取值范围(直接写出结果即可).
A. B. C. D.
3.线段AB上有一动点C(不与A,B重合),分别以AC,BC为边向上作等边△ACM和等边△BCN,点D是MN的中点,连结AD,BD,在点C的运动过程中,有下列结论:①△ABD可能为直角三角形;②△ABD可能为等腰三角形;③△CMN可能为等边三角形;④若AB=6,则AD+BD的最小值为 .其中正确的是( )
【详解】
解:如图所示,作以BD为对称轴作N的对称点N',连接PN',MN',
根据轴对称性质可知,PN=PN',
∴PM-PN=PM-PN'≤MN',
当P,M,N'三点共线时,PM-PN'= MN',
∵正方形边长为4,
∴AC= AB=4 ,
∵O为AC中点,
∴AO=OC=2 ,
∵N为OA中点,
∴ON= ,
7.A
【解析】
【分析】
连接BD、BF,延长AC交GE于H,连接BH,证明四边形BNHM是矩形,得出MN=BH,由直角三角形的性质得出GH,AH的长,当BH⊥AG时,BH最小,由直角三角形的性质得出BH的长,即可得出答案.
【详解】
连接BD、BF,延长AC交GE于H,连接BH,如图所示:
∵四边形ABCD和四边形BEFG是菱形,∠DAB=60°,∴AD∥BC∥GF,AC⊥BD,BF⊥GE,BE=BG,AM=CM,EN=GN,∴∠GAH=30°,∠EBG=∠DAB=60°,∴△BEG是等边三角形,∴∠BGE=60°,∴∠AHG=90°,∴四边形BNHM是矩形,GH AG=4,AH GH=4 ,∴MN=BH,当BH⊥AG时,BH最小.
(呼和浩特专版)中考数学复习方案 模拟试卷03-人教版初中九年级全册数学试题

2020年呼和浩特模拟试卷(三)(考试时间:120分钟试卷满分:120分)题号一二三总分总分人核分人得分一、选择题(本大题共10小题,每小题3分,共30分)1.检查四个篮球的质量,把超过标准质量的克数记为正数,不足标准质量的克数记为负数,检查的结果如下表:篮球编号 1 2 3 4 与标准质量的差(g) +4 +7 -3 -8其中质量最好的是()A.1号B.2号C.3号D.4号2.下列计算正确的是()A.3a-a=2B.a2+2a2=3a2C.a4·a3=a6D.(a+b)2=a2+b23.在关于x的函数y=√x+2+(x-1)0中,自变量x的取值X围是()A.x≥-2B.x≥-2且x≠0C.x≥-2且x≠1D.x≥14.下列说法正确的是()A.为了解我国中学生课外阅读的情况,应采用全面调查的方式B.一组数据1,2,5,5,5,3,3的中位数和众数都是5C.抛掷一枚硬币100次,一定有50次“正面朝上”D.若甲组数据的方差是0.03,乙组数据的方差是0.1,则甲组数据比乙组数据稳定5.对于一次函数y=kx+k-1(k≠0),下列叙述正确的是()A.当0<k<1时,函数图象经过第一、二、三象限B.当k>0时,y随x的增大而减小C.当k<1时,函数图象一定交于y轴的负半轴D.函数图象一定经过点(-1,-2)6.某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是() A.19B.16C.13D.237.在数轴上,实数a,b对应的点的位置如图M3-1所示,且这两个点关于原点对称,下列结论中,正确的是()图M3-1A.a+b=0B.a-b=0C.|a|<|b|D.ab>08.已知关于x的一元二次方程x2+4x-k=0,当-6<k<0时,该方程解的情况是()A.有两个不相等的实数根B.没有实数根C.有两个相等的实数根D.不能确定9.如图M3-2,在平面直角坐标系中,四边形ABCD是平行四边形,A(-1,3),B(1,1),C(5,1).规定“把▱ABCD先沿x轴翻折,再向左平移1个单位”为一次变换.如此这样,连续经过2018次变换后,▱ABCD的顶点D的坐标变为()图M3-2A.(-2015,3)B.(-2015,-3)C.(-2016,3)D.(-2016,-3)10.如图M3-3,线段AB是☉O的直径,弦CD⊥AB,垂足为H,点M是xxx⏜ 上任意一点,AH=2,CH=4,则cos∠CMD的值为()图M3-3A.12B.34C.45D.35二、填空题(本大题共6小题,每小题3分,共18分)11.如图M3-4,直线a∥b,一块含45°角的直角三角板ABC按如图所示放置.若∠1=66°,则∠2的度数为.图M3-412.某瓷砖厂在相同条件下抽取部分瓷砖做耐磨试验,结果如下表所示:抽取瓷砖数n 100 300 400 600 1000 2000 3000 合格品数m 96 282 382 570 949 1906 2850 合格品频率0.960 0.940 0.955 0.950 0.949 0.953 0.950 则这个厂生产的瓷砖是合格品的概率估计值是.(精确到0.01)13.已知二次函数y=ax2+bx+c中,其函数值y与自变量x之间的部分对应值如下表所示:x…0 1 2 3 4 …y… 4 1 0 1 4 …点A(x1,y1),B(x2,y2)在函数的图象上,则当1<x1<2,3<x2<4时,y1与y2的大小关系是.14.如图M3-5,已知正方形ABCD的边长为5,点E,F分别在AD,DC上,AE=DF=2,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为.图M3-515.如图M3-6,分别以等边三角形ABC的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=4,则莱洛三角形的面积(即阴影部分面积)为.图M3-616.如图M3-7,Rt△ABC中,∠ACB=90°,AC=BC=4,D为线段AC上一动点,连接BD,过点C作CH⊥BD于H,连接AH,则AH的最小值为.图M3-7三、解答题(本大题共9小题,满分72分)17.(10分)(1)计算:2-1+√3cos30°+|-5|-(π-2012)0; (2)解分式方程:2xx+1+3x-1=2.18.(6分)如图M3-8,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD.(1)求证:△BCE≌△DCF;(2)若AB=21,AD=9,BC=CD=10,求AC的长.图M3-819.(6分)“绿水青山就是金山银山”,为保护生态环境,A,B两村准备各自清理所属区域的养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:村庄清理养鱼网箱人数/人清理捕鱼网箱人数/人总支出/元A 15 9 57000B 10 16 68000(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元;(2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员的方案?20.(7分)已知关于x ,y 的不等式组{x +x ≤5-2x ,4(x -34)≥x -1.(1)若该不等式组的解集为23≤x ≤3,求k 的值;(2)若该不等式组的解集中整数只有1和2,求k 的取值X 围.21.(7分)某购物广场要修建一个地下停车场,停车场的入口设计示意图如图M3-9所示,其中斜坡的倾斜角为18°,一楼到地下停车场地面的距离CD=2.8米,地平线到一楼的垂直距离BC=1米. (1)为保证斜坡倾斜角为18°,应在地面上距点B 多远的A 处开始斜坡的施工?(精确到0.1米) (2)给该购物广场送货的货车高度为2.5米,那么按这样的设计,能否保证货车顺利进入地下停车场?请说明理由.(参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)图M3-922.(8分)为积极响应“弘扬传统文化”的号召,某学校倡导全校1200名学生进行经典诗词诵背活动,并在活动之后举办经典诗词大赛.为了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取部分学生调查“一周诗词诵背数量”,根据调查结果绘制成的统计图(部分)如图M3-10所示:图M3-10大赛结束一个月后,再次调查这部分学生“一周诗词诵背数量”,绘制成统计表: 一周诗词诵背数量3首 4首 5首 6首 7首 8首 人数101015402520请根据调查的信息分析:(1)活动启动之初学生“一周诗词诵背数量”的中位数为;(2)估计大赛一个月后该校学生一周诗词诵背6首以上(含6首)的人数;(3)选择适当的统计量,从两个不同的角度分析两次调查的相关数据,评价该校经典诗词诵背系列活动的效果.23.(8分)如图M3-11,在平面直角坐标系中,直线l 与x 轴相交于点M ,与y 轴相交于点N ,Rt△MON 的外心为点A32,-2,反比例函数y=xx (x>0)的图象过点A.(1)求直线l 的解析式;(2)在函数y=x x(x>0)的图象上取异于点A 的一点B ,作BC ⊥x 轴于点C ,连接OB 交直线l 于点P ,若△ONP 的面积是△OBC 面积的3倍,求点P 的坐标.图M3-1124.(8分)如图M3-12,△ABC 中,AB=AC ,以AB 为直径的☉O 交BC 于点D ,交AC 于点E ,过点D 作FG ⊥AC 于点F ,交AB 的延长线于点G. (1)求证:FG 是☉O 的切线; (2)若tan C=2,求xx xx 的值.图M3-1225.(12分)如图M3-13,点A ,B ,C 都在抛物线y=ax 2-2amx +am 2+2m -5其中-14<a<0上,AB ∥x轴,∠ABC=135°,AB=4.(1)填空:抛物线的顶点坐标为(用含m 的代数式表示); (2)求△ABC 的面积(用含a 的代数式表示);(3)若△ABC 的面积为2,当2m -5≤x ≤2m -2时,y 的最大值为2,求m 的值.图M3-13【参考答案】1.C2.B3.C4.D5.C[解析]A .当0<k<1时,函数图象经过第一、三、四象限,所以A 选项错误;B .当k>0时,y 随x 的增大而增大,所以B 选项错误;C .当k<1时,函数图象一定交于y 轴的负半轴,所以C 选项正确;D .把x=-1代入y=kx +k -1得y=-k +k -1=-1,则函数图象一定经过点(-1,-1),所以D 选项错误.故选C . 6.C[解析]将三个小区分别记为A,B,C, 列表如下:ABCA (A,A) (B,A) (C,A)B (A,B) (B,B) (C,B)C (A,C) (B,C) (C,C)由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种, 所以两个组恰好抽到同一个小区的概率为39=13,故选C . 7.A[解析]由数轴上点的位置,得a<0<b ,|a|=|b|,A .a +b=0,故A 符合题意;B .a -b<0,故B 不符合题意;C .|a|=|b|,故C 不符合题意;D .ab<0,故D 不符合题意.故选A .8.D9.A[解析]∵四边形ABCD 是平行四边形,A (-1,3),B (1,1),C (5,1),∴D (3,3), 把▱ABCD 先沿x 轴翻折,再向左平移1个单位后,D 点坐标为(2,-3),观察,发现规律:D 0(3,3),D 1(2,-3),D 2(1,3),D 3(0,-3),D 4(-1,3),…,∴D 2018(-2015,3). 故选A .10.D[解析]连接OC ,由线段AB 是☉O 的直径,弦CD ⊥AB ,AH=2,CH=4,可得∠CMD=∠AOC , 在Rt △OCH 中,设OC 为x ,可得:x 2=42+(x -2)2,解得x=5,∴cos ∠AOC=xx xx =5-25=35,∵∠CMD=∠AOC ,∴cos ∠CMD=35,故选D .11.111°[解析]如图,∵直线a ∥b ,∴∠3=∠2.∵∠4=∠1,而∠1=66°,∴∠4=66°, ∴∠3=∠A +∠4=45°+66°=111°,∴∠2=∠3=111°.故答案为:111°.12.0.9513.y 1<y 2[解析]∵y=ax 2+bx +c ,x=0时,y=4;x=1时,y=1;x=2时,y=0, ∴{x =4,x +x +x =1,4x +2x +x =0,解得{x =1,x =-4,x =4,∴此抛物线的解析式为y=x 2-4x +4,∴抛物线开口向上,对称轴为直线x=2, ∴抛物线顶点坐标为(2,0),∵1<x 1<2,3<x 2<4,∴y 1<y 2.故答案为y 1<y 2. 14.√342[解析]∵四边形ABCD 为正方形,∴∠BAE=∠D=90°,AB=AD ,在△ABE 和△DAF 中,∵{xx =xx ,∠xxx =∠x ,xx =xx ,∴△ABE ≌△DAF (SAS), ∴∠ABE=∠DAF ,∵∠ABE +∠BEA=90°,∴∠DAF +∠BEA=90°,∴∠AGE=∠BGF=90°, ∵点H 为BF 的中点,∴GH=12BF , ∵BC=5,CF=CD -DF=5-2=3,∴BF=√xx 2+xx 2=√34,∴GH=12BF=√342, 故答案为:√342. 15.8π-8√3[解析]过A 作AD ⊥BC 于D ,∵△ABC 是等边三角形,∴AB=AC=BC=4,∠BAC=∠ABC=∠ACB=60°, ∵AD ⊥BC ,∴BD=CD=2,AD=√3BD=2√3, ∴△ABC 的面积为12BC ·AD=4√3,S 扇形BAC =60π×42360=83π,∴莱洛三角形的面积S=3×83π-2×4√3=8π-8√3,故答案为8π-8√3.16.2√5-2[解析]如图,取BC 中点G ,连接HG ,AG ,∵CH ⊥DB ,点G 是BC 中点, ∴HG=CG=BG=12BC=2,在Rt △ACG 中,AG=√xx 2+xx 2=2√5,∵AH ≥AG -HG ,∴当点H 在线段AG 上时,AH 最小,最小值为2√5-2,故答案为2√5-2. 17.解:(1)原式=12+√3×√32+5-1=12+32+5-1=6. (2)去分母,得2x (x -1)+3(x +1)=2(x -1)(x +1), 解得x=-5,检验:当x=-5时,(x -1)(x +1)≠0, 所以原方程的解为x=-5.18.解:(1)证明:∵AC 平分∠BAD ,CE ⊥AB 于E ,CF ⊥AD 于F , ∴∠CFD=90°,∠CEB=90°,CE=CF , ∵BC=CD ,∴Rt △BCE ≌Rt △DCF.(2)由(1)得,Rt △BCE ≌Rt △DCF ,∴DF=EB ,设DF=EB=x , ∵∠CFD=90°,∠CEB=90°,CE=CF ,AC=AC , ∴Rt △AFC ≌Rt △AEC (HL), ∴AF=AE ,即AD +DF=AB -BE ,∵AB=21,AD=9,DF=EB=x ,∴9+x=21-x ,解得x=6, 在Rt △DCF 中,∵DF=6,CD=10,∴CF=8,∴Rt △AFC 中,AC 2=CF 2+AF 2=82+(9+6)2=289,∴AC=17.19.解:(1)设清理养鱼网箱的人均支出费用为x 元,清理捕鱼网箱的人均支出费用为y 元, 根据题意,得:{15x +9x =57000,10x +16x =68000,解得:{x =2000,x =3000.答:清理养鱼网箱的人均支出费用为2000元,清理捕鱼网箱的人均支出费用为3000元. (2)设m 人清理养鱼网箱,则(40-m )人清理捕鱼网箱, 根据题意,得:{2000x +3000(40-x )≤102000,x <40-x ,解得:18≤m<20, ∵m 为整数, ∴m=18或m=19,则分配清理人员的方案有两种:方案一:18人清理养鱼网箱,22人清理捕鱼网箱; 方案二:19人清理养鱼网箱,21人清理捕鱼网箱. 20.解:(1){x +x ≤5-2x ,①4(x -34)≥x -1,② 由①得:x ≤5-x 3,由②得:x ≥23,∵不等式组的解集为23≤x ≤3, ∴5-x 3=3,解得k=-4. (2)由题意得2≤5-x 3<3,解得-4<k ≤-1.21.解:(1)∵斜坡的倾斜角为18°, ∴∠BAD=18°, ∵BD=CD -CB=1.8(米),∴在Rt △ABD 中,AB=xxtan18°≈1.80.32≈5.6(米).答:应在地面上距点B 约5.6米的A 处开始斜坡的施工. (2)过C 作CE ⊥AD ,垂足为E , ∴∠DCE +∠CDE=90°, ∵∠BAD +∠ADB=90°, ∴∠DCE=∠BAD=18°,在Rt △CDE 中,CE=CD ·cos18°≈2.8×0.95≈2.7(米), ∵2.5<2.7,∴货车能进入地下停车场.22.解:(1)4.5首 (2)1200×40+25+20120=850(人).答:大赛一个月后该学校学生一周诗词诵背6首以上(含6首)的人数大约为850人.(3)①中位数:启动之初,“一周诗词诵背数量”的中位数为4.5首;大赛后,“一周诗词诵背数量”的中位数为6首.②平均数:启动之初,易得样本中数量为4首的有45人,x =1120(3×15+4×45+5×20+6×16+7×13+8×11)=5(首). 大赛后,x =1120(3×10+4×10+5×15+6×40+7×25+8×20)=6(首).综上分析,从中位数、平均数可看出,学生在大赛之后“一周诗词诵背数量”都好于启动之初.根据样本估计总体,该校大赛之后“一周诗词诵背数量”好于启动之初,说明活动效果明显. 23.解:(1)∵点A 为Rt △MON 的外心,∴点A 为MN 的中点, ∵点A 的坐标为32,-2,∴M (3,0),N(0,-4).设直线l 的解析式为y=ax +b , ∵直线l 经过点M ,N ,∴{3x +x =0,x =-4,解得{x =43,x =-4, ∴直线l 的解析式为y=43x -4.(2)将A32,-2代入y=xx得k=-3,∵点B 在y=-3x (x>0)的图象上,BC ⊥x 轴, ∴S △OBC =12OC ·BC=12|x B |·|y B |=32,∴S △ONP =3S △OBC =92,即12ON ·|x P |=92,又∵点P 在第四象限,∴x P =94,在直线y=43x -4中,当x=94时,y=-1,∴点P 的坐标为94,-1. 24.解:(1)证明:连接AD ,OD.∵AB 是☉O 的直径,∴∠ADB=90°,即AD ⊥BC , ∵AC=AB ,∴CD=BD , ∵OA=OB ,∴OD ∥AC , ∵DF ⊥AC ,∴OD ⊥DF , ∴FG 是☉O 的切线. (2)∵tan C=xxxx=2,BD=CD ,∴BD ∶AD=1∶2, ∵∠GDB +∠ODB=90°,∠ADO +∠ODB=90°, ∴∠ADO=∠GDB.∵OA=OD ,∴∠OAD=∠ODA ,∴∠GDB=∠GAD ,∵∠G=∠G ,∴△GDB ∽△GAD.∴xx xx =xx xx =xx xx =12,设BG=a.∴DG=2a ,AG=4a , ∴BG ∶GA=1∶4.25.解:(1)(m ,2m -5)[解析] ∵y=ax 2-2amx +am 2+2m -5=a (x -m )2+2m -5, ∴抛物线的顶点坐标为(m ,2m -5). 故答案为:(m ,2m -5).(2)过点C 作直线AB 的垂线,交线段AB 的延长线于点D ,如图所示.∵AB ∥x 轴,且AB=4,∴点B 的坐标为(m +2,4a +2m -5).∵∠ABC=135°,∴∠DBC=45°,BD=CD.设BD=t ,则CD=t ,∴点C 的坐标为(m +2+t ,4a +2m -5-t ). ∵点C 在抛物线y=a (x -m )2+2m -5上,∴4a +2m -5-t=a (2+t )2+2m -5,整理,得:at 2+(4a +1)t=0, 解得t 1=0(舍去),t 2=-4x +1x,∴S △ABC =12AB ·CD=-8x +2x.(3)∵△ABC 的面积为2,∴-8x +2x=2,解得a=-15,∴抛物线的解析式为y=-15(x -m )2+2m -5. 分三种情况考虑:①当m>2m -2,即m<2时,有-15(2m -2-m )2+2m -5=2, 整理,得m 2-14m +39=0,解得:m 1=7-√10(舍去),m 2=7+√10(舍去); ②当2m -5≤m ≤2m -2,即2≤m ≤5时,有2m -5=2, 解得m=72;③当m<2m -5,即m>5时,有-15(2m -5-m )2+2m -5=2, 整理,得:m 2-20m +60=0,解得m 3=10-2√10(舍去),m 4=10+2√10. 综上所述:m 的值为72或10+2√10.。
中考数学二轮复习 专题三 开放型问题-人教版初中九年级全册数学试题

开放型问题一、中考专题诠释开放型问题是相对于有明确条件和明确结论的封闭型问题而言的,它是条件或结论给定不完全、答案不唯一的一类问题.这类试题已成为近年中考的热点,重在考查同学们分析、探索能力以及思维的发散性,但难度适中.根据其特征大致可分为:条件开放型、结论开放型、方法开放型和编制开放型等四类.二、解题策略与解法精讲解开放性的题目时,要先进行观察、试验、类比、归纳、猜测出结论或条件,然后严格证明;同时,通常要结合以下数学思想方法:分类讨论,数形结合,分析综合,归纳猜想,构建数学模型等。
三、中考考点精讲考点一:条件开放型条件开放题是指结论给定,条件未知或不全,需探求与结论相对应的条件.解这种开放问题的一般思路是:由已知的结论反思题目应具备怎样的条件,即从题目的结论出发,逆向追索,逐步探求.例1 (2015•某某某某,第13题3分)如图,在△ABC与△ADC中,已知AD=AB,在不添加任何辅助线的前提下,要使△ABC≌△ADC,只需再添加的一个条件可以是.考点:全等三角形的判定。
专题:开放型.分析:添加DC=BC,利用SSS即可得到两三角形全等;添加∠DAC=∠BAC,利用SAS即可得到两三角形全等.解答:解:添加条件为DC=BC,在△ABC和△ADC中,,∴△ABC≌△ADC(SSS);若添加条件为∠DAC=∠BAC,在△ABC和△ADC中,,∴△ABC≌△ADC(SAS).故答案为:DC=BC或∠DAC=∠BAC点评:此题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解本题的关键.对应训练1.(2015•某某,第13题3分)如图,已知AB=BC,要使△ABD≌△CBD,还需添加一个条件,你添加的条件是.(只需写一个,不添加辅助线)考点:全等三角形的判定.专题:开放型.分析:由已知AB=BC,及公共边BD=BD,可知要使△ABD≌△CBD,已经具备了两个S了,然后根据全等三角形的判定定理,应该有两种判定方法①SAS,②SSS.所以可添∠ABD=∠CBD 或AD=CD.解答:解:答案不唯一.①∠ABD=∠CBD.在△ABD和△CBD中,∵,∴△ABD≌△CBD(SAS);②AD=CD.在△ABD和△CBD中,∵,∴△ABD≌△CBD(SSS).故答案为:∠ABD=∠CBD或AD=CD.点评:本题主要考查了全等三角形的判定定理,能灵活运用判定进行证明是解此题的关键.熟记全等三角形的判定方法有:SSS,SAS,ASA,AAS.考点二:结论开放型:给出问题的条件,让解题者根据条件探索相应的结论并且符合条件的结论往往呈现多样性,这些问题都是结论开放问题.这类问题的解题思路是:充分利用已知条件或图形特征,进行猜想、类比、联想、归纳,透彻分析出给定条件下可能存在的结论,然后经过论证作出取舍.例2 (2015·某某甘孜、阿坝,第27题10分)已知E,F分别为正方形ABCD的边BC,CD 上的点,AF,DE相交于点G,当E,F分别为边BC,CD的中点时,有:①AF=DE;②AF⊥DE 成立.试探究下列问题:(1)如图1,若点E不是边BC的中点,F不是边CD的中点,且CE=DF,上述结论①,②是否仍然成立?(请直接回答“成立”或“不成立”),不需要证明)(2)如图2,若点E,F分别在CB的延长线和DC的延长线上,且CE=DF,此时,上述结论①,②是否仍然成立?若成立,请写出证明过程,若不成立,请说明理由;(3)如图3,在(2)的基础上,连接AE和BF,若点M,N,P,Q分别为AE,EF,FD,AD 的中点,请判断四边形MNPQ是“矩形、菱形、正方形”中的哪一种,并证明你的结论.考点:四边形综合题..专题:综合题.分析:(1)由四边形ABCD为正方形,CE=DF,易证得△ADF≌△DCE(SAS),即可证得AF=DE,∠DAF=∠CDE,又由∠ADG+∠EDC=90°,即可证得AF⊥DE;(2)由四边形ABCD为正方形,CE=DF,易证得△ADF≌△DCE(SAS),即可证得AF=DE,∠E=∠F,又由∠ADG+∠EDC=90°,即可证得AF⊥DE;(3)首先设MQ,DE分别交AF于点G,O,PQ交DE于点H,由点M,N,P,Q分别为AE,EF,FD,AD的中点,即可得MQ=PN=DE,PQ=MN=AF,MQ∥DE,PQ∥AF,然后由AF=DE,可证得四边形MNPQ是菱形,又由AF⊥DE即可证得四边形MNPQ是正方形.解答:(1)上述结论①,②仍然成立,理由为:∵四边形ABCD为正方形,∴AD=DC,∠BCD=∠ADC=90°,在△ADF和△DCE中,,∴△ADF≌△DCE(SAS),∴AF=DE,∠DAF=∠CDE,∵∠ADG+∠EDC=90°,∴∠ADG+∠DA F=90°,∴∠AGD=90°,即AF⊥DE;(2)上述结论①,②仍然成立,理由为:∵四边形ABCD为正方形,∴AD=DC,∠BCD=∠ADC=90°,在△ADF和△DCE中,,∴△ADF≌△DCE(SAS),∴AF=DE,∠E=∠F,∵∠ADG+∠EDC=90°,∴∠ADG+∠DAF=90°,∴∠AGD=90°,即AF⊥DE;(3)四边形MNPQ是正方形.理由为:如图,设MQ,DE分别交AF于点G,O,PQ交DE于点H,∵点M,N,P,Q分别为AE,EF,FD,AD的中点,∴MQ=PN=DE,PQ=MN=AF,MQ∥DE,PQ∥AF,∴四边形OHQG是平行四边形,∵AF=DE,∴MQ=PQ=PN=MN,∴四边形MNPQ是菱形,∵AF⊥DE,∴∠AOD=90°,∴∠HQG=∠AOD=90°,∴四边形MNPQ是正方形.点评:此题属于四边形的综合题,考查了正方形的判定与性质、全等三角形的判定与性质以及三角形中位线的性质.注意证得△ADF≌△DCE(SAS),掌握三角形中位线的性质是关对应训练2.(2015•某某某某,第20题8分)某运动品牌对第一季度A、B两款运动鞋的销售情况进行统计,两款运动鞋的销售量及总销售额如图所示:(1)一月份B款运动鞋的销售量是A款的45,则一月份B款运动鞋销售了多少双?(2)第一季度这两款运动鞋的销售单价保持不变,求三月份的总销售额(销售额=销售单价×销售量);(3)结合第一季度的销售情况,请你对这两款运动鞋的进货、销售等方面提出一条建议。
中考复习数学综合测试题(3)-初中三年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学试卷-

中考复习数学综合测试题(3)-初中三年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学试卷-试卷下载---------------------------------------2005年中考复习数学综合测试题(3)一.大胆尝试,选择最佳:1.你认为下列各式正确的是()毛A. a2=(-a ) 2B.a3=(-a) 3C.-a2=D. a3=2 从甲站到乙站有两种走法。
从乙站到丙站有三种走法。
从乙站到丙站有______种走法。
A. 4B. 5C. 6D.73.通常C表示摄氏温度,f表示华氏温度,C与f之间的关系式为:,当华氏温度为68时,摄氏温度为()A. -20B. 20C.-19D. 1 94.从小明家到学校有两条路。
一条沿北偏东45度方向可直达学校前门,另一条从小明家一直往东,到商店处向正北走200米,到学校后门。
若两条路的路程相等,学校南北走向。
学校的后门在小明家北偏东67.5度处。
学校从前门到后门的距离是()米。
A.200米;B.200米;C.200米;D.200米5.小红的妈妈问小兰今年多大了,小兰说:"小红是我现在的年龄时,我十岁;我是小红现在的年龄时,小红25岁。
"小红的妈妈立刻说出了小兰的岁数,小兰与小红差()岁。
A.10B.8C.5D.26.梯子跟地面的夹角为A,关于∠A的三角函数值与梯子的倾斜程度之间,叙述正确的是()A. sinA的值越小,梯子越陡。
B. cosA的值越小,梯子越陡。
C. tanA的值越小,梯子越陡。
D. 陡缓程度与∠A的函数值无关。
7.某兴趣小组做实验,将一个装满水的酒瓶倒置,并设法使瓶里的水从瓶口匀速流出,那么该倒置酒瓶内水面高度h随水流出时。
水面高度h与水流时间t之间关系的函数图象为()8. 一矩形纸片绕其一边旋转180度后,所得的几何体的主视图和俯视图分别为()A、矩形,矩形B、圆,半圆C、圆,矩形D、矩形,半圆9.二次函数y=-2(x-1)2+3的图象如何移动就得到y=-2x2的图象()A. 向左移动1个单位,向上移动3个单位。
2021年中考数学填空题专项练习复习题(答案解析)(3)

一、选择题1.如图,在Rt △ABC 中,∠ACB=90°,AC=BC=1,将绕点A 逆时针旋转30°后得到Rt △ADE ,点B 经过的路径为弧BD ,则图中阴影部分的面积是( )A .6πB .3πC .2π-12D .122.一种药品原价每盒25元,经过两次降价后每盒16元,设两次降价的百分率都为x ,则x 满足等式( )A .16(1+2x)=25B .25(1-2x)=16C .25(1-x)²=16D .16(1+x)²=253.若⊙O 的半径为5cm ,点A 到圆心O 的距离为4cm ,那么点A 与⊙O 的位置关系是 A .点A 在圆外B .点A 在圆上C .点A 在圆内D .不能确定 4.将抛物线y=2x 2向右平移3个单位,再向下平移5个单位,得到的抛物线的表达式为( )A .y=2(x ﹣3)2﹣5B .y=2(x+3)2+5C .y=2(x ﹣3)2+5D .y=2(x+3)2﹣5 5.如图,四边形ABCD 是菱形,∠A=60°,AB=2,扇形BEF 的半径为2,圆心角为60°,则图中阴影部分的面积是( )A .2332π-B .233π-C .32π-D .3π-6.下列诗句所描述的事件中,是不可能事件的是( )A .黄河入海流B .锄禾日当午C .大漠孤烟直D .手可摘星辰7.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是( )A .15B .25C .35D .458.用配方法解方程x 2+2x ﹣5=0时,原方程应变形为( )A .(x ﹣1)2=6B .(x+1)2=6C .(x+2)2=9D .(x ﹣2)2=9 9.若a 是方程22x x 30--=的一个解,则26a 3a -的值为( )A .3B .3-C .9D .9- 10.如图,某中学计划靠墙围建一个面积为280m 的矩形花圃(墙长为12m ),围栏总长度为28m ,则与墙垂直的边x 为( )A .4m 或10mB .4mC .10mD .8m 11.以3942c x ±+=为根的一元二次方程可能是( ) A .230x x c --=B .230x x c +-=C .230-+=x x cD .230++=x x c 12.如图,在△ABC 中,BC =4,以点A 为圆心,2为半径的⊙A 与BC 相切于点D ,交AB 于点E ,交AC 于点F .P 是⊙A 上一点,且∠EPF =40°,则图中阴影部分的面积是( )A .4-9πB .4-89π C .8-49π D .8-89π 13.下列说法正确的是( ) A .“任意画出一个等边三角形,它是轴对称图形”是随机事件B .某种彩票的中奖率为11000,说明每买1000张彩票,一定有一张中奖 C .抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为13D .“概率为1的事件”是必然事件 14.如图,矩形 ABCD 中,AB=8,BC=6,将矩形 ABCD 绕点 A 逆时针旋转得到矩形 AEFG ,AE ,FG 分别交射线CD 于点 PH ,连结 AH ,若 P 是 CH 的中点,则△APH 的周长为( )A .15B .18C .20D .2415.已知二次函数y =ax 2+bx +c(a≠0)的图象如图所示,当y >0时,x 的取值范围是( )A .-1<x <2B .x >2C .x <-1D .x <-1或x >2二、填空题16.如图,有6张扑克牌,从中任意抽取两张,点数和是偶数的概率是_____.17.已知二次函数y =3x 2+2x ,当﹣1≤x ≤0时,函数值y 的取值范围是_____.18.如图,在边长为2的正方形ABCD 中,以点D 为圆心,AD 长为半径画AC ,再以BC 为直径画半圆,若阴影部分①的面积为S 1,阴影部分②的面积为S 2,则图中S 1﹣S 2的值为_____.(结果保留π)19.已知二次函数y =(x −2)2+3,当x _______________时,y 随x 的增大而减小.20.抛物线21(2)43y x =++关于x 轴对称的抛物线的解析式为_______ 21.半径为2的圆被四等分切割成四条相等的弧,将四个弧首尾顺次相连拼成如图所示的恒星图型,那么这个恒星的面积等于______.22.△ABC 中,∠A =90°,AB =AC ,以A 为圆心的圆切BC 于点D ,若BC =12cm ,则⊙A 的半径为_____cm .23.一元二次方程22x 20-=的解是______.24.若实数a 、b 满足a+b 2=2,则a 2+5b 2的最小值为_____.25.如图,P 是⊙O 的直径AB 延长线上的一点,PC 与⊙O 相切于点C ,若∠P=20°,则∠A=___________°.三、解答题26.在平面直角坐标系中,直线2y x =+与x 轴交于点A ,与y 轴交于点B ,抛物线()20y ax bx c a =++<经过点A 、B .(1)求a 、b 满足的关系式及c 的值.(2)当0x <时,若()20y ax bx c a =++<的函数值随x 的增大而增大,求a 的取值范围. (3)如图,当1a =-时,在抛物线上是否存在点P ,使PAB ∆的面积为1?若存在,请求出符合条件的所有点P 的坐标;若不存在,请说明理由.27.在四张编号为A ,B ,C ,D 的卡片(除编号外,其余完全相同)的正面分别写上如图所示正整数后,背面朝上,洗匀放好,现从中随机抽取一张,不放回,再从剩下的卡片中随机抽取一张.(1)请用树状图或列表的方法表示两次抽取卡片的所有可能出现的结果(卡片用A ,B ,C ,D 表示);(2)我们知道,满足a 2+b 2=c 2的三个正整数a ,b ,c 成为勾股数,求抽到的两张卡片上的数都是勾股数的概率.28.如图,以△ABC 的BC 边上一点O 为圆心的圆,经过A ,B 两点,且与BC 边交于点E ,D 为BE 的下半圆弧的中点,连接AD 交BC 于F ,AC=FC .(1)求证:AC 是⊙O 的切线;(2)已知圆的半径R=5,EF=3,求DF 的长.29.某企业为响应国家教育扶贫的号召,决定对某乡镇全体贫困初、高中学生进行资助,初中学生每月资助200元,高中学生每月资助300元.已知该乡受资助的初中学生人数是受资助的高中学生人数的2倍,且该企业在2018年下半年7﹣12月这6个月资助学生共支出10.5万元.(1)问该乡镇分别有多少名初中学生和高中学生获得了资助?(2)2018年7﹣12月期间,受资助的初、高中学生中,分别有30%和40%的学生被评为优秀学生,从而获得了该乡镇政府的公开表扬.同时,提供资助的企业为了激发更多受资助学生的进取心和学习热情,决定对2019年上半年1﹣6月被评为优秀学生的初中学生每人每月增加a%的资助,对被评为优秀学生的高中学生每人每月增加2a%的资助.在此奖励政策的鼓励下,2019年1﹣6月被评为优秀学生的初、高中学生分別比2018年7﹣12月的人数增加了3a%、a%.这样,2019年上半年评为优秀学生的初、高中学生所获得的资助总金额一个月就达到了10800元,求a的值.30.如图,已知AB为⊙O的直径,点C、D在⊙O上,CD=BD,E、F是线段AC、AB 的延长线上的点,并且EF与⊙O相切于点D.(1)求证:∠A=2∠BDF;(2)若AC=3,AB=5,求CE的长.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.A2.C3.C4.A5.B6.D7.C8.B9.C10.C11.A12.B13.D14.C15.D二、填空题16.【解析】【分析】列举出所有情况再找出点数和是偶数的情况根据概率公式求解即可【详解】解:从6张牌中任意抽两张可能的情况有:(410)(510)(610)(810)(910)(109)(417.﹣≤y≤1【解析】【分析】利用配方法转化二次函数求出对称轴根据二次函数的性质即可求解【详解】∵y=3x2+2x=3(x+)2﹣∴函数的对称轴为x=﹣∴当﹣1≤x≤0时函数有最小值﹣当x=﹣1时有最大18.π【解析】【分析】如图设图中③的面积为S3构建方程组即可解决问题【详解】解:如图设图中③的面积为S3由题意:可得S1﹣S2=π故答案为π【点睛】本题考查扇形的面积正方形的性质等知识解题的关键是学会利19.<2(或x≤2)【解析】试题分析:对于开口向上的二次函数在对称轴的左边y随x的增大而减小在对称轴的右边y随x的增大而增大根据性质可得:当x<2时y随x的增大而减小考点:二次函数的性质20.【解析】【分析】由关于x轴对称点的特点是:横坐标不变纵坐标变为相反数可求出抛物线关于x轴对称的抛物线解析式【详解】∵∴关于x轴对称的抛物线解析式为-即故答案为:【点睛】此题考查了二次函数的图象与几何21.16﹣4π【解析】【分析】恒星的面积=边长为4的正方形面积-半径为2的圆的面积依此列式计算即可【详解】解:如图2+2=4恒星的面积=4×4-4π=16-4π故答案为16-4π【点睛】本题考查了扇形面22.【解析】【分析】由切线性质知AD⊥BC根据AB=AC可得BD=CD=AD=BC=6【详解】解:如图连接AD则AD⊥BC∵AB=AC∴BD=CD=AD=BC=6故答案为:6【点睛】本题考查了圆的切线性23.x1=1x2=-1【解析】分析:方程整理后利用平方根定义开方即可求出解详解:方程整理得:x2=1开方得:x=±1解得:x1=1x2=﹣1故答案为x1=1x2=﹣1点睛:本题考查了解一元二次方程﹣直接24.4【解析】【分析】由a+b2=2得出b2=2-a代入a2+5b2得出a2+5b2=a2+5(2-a)=a2-5a+10再利用配方法化成a2+5b2=(a-即可求出其最小值【详解】∵a+b2=2∴b225.35【解析】【分析】【详解】解:∵PC与⊙O相切∴∠OCP=90°∴∠COP=90°-∠P=90°-20°=70°∵OA=OC∴∠A=∠ACO∵∠A+∠ACO=∠COP∴∠A=35°故答案为35三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.A解析:A【解析】【分析】先根据勾股定理得到,再根据扇形的面积公式计算出S 扇形ABD ,由旋转的性质得到Rt △ADE ≌Rt △ACB ,于是S 阴影部分=S △ADE +S 扇形ABD -S △ABC =S 扇形ABD .【详解】∵∠ACB=90°,AC=BC=1,∴,∴S 扇形ABD =230=3606ππ⨯,又∵Rt △ABC 绕A 点逆时针旋转30°后得到Rt △ADE ,∴Rt △ADE ≌Rt △ACB ,∴S 阴影部分=S △ADE +S 扇形ABD −S △ABC =S 扇形ABD =6π, 故选A.【点睛】本题考查扇形面积计算,熟记扇形面积公式,采用作差法计算面积是解题的关键. 2.C解析:C【解析】解:第一次降价后的价格为:25×(1﹣x ),第二次降价后的价格为:25×(1﹣x )2.∵两次降价后的价格为16元,∴25(1﹣x )2=16.故选C .3.C解析:C【解析】【分析】要确定点与圆的位置关系,主要确定点与圆心的距离与半径的大小关系;利用d >r 时,点在圆外;当d=r 时,点在圆上;当d <r 时,点在圆内判断出即可.【详解】解:∵⊙O 的半径为5cm ,点A 到圆心O 的距离为4cm ,∴d <r ,∴点A 与⊙O 的位置关系是:点A 在圆内,故选C .4.A【解析】把22y x =向右平移3个单位长度变为:223()y x =-,再向下平移5个单位长度变为:22(3)5y x =--.故选A .5.B解析:B【解析】【分析】根据菱形的性质得出△DAB 是等边三角形,进而利用全等三角形的判定得出△ABG ≌△DBH ,得出四边形GBHD 的面积等于△ABD 的面积,进而求出即可.【详解】连接BD ,∵四边形ABCD 是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB 是等边三角形,∵AB=2,∴△ABD 3,∵扇形BEF 的半径为2,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AD 、BE 相交于点G ,设BF 、DC 相交于点H ,在△ABG 和△DBH 中,2{34A AB BD ∠=∠=∠=∠,∴△ABG ≌△DBH (ASA ),∴四边形GBHD 的面积等于△ABD 的面积,∴图中阴影部分的面积是:S 扇形EBF -S △ABD =26021233602π⨯-⨯ =233π 故选B .解析:D【解析】【分析】不可能事件是指在一定条件下,一定不发生的事件.【详解】A、是必然事件,故选项错误;B、是随机事件,故选项错误;C、是随机事件,故选项错误;D、是不可能事件,故选项正确.故选D.【点睛】此题主要考查了必然事件,不可能事件,随机事件的概念.理解概念是解决这类基础题的主要方法.必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7.C解析:C【解析】【分析】【详解】解:根据题意,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,共有5种等可能的结果,使与图中阴影部分构成轴对称图形的有②④⑤,3种情况,因此可知使与图中阴影部分构成轴对称图形的概率为3 355÷=故选C8.B解析:B【解析】x2+2x﹣5=0,x2+2x=5,x2+2x+1=5+1,(x+1)2=6,故选B.9.C解析:C【解析】由题意得:2a2-a-3=0,所以2a2-a=3,所以6a2-3a=3(2a2-a)=3×3=9,故选C.10.C解析:C 【解析】 【分析】设与墙相对的边长为(28-2x )m ,根据题意列出方程x (28-2x )=80,求解即可. 【详解】设与墙相对的边长为(28-2x )m ,则0<28-2x≤12,解得8≤x <14, 根据题意列出方程x (28-2x )=80, 解得x 1=4,x 2=10 因为8≤x <14∴与墙垂直的边x 为10m 故答案为C. 【点睛】本题考查一元二次方程的应用,根据题意列出方程并求解是解题的关键,注意题中限制条件,选取适合的x 值.11.A解析:A 【解析】 【分析】根据一元二次方程根与系数的关系求解即可. 【详解】设x 1,x 2是一元二次方程的两个根, ∵3942cx ±+=∴x 1+x 2=3,x 1∙x 2=-c ,∴该一元二次方程为:21212()0x x x x x x -++=,即230x x c --=故选A. 【点睛】此题主要考查了根据一元二次方程的根与系数的关系列一元二次方程.12.B解析:B 【解析】试题解析:连接AD ,∵BC是切线,点D是切点,∴AD⊥BC,∴∠EAF=2∠EPF=80°,∴S扇形AEF=280?28 3609ππ=,S△ABC=12AD•BC=12×2×4=4,∴S阴影部分=S△ABC-S扇形AEF=4-89π.13.D解析:D【解析】试题解析:A、“任意画出一个等边三角形,它是轴对称图形”是必然事件,选项错误;B. 某种彩票的中奖概率为11000,说明每买1000张,有可能中奖,也有可能不中奖,故B错误;C. 抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为12.故C错误;D. “概率为1的事件”是必然事件,正确.故选D.14.C解析:C【解析】【分析】连结AC,先由△AGH≌△ADH得到∠GHA=∠AHD,进而得到∠AHD=∠HAP,所以△AHP是等腰三角形,所以PH=PA=PC,所以∠HAC是直角,再在Rt△ABC中由勾股定理求出AC的长,然后由△HAC∽△ADC,根据=求出AH的长,再根据△HAC∽△HDA求出DH的长,进而求得HP和AP的长,最后得到△APH的周长.【详解】∵P是CH的中点,PH=PC,∵AH=AH,AG=AD,且AGH与ADH都是直角,∴△AGH≌△ADH,∴∠GHA=∠AHD,又∵GHA=HAP,∴∠AHD=∠HAP,∴△AHP是等腰三角形,∴PH=PA=PC,∴∠HAC是直角,在Rt△ABC中,AC==10,∵△HAC∽△ADC,∴=,∴AH===7.5,又∵△HAC∽△HAD,=,∴DH=4.5,∴HP==6.25,AP=HP=6.25,∴△APH的周长=AP+PH+AH=6.25+6.25+7.5=20.【点睛】本题主要考查直角三角形的性质以及相似三角形的性质,解题的关键是清楚直角三角形斜边上的中线是斜边的一半以及会运用相似三角形线段成比例求出各边长的长.15.D解析:D【解析】【分析】根据已知图象可以得到图象与x轴的交点是(-1,0),(2,0),又y>0时,图象在x 轴的上方,由此可以求出x的取值范围.【详解】依题意得图象与x轴的交点是(-1,0),(2,0),当y>0时,图象在x轴的上方,此时x<-1或x>2,∴x的取值范围是x<-1或x>2,故选D.【点睛】本题考查了二次函数与不等式,解答此题的关键是求出图象与x轴的交点,然后由图象找出当y>0时,自变量x的范围,注意数形结合思想的运用.二、填空题16.【解析】【分析】列举出所有情况再找出点数和是偶数的情况根据概率公式求解即可【详解】解:从6张牌中任意抽两张可能的情况有:(410)(510)(610)(810)(910)(109)(4解析:7 15.【解析】【分析】列举出所有情况,再找出点数和是偶数的情况,根据概率公式求解即可.【详解】解:从6张牌中任意抽两张可能的情况有:(4,10)(5,10)(6,10)(8,10)(9,10)(10,9) (4,9)(5,9)(6,9)(8,9)(9,8)(10,8) (4,8)(5,8)(6,8)(8,6)(9,6)(10,6) (4,6)(5,6)(6,5)(8,5)(9,5)(10,5)(4,5)(5,4)(6,4)(8,4)(9,4)(10,4)∴一共有30种情况,点数和为偶数的有14个,∴点数和是偶数的概率是147 3015;故答案为7 15.【点睛】本题考查概率的概念和求法.解题的关键是找到所求情况数与总情况数,根据:概率=所求情况数与总情况数之比.17.﹣≤y≤1【解析】【分析】利用配方法转化二次函数求出对称轴根据二次函数的性质即可求解【详解】∵y=3x2+2x=3(x+)2﹣∴函数的对称轴为x=﹣∴当﹣1≤x≤0时函数有最小值﹣当x=﹣1时有最大解析:﹣13≤y≤1【解析】【分析】利用配方法转化二次函数求出对称轴,根据二次函数的性质即可求解.【详解】∵y=3x2+2x=3(x+13)2﹣13,∴函数的对称轴为x=﹣13,∴当﹣1≤x≤0时,函数有最小值﹣13,当x=﹣1时,有最大值1,∴y的取值范围是﹣13≤y≤1,故答案为﹣13≤y≤1.【点睛】本题考查二次函数的性质、一般式和顶点式之间的转化,解题的关键是熟练掌握二次函数的性质.18.π【解析】【分析】如图设图中③的面积为S3构建方程组即可解决问题【详解】解:如图设图中③的面积为S3由题意:可得S1﹣S2=π故答案为π【点睛】本题考查扇形的面积正方形的性质等知识解题的关键是学会利解析:1 2π【解析】【分析】如图,设图中③的面积为S 3.构建方程组即可解决问题. 【详解】解:如图,设图中③的面积为S 3.由题意:2132231··241··12S S S S ππ⎧+=⎪⎪⎨⎪+=⎪⎩,可得S 1﹣S 2=12π, 故答案为12π. 【点睛】本题考查扇形的面积、正方形的性质等知识,解题的关键是学会利用参数构建方程组解决问题.19.<2(或x≤2)【解析】试题分析:对于开口向上的二次函数在对称轴的左边y 随x 的增大而减小在对称轴的右边y 随x 的增大而增大根据性质可得:当x <2时y 随x 的增大而减小考点:二次函数的性质解析:<2(或x≤2). 【解析】试题分析:对于开口向上的二次函数,在对称轴的左边,y 随x 的增大而减小,在对称轴的右边,y 随x 的增大而增大.根据性质可得:当x <2时,y 随x 的增大而减小. 考点:二次函数的性质20.【解析】【分析】由关于x 轴对称点的特点是:横坐标不变纵坐标变为相反数可求出抛物线关于x 轴对称的抛物线解析式【详解】∵∴关于x 轴对称的抛物线解析式为-即故答案为:【点睛】此题考查了二次函数的图象与几何 解析:()21243y x =-+- 【解析】 【分析】由关于x 轴对称点的特点是:横坐标不变,纵坐标变为相反数,可求出抛物线21(2)43y x =++关于x 轴对称的抛物线解析式.【详解】 ∵21(2)43y x =++, ∴关于x 轴对称的抛物线解析式为-21(2)43y x =++,即()21243y x =-+-, 故答案为:()21243y x =-+-. 【点睛】此题考查了二次函数的图象与几何变换,解题的关键是抓住关于x 轴、y 轴对称点的特点.21.16﹣4π【解析】【分析】恒星的面积=边长为4的正方形面积-半径为2的圆的面积依此列式计算即可【详解】解:如图2+2=4恒星的面积=4×4-4π=16-4π故答案为16-4π【点睛】本题考查了扇形面解析:16﹣4π 【解析】 【分析】恒星的面积=边长为4的正方形面积-半径为2的圆的面积,依此列式计算即可. 【详解】 解:如图.2+2=4,恒星的面积=4×4-4π=16-4π. 故答案为16-4π. 【点睛】本题考查了扇形面积的计算,关键是理解恒星的面积=边长为4的正方形面积-半径为2的圆的面积.22.【解析】【分析】由切线性质知AD⊥BC 根据AB =AC 可得BD =CD =AD =BC =6【详解】解:如图连接AD 则AD⊥BC∵AB=AC∴BD=CD =AD =BC =6故答案为:6【点睛】本题考查了圆的切线性解析:【解析】 【分析】由切线性质知AD ⊥BC ,根据AB =AC 可得BD =CD =AD =12BC =6. 【详解】解:如图,连接AD ,则AD ⊥BC , ∵AB =AC , ∴BD =CD =AD =12BC =6, 故答案为:6.【点睛】本题考查了圆的切线性质,解题的关键在于掌握圆的切线性质.23.x1=1x2=-1【解析】分析:方程整理后利用平方根定义开方即可求出解详解:方程整理得:x2=1开方得:x=±1解得:x1=1x2=﹣1故答案为x1=1x2=﹣1点睛:本题考查了解一元二次方程﹣直接解析:x 1=1,x 2=-1【解析】分析:方程整理后,利用平方根定义开方即可求出解.详解:方程整理得:x 2=1,开方得:x =±1,解得:x 1=1,x 2=﹣1. 故答案为x 1=1,x 2=﹣1.点睛:本题考查了解一元二次方程﹣直接开平方法,熟练掌握直接开平方法是解答本题的关键.24.4【解析】【分析】由a+b2=2得出b2=2-a 代入a2+5b2得出a2+5b2=a2+5(2-a )=a2-5a+10再利用配方法化成a2+5b2=(a-即可求出其最小值【详解】∵a+b2=2∴b2解析:4 【解析】 【分析】由a+b 2=2得出b 2=2-a ,代入a 2+5b 2得出a 2+5b 2=a 2+5(2-a )=a 2-5a+10,再利用配方法化成a 2+5b 2=(a-2515)24+,即可求出其最小值. 【详解】 ∵a+b 2=2, ∴b 2=2-a ,a≤2,∴a 2+5b 2=a 2+5(2-a )=a 2-5a+10=(a-2515)24+, 当a=2时,a 2+b 2可取得最小值为4. 故答案是:4. 【点睛】考查了二次函数的最值,解题关键是根据题意得出a 2+5b 2=(a-2515)24+. 25.35【解析】【分析】【详解】解:∵PC 与⊙O 相切∴∠OCP=90°∴∠COP=90°-∠P=90°-20°=70°∵OA=OC ∴∠A=∠ACO ∵∠A+∠ACO=∠COP ∴∠A=35°故答案为35解析:35 【解析】 【分析】 【详解】解:∵PC 与⊙O 相切,∴∠OCP=90°, ∴∠COP=90°-∠P=90°-20°=70°, ∵OA=OC ,∴∠A=∠ACO , ∵∠A+∠ACO=∠COP , ∴∠A=35°, 故答案为35.三、解答题 26.(1)21b a =+;2c =;(2)102a -≤<;(3)存在,点()1,2P -或()1-或(1--.【解析】 【分析】(1)求出点A 、B 的坐标,即可求解;(2)当0x <时,若()20y ax bx c a =++<的函数值随x 的增大而增大,则函数对称轴02b x a =-≥,而21b a =+,即:2102a a+-≥,即可求解; (3)过点P 作直线l AB ,作PQ y 轴交BA 于点Q ,作PH AB ⊥于点H ,11122PAB S AB PH PQ ∆=⨯⨯=⨯=,则1P Q y y -=,即可求解.【详解】(1)2y x =+,令0x =,则2y =,令0y =,则2x =-, 故点A 、B 的坐标分别为()2,0-、()0,2,则2c =,则函数表达式为:22y ax bx =++,将点A 坐标代入上式并整理得:21b a =+;(2)当0x <时,若()20y ax bx c a =++<的函数值随x 的增大而增大,则函数对称轴02bx a=-≥,而21b a =+, 即:2102a a +-≥,解得:12a ≥-, 故:a 的取值范围为:102a -≤<; (3)当1a =-时,二次函数表达式为:22y x x =--+, 过点P 作直线lAB ,作PQy 轴交BA 于点Q ,作PH AB ⊥于点H ,∵OA OB =,∴45BAO PQH ∠=∠=︒,112221222PAB S AB PH PQ ∆=⨯⨯=⨯⨯=,则1P Q y y -=,在直线AB 下方作直线m ,使直线m 和l 与直线AB 等距离,则直线m 与抛物线两个交点坐标,分别与点AB 组成的三角形的面积也为1, 故:1P Q y y -=,设点()2,2P x x x --+,则点(),2Q x x +,即:2221x x x --+--=±, 解得:1x =-或12-±故点()1,2P -或 ()12,1-或(12,2---. 【点睛】主要考查二次函数和与几何图形.解题关键在于要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.27.(1)图形见解析(2)12【解析】 【分析】(1)本题属于不放回的情况,画出树状图时要注意;(2)B、C、D三个卡片的上的数字是勾股数,选出选中B、C、D其中两个的即可【详解】(1)画树状图如下:(2)∵共有12种等可能的结果数,抽到的两张卡片上的数都是勾股数的结果数为6种,∴抽到的两张卡片上的数都是勾股数的概率61 122 ==.28.(1)证明见解析;(2)29【解析】【分析】(1)连结OA、OD,如图,根据垂径定理的推理,由D为BE的下半圆弧的中点得到OD ⊥BE,则∠D+∠DFO=90°,再由AC=FC得到∠CAF=∠CFA,根据对顶角相等得∠CFA=∠DFO,所以∠CAF=∠DFO,加上∠OAD=∠ODF,则∠OAD+∠CAF=90°,于是根据切线的判定定理即可得到AC是⊙O的切线;(2)由于圆的半径R=5,EF=3,则OF=2,然后在Rt△ODF中利用勾股定理计算DF的长.【详解】解:(1)连结OA、OD,如图,∵D为BE的下半圆弧的中点,∴OD⊥BE,∴∠D+∠DFO=90°,∵AC=FC,∴∠CAF=∠CFA,∵∠CFA=∠DFO,∴∠CAF=∠DFO,而OA=OD,∴∠OAD=∠ODF,∴∠OAD+∠CAF=90°,即∠OAC=90°,∴OA⊥AC,∴AC 是⊙O 的切线;(2)∵圆的半径R=5,EF=3,∴OF=2,在Rt △ODF 中,∵OD=5,OF=2,∴【点睛】本题考查切线的判定.29.(1)50,25;(2)20【解析】【分析】(1)先将10.5万元化为105000元,设该乡镇有x 名高中学生获得了资助,则该乡镇有2x 名初中学生受到资助,由题意得一元一次方程,求解即可;(2)以“2019年上半年评为优秀学生的初、高中学生所获得的资助总金额一个月就达到了10800元”为等量关系,列出方程,然后设a%=t ,化为关于t 的一元二次方程,求解出t ,再根据a%=t ,求得a 即可.【详解】(1)10.5万元=105000元设该乡镇有x 名高中学生获得了资助,则该乡镇有2x 名初中学生受到资助,由题意得: 20023006105000x x ⨯+⨯=解得:25x =∴250x =∴该乡镇分别有50名初中学生和25名高中学生获得了资助.(2)由题意得:5030%13%2001%2540%1%30012%10800a a a a ⨯⨯+⨯++⨯⨯+⨯+=∴1013%1%101%12%36a a a a ⨯+⨯++⨯+⨯+=设%a t =,则方程化为:22101431013236t t t t +++++=∴2253580t t +=﹣解得 1.6t =﹣(舍)或20%t =∴20a =.【点睛】本题主要考查了由实际问题抽象出一元二次方程和一元一次方程,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.30.(1)见解析:(2)CE =1.【解析】【分析】(1)连接AD ,如图,先证明CD BD =得到∠1=∠2,再根据圆周角定理得到∠ADB =90°,根据切线的性质得到OD⊥EF,然后证明∠1=∠4得到结论;(2)连接BC交OD于F,如图,根据圆周角定理得到∠ACB=90°,再根据垂径定理,由CD BD=得到OD⊥BC,则CF=BF,所以OF=12AC=32,从而得到DF=1,然后证明四边形CEDF为矩形得CE=1.【详解】(1)证明:连接AD,如图,∵CD=BD,∴CD BD=,∴∠1=∠2,∵AB为直径,∴∠ADB=90°,∴∠1+∠ABD=90°,∵EF为切线,∴OD⊥EF,∴∠3+∠4=90°,∵OD=OB,∴∠3=∠OBD,∴∠1=∠4,∴∠A=2∠BDF;(2)解:连接BC交OD于F,如图,∵AB为直径,∴∠ACB=90°,∵CD BD=,∴OD⊥BC,∴CF=BF,∴OF=12AC=32,∴DF=52﹣32=1,∵∠ACB=90°,OD⊥BC,OD⊥EF,∴四边形CEDF为矩形,∴CE=DF=1.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理和勾股定理.。
中考专题复习数学几何正方形解答题专题突破练习(3)

【全国通用】初中几何正方形解答题专题突破练习(3)1.如图,已知四边形ABCD 是正方形,E 是对角线BD 上的一点,连接,AE CE .()1求证:AE CE =;()2如图,点P 是边CD 上的一点,且PE BD ⊥于,E 连接,BP O 为BP 的中点,连接EO .若30PBC ∠=︒,求POE ∠的度数;()3在()2的条件下,若OE =CE 的长.2.如图,已知正方形ABCD 的边长为2,点F 是CD 的中点,E 是边BC 上的一点,连接AE ,EF ,若AEF EAD ∠=∠,求AB 与BE 的比值.3.如图,正方形ABCD 的边长为1,点E 是AD 边上的动点,从点A 沿AD 向点D 运动,以BE 为边,在BE 的上方作正方形BEFG ,连接CG . (1)求证:AEB CGB △≌△;(2)若设AE=x ,DH=y ,当x 取何值时,y 有最大值?并求出这个最大值; (3)连接BH ,当点E 运动到AD 的何位置时有BEH BAE ∽?4.如图,在正方形ABCD中,E是BC的中点,连接AE,过点B作射线BM交CD于点F,交AE于点O,且BF AE⊥.(1)求证:BF AE=;(2)连接OD,猜想OD与AB的数量关系,并证明.5.如图1,已知点A(-1,0),B(0,-2),C为双曲线kyx=上一点,连结AC与y轴交于点E,且E为AC的中点,其坐标为(0,2).(1)求k的值;(2)以线段AB为对角线作正方形AFBH(如图2),点T是AF边上一动点,M是HT的中点,MN丄HT 交AB于N,当T在AF上运动时,∠TNH的大小是否发生改变?若改变,求出其变化范围;若不改变,请求出其值,并给出你的证明.6.同学们:八年级下册第9章我们学习了一种新的图形变换旋转,图形旋转过程中蕴含着众多数学规律,以图形旋转为依托构建的解题方法是解决各类几何问题的常用方法.(1)(问题提出)如图∠,在正方形ABCD中,∠MAN=45°,点M、N分别在边BC、CD上.求证:MN=BM+DN.证明思路如下:△绕点A按顺时针方向旋转90°得到∠ABE,再证明E、B、M三点在一条直线上.第一步:如图∠,将ADN△≌△.第二步:证明AEM ANM请你按照证明思路写出完整..的证明过程.(2)(初步思考)△和BCE.如图∠,四边形ABCD和CEFG为正方形,连接DG、BE,得到DCG下列关于这两个三角形的结论:∠周长相等;∠面积相等;∠∠CBE=∠CDG.其中所有正确结论的序号是.(3)(深入研究)如图∠,分别以□ABCD的四条边为边向外作正方形,连接EF,GH,IJ,KL.若□ABCD的面积为8,则图中阴影部分(四个三角形)的面积之和为.7.已知:如图,在正方形ABCD中,点E、F在对角线AC上,且AE=CF.(1)求证:DE ∠BF(2)若四边形DEBF 的面积为8,AE,则正方形边长为 .8.如图,在正方形ABCD 中,点G 在边BC 上(不与点B 、C 重合).连结AG ,作DE∠AG 于点E ,BF∠AG 于点F ,BGAD=K . ∠求证:Rt∠BFG∠Rt∠DEA ;∠连结BE 、DF ,设∠EDF =α,∠EBF =β,求证:tan α=Ktan β.∠设正方形ABCD 的边长为1,线段AG 与对角线BD 交于点H ,∠AHD 和四边形CDHG 的面积为S 1和S 2,求21S S 的最大值.9.如图 ,在边长为1的正方形ABCD 中,点E 是边AD 上的一动点(与点,A D 不重合),CE 交BD 于点F ,连结AF .(1)求证:DAF DCF ≅;(2)当AE 的长度是多少时,AEF 是等腰三角形?(3)当点E 运动到AD 的中点时,连BE 结交AF 于点M ,连结CM , 求证:∠BE AF ⊥;∠CB CM =.10.如图,在正方形ABCD 中,E 为CD 边上一点,以DE 为边向外作正方形DEFG ,将正方形DEFG 绕点D 顺时针旋转,连接AG .(1)如图1,若AD =DE =2,当150ADG ∠︒=时,求AG 的长;(2)如图2,正方形DEFG 绕点D 旋转的过程中,取AG 的中点M ,连接DM 、CE ,猜想:DM 和CE 之间有何等量关系?并利用图2加以证明.11.如图,P 是正方形ABCD 对角线BD 上一点,,PE DC PF BC ⊥⊥,点,E F 分别是垂足. (1)求证:AP PC =;(2)若60,BAP PD ∠=︒=,求PC 的长.12.如图1,点C 在线段AB 上,分别以AC 、BC 为边在线段AB 的同侧作正方形ACDE 和正方形BCMN , 连结AM 、BD .(1)AM 与BD 的关系是:________.(2)如果将正方形BCMN 绕点C 顺时针旋转锐角α(如图2).(1) 中所得的结论是否仍然成立?请说明理由.(3)在(2)的条件下,连接AB 、DM ,若AC=4,BC=2,求AB 2+DM 2的值. 13.已知如图1,四边形ABCD 是正方形,45EAF ︒∠= .()1如图1,若点,E F 分别在边BC CD 、上,延长线段CB 至G ,使得BG DF =,若3,2BE BG ==,求EF 的长;()2如图2,若点,E F 分别在边CB DC 、延长线上时,求证: .EF DF BE =-()3如图3,如果四边形ABCD 不是正方形,但满足,90,45,AB AD BAD BCD EAF ︒︒=∠=∠=∠=且7, 13,5BC DC CF ===,请你直接写出BE 的长.14.点C为线段AB上一点,分别以AC、BC为边在线段AB的同侧作正方形ACDE和BCFG,连接AF、BD.(1)如图∠,AF与BD的数量关系和位置关系分别为;(2)将正方形BCFG绕着点C顺时针旋转α角(0°<α<360°),∠如图∠,第(1)问的结论是否仍然成立?请说明理由.∠若AC=4,BC=22,当正方形BCFG绕着点C顺时针旋转到点A、B、F三点共线时,求DB的长度.15.四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF∠DE,交线段BC于点F,以DE、EF为邻边作矩形DEFG,连接CG(1)如图,求证:矩形DEFG是正方形;(2)若AB=,CE=2,求CG的长;16.以Rt ABC ∆的两边AB 、AC 为边,向外作正方形ABDE 和正方形ACFG ,连接EG ,过点A 作AM BC ⊥于M ,延长MA 交EG 于点N .(1)如图1,若90BAC ∠=︒,AB AC =,易证:EN GN =;(2)如图2,90BAC ∠=︒;如图3,90BAC ∠≠︒,(1)中结论,是否成立,若成立,选择一个图形进行证明;若不成立,写出你的结论,并说明理由. 17.已知正方形ABCD ,点E 在射线BD 上.(1)如图1,若点E 在线段BD 上,F 在线段AD 上,且AE BF ⊥,垂足为H ,连接CE . ∠求证:HF AFAH AB=; ∠求证:tan DEECD BE∠=; (2)如图2,点E 在BD 的延长线上,以AE 为斜边,作Rt AFE ,90AFE ∠=︒,AF EF =,若4=AD ,直接写出DF 的最小值.18.如图,在正方形ABCD 中,E 是AB 上一点,F 是AD 延长线上一点,且CE=CF . (1)求证:BE=DF ;(2)若点G 在AD 上,且∠GCE=45°,则GE=BE+GD 成立吗?为什么?19.如图,正方形ABCD 中,点E 是边BC 上一点,EF ∠AC 于点F ,点P 是AE 的中点.(1)求证:BP∠FP;(2)连接DF,求证:AE=DF.20.如图,在正方形ABCD中,点E,F分别在边AB,BC上,AF与DE相交于点M,且∠BAF=∠ADE.(1)如图1,求证:AF∠DE;(2)如图2,AC与BD相交于点O,AC交DE于点G,BD交AF于点H,连接GH,试探究直线GH与AB的位置关系,并说明理由;(3)在(1)(2)的基础上,若AF平分∠BAC,且BDE的面积为,求正方形ABCD的面积.AC BD相交于点O,E是OC的中点,连接BE,过点21.如图,正方形ABCD的边长为,A作AM BE⊥于点M,交BD于点F.=;(1)求证:AF BE(2)求点E到BC边的距离.22.在正方形ABCD中,连接AC,点E在线段AD上,连接BE交AC于M,过点M作FM∠BE交CD于F.(1)如图∠,求证:∠ABE+∠CMF=∠ACD;(2)如图∠,求证:BM=MF;(3)如图∠,连接BF,若点E为AD的中点,AB=6,求BF的长.23.如图,正方形ABCD的边长为6.E,F分别是射线AB,AD上的点(不与点A重合),且EC CF⊥,M为EF的中点.P为线段AD上一点,1AP=,连结PM.=;(1)求证:CE CF△为直角三角形时,求AE的长;(2)当PMF△的面积为________.(在横线上直接写(3)记BC边的中点为N,连结MN,若MN=PMF出答案)=,24.如图,在正方形ABCD中,对角线AC、BD相交于点O,E、F分别在OD、OC上,且DE CF 连接AE、DF,AE的延长线交DF于点M.(1)求证:AE DF=;⊥.(2)求证:AM DF25.定义:有一组邻边垂直且对角线相等的四边形为垂等四边形.(1)写出一个已学的特殊平行四边形中是垂等四边形的是 .(2)如图1,在3×3方格纸中,A ,B ,C 在格点上,请画出两个符合条件的不全等的垂等四边形,使AC ,BD 是对角线,点D 在格点上.(3)如图2,在正方形ABCD 中,点E ,F ,G 分别在AD ,AB ,BC 上,AE =AF =CG 且∠DGC =∠DEG ,求证:四边形DEFG 是垂等四边形.(4)如图3,已知Rt∠ABC ,∠B =90°,∠C =30°,AB =2,以AC 为边在AC 的右上方作等腰三角形,使四边形ABCD 是垂等四边形,请直接写出四边形ABCD 的面积.26.如图1所示,边长为4的正方形ABCD 与边长为()14a a <<的正方形CFEG 的顶点C 重合,点E 在对角线AC 上.(问题发现)如图1所示,AE 与BF 的数量关系为________;(类比探究)如图2所示,将正方形CFEG 绕点C 旋转,旋转角为()030αα<<︒,请问此时上述结论是否还成立?如成立写出推理过程,如不成立,说明理由;(拓展延伸)若点F 为BC 的中点,且在正方形CFEG 的旋转过程中,有点A 、F 、G 在一条直线上,直接写出此时线段AG 的长度为________27.如图,P 为正方形ABCD 的边BC 上的一动点(P 不与B ,C 重合),连接AP ,过点B 作BQ AP ⊥交CD 于点Q ,将BCQ ∆沿着BQ 所在直线翻折得到∆BQE ,延长QE 交AB 的延长线于点M .(1)探求AP 与BQ 的数量关系(2)若3AB =,2BP PC =,求QM 的长28.如图,正方形 ABCD 的边长为 4,E 是 BC 的中点,点 P 在射线 AD 上,过点 P 作 PF∠AE ,垂足为 F .(1)求证:PFA ABE ∽△△;(2)当点 P 在射线 AD 上运动时,设 PA=x ,是否存在实数 x ,使以 P ,F ,E 为顶点的三角形也与ABE △相似?若存在,求出 x 的值;若不存在,说明理由.29.如图,在正方形ABCD 中,E 是边DC 上的一点(与,C 不重合)连接AE ,将ADE 沿AE 所在的直线折叠得到AFE △,延长EF 交BC 于G ,作GH AG ⊥,与AE 的延长线交于点H ,连接CH . (1)求证:AG GH =(2)求证:CH 平分DCM ∠.30.如图,在边长为a 的正方形ABCD 中,作∠ACD 的平分线交AD 于F ,过F 作直线AC 的垂线交AC 于P ,交CD 的延长线于Q ,又过P 作AD 的平行线与直线CF 交于点E ,连接DE ,AE ,PD ,PB .。
中考数学专题复习《直线、射线、线段》测试卷(附带答案)

中考数学专题复习《直线射线线段》测试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________知识点1. 定义与性质:线段:线段是由两个端点及其之间的所有点组成的。
它有一个固定的长度并且可以在数轴上表示一个区间。
例如线段AB表示从点A到点B的所有点的集合。
射线:射线有一个起点(称为端点)并从该点沿一个方向无限延伸。
射线有一个端点和一个方向但没有固定的长度。
例如射线AB表示从点A出发沿AB方向无限延伸的线的集合。
直线:直线由无数个点组成没有端点并且向两端无限延伸。
直线没有固定的长度并且可以通过任意两个不重合的点来确定。
例如通过点A和点B可以确定一条直线。
2. 表示方法:线段:通常使用两个端点的字母来表示如线段AB。
在数轴上也可以使用一个区间来表示如[A, B]。
射线:使用起点和另一个点的字母来表示并指明方向如射线AB(从A出发经过B)。
直线:可以通过两点来表示如直线AB。
在数轴上直线可以用一个小写字母或两个不等的点来表示。
3. 几何特性:线段:是有限长的可以度量其长度。
线段是构成其他几何图形(如三角形四边形等)的基本元素。
射线:有一个端点和一个方向因此是无限长的不能度量其长度。
射线在几何学和物理学中有应用如光线和雷达波的传播。
直线:没有端点因此是无限长的也不能度量其长度。
直线是构成平面图形和立体图形的基本元素如平行四边形圆等。
4. 轴对称性:线段:线段是轴对称图形其对称轴是垂直于线段并通过其中点的直线。
射线:射线也是轴对称图形其对称轴是包含其端点的直线。
直线:直线是轴对称图形有无数条垂直于它的直线可以作为对称轴。
专项练一单选题1.下列说法错误的是()A.两点之间线段最短B.对顶角相等C.同角的补角相等D.过一点有且只有一条直线与已知直线平行2.我们知道若线段上取一个点(不与两个端点重合以下同)则图中线段的条数为++=条若线段上取三个点123+=条若线段上取两个点则图中线段的条数为1236+++=条……请用你找到的规律解决下列实际问题:杭甬铁路则图中线段的条数为123410(即杭州—宁波)上有萧山绍兴上虞余姚4个中途站则车站需要印的不同种类的火车票为( )A .6种B .15种C .20种D .30种3.下列命题中 是假命题的是( )A .三个角对应相等的两个三角形全等B .﹣3a 3b 的系数是﹣3C .两点之间 线段最短D .若|a |=|b | 则a =±b4.在下列说法①联接两点的线中 线段最短 ①相等的角是对顶角 ①过直线外一点有且只有一条直线与已知直线平行 ①两点间的线段是这两点的距离 ①20.196精确到百分位得20.2中 正确的是( )A .①①B .①①C .①①D .①①5.已知线段AB 长2cm .现延长AB 到点C 使3BC AB =.取线段AB 的中点D 线段CD 的长为( )A .5cmB .3cmC .7cmD .1cm6.如图 以A B C D E 为端点 图中共有线段( )A .7条B .8条C .9条D .10条7.如图所示 下列说法正确的个数是( )①射线AB 和射线BA 是同一条射线 ①图中有两条射线 ①直线AB 和直线BA 是同一条直线 ①线段AB 和线段BA 是同一条线段.A .4B .3C .2D .18.如图 在菱形ABCD 中 60ABC ∠=︒ E 是边BC 的中点 P 是对角线BD 上的一个动点 连接AE AM 若12AP BP +的最小值恰好等于图中某条线段的长 则这条线段是( )A .AB B .AEC .BD D .BE9.如图 点C 是线段AB 的中点 点D 是线段CB 上任意一点 则下列表示线段关系的式子不正确的是( )A .AB =2ACB .AC +CD +DB =ABC .CD =AD -12ABD .AD =12(CD +AB ) 10.若将点A (-1 3)向右平移2个单位 再向下平移4个单位得到点B 则点B 在第( )象限A .一B .二C .三D .四二 填空题11.绷紧的琴弦 人行横道都可以近似地看做 它有 个端点 手电筒 探照灯所射出的光线可以近似地看做 它有 个端点 笔直的铁轨可以近似地看做 它有 端点.12.A B C 三点在同一条直线上 若BC=2AB 且AB=m 则AC= . 13.如图 已知线段12AB = 延长线段AB 至点C 使得12BC AB =点D 是线段AC 的中点 则线段BD 的长是 .14.如图 等边ABC 的边长为4 AD 是BC 边上的中线 F 是AD 边上的动点 E 是AC 边上一点 若2AE = 当EF CF +取得最小值时 则ECF ∠= .15.若O 的半径为33 圆心O 为坐标系的原点 点P 的坐标是()3,5 点P 在O .16.已知线段AB=18cm P Q 是线段AB 上的两个点 线段AQ=12cm 线段BP=14cm 则线段PQ= .17.如图 直线243y x =+与x 轴 y 轴分别交于点A 和点B 点C D 分别为线段AB OB 的中点 点P 为OA 上一动点 PC PD +最小值是 .18.菱形OBCD 在平面直角坐标系中的位置如图所示 顶点B (2 0) ①DOB =60° 点P是对角线OC 上一个动点 E (0 则EP +BP 的最小值为 .19.如图 C 为线段AD 上一点 点B 为CD 的中点 且8cm AD = 2cm BD =.若点E 在AD 上 且EA=3cm BE 的长为 .20.如图 AD 为等边ABC 的高 E F 分别为线段AD AC 上的动点 且AE CF = 当BF CE +取得最小值时 AFB ∠的度数为 .三 解答题21.线段和角是我们初中数学常见的平面几何图形 它们的表示方法 和差计算以及线段的中点 角的平分线的概念等有很多相似之处 所以研究线段或角的问题时可以运用类比的方法.(1)特例感知:如图1 已知10cm AB = 点D 是线段AC 的中点 点E 是线段BC 的中点.若6cm BC 则线段DE =________cm .(2)数学思考:如图1 已知10cm AB = 若C 是线段AB 上的一个动点 点D 是线段AC 的中点 点E 是线段BC 的中点 线段DE 的长会发生变化吗?说明理由.(3)知识迁移:如图2 OB 是AOC ∠内部的一条射线 把三角尺中60︒角的顶点放在点O 处 转动三角尺 当三角尺的边OD 平分AOB ∠时 在角尺的另一边OE 也正好平分BOC ∠ 求AOC ∠的度数.22.如图 C 为线段AB 的中点 点D 在线段CB 上.(1)图中共有_________条线段(2)图中AD AC CD =+ BC AB AC =- 类似地 请你再写出两个有关线段的和与差的关系式:①_________ ①_________(3)若8AB = 1.5DB = 求线段CD 的长.23.补全解题过程已知:如图 点C 是线段AB 的中点 2CD =cm 8BD =cm 求AD 的长.解:①2CD=cm 8BD=cm①CB CD=+______=______cm①点C是线段AB的中点①AC CB==______cm①AD AC=+_______=_______cm24.(1)已知线段8AB=点C在线段AB的延长线上M N分别是线段AC与线段BC 的中点求线段MN的长(2)已知线段8cmAB=点C在线段AB的反向延长线上M N分别是线段AC与线段BC的中点则线段MN的长为cm.25.如图线段1134BD AB CD==点M N分别是线段AB CD的中点且20cmMN=求AC的长.参考答案:1.D2.D3.A4.A5.C6.D7.C8.B9.D10.D11.线段两射线 1 直线0个. 12.m或3m13.314.30︒15.外16.8cm17.5183119.3或9cm20.105︒/105度21.(1)5(2)不会(3)120︒22.(1)6 (2)(2)①BC=CD+DB ①AD=AB−DB (答案不唯一)(3)CD=2.5.23.BD10 10 CD12.24.(1)4 (2)425.48cm。
初中数学中考复习 03第一章 第三节 好题随堂演练

1.(2019·海南)当m =-1时,代数式2m +3的值是( )A .-1B .0C .1D .22.(2019·毕节)如果3ab 2m -1与9ab m +1是同类项,那么m 等于( )A .2B .1C .-1D .03.(2019·天水)已知a +b =12,则代数式2a +2b -3的值是( ) A .2 B .-2 C .-4 D .-3124.(2019·台州)计算2a -3a ,结果正确的是( )A .-1B .1C .-aD .a5.(2019·怀化)单项式-5ab 的系数是( )A .5B .-5C .2D .-26.(2019·安徽)计算a 3·(-a)的结果是( )A .a 2B .-a 2C .a 4D .-a 47.(2019·连云港)计算下列代数式,结果为x 5的是( )A .x 2+x 3B .x·x 5C .x 6-xD .2x 5-x 58.(2019·徐州)下列计算正确的是( )A .a 2+a 2=a 4B .(a +b)2=a 2+b 2C .(a 3)3=a 9D .a 3·a 2=a 69.(2018·枣庄)如图,将边长为3a 的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长为2b 的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为( )A.3a+2b B.3a+4bC.6a+2b D.6a+4b10.(2019·长春)因式分解:ab+2b=.11.(2019·桂林)若x2+ax+4=(x-2)2,则a=.12.(2019·怀化)当a=-1,b=3时,代数式2a-b的值等于.13.(2019·齐齐哈尔)因式分解:a2+1-2a+4(a-1).14.(2018·济宁)化简:(y+2)(y-2)-(y-1)(y+5).15.(2019·长春)先化简,再求值:(2a +1)2-4a(a -1),其中a =18.参考答案1.C 2.A 3.B 4.C 5.B 6.D 7.D 8.C9.A 10. b(a +2) 11.-4 12.-513.解:原式=a 2-2a +1+4(a -1)=(a -1)2+4(a -1)=(a -1)(a +3).14.解:原式=y 2-4-(y 2+4y -5) =y 2-4-y 2-4y +5=-4y +1.15.解:原式=4a 2+4a +1-4a 2+4a =8a +1.当a =18时,原式=8×18+1=2.。
2024年上海市初三中考数学冲刺复习专题3 分式与二次根式核心知识点精讲含答案

专题03分式与二次根式核心知识点精讲1.了解分式的概念,会利用分式的基本性质进行约分和通分,会进行分式的加、减、乘、除、乘方运算;能够根据具体问题数量关系列出简单的分式方程,会解简单的可化为一元一次方程的分式方程;2.利用二次根式的概念及性质进行二次根式的化简,运用二次根式的加、减、乘、除法的法则进行二次根式的运算.考点1:分式的有关概念及性质1.分式设A、B表示两个整式.如果B中含有字母,式子就叫做分式.注意分母B的值不能为零,否则分式没有意义.2.分式的基本性质(M为不等于零的整式).3.最简分式分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简.要点诠释:分式的概念需注意的问题:(1)分式是两个整式相除的商,其中分母是除式,分子是被除式,而分数线则可以理解为除号,还含有括号的作用;(2)分式中,A和B均为整式,A可含字母,也可不含字母,但B中必须含有字母且不为0;(3)判断一个代数式是否是分式,不要把原式约分变形,只根据它的原有形式进行判断.(4)分式有无意义的条件:在分式中,①当B≠0时,分式有意义;当分式有意义时,B≠0.②当B=0时,分式无意义;当分式无意义时,B=0.③当B≠0且A=0时,分式的值为零.考点2:分式的运算1.基本运算法则分式的运算法则与分数的运算法则类似,具体运算法则如下:(1)加减运算±=同分母的分式相加减,分母不变,把分子相加减.;异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法则进行计算.(2)乘法运算两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.(3)除法运算两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.(4)乘方运算(分式乘方)分式的乘方,把分子分母分别乘方.2.零指数.3.负整数指数4.分式的混合运算顺序先算乘方,再算乘除,最后加减,有括号先算括号里面的.5.约分把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.6.通分根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通分.考点3:分式方程及其应用1.分式方程的概念分母中含有未知数的方程叫做分式方程.2.分式方程的解法解分式方程的关键是去分母,即方程两边都乘以最简公分母将分式方程转化为整式方程.3.分式方程的增根问题验根:因为解分式方程可能出现增根,所以解分式方程必须验根.验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.4.分式方程的应用列分式方程解应用题与列一元一次方程解应用题类似,但要稍复杂一些.解题时应抓住“找等量关系、恰当设未知数、确定主要等量关系、用含未知数的分式或整式表示未知量”等关键环节,从而正确列出方程,并进行求解.另外,还要注意从多角度思考、分析、解决问题,注意检验、解释结果的合理性.考点4:二次根式的主要性质0(0)a≥≥;2.2(0)a a=≥;(0)||(0)a aaa a≥⎧==⎨-<⎩;4.00)a b=≥≥,;5.00)a b=≥>,.>.1.二次根式的乘除运算(1)运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号.(2)注意知道每一步运算的算理;2.二次根式的加减运算先化为最简二次根式,再类比整式加减运算,明确二次根式加减运算的实质;3.二次根式的混合运算(1)对二次根式的混合运算首先要明确运算的顺序,即先乘方、开方,再乘除,最后算加减,如有括号,应先算括号里面的;(2)二次根式的混合运算与整式、分式的混合运算有很多相似之处,整式、分式中的运算律、运算法则及乘法公式在二次根式的混合运算中也同样适用.【题型1:分式的有关概念及性质】【题型2:分式的运算】【题型3:分式方程及其应用】【题型4:二次根式的主要性质】因数或因式;被开方数的因数是整数,因式是整式.【题型5:二次根式的运算】1.下列各式:3a ,7a b +,2212x y +,5,11x -,8x m 中,分式有().A .1个B .2个C .3个D .4个【答案】C【分析】根据分式的定义,逐一判断即可解答.本题主要考查了分式的定义,熟练掌握分式的定义是解题的关键.【详解】解:下列各式:3a ,7a b +,2212x y +,5,11x -,8x m 中,分式有:3a,11x -,8x m 故选:C .2.若分式2321x x x --+的值为正数,则x 的取值范围是()A .3x >B .3x <且1x ≠C .3x <D .13x <<【答案】B【分析】根据题意可得3010x x ->⎧⎨-≠⎩,然后解这两个不等式组即可求出结论.【详解】解∶()2233211x x x x x --=-+-,∵分式2321x x x --+的值为正数,∴3010x x ->⎧⎨-≠⎩,解得3x <且1x ≠.故选∶B .【点睛】此题考查的是根据分式的值的取值范围,求字母的取值范围,掌握两数相除,同号得正,异号得负,并把绝对值相除是解题的关键.3.若把分式3x y xy+中的x 与y 都扩大3倍,则所得分式的值()A .缩小为原来的13B .缩小为原来的19C .扩大为原来的3倍D .不变【答案】A 【分析】本题考查分式的基本性质.根据分式的基本性质即可求出答案.【详解】解:33333133333x y x y xy xyx y x y x y xy ++=⋅⨯⨯+⋅+==,故选:A .则()2820401000x x +-≤,解得25x ≤,故答案为围棋最多可买25副.。
2023年山东省潍坊市临朐县等八县市中考三模数学试题(含答案)

2023年初中学业水平考试复习自测(三)数学试题2023.6注意事项:1.本试题分为第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,40分;第Ⅰ卷为非选择题,110分;共150分.考试时间为120分钟.2.答卷前务必将试题密封线内及答题卡上面的项目填涂清楚.所有答案都必须涂、写在答题卡相应位置,答在本试卷上一律无效.第Ⅰ卷(选择题,40分)一、单项选择题(本题共6小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得4分,多选、不选、错选均记0分.)1.下列计算结果正确的是( )A. B. C. D.2.星载原子钟是卫星导航系统的“心脏”,对系统定位和授时精度具有决定性作用.“北斗”三号卫星导航系统装载国产高精度星载原子钟,保证“北斗”优于20纳秒(1纳秒秒)的授时精度,那么20纳秒用科学记数法表示为()A.秒B.秒C.秒D.秒3.如图1是由6个相同的小正方块组成的几何体,移动其中一个小正方块,变成图2所示的几何体,则移动前后()A.主视图改变,俯视图改变B.主视图不变,俯视图改变C.主视图不变,俯视图不变D.主视图改变,俯视图不变4.把一块等腰直角三角板和一把直尺按如图的位置放置,若,则的度数为()A.15°B.20°C.25°D.30°752a a -=933a a a÷=532a a a ÷=()32639a a =9110-=⨯8210-⨯9210-⨯92010-⨯10210-⨯125∠=︒2∠5.如图1是一个亮度可调节的台灯,其灯光亮度的改变,可以通过调节总电阻控制电流的变化来实现.如图2是该台灯的电流与电阻成反比例函数的图象,该图象经过点.根据图象可知,下列说法正确的是()A.当时,B.与的函数关系式是C.当时,D.当时,的取值范围是6.某函数的图象如图所示,当时,在该函数图象上可找到个不同的点,,…,使得,则的取值不可能为( )A.3B.4 C.5 D.6二、多项选择题(本题共4小题,每小题4分,共16分.在每小题给出的选项中,有多项符合题目要求,全部选对的得4分,有选错的得0分,部分选对的得2分.)7.实数在数轴上的对应点的位置如图所示,若实数满足,则的值可以是()A. B. C.0 D.18.某校组织学生进行健康体检,小亮将领航班所有学生测量体温的结果制成如下统计图表.下列说法正确的是()()A I ()R Ω()880,0.25P 0.25R <880I <I R ()2000I R R=>1000R >0.22I >8801000R <<I 0.220.25I <<0x a ≤≤n ()11,x y ()22,x y (),n n x y 1212n ny y y x x x ==⋅⋅⋅=n a b a b a -<<b 2-1-体温℃36.136.236.336.436.536.6人数/人488102A.这个班有40名学生B.C.这些体温的众数是8D.这些体温的中位数是36.359.如图,抛物线的对称轴是直线,则下列结论正确的是()A. B. C. D.10.如图,在正方形纸片中,对角线,交于点,折叠正方形纸片,使落在上,点恰好与上的点重合,展开后,折痕分别交,点,.连接,下列结论正确的是()A. B.C. D.四边形是菱形第Ⅱ卷(非选择题,110分)三、填空题(本题共4小题,共16分,只要求填写最后结果,每小题填对得4分.)11.分解因式:______.m8m =()20y ax bx c a =++≠1x =0abc >0a b c ++>32b c<b a c>+ABCD AC BD O ABCD AD BD A BD F DE AB AC E G GF 112.5AGD ︒∠=tan 1AED ∠=+2AGD OGDS S =△△AEFG 3222a a b ab -+=12.随着生活节奏加快,居民越来越愿意使用在线上买菜.某买菜今年一月份新注册用户为200万,三月份新注册用户为338万,则二、三两个月新注册用户每月平均增长率是______.13.如图,点,,,为一个正多边形的顶点,为正多边形的中心,若,则这个正多边形的边数为______.14.如图,在中,,,延长至,使得,点为动点,且,连接,则的最小值为______.四、解答题(本题共8小题,共94分.解答应写出文字说明、证明过程或演算步骤)15.(本题满分10分)(1)计算:;(2)解不等式组:16.(本题满分8分)如图,小明练习册上的一个等腰三角形被墨迹污染了,只有它的底边和还保留着.(1)小明要在练习册上画出原来的等腰,用到的基本作图可以是______(填写正确答案的序号);①作一条线段等于已知线段;②作一个角等于已知角;③作已知角的平分线;④作已知线段的垂直平分线;⑤过一点作已知直线的垂线;(2)为边上的中线,若的一个外角为110°,求的度数.17.(本题满分12分)APP APP A B C D O 18ADB ∠=︒ABC △10AB AC ==6BC =AB D 12BD AB =P PB PC =PD PD 22124a a a ⎛⎫-÷ ⎪+-⎝⎭()21234131x x x x +⎧+≤⎪⎨⎪-<+⎩AB B ∠ABC △CD ABC △AB B ∠BCD ∠为了解市民对全市创卫工作的满意程度,某中学数学兴趣小组在全市甲、乙两个区内进行了调查统计,将调查结果分为不满意,一般,满意,非常满意四类,回收、整理好全部问卷后,得到下列不完整的统计图.请结合图中信息,解决下列问题:(1)求此次调查中接受调查的人数,并补全条形统计图;(2)若本市人口300万人,估算该市对市创卫工作表示满意的人数和非常满意的人数;(3)兴趣小组准备从调查结果为不满意的4位市民中随机选择2位进行回访,已知4位市民中有2位来自甲区,另2位来自乙区,请用列表或用画树状图的方法求出选择的市民均来自同区的概率.18.(本题满分12分)如图,光从空气斜射入水中,入射光线射到水池的水面点后折射光线射到池底点处,入射角,折射角;入射光线射到水池的水面点后折射光线射到池底点处,入射角,折射角.,、为法线.入射光线、和折射光线、及法线、都在同一平面内,点到直线的距离为6米.(1)求的长;(结果保留根号)(2)如果米,求水深.,,,,,,)19.(本题满分12分)在初中阶段的函数学习中,我们经历了“确定函数的表达式,利用函数图象研究其性质,运用函数解决问题”的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.学习了一次函数之后,现在来解决下面的问题:在中,如表是与的几组对应值.…0123……73113…AB B BD D 30ABM ∠=︒22DBN ∠=︒AC C CE E 60ACM ∠='︒40.5ECN ∠='︒DE BC ∥MN M N ''AB AC BD CE MN M N ''A BC BC 8.72DE =BN 1.41≈ 1.73≈sin220.37︒≈cos220.93︒≈tan220.4︒≈sin40.50.65︒≈cos40.50.76︒≈tan40.50.85︒≈1y a x b =-+y x x3-2-1-ymn(1)______,______;(2)在平面直角坐标系中,画出函数的图象;(3)根据图象,判断下列说法是否正确,正确的打“√”,错误的打“×”:①该函数图象是轴对称图形,对称轴为直线.()②当时,随的增大而增大,当时,随的增大而减小.( )③该函数在自变量的取值范围内有最小值,当时有最小值.( )(4)若关于,的方程组有且只有一个公共解,则的取值范围是______.20.(本题满分12分)某公司对其办公楼大厅一块米的正方形墙面进行了如图所示的设计装修(四周阴影部分是八个全等的矩形,用材料甲装修;中心区域是正方形,用材料乙装修).两种材料的成本如下:材料甲乙单价(元/米)800600设矩形的较短边的长为米,装修材料的总费用为元.(1)求与之间的关系式;(2)当中心区域的边长不小于2米时,计划用28000元购买甲乙两种装修材料够用吗?请说明理由.21.(本题满分14分)从一个已知图形外一点引两条射线,分别经过该已知图形的两点,则这两条射线所成的最大角称为该点对已知图形的视角,如图①,是点对线段的视角.m =n =1x =1x <y x 1x ≥y x 1x =1-x y 21y x ty a x b=+⎧⎨=-+⎩t 66⨯ABCD EFGH 2AM x y y x EF APB ∠P AB【应用】(1)如图②,在直角坐标系中,已知点,,,求原点对的视角的度数;(2)如图③,在直角坐标系中,以坐标原点为圆心,半径为2画圆;以坐标原点为圆心,半径为4画圆.证明:圆上任意一点对圆的视角是定值;【拓展应用】(3)很多摄影爱好者喜欢在天桥上对城市的标志性建筑拍照,如图④.现在有一条笔直的天桥,标志性建筑轮廓呈正方形,摄影师想在天桥上找到对建筑视角为45°的位置拍摄.现以建筑的中心为原点建立如图⑤的平面直角坐标系,此时天桥所在的直线的表达式为,正方形建筑的边长为4,请直接写出直线上满足条件的点的坐标.22.(本题满分14分)综合与实践:如图1,将一个等腰直角三角尺的顶点放置在直线上,,,过点作于点,过点作于点.【观察发现】(1)如图1,当,两点均在直线的上方时,①猜测线段,与的等量关系,并说明理由;②直接写出线段,与的等量关系;【操作证明】(2)将等腰直角三角尺绕着点逆时针旋转至图2位置时,线段,与又有怎样的数量关系,请写出你的猜想,并写出证明过程;(A (2,B (C O ABC △O 1O O 2O 2O P 1O 5x =-ABCD ABC C l 90ABC ∠=︒AB BC =A AD l ⊥D B BE l ⊥E A B l AD CE BE DC AD BE ABC C DC AD BE【推广探索】(3)将等腰直角三角尺绕着点继续旋转至图3位置时,与交于点,若,,请直接写出的长度.2023年初中学业水平考试复习自测(三)数学试题参考答案一、选择题(每小题4分,共24分)1-6 CABBDD二、多选题(每小题满分4分,部分得分为2分,共16分)7.BCD8.ABD9.AC10.ABD三、填空题(每小题4分,共16分)11. 12.30% 13.1014.四、解答题15.(本题满分10分)解:(1)原式……2分……3分;……4分ABC C AD BC H 3CD =9AD =DH ()2a ab -92()()22222a a a a a +-+-=⋅+()()222a a a a a+-=⋅+2a =-(2),由①得,,……2分由②得,,……4分故不等式的解集为.……6分16.(本题满分8分)解:(1)②④……4分(选对一个得2分,有错选得0分)(2)∵的一个外角为110°,∴,……5分∵,∴,∴,……6分∵,,∴.……8分17.(本题满分12分)解:(1)∵非常满意的有20人,占40%,∴此调查中接受调查的人数:(人),……2分∴此次调查中结果为满意的人数为:(人),补全统计图如下:……4分(2)该市对市创卫工作表示满意的人数(万),……6分该市对市创卫工作表示非常满意的人数(万),答:估算该市对市创卫工作表示满意和非常满意的人数分别为108万,120万;……8分(3)画树状图得: (10)分()21234131x x x x +⎧+≤⎪⎨⎪-<+⎩①②1x ≤4x <1x ≤B ∠70B ∠=︒CA CB =70A B ︒∠=∠=18027040ACB ∠=︒-⨯︒=︒CA CB =CD AB ⊥1202BCD ACB ∠=∠=︒2040%50÷=50482018---=1830010850=⨯=2030012050=⨯=∵共有12种等可能的结果,选择的市民均来自同区的有4种情况,∴选择的市民均来自甲区的概率为:.……12分18.(本题满分12分)解:(1)作,交的延长线于点,则,……1分∴,,∵,,∴,,……3分∵米,∴(米),(米),……5分∴即的长为6分(2)设水深为米,即米,……7分由题意可知:,.米,……8分∴(米),(米),……10分∵,∴,……11分解得,即水深约为4米.……12分19.(本题满分12分)解:(1)∵函数的图象经过点,,∴,解得,∴,41123=AF BC ⊥CB F AF MN M N ''∥∥ABM BAF ∠=∠ACM CAF ∠∠'=30ABM ∠=︒60ACM ∠='︒30BAF ∠=︒60CAF ∠=︒6AF =tan306BF AF =⋅︒==tan606CF AF =⋅︒==BC CF BF =-=-=BC x BN CN x ='=22DBN ∠=︒40.5ECN ∠='︒8.72DE =tan220.4DN BN x =⋅︒≈tan40.50.85N E CN x ⋅︒≈'='DN DE BC N E +=+'0.48.720.85x x +=4x ≈1y a x b =-+()1,3-()0,1231a b a b +=⎧⎨+=⎩21a b =⎧⎨=-⎩211y x =--∴当时,,当时,.故答案为:5,;……4分(2)函数的图象如图所示:……6分(3)根据图象可知,①该函数图象是轴对称图形,对称轴为直线.正确;②当时,随的增大而增大,当时,随的增大而减小.错误;③该函数在自变量的取值范围内有最小值,当时有最小值.正确;故答案为:√;×;√;……9分(4)把代入得,,∴当时,直线与函数的图象只有一个交点,∴方程组有且只有一个公共解,则的取值范围是.故答案为:.……12分20.(本题满分12分)解:(1)根据题意,得,,∵四周阴影部分是八个全等的矩形,∴.……2分∴.答:关于的函数解析式为.……6分(2)∵不小于2,∴,∴.……7分∵2x =-22115m =⨯---=1x =21111n =⨯--=-1-211y x =--1x =1x <y x 1x ≥y x 1x =1-()1,1-2y x t =+3t =-3t >-2y x t =+211y x =--21y x t y a x b =+⎧⎨=-+⎩t 3t >-3t >-6AD AB ==AM MN x ==64EF x =-()()280086260064y x x x =⨯-+-23200960021600x x =-++y x 23200960021600y x x =-++EF 642x -≥01x <≤23200960021600y x x =-++,……8分当时,即,解得(舍),.……10分∵,图象开口向下,对称轴是直线∴当时,随的增大而增大,且时,……11分即:时,预备材料的购买资金不超过28000.答:预备材料的购买资金28000元够用.……12分21.(本题满分14分)解:(1)延长交轴于点,过点作轴于点,∵点,,,∴轴,,,∵轴,∴,,……2分∴,∴,,……4分∴,即原点对的视角为30° (5)分(2)证明:如图,过圆上任一点作圆的两条切线交圆于,,连接,,,则有,,……6分233200288002x ⎛⎫=--+ ⎪⎝⎭28000y =23320028800280002x ⎛⎫--+= ⎪⎝⎭12x =21x =32000-<32x =01x <≤y x 1x =28000y =01x <≤BA x D C CE x ⊥E (A (2,B (C AB y ∥CE =3OE =AB x ⊥BD =2OD =tan BD BOD OD ∠==tan CE COE OE ∠==60BOD ∠=︒30COE ∠=︒30BOC BOD COE ∠︒=∠-∠=O ABC △2O P 1O 1O A B OA OB OP OA PA ⊥OB PB ⊥在中,,,∴,,……8分同理可求得:,∴,……9分即圆上任意一点对圆的视角是60°,∴圆上任意一点对圆的视角是定值.……10分(3)①当摄影者在与连接而成的线段上时,视角是,此时以为圆心,半径画圆,交直线于,,此时∵,,不符合视角的定义,,舍去.②当摄影者在直线上,且位于上方时,视角是,此时以为圆心,半径画圆,交直线于,;此时不符合题意;过点作交延长线于点,则,,Rt OAP △2OA =4OP =1sin 2OA OPA OP ∠==30OPA ∠=︒30OPB ∠=︒60APB ∠=︒2O P 1O 2O P 1O ()5,2--()5,2-APD ∠()4,0E -EA 5x =-3P 6P 361452DP A DP A AED ∠=∠=∠=︒3345DP B DP A ∠>∠=︒6645AP C DP C ∠>∠=︒3P 6P 5x =-()5,2-BPD ∠()2,2A -AB 5x =-1P 5P 5P 1P 1PM AD ⊥DA M 14AP =1523PM =-=∴,∴③当摄影者在直线上,且位于下方时,视角是,此时以为圆心,半径画圆,交直线于,,此时不符合题意;同理得:;综上所述,直线上满足条件的位置坐标或.……14分22.(本题满分14分)解:(1)①……1分理由如下:如答图1,过点作,交的延长线于点,∵, ∴又∵,∴.∴四边形 ∴……2分又∵,∴.即在和中,,,∴……4分∴,.又∵四边形为矩形,∴四边形为正方形……5分∴∴……6分②……7分(2)……8分如答图2,过点作,交延长线于点,AM ==(15,2P -+5x =-()5,2--APC ∠()2,2D --DC 2P 4P 4P (25,2P ---(15,2P -+(25,2P --AD CE BE +=B BF AD ⊥DA F BE l ⊥BF AD ⊥90BEC F ∠=∠=︒AD l ⊥90FDE ∠=︒DEBF 90FBE ∠=︒90ABC ∠=︒ABC ABE FBE ABE ∠-∠=∠-∠CBE ABE∠=∠CBE △ABF △90CEB AFB ∠=∠=︒CBE ABF ∠=∠CB AB=()AAS CBE ABF ≌△△CE AF =BE BF =DEBF DEBF BE DE FD FB===AD CE AD AF FD BE +=+==2DC AD BE +=2CD AD BE -=B BG AD ⊥AD G∵,∴又∵,∴.∴四边形为矩形 ∴……9分又∵,∴.即……10分在和中,,,∴ ∴,又∵四边形为矩形,∴四边形为正方形∴又∵,∴.即……12分(3)的长度为.……12分BE l ⊥BG AD ⊥90BEC G ∠=∠=︒AD l ⊥90GDE ∠=︒DEBG 90GBE ∠=︒90ABC ∠=︒ABC ABE GBE ABE ∠-∠=∠-∠CBE ABG ∠=∠BCE △BAG △90CEB AGB ∠=∠=︒CBE ABG ∠=∠CB AB=()AAS BCE BAG ≌△△CE AG =BE BG=DEBG DEBG DE BE BG DG===CD CE DE =+2CD AG BE AD DG BE AD BE =+=++=+2CD AD BE -=DH 32。
+计算题和化简求值题综合练(三)-2023年初中数学中考复习

计算题和化简求值题1.解不等式组26312x x x ⎧⎪⎨+>⎪⎩,并把它的解集在数轴上表示出来.2.计算:()211293⎛⎫-+-+++- ⎪⎝⎭. 3.计算:23(21)(34)(34)x x x -----4.先化简,再求值:2211a a a a a--⎛⎫-÷ ⎪⎝⎭,其中a =-3. 5.先化简,再求值:()()()2a b a b b a b +-++,其中1a =,2b =-.6.计算:0212sin 45322016-⎛⎫︒-+- ⎪⎝⎭ 7.计算:1201420233-⎛⎫-+-+ ⎪⎝⎭8.计算:015(3)|7⎛⎫⨯-+- ⎪⎝⎭. 9.解不等式组22(1)811132x x x x +<-+⎧⎪+-⎨-≥⎪⎩,并写出其所有的整数解. 10()3020152sin 60+-+︒. 11.先化简,再求值:2222111x x x x x x -+-÷-+,其中2x =. 12.化简22441111x x x x x x ⎛⎫++--÷ ⎪++⎝⎭,并求值,其中x 是不等式组213(1)58x x x ->-⎧⎨-<⎩的正整数解.13.先化简,再求值:231(1)24a a a ++÷--,其中3a =-.14.计算:01(32sin 6031tan 60︒-︒--+- 15.先化简:2344(1)11a a a a a -+-+÷++,然后在1-,1,2三个数中给a 选择一个合适的数代入求值.16.先化简,再求值:232()121x x x x x x --÷+++,其中x 满足250x x +-=. 17.化简2222111x x x x x x-+-÷-+,并求值,其中x 是一元二次方程x 2﹣7x +6=0的解.18.先化简,再求值:2233114442x x x x x x --⎛⎫÷-+ ⎪-++-⎝⎭,其中|2x =+19.计算:)120201(122-⎛⎫-- ⎪⎝⎭.参考答案:1.13x -<≤,见解析.解:26{312x x x +>①②, 解不等式①,得3x ≤,解不等式①,得1x >-,所以,原不等式组的解集为-13x ≤<, 在数轴上表示如下:.2.1633.2211213x x --解:原式223(441)(169)x x x =-+--2212123169x x x =-+-+2211213x x =--.4.12.原式=221a a a -+•2a a 1-=2(1)a a-•2a a 1-=a (a -1)=a 2-a , 当a =-3时,原式=9+3=12.5.2a 2ab +,3-解:原式222222a b ab b a ab =-++=+, 将1a =,2b =-代入式中得:原式()21212143=+⨯⨯-=-=-.6.37.68.166- 解:015(3)|67⎛⎫⨯-+- ⎪⎝⎭ 1561=-16=-+9.41x -<≤-,不等式的所有整数解为3-、2-、1- 解:解不等式①得:4x >-,解不等式①得:1x ≤-,所以原不等式组的解集为41x -<≤-, 故此不等式的所有整数解为3-、2-、1-. 10.1-解:原式318=+-+3183=+-+1=-.11.1x ,12解:2222111x x x xx x -+-÷-+=()()()()211111x x x x x x --÷+-+=()()()()211111x x x x x x -++--=1x ,将2x =代入得原式=12.12.121x -+, 13-22441111x x x x x x ⎛⎫++--÷ ⎪++⎝⎭=()2222121111x x x x x x x +⎛⎫++-÷ ⎪+++⎝⎭ =2(21)11(21)x x x x -++++=121x -+解不等式213(1)58x x x ->-⎧⎨-<⎩得32x -<< 又x 为正整数,所以1x = 当1x =时,原式=1211-⨯+=13- 13.2a +,﹣1.14.3226 解:01(32)2sin 6031tan 602︒-︒-+- 23112313= 2113313= 322-= 15.22+-a a,3 解:原式223(1)11(2)a a a a --+=⋅+- 22411(2)a a a a -+=⋅+- 2(2)(2)11(2)a a a a a -++=⋅+- 2(2)(2)(2)a a a -+=- 22a a+=-, 要使分式有意义,故10a +≠且20a -≠, 1a ∴≠-且2a ≠,∴当1a =时,原式21321+==-. 16.2x x +,5解:232()121x x x x x x --÷+++ 2(1)3(1)12x x x x x x +-+=⋅+- 223(1)12x x x x x x +-+=⋅+- 2(2)(1)12x x x x x -+=⋅+-2x x =+,250x x +-=,25x x ∴+=,∴原式5=.17.11,6x 解:2222111x x x x x x-+-÷-+ =2(1)1(1)(1)(1)x x x x x x -+⋅+-- =1x, 由x 2﹣7x +6=0, 解得x 1=6,x 2=1,当x =1时,原分式无意义, ①x =6,当x =6时, 原式=16.18.32x - 解:2233114442x x x x x x --⎛⎫÷-+ ⎪-++-⎝⎭ ()()()2231232222x x x x x x x x +--⎛⎫=⨯-+ ⎪----+⎝⎭ 2122x x x x +-=--- 32x =-当|2x =+时,原式==19.2+解:原式2=2=故答案为2 203320112(12)232-⎛⎫-- ⎪⎝⎭23431+= 33=.。
2024成都中考数学第一轮专题复习之第三部分 重难题型分类练8.题型八 阅读理解题

题型八阅读理解题类型一定义新运算1. (2022赤峰)阅读下列材料定义运算:min|a,b|,当a≥b时,min|a,b|=b;当a<b时,min|a,b|=a. 例如:min|-1,3|=-1;min|-1,-2|=-2.第1题图完成下列任务(1)① min|(-3)0,2|=________;② min|-14,-4|=________;(2)如图,已知反比例函数y1=kx和一次函数y2=-2x+b的图象交于A、B两点,当-2<x<0时,min|kx,-2x+b|=(x+1)(x-3)-x2.求这两个函数的解析式.2. (2022重庆B卷)对于一个各数位上的数字均不为0的三位自然数N,若N能被它的各数位上的数字之和m整除,则称N是m的“和倍数”.例如:∵247÷(2+4+7)=247÷13=19,∴247是13的“和倍数”.又如:∵214÷(2+1+4)=214÷7=30……4, ∴214不是“和倍数”.(1)判断357,441是否是“和倍数”?说明理由;(2)三位数A 是12的“和倍数”,a ,b ,c 分别是数A 其中一个数位上的数字,且a >b >c .在a ,b ,c 中任选两个组成两位数,其中最大的两位数记为F (A ),最小的两位数记为G (A ).若F (A )+G (A )16 为整数,求出满足条件的所有数A .类型二 新概念的理解与应用3. (2022北京)在平面直角坐标系xOy 中,已知点M (a ,b ),N .对于点P 给出如下定义:将点P 向右(a ≥0)或向左(a <0)平移|a |个单位长度,再向上(b ≥0)或向下(b <0)平移|b |个单位长度,得到点P ′,点P ′关于点N 的对称点为Q ,称点Q 为点P 的“对应点”.(1)如图,点M (1,1),点N 在线段OM 的延长线上.若点P (-2,0),点Q 为点P 的“对应点”,第3题图①在图中画出点Q ;②连接PQ ,交线段ON 于点T .求证:NT =12OM ;(2)⊙O 的半径为1,M 是⊙O 上一点,点N 在线段OM 上,且ON =t (12 <t <1).若P 为⊙O 外一点,点Q 为点P 的“对应点”,连接PQ .当点M 在⊙O 上运动时直接写出PQ 长的最大值与最小值的差(用含t 的式子表示).4. (2022嘉兴)小东在做九上课本123习题:“1∶2 也是一个很有趣的比.已知线段AB (如图①),用直尺和圆规作AB 上的一点P ,使AP ∶AB =1∶2 .”小东的作法是:如图②,以AB 为斜边作等腰直角三角形ABC ,再以点A 为圆心,AC 长为半径作弧,交线段AB 于点P ,点P 即为所求作的点,小东称点P 为线段AB 的“趣点”.(1)你赞同他的作法吗?请说明理由;(2)小东在此基础上进行了如下操作和探究:连接CP ,点D 为线段AC 上的动点,点E 在AB 的上方,构造△DPE ,使得△DPE ∽△CP B.①如图③,当点D 运动到点A 时,求∠CPE 的度数;②如图④,DE 分别交CP ,CB 于点M ,N ,当点D 为线段AC 的“趣点”时(CD <AD ),猜想:点N 是否为线段ME 的“趣点”?并说明理由.第4题图5. (2022长沙)若关于x 的函数y ,当t -12 ≤x ≤t +12 时,函数y 的最大值为M ,最小值为N ,令函数h =M -N 2 ,我们不妨把函数h 称之为函数y 的“共同体函数”.(1)①若函数y =4044x ,当t =1时,求函数y 的“共同体函数”h 的值; ②若函数y =kx +b (k ≠0,k ,b 为常数),求函数y 的“共同体函数”h 的解析式;(2)若函数y =2x(x ≥1),求函数y 的“共同体函数”h 的最大值;(3)若函数y =-x 2+4x +k ,是否存在实数k ,使得函数y 的最大值等于函数y 的“共同体函数”h 的最小值.若存在,求出k 的值;若不存在,请说明理由.6. (2022常州)在四边形ABCD 中,O 是边BC 上的一点.若△OAB ≌△OCD ,则点O 叫做该四边形的“等形点”.(1)正方形________“等形点”(填“存在”或“不存在”);(2)如图,在四边形ABCD 中,边BC 上的点O 是四边形ABCD 的“等形点”.已知CD =42 ,OA =5,BC =12,连接AC ,求AC 的长;第6题图(3)在四边形EFGH 中,EH ∥FG .若边FG 上的点O 是四边形EFGH 的“等形点”,求OFOG 的值.类型三 解题方法型7. (2022山西)阅读与思考下面是小宇同学的数学小论文,请仔细阅读并完成相应的任务.用函数观点认识一元二次方程根的情况我们知道,一元二次方程ax 2+bx +c =0(a ≠0)的根就是相应的二次函数y =ax 2+bx +c (a ≠0)的图象(称为抛物线)与x 轴交点的横坐标.抛物线与x 轴的交点有三种情况:有两个交点、有一个交点、无交点.与此相对应,一元二次方程的根也有三种情况:有两个不相等的实数根、有两个相等的实数根、无实数根.因此可用抛物线与x 轴的交点个数确定一元二次方程根的情况.下面根据抛物线的顶点坐标(-b2a ,4ac -b 24a )和一元二次方程根的判别式Δ=b 2-4ac ,分别从a >0和a <0两种情况进行分析: (1)a >0时,抛物线开口向上. ①当Δ=b 2-4ac >0时,有4ac -b 2<0. ∵a >0,∴顶点纵坐标4ac -b 24a<0.∴顶点在x 轴的下方,抛物线与x 轴有两个交点(如图①). ∴一元二次方程ax 2+bx +c =0(a ≠0)有两个不相等的实数根. ②当Δ=b 2-4ac =0时,有4ac -b 2=0. ∵a >0,∴顶点纵坐标4ac -b 24a=0.∴顶点在x 轴上,抛物线与x 轴有一个交点(如图②). ∴一元二次方程ax 2+bx +c =0(a ≠0)有两个相等的实数根. ③当Δ=b 2-4ac <0时, …(2)a <0时,抛物线开口向下. …图①图② 第7题图任务:(1)上面小论文中的分析过程,主要运用的数学思想是_____________(从下面选项中选出两个即可);A. 数形结合B. 统计思想C. 分类讨论D. 转化思想(2)请参照小论文中当a>0时①②的分析过程,写出③中当a>0,Δ<0时,一元二次方程根的情况的分析过程,并画出相应的示意图;(3)实际上,除一元二次方程外,初中数学还有一些知识也可以用函数观点来认识.例如:可用函数观点来认识一元一次方程的解.请你再举出一例为_____________________________________.源自北师九下P52议一议8. (2022张家界)阅读下列材料:在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,求证:asin A=bsin B.第8题图①证明:如图①,过点C作CD⊥AB于点D,则:在Rt△BCD中,CD=a sin B,在Rt△ACD中,CD=b sin A,∴a sin B=b sin A,∴asin A=bsin B.根据上面的材料解决下列问题:(1)如图②,在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,求证:bsin B=csin C;(2)为了办好湖南省首届旅游发展大会,张家界市积极优化旅游环境.如图③,规划中的一片三角形区域需美化,已知∠A=67°,∠B=53°,AC=80米,求这片区域的面积.(结果保留根号.参考数据:sin 53°≈0.8,sin 67°≈0.9)第8题图9. (2022随州)《几何原本》是古希腊数学家欧几里得的一部不朽著作,是数学发展史的一个里程碑.在该书的第2卷“几何与代数”部分,记载了很多利用几何图形来论证的代数结论,利用几何给人以强烈印象将抽象的逻辑规律体现在具体的图形之中.(1)我们在学习许多代数公式时,可以用几何图形来推理,观察下列图形,找出可以推出的代数公式,(下面各图形均满足推导各公式的条件,只需填写对应公式的序号)第9题图公式①:(a +b +c )d =ad +bd +cd 公式②:(a +b )(c +d )=ac +ad +bc +bd 公式③:(a -b )2=a 2-2ab +b 2 公式④:(a +b )2=a 2+2ab +b 2图①对应公式____,图②对应公式______,图③对应公式____,图④对应公式______;(2)《几何原本》中记载了一种利用几何图形证明平方差公式(a +b )(a -b )=a 2-b 2的方法,如图⑤,请写出证明过程;(已知图中各四边形均为矩形)(3)如图⑥,在等腰直角三角形ABC 中,∠BAC =90°,D 为BC 的中点,E 为边AC 上任意一点(不与端点重合),过点E 作EG ⊥BC 于点G ,作EH ⊥AD 于点H ,过点B 作BF ∥AC 交EG 的延长线于点F .记△BFG 与△CEG 的面积之和为S 1,△ABD 与△AEH 的面积之和为S 2. ①若E 为边AC 的中点,则S 1S 2的值为________;②若E 不为边AC 的中点时,试问①中的结论是否仍成立?若成立,写出证明过程;若不成立,请说明理由.图⑤ 图⑥第9题图10. (2021广西北部湾经济区)【阅读理解】如图①,l 1∥l 2,△ABC 的面积与△DBC 的面积相等吗?为什么? 解:相等,在△ABC 和△DBC 中,分别作AE ⊥l 2,DF ⊥l 2,垂足分别为点E ,F . ∴∠AEF =∠DFC =90°,∴AE ∥DF . ∵l 1∥l 2,∴四边形AEFD 是平行四边形, ∴AE =DF .又S △ABC =12 BC ·AE ,S △DBC =12 BC ·DF ,∴S △ABC =S △DB C .【类比探究】如图②,在正方形ABCD 的右侧作等腰△CDE ,CE =DE ,AD =4,连接AE ,求△ADE 的面积.解:过点E 作EF ⊥CD 于点F ,连接AF . 请将余下的求解步骤补充完整.【拓展应用】如图③,在正方形ABCD 的右侧作正方形CEFG ,点B ,C ,E 在同一直线上,AD =4,连接BD ,BF ,DF ,直接写出△BDF 的面积.第10题图。
中考数学压轴试题复习 第三部分 专题一 代数计算及通过代数计算进行说理问题-人教版初中九年级全册数学

§3.1 代数计算及通过代数计算进行说理问题课前导学计算说理是通过计算得到结论;说理计算侧重说理,说理之后进行代入求值.压轴题中的代数计算题,主要是函数类题.函数计算题必考的是待定系数法求函数的解析式,按照设、列、解、验、答五步完成,一般来说,解析式中待定几个字母,就要代入几个点的坐标.还有一类计算题,就是从特殊到一般,通过计算寻找规律.代数计算和说理较多的一类题目,是确定直线与抛物线的交点个数.联立直线和抛物线的解析式组成方程组,消去y ,得到关于x 的一元二次方程,然后根据∆确定交点的个数.我们介绍一下求函数图像交点坐标的几何方法.如图1,已知直线y =x +1与x 轴交于点A ,抛物线y =x 2-2x -3与直线y =x +1交于A 、B 两点,求点B 的坐标的代数方法,就是联立方程组,方程组的一个解是点A 的坐标,另一个解计算点的坐标.几何法是这样的:设直线AB 与y 轴分别交于C ,那么tan ∠AOC =1.作BE ⊥x 轴于E ,那么1BE AE=.设B(x , x 2-2x -3),于是22311x x x --=+. 请注意,这个分式的分子因式分解后,(1)(3)11x x x +-=+.这个分式能不能约分,为什么?因为x =-1的几何意义是点A ,由于点B 与点A 不重合,所以x ≠-1,因此约分以后就是x -3=1.这样的题目一般都是这样,已知一个交点求另一个交点,经过约分,直接化为一元一次方程,很简便.图1例 1 2014年某某省某某市中考第25题在平面直角坐标系中,我们不妨把横坐标和纵坐标相等的点叫“梦之点”,例如点(1,1),(-2,-2),,…,都是“梦之点”,显然“梦之点”有无数个.(1)若点P(2, m)是反比例函数nyx=(n为常数,n≠0)的图象上的“梦之点”,求这个反比例函数的解析式;(2)函数y=3kx+s-1(k、s为常数)的图象上存在“梦之点”吗?若存在,请求出“梦之点”的坐标,若不存在,说明理由;(3)若二次函数y=ax2+bx+1(a、b是常数,a>0)的图象上存在两个“梦之点”A(x1, x1)、B(x2, x2),且满足-2<x1<2,| x1-x2|=2,令2157 248t b b=-+,试求t的取值X围.动感体验请打开几何画板文件名“14某某25”,拖动y轴正半轴上表示实数a的点,可以体验到,A、B两点位于y轴同侧,A、B两点间的水平距离、竖直距离都是2,并且对于同一个a,有两个对应的b和b′,但是t随b、t随b′变化时对应的t的值保持相等.思路点拨1.“梦之点”都在直线y=x上.2.第(2)题就是讨论两条直线的位置关系,分重合、平行和相交三种情况.3.第(3)题放弃了也是明智的选择.求t关于b的二次函数的最值,b的取值X围由“梦之点”、-2<x1<2和| x1-x2|=2三个条件决定,而且-2<x1<2还要分两段讨论.图文解析(1)因为点P(2, m)是“梦之点”,所以P(2, 2).所以4yx =.(2)“梦之点”一定在直线y=x上,直线y=3kx+s-1与直线y=x的位置关系有重合、平行、相交.图1 图2 图3①如图1,当直线y =3kx +s -1与直线y =x 重合时,有无数个“梦之点”.此时k =13,s =1.②如图2,当直线y =3kx +s -1与直线y =x 平行时,没有“梦之点”.此时k =13,s ≠1.③如图3,当直线y =3kx +s -1与直线y =x 相交时,有1个“梦之点”.此时k ≠13,“梦之点”的坐标为11(,)3131s s k k ----. (3)因为A (x 1,x 1)、B (x 2,x 2)两点是抛物线与直线y =x 的交点,联立y =ax 2+bx +1和y =x ,消去y ,整理,得ax 2+(b -1)x +1=0.所以x 1x 2=1a>0.所以A 、B 两点在y 轴的同侧. 如图4,由| x 1-x 2|=2,可知A 、B 两点间的水平距离、竖直距离都是2.已知-2<x 1<2,我们分两种情况来探求a 的取值X 围:①当A 、B 两点在y 轴右侧时,0<x 1<2,2<x 2<4.所以0<x 1x 2<8.②当A 、B 两点在y 轴左侧时,-2<x 1<0,-4<x 2<-2.所以0<x 1x 2<8. 综合①、②,不论0<x 1<2或-2<x 1<0,都有0<x 1x 2<8.所以0<1a <8.所以a >18. 由ax 2+(b -1)x +1=0,得x 1+x 2=1b a -,x 1x 2=1a. 由| x 1-x 2|=2,得(x 1-x 2)2=4.所以(x 1+x 2)2-4x 1x 2=4.所以22(1)44b a a--=.整理,得22(1)44b a a -=+. 所以2157248t b b =-+=2109(1)48b -+=21094448a a ++=261(21)48a ++.如图5,这条抛物线的开口向上,对称轴是直线12a =-,在对称轴右侧,t 随a 的增大而增大.因此当18a =时,t 取得最小值,t =2161(1)448++=176. 所以t 的取值X 围是t >176.图4 图5考点伸展第(3)题我们也可以这样来讨论:一方面,由| x 1-x 2|=2,得(x 1-x 2)2=4.所以(x 1+x 2)2-4x 1x 2=4. 所以22(1)44b a a--=.整理,得22(1)44b a a -=+. 另一方面,由f (2)>0,f (-2)<0,得f (2)f (-2)<0. 所以[42(1)1][42(1)1]a b a b +-+--+<0.所以22(41)4(1)a b +--=22(41)4(44)a a a +-+=18a -<0.所以a >18.例 2 2014年某某省某某市中考第23题设m 是不小于-1的实数,使得关于x 的方程x 2+2(m -2)x +m 2-3m +3=0有两个不相等的实数根x 1,x 2.(1)若12111x x +=,求132m-的值; (2)求2121211mx mx m x x +---的最大值. 动感体验请打开几何画板文件名“14某某23”,拖动x 轴上表示实数m 的点运动,可以体验到,当m 小于1时,抛物线与x 轴有两点交点A 、B .观察点D 随m 运动变化的图像,可以体验到,当m =-1时,点D 到达最高点.思路点拨1.先确定m 的取值X 围,由两个条件决定.2.由根与系数的关系,把第(1)题的已知条件转化为关于m 的方程.3.第(2)题首先是繁琐的式子变形,把m 提取出来,可以使得过程简便一点. 图文解析(1)因为方程x 2+2(m -2)x +m 2-3m +3=0有两个不相等的实数根,所以∆>0. 由∆=4(m -2)2-4(m 2-3m +3)=-4m +4>0,得m <1.又已知m 是不小于-1的实数,所以-1≤m <1.由根与系数的关系,得122(2)24x x m m +=--=-+,21233x x m m ⋅=-+. 若12111x x +=,那么1212x x x x +=⋅.所以22433m m m -+=-+. 整理,得210m m --=.解得m =m =.所以323(12m -=-=.所以132m -2. (2)2121211mx mx m x x +---=121211x x m m x x ⎡⎤+-⎢⎥--⎣⎦=122112(1)(1)(1)(1)x x x x m m x x ⎡⎤-+--⎢⎥--⎣⎦=12121212()21()x x x x m m x x x x ⎡⎤+--⎢⎥-++⎣⎦=22(24)2(33)1(24)33m m m m m m m m ⎡⎤-+--+-⎢⎥--++-+⎣⎦ =222+42m m m m m m ⎡⎤---⎢⎥-⎣⎦=22(1)(1)m m m m m ⎡⎤---⎢⎥-⎣⎦=222m m -+-=2(1)3m -++.所以当m =-1时,它有最大值,最大值为3(如图1所示).图1考点伸展当m变化时,抛物线y=x2+2(m-2)x+m2-3m+3=0的顶点的运动轨迹是什么?因为抛物线的对称轴是直线x=-(m-2),所以抛物线的顶点的纵坐标y=(m-2)2-2(m-2)2+m2-3m+3=m-1.因为x+y=-(m-2)+m-1=1为定值,所以y=-x+1.也就是说,抛物线的顶点(x, y)的运动轨迹是直线y=-x+1(如图2所示).图2例 3 2014年某某省某某市中考第26题如图1,已知二次函数y=-x2+bx+c的对称轴为x=2,且经过原点,直线AC的解析式为y=kx+4,直线AC与y轴交于点A,与二次函数的图象交于B、C两点.(1)求二次函数解析式; (2)若1=3AOB BOC S S △△,求k 的值; (3)若以BC 为直径的圆经过原点,求k 的值.图1动感体验请打开几何画板文件名“14某某26”,拖动点C 在抛物线上运动,可以体验到,当以BC 为直径的圆经过原点时,△BMO ∽△ONC .思路点拨1.第(2)题先将面积比转化为AB 与BC 的比,进而转化为B 、C 两点的横坐标的比.2.第(2)题可以用直线的解析式表示B 、C 两点的坐标,再代入抛物线的解析式列方程组;也可以用抛物线的解析式表示B 、C 两点的坐标,再代入直线的解析式列方程组.3.第(3)题先联立抛物线与直线,根据一元二次方程根与系数的关系,得到B 、C 两点的横坐标的和与积,再构造相似三角形列方程.图文解析(1)因为原点O 关于直线x =2的对称点为(4, 0),所以抛物线y =-x 2+bx +c 的解析式为y =-x (x -4)=-x 2+4x .(2)如图2,因为1==3AOB BOC S AB S BC △△,所以1=4B C x x .设x B =m ,那么x C =4m . 将点B (m , km +4)、C (4m , 4km +4)分别代入y =-x (x -4),得4(4),444(44).km m m km m m +=--⎧⎨+=--⎩①② ①-②÷4,整理,得m 2=1.所以m =1.将m =1代入①,得k +4=3.解得k =-1.此时点C 落在x 轴上(如图3).(3)因为B 、C 是直线y =kx +4与抛物线的交点,设B (x 1,kx 1+4),C (x 2,kx 2+4). 联立y =-x 2+4x 和y =kx +4,消去y ,整理,得x 2+(k -4)x +4=0.所以x 1+x 2=4-k ,x 1x 2=4.如图5,若以BC 为直径的圆经过原点,那么∠BOC =90°.作BM ⊥y 轴,⊥y 轴,垂足分别为M 、N ,那么△BMO ∽△ONC .根据BM ON MO NC=,得1212(4)4x kx kx x -+=+. 所以212121212(4)(4)[4()16]x x kx kx k x x k x x =-++=-+++.将x 1+x 2=4-k ,x 1x 2=4代入,得24[44(4)16]k k k =-+-+.解得54k =-.图2 图3 图4考点伸展第(2)题也可以先用抛物线的解析式设点B 、C 的坐标,再代入直线的解析式列方程组. 将点B (m ,-m 2+4m )、C (4m ,-16m 2+16m )分别代入y =kx +4,得 2244,16164 4.m m km m m km ⎧-+=+⎪⎨-+=+⎪⎩①②①×4-②,得12m 2=12.所以m =1.将m =1代入①,得3=k +4.解得k =-1.例 4 2014年某某省株洲市中考第24题已知抛物线252(2)4k y x k x +=-++和直线2(1)(1)y k x k =+++. (1)求证:无论k 取何实数值,抛物线与x 轴有两个不同的交点;(2)抛物线与x 轴交于A 、B 两点,直线与x 轴交于点C ,设A 、B 、C 三点的横坐标分别是x 1、x 2、x 3,求x 1·x 2·x 3的最大值;(3)如果抛物线与x 轴的两个交点A 、B 在原点的右边,直线与x 轴的交点C 在原点的左边,又抛物线、直线分别交y 轴于点D 、E ,直线AD 交直线CE 于点G (如图1),且CA ·GE =CG ·AB ,求抛物线的解析式.图1动感体验请打开几何画板文件名“14株洲24”,拖动y 轴上表示实数k 的点运动,可以体验到,抛物线与x 轴总是有两个交点.观察x 1·x 2·x 3随k 变化的函数图像,可以体验到,x 1·x 2·x 3是k 的二次函数.还可以体验到,存在一个正数k ,使得AD 与BE 平行.思路点拨1.两个解析式像庞然大物,其实第(1)题的语境非常熟悉,走走看,豁然开朗.2.第(2)题x 1·x 2·x 3的最小值由哪个自变量决定呢?当然是k 了.所以先求x 1·x 2·x 3关于k 的函数关系式,就明白下一步该怎么办了.x 1·x 2由根与系数的关系得到,x 3就是点C 的横坐标.3.第(3)题的等积式转化为比例式,就得到AD //BE .由此根据OD ∶OA =OE ∶OB 列方程,再结合根与系数的关系化简.还是走走看,柳暗花明.图文解析(1)因为222(52)17(2)42()424k k k k k +∆=+-⨯=-+=-+>0,所以无论k 取何实数值,抛物线与x 轴有两个不同的交点.(2)由2(1)(1)y k x k =+++,得C (-(k +1), 0).所以x 3=-(k +1).由根与系数的关系,得x 1·x 2=(52)4k +. 所以x 1·x 2·x 3=1(52)(1)4k k -++=21(572)4k k -++. 因此710x =-当时,x 1·x 2·x 3取得最大值,最大值=14949(52)410010-⨯-+=980. (3)如图2,由CA ·GE =CG ·AB ,得CA CG AB GE =. 所以AG //BE ,即AD //BE .所以OD OE OA OB =,即212(52)(1)4k k x x ++=.所以22122(52)(1)4k k x x x ++=⋅.所以222(1)1k x +=. 所以x 2=k +1,或-k -1(舍).又因为x 1+x 2=k +2,所以x 1=1,即A (1, 0).再将点A (1, 0)代入252(2)4k y x k x +=-++,得5201(2)4k k +=-++. 解得k =2.所以抛物线的解析式为y =x 2-4x +3.图2 图3考点伸展把第(3)题中的条件“CA ·GE =CG ·AB ”改为“EC =EB ”,其他条件不变,那么抛物线的解析式是怎样的呢?如图3,因为点E 在y 轴上,当EC =EB 时,B 、C 两点关于y 轴对称,所以B (k +1, 0). 将点B (k +1, 0)代入252(2)4k y x k x +=-++,得252(1)(2)(1)04k k k k ++-+++=. 解得k =2.所以抛物线的解析式为y =x 2-4x +3.。
中考数学 黄金30题系列 专题03 最有可能考的30题(含解析)-人教版初中九年级全册数学试题

专题三最有可能考的30题一、选择题1.某某快速公交(简称:B RT )将在今年底开始动工,预计2016年下半年建成并投入试运营,首条BRT 西起某某火车站,东至某某东站,全长约为11300米,其中数据11300用科学记数法表示为( ) A .0.113×105B .1.13×104C .11.3×103D .113×102【答案】B . 【解析】试题分析:将11300用科学记数法表示为:1.13×104.故选B . 考点:科学记数法—表示较大的数.2.下面的图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .【答案】C .考点:中心对称图形;轴对称图形. 3.下列运算正确的是( )A .ab a ab 224=÷B .6329)3(x x =C .743a a a =• D .236=÷【答案】C . 【解析】试题分析:A .422ab a b ÷=,错误;B .236(3)27x x =,错误; C .743a a a =•,正确; D .632÷=,错误,故选C .考点:整式的除法;同底数幂的乘法;幂的乘方与积的乘方;二次根式的乘除法. 4.如图,在直角坐标系中,O 为坐标原点,函数11k y x =(x <0)和22ky x =(0x >)的图象上,分别有A 、B 两点,若AB ∥x 轴且交y 轴于点C ,且OA ⊥OB ,12AOCS ∆=,92BOC S ∆=,则线段AB 的长度为( )A .33B .1033C .43D .4 【答案】B .考点:反比例函数的图象和性质.5.如图,在平面直角坐标系xOy 中,△A ′B ′C ′由△ABC 绕点P 旋转得到,则点P 的坐标为( )A.(0,1)B.(1,﹣1)C.(0,﹣1)D.(1,0)【答案】B.【解析】试题分析:由图形可知,对应点的连线CC′、AA′的垂直平分线过点(0,﹣1),根据旋转变换的性质,点(1,﹣1)即为旋转中心.故旋转中心坐标是P(1,﹣1).故选B.考点:坐标与图形变化-旋转.6.菱形具有而平行四边形不具有的性质是()A.两组对边分别平行B.两组对角分别相等C.对角线互相平分D.对角线互相垂直【答案】D.【解析】试题分析:A.不正确,两组对边分别平行;B .不正确,两组对角分别相等,两者均有此性质正确,;C .不正确,对角线互相平分,两者均具有此性质;D .菱形的对角线互相垂直但平行四边形却无此性质. 故选D .考点:菱形的性质;平行四边形的性质.7.如图,已知经过原点的抛物线2y ax bx c =++(a ≠0)的对称轴是直线1x =-,下列结论中: ①0ab >, ②a +b +c >0, ③当-2<x <0时,y <0. 正确的个数是( )A .0个B .1个C .2个D .3个 【答案】D .考点:二次函数图象与系数的关系;综合题.8.将抛物线2y x =向右平移2个单位,再向上平移3个单位后,抛物线的解析式为( ) A .2(2)3y x =++B .2(2)3y x =-+C .2(2)3y x =+-D .2(2)3y x =-- 【答案】B . 【解析】试题分析:∵将抛物线2y x =向上平移3个单位再向右平移2个单位,∴平移后的抛物线的解析式为:2(2)3y x =-+.故选B .考点:二次函数图象与几何变换.9.如图所示,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD +PE 的和最小,则这个最小值为( )A .3B .23C .26D .6 【答案】B .考点:轴对称-最短路线问题;最值问题;正方形的性质.10.如图,AB 是⊙O 的直径,M 是⊙O 上一点,MN ⊥AB ,垂足为N ,P 、Q 分别是弧AM 、弧BM 上一点(不与端点重合).若∠MNP =∠MNQ ,下面结论:①∠PNA =∠QNB ;②∠P +∠Q =180°;③∠Q =∠PMN ;④PM =QM ;⑤MN 2=PN •QN . 正确的结论有( )A .2个B .3个C .4个D .5个 【答案】B . 【解析】试题分析:延长QN 交圆O 于C ,延长MN 交圆O 于D ,如图:∵MN ⊥AB ,∴∠MNA =∠MNB =90°,∵∠MNP =∠MNQ ,∴∠PNA =∠QNB ,故①对; ∵∠P +∠PMN <180°,∴∠P +∠Q <180°,故②错;因为AB 是⊙O 的直径,MN ⊥AB ,∴AM DA =,∵∠PNA =∠QNB ,∠ANC =∠QNB ,∴∠PNA =∠ANC ,∴P ,C 关于AB 对称,∴AP AC =,∴PD MC =,∴∠Q =∠PMN ,故③对;∵∠MNP =∠MNQ ,∠Q =∠PMN ,∴△PMN ∽△MQN ,∴MN 2=PN •QN ,PM 不一定等于MQ ,所以④错误,⑤对. 故选B .考点:垂径定理;相似三角形的判定与性质. 二、填空题 11.分式方程1213x x =+的解是. 【答案】x =1. 【解析】试题分析:两边都乘以3(2x +1),得3x =2x +1,解得x =1,经检验x =1是原方程的根,所以解为x =1.故答案为:x =1.12.函数12y x =-中,x 的取值X 围是. 【答案】x >2. 【解析】试题分析:由题意,可得x -2>0,所以x >2.故答案为:x >2. 考点:函数自变量的取值X 围;二次根式有意义的条件. 13.写一个你喜欢的实数m 的值,使得事件“对于二次函数21(1)32y x m x =--+,当3x <-时,y 随x 的增大而减小”成为随机事件.【答案】答案不唯一,2m <-的任意实数皆可,如:﹣3.考点:随机事件;二次函数的性质;开放型.14.圆锥体的底面周长为6π,侧面积为12π,则该圆锥体的高为. 【答案】7. 【解析】试题分析:∵圆锥的底面周长为6π,∴圆锥的底面半径为6π÷2π=3,∵圆锥的侧面积=12×侧面展开图的弧长×母线长,∴母线长=2×12π÷(6π)=4,∴这个圆锥的高是2243-=7,故答案为:7. 考点:圆锥的计算.15.关于x 的一元二次方程20x x m -+=没有实数根,则m 的取值X 围是. 【答案】14m >. 【解析】试题分析:根据方程没有实数根,得到△=24140b ac m -=-<,解得:14m >.故答案为:14m >.16.如图,在正方形ABCD 的外侧,作等边△ADE ,则∠BED 的度数是.【答案】45°. 【解析】试题分析:∵四边形ABCD 是正方形,∴AB =AD ,∠BAD =90°.∵等边三角形ADE ,∴AD =AE ,∠DAE =∠AED =60°.∠BAE =∠BAD +∠DAE =90°+60°=150°,AB =AE ,∠AEB =∠ABE =(180°﹣∠BAE )÷2=15°,∠BED =∠DAE ﹣∠AEB =60°﹣15°=45°,故答案为:45°. 考点:正方形的性质;等边三角形的性质.17.如图,一次函数的图象与x 轴、y 轴分别相交于点A 、B ,将△AOB 沿直线AB 翻折,得△ACB .若C (32,32),则该一次函数的解析式为.【答案】33y x =- 【解析】试题分析:连接OC ,过点C 作CD ⊥x 轴于点D ,∵将△AOB 沿直线AB 翻折,得△ACB ,C (32,32),∴AO =AC ,OD =32,DC =32,BO =BC ,则tan ∠COD =CDOD =33,故∠COD =30°,∠BOC =60°,∴△BOC 是等边三角形,且∠CAD =60°,则sin 60°=CD AC ,即A C =sin 60CD =1,故A (1,0),sin 30°=CD OC =32CO =12,则CO=3,故BO =3,B 点坐标为:(0,3),设直线AB 的解析式为:y kx b =+,则03k b b +=⎧⎪⎨=⎪⎩,解得:33k b ⎧=-⎪⎨=⎪⎩,即直线AB 的解析式为:33y x =-+.故答案为:33y x =-+.考点:翻折变换(折叠问题);待定系数法求一次函数解析式;综合题. 18.点(a ﹣1,1y )、(a +1,2y )在反比例函数()0>=k xky 的图象上,若21y y <,则a 的X 围是. 【答案】﹣1<a <1.考点:反比例函数图象上点的坐标特征;分类讨论.19.如图,小明在一块平地上测山高,先在B 处测得山顶A 的仰角为30°,然后向山脚直行100米到达C 处,再测得山顶A 的仰角为45°,那么山高AD 为米(结果保留整数,测角仪忽略不计,2 1.414,3≈1.732)【答案】137.【解析】试题分析:如图,∠ABD =30°,∠ACD =45°,BC =100m ,设AD =xm ,在Rt △ACD 中,∵tan ∠ACD =ADCD,∴CD =AD =x ,∴BD =BC +CD =x +100,在Rt △ABD 中,∵tan ∠ABD =ADBD,∴3(100)3x x =+,∴x =50(31)+≈137,即山高AD 为137米.故答案为:137.考点:解直角三角形的应用-仰角俯角问题.20.如图,抛物线21(2)3y a x =+-与221(3)12y x =-+交于点A (1,3),过点A 作x 轴的平行线,分别交两条抛物线于点B ,C .则以下结论:①无论x 取何值,2y 的值总是正数;②23a =;③当x =0时,216y y -=;④AB +AC =10;⑤12=4y y --最小最小,其中正确结论的个数是:.【答案】4.考点:二次函数的性质.21.在直角坐标系中,直线1y x =+与y 轴交于点A ,按如图方式作正方形A 1B 1C 1O 、A 2B 2C 2C 1、A 3B 3C 1C 2…,A 1、A 2、A 3…在直线1y x =+上,点C 1、C 2、C 3…在x 轴上,图中阴影部分三角形的面积从左到游依次记为1S 、2S 、3S 、…n S ,则n S 的值为(用含n 的代数式表示,n 为正整数).【答案】232n -. 考点:一次函数图象上点的坐标特征;正方形的性质;规律型;综合题.三、解答题22.化简求值:222()42a a a a a ÷---,其中32a =. 【答案】12a +3 【解析】试题分析:先根据分式混合运算的法则把原式进行化简,再把a 的值代入进行计算即可.试题解析:原式=22(2)(2)2a a a a a ÷+--=22(2)(2)2a a a a a -⋅+-=12a +,当32a =时,原式322-+3 考点:分式的化简求值.23.解不等式组:10314x x x -≥⎧⎪⎨-<⎪⎩,并把解集在数轴上表示出来.【答案】1≤x <4.【解析】试题分析:分别求出两不等式的解集,确定出不等式组的解集,表示在数轴上即可.试题解析:10 31 4x x x -≥⎧⎪⎨-<⎪⎩①②,由①得:x ≥1,由②得:x <4,则不等式组的解集为1≤x <4,考点:解一元一次不等式组;在数轴上表示不等式的解集.24.如图,△ABC 各顶点的坐标分别是A (﹣2,﹣4),B (0,﹣4),C (1,﹣1).(1)在图中画出△ABC 向左平移3个单位后的△A 1B 1C 1;(2)在图中画出△ABC 绕原点O 逆时针旋转90°后的△A 2B 2C 2;(3)在(2)的条件下,AC 边扫过的面积是.【答案】(1)作图见试题解析;(2)作图见试题解析;(3)92π. 【解析】试题分析:(1)如图,画出△ABC 向左平移3个单位后的△A 1B 1C 1;(2)如图,画出△ABC 绕原点O 逆时针旋转90°后的△A 2B 2C 2;(3)在(2)的条件下,AC 扫过的面积即为扇形AOA 2的面积减去扇形COC 2的面积,求出即可.试题解析:(1)如图所示,△A 1B 1C 1为所求的三角形;(2)如图所示,△A 2B 2C 2为所求的三角形;(3)在(2)的条件下,AC 边扫过的面积S =229090360360ππ⨯⨯-=52ππ-=92π.故答案为:92π.考点:作图-旋转变换;作图-平移变换;作图题;扇形面积的计算.25.某校九年级两个班,各选派10名学生参加学校举行的“汉字听写”大赛预赛.各参赛选手的成绩如图: 九(1)班:88,91,92,93,93,93,94,98,98,100九(2)班:89,93,93,93,95,96,96,98,98,99通过整理,得到数据分析表如下:(1)直接写出表中m 、n 的值;(2)依据数据分析表,有人说:“最高分在(1)班,(1)班的成绩比(2)班好”,但也有人说(2)班的成绩要好,请给出两条支持九(2)班成绩好的理由;(3)若从两班的参赛选手中选四名同学参加决赛,其中两个班的第一名直接进入决赛,另外两个名额在四个“98分”的学生中任选二个,试求另外两个决赛名额落在同一个班的概率.【答案】(1)m =94,n =95.5;(2)①九(2)班平均分高于九(1)班;②九(2)班的成绩比九(1)班稳定;③九(2)班的成绩集中在中上游,故支持九(2)班成绩好(任意选两个即可);(3)13. 【解析】试题分析:(1)求出九(1)班的平均分确定出m的值,求出九(2)班的中位数确定出n的值即可;(2)分别从平均分,方差,以及中位数方面考虑,写出支持九(2)班成绩好的原因;(3)画树状图得出所有等可能的情况数,找出另外两个决赛名额落在同一个班的情况数,即可求出所求的概率.试题解析:(1)m=110(88+91+92+93+93+93+94+98+98+100)=94,把九(2)班成绩排列为:89,93,93,93,95,96,96,98,98,99,则中位数n=12(95+96)=95.5;(2)①九(2)班平均分高于九(1)班;②九(2)班的成绩比九(1)班稳定;③九(2)班的成绩集中在中上游,故支持九(2)班成绩好(任意选两个即可);(3)用A1,B1表示九(1)班两名98分的同学,C2,D2表示九(2)班两名98分的同学,画树状图,如图所示:所有等可能的情况有12种,其中另外两个决赛名额落在同一个班的情况有4种,则P(另外两个决赛名额落在同一个班)=412=13.考点:列表法与树状图法;加权平均数;中位数;众数;方差.26.如图,在▱ABCD中,E、F分别是AB、CD的中点.(1)求证:四边形EBFD为平行四边形;(2)对角线AC分别与DE、BF交于点M、N,求证:△ABN≌△CDM.【答案】(1)证明见试题解析;(2)证明见试题解析.【解析】试题分析:(1)根据平行四边形的性质,得到AB∥CD,AB=CD;再根据一组对边平行且相等的四边形是平行四边形,可得答案;(2)根据平行四边的性质,可得AB∥CD,AB=CD,∠CDM=∠CFN;根据全等三角形的判定,可得答案.试题解析:(1)∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD ,∵E 、F 分别是AB 、CD 的中点,∴BE =DF ,∵BE ∥DF ,∴四边形EBFD 为平行四边形;(2)∵四边形EBFD 为平行四边形,∴DE ∥BF ,∴∠CDM =∠CFN ,∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD .∴∠BAC =∠DCA ,∠ABN =∠CFN ,∴∠ABN =∠CDM ,在△ABN 与△CDM 中,∵∠BAN =∠DCM ,AB =CD ,∠ABN =∠CDM ,∴△ABN ≌△CDM (ASA ).考点:平行四边形的判定与性质;全等三角形的判定.27.如图,一次函数y x b =+的图象与反比例函数k y x=的图象交于点A 和点B (﹣2,n ),与x 轴交于点C (﹣1,0),连接OA .(1)求一次函数和反比例函数的解析式;(2)若点P 在坐标轴上,且满足PA =OA ,求点P 的坐标.【答案】(1)1y x =+,2y x=;(2)(2,0)或(0,4). 【解析】(2)由12y x y x =+⎧⎪⎨=⎪⎩,解得:12x y =⎧⎨=⎩,或21x y =-⎧⎨=-⎩,∵B (﹣2,﹣1),∴A (1,2). 分两种情况:①如果点P 在x 轴上,设点P 的坐标为(x ,0),∵PA =OA ,∴2222(1)212x -+=+,解得12x =,20x =(不合题意舍去),∴点P 的坐标为(2,0);②如果点P 在y 轴上,设点P 的坐标为(0,y ),∵PA =OA ,∴22221(2)12y +-=+,解得14y =,20y =(不合题意舍去),∴点P 的坐标为(0,4);综上所述,所求点P 的坐标为(2,0)或(0,4).考点:反比例函数与一次函数的交点问题;分类讨论;综合题.28.为满足市场需求,某超市在五月初五“端午节”来领前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y (盒)与每盒售价x (元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P (元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?【答案】(1)201600y x =-+;(2)售价定为60元时,每天销售的利润P (元)最大,最大利润是8000元;(3)440.【解析】试题分析:(1)根据“当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒”即可得出每天的销售量y (盒)与每盒售价x (元)之间的函数关系式;(2)根据利润=1盒粽子所获得的利润×销售量列式整理,再根据二次函数的最值问题解答;(3)先由(2)中所求得的P 与x 的函数关系式,根据这种粽子的每盒售价不得高于58元,且每天销售粽子的利润不低于6000元,求出x 的取值X 围,再根据(1)中所求得的销售量y (盒)与每盒售价x (元)之间的函数关系式即可求解.试题解析:(1)由题意得,y =70020(45)x --=201600x -+;(2)P =(40)(201600)x x --+=220240064000x x -+-=220(60)8000x --+,∵x ≥45,a =﹣20<0,∴当x =60时,P 最大值=8000元,即当每盒售价定为60元时,每天销售的利润P (元)最大,最大利润是8000元;(3)由题意,得220(60)8000x --+=6000,解得150x =,270x =,∵抛物线P =220(60)8000x --+的开口向下,∴当50≤x ≤70时,每天销售粽子的利润不低于6000元的利润,又∵x ≤58,∴50≤x ≤58,∵在201600y x =-+中,20k =-<0,∴y 随x 的增大而减小,∴当x =58时,y 最小值=﹣20×58+1600=440,即超市每天至少销售粽子440盒.考点:二次函数的应用;最值问题;综合题.29.如图,AB 、CD 为⊙O 的直径,弦AE ∥CD ,连接BE 交CD 于点F ,过点E 作直线EP 与CD 的延长线交于点P ,使∠PED =∠C .(1)求证:PE 是⊙O 的切线;(2)求证:ED 平分∠BEP ;(3)若⊙O 的半径为5,CF =2EF ,求PD 的长.【答案】(1)证明见试题解析;(2)证明见试题解析;(3)103. (2)∵AB 、CD 为⊙O 的直径,∴∠AEB =∠CED =90°,∴∠3=∠4(同角的余角相等),又∵∠PED =∠1,∴∠PED =∠4,即ED 平分∠BEP ;(3)设EF =x ,则CF =2x ,∵⊙O 的半径为5,∴OF =2x ﹣5,在RT △OEF 中,222OE OF EF =+,即2225(25)x x =+-,解得x =4,∴EF =4,∴BE =2EF =8,CF =2EF =8,∴DF =CD ﹣CF =10﹣8=2,∵AB 为⊙O 的直径,∴∠AEB =90°,∵AB =10,BE =8,∴AE =6,∵∠BEP =∠A ,∠EFP =∠AEB =90°,∴△AEB ∽△EFP ,∴PF EF BE AE =,即486PF =,∴PF =163,∴PD =PF ﹣DF =1623-=103.考点:切线的判定;相似三角形的判定与性质;圆的综合题;压轴题.30.如图,在四边形ABCD 中,DC ∥AB ,DA ⊥AB ,AD =4cm ,DC =5cm ,AB =8cm .如果点P 由B 点出发沿BC 方向向点C 匀速运动,同时点Q 由A 点出发沿AB 方向向点B 匀速运动,它们的速度均为1cm /s ,当P 点到达C 点时,两点同时停止运动,连接PQ ,设运动时间为ts ,解答下列问题:(1)当t 为何值时,P ,Q 两点同时停止运动?(2)设△PQB 的面积为S ,当t 为何值时,S 取得最大值,并求出最大值;(3)当△PQB 为等腰三角形时,求t 的值.【答案】(1)5;(2)当t =4时,S 的最大值是325;(3)t =4011秒或t =4811秒或t =4秒. 【解析】试题分析:(1)计算BC 的长,找出AB 、BC 中较短的线段,根据速度公式可以直接求得;(2)由已知条件,把△PQB 的边QB 用含t 的代数式表示出来,三角形的高可由相似三角形的性质也用含t 的代数式表示出来,代入三角形的面积公式可得到一个二次函数,即可求出S 的最值;(3)分三种情况讨论:①当PQ =PB 时,②当PQ =BQ 时,③当QB =BP .试题解析:(1)作CE ⊥AB 于E ,∵DC ∥AB ,DA ⊥AB ,∴四边形AFVE 是矩形,∴AE =DE =5,CE =AD =4,∴BE =3,∴BC 2234+,∴BC <AB ,∴P 到C 时,P 、Q 同时停止运动,∴t =51=5(秒),即t =5秒时,P ,Q 两点同时停止运动; (2)由题意知,AQ =BP =t ,∴QB =8﹣t ,作PF ⊥QB 于F ,则△BPF ~△BCE ,∴PF BP CE BC =,即45PF t =,∴PF =45t ,∴S =12QB •PF =14(8)25t t ⨯-=221655t t -+=2232(4)55t --+(0<t ≤5),∵25-<0,∴S 有最大值,当t =4时,S 的最大值是325; (3)∵cos ∠B =35BE FB BC BP ==,∴BF =35t ,∴QF =AB ﹣AQ ﹣BF =885t -,∴QP 22QF PF +2284(8)()55t t -+218455t t -+①当PQ =PB 时,∵PF ⊥QB ,∴BF =QF ,∴BQ =2BF ,即:3825t t -=⨯,解得t =4011; ②当PQ =BQ 时,即218455t t -+﹣t ,即:211480t t -=,解得:10t =(舍去),24811t =; ③当QB =BP ,即8﹣t =t ,解得:t =4.综上所述:当t =4011秒或t =4811秒或t =4秒时,△PQB 为等腰三角形.考点:四边形综合题;动点型;二次函数的最值;最值问题;分类讨论;压轴题.31.如图,在矩形OABC 中,OA =5,AB =4,点D 为边AB 上一点,将△BCD 沿直线CD 折叠,使点B 恰好落在OA 边上的点E 处,分别以OC ,OA 所在的直线为x 轴,y 轴建立平面直角坐标系.(1)求OE 的长;(2)求经过O ,D ,C 三点的抛物线的解析式;(3)一动点P 从点C 出发,沿CB 以每秒2 个单位长的速度向点B 运动,同时动点Q 从E 点出发,沿EC 以每秒1 个单位长的速度向点C 运动,当点P 到达点B 时,两点同时停止运动.设运动时间为t 秒,当t 为何值时,DP =DQ ;(4) 若点N 在(2)中的抛物线的对称轴上,点M 在抛物线上,是否存在这样的点M 与点N ,使得以M ,N ,C ,E 为顶点的四边形是平行四边形?若存在,请求出M 点的坐标;若不存在,请说明理由.【答案】(1)3;(2)241633y x x =+;(3)53t =;(4)M (-6,16)或(2,16)或(-2,163-). 【解析】word 21 / 21 试题解析:(1)∵CE =CB =5,CO =AB =4,∴在Rt △COE 中,OE 22CE CO -2254-;(2)设AD =m ,则DE =BD =4-m ,∵OE =3,∴AE =5-3=2,在Rt △ADE 中,∵222AD AE DE +=,∴2222(4)m m +=-,∴32m =,∴D (32-,5-),∵C (-4,0),O (0,0),∴设过O 、D 、C 三点的抛物线为(4)y ax x =+,∴335(4)22a -=-⋅-+,∴43a =,∴4(4)3y x x =+,即241633y x x =+; (3)∵CP =2t ,∴BP =52t -,在Rt △DBP 和Rt △DEQ 中,∵DP =DQ ,BD =ED ,∴Rt △DBP ≌Rt △DEQ ,∴BP =EQ ,∴52t t -=,∴53t =; (4)∵抛物线的对称轴为直线2x =-,∴设N (-2,n ),由题意知C (-4,0),E (0,3),①若四边形ECMN 是平行四边形,则M (-6,n +3),∴24163(6)(6)1633n +=⨯-+⨯-=,∴M (-6,16); ②若四边形EM 是平行四边形,则M (2,3n -),∴24163221633n -=⨯+⨯=,∴M (2,16); ③若四边形EM 是平行四边形,则M (-2,3n --),∴2416163(2)(2)333n --=⨯-+⨯-=-,∴M (-2,163-); 综上所述,M 点的坐标为:M (-6,16)或M (2,16)或M (-2,163-). 考点:二次函数综合题;动点型;存在型;分类讨论;压轴题.。
初中数学中考二轮复习重难突破专题03 动点函数图象(含答案)

1.点P(x,y)在x轴上,y=0如图①中,点点出发沿运动到点的运动路程为,的面积为,与的函数图像如图②所示,则AB的长为(A. 10B. 12C. 14D. 16【答案】A【解析】由函数图像可知:当时,,面积最大时,可以求出,最后由勾股定理求出AB的值.【详解】当时,,面积最大时,∴,∴,解得或,∴,故选A.【点拨】本题考查函数图像与几何动点问题,需要分析清楚函数图像各个拐点的意义是解题关键.2.如图①,在矩形ABCD中,AB>AD,对角线A C.B D相交于点O,动点P由点A出发,沿AB→BC→CD向点D运动,设点P的运动路径为x,△AOP的面积为y,图②是y关于x的函数关系图象,则AB边的长为( )A. 3B. 4C. 5D. 6【答案】B【解析】根据图形,分情况分析:当P点在AB上运动时,△AOP面积逐渐增大,当P点到达B点时,△AOP面积最大为3,推出AB•BC=12;当P点在BC上运动时,△AOP面积逐渐减小,当P点到达C点时,△AOP面积为0,此时结合图象可知P点运动路径长为7,可推出A B.【详解】解:当P点在AB上运动时,△AOP面积逐渐增大,当P点到达B点时,△AOP面积最大为3.∴AB•BC=3,即AB•BC=12.当P点在BC上运动时,△AOP面积逐渐减小,当P点到达C点时,△AOP面积为0,此时结合图象可知P点运动路径长为7,∴AB+BC=7.则BC=7﹣AB,代入AB•BC=12,得AB2﹣7AB+12=0,解得AB=4或3,因为AB>BC,所以AB=4.故选B.【点拨】本题主要考查动点问题的函数图象,解题的关键是分析三角形面积随动点运动的变化过程,找到分界点极值,结合图象得到相关线段的具体数值.3.如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1 cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为( )A. 2B.C.D.【答案】B【解析】通过分析图象,点F从点A到D用a s,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,B D=,应用两次勾股定理分别求B E和a.【详解】过点D作D E⊥B C于点E由图象可知,点F由点A到点D用时为a s,△F BC的面积为a cm2.∴A D=a∴D E•A D=a∴D E=2当点F从D到B时,用s∴BD=Rt△D BE中,B E=∵A BCD是菱形∴E C=a-1,D C=aRt△D EC中,a2=22+(a-1)2解得a=故选B.【点拨】本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系.4.如图甲所示,A,B是半径为2的⊙O上两点,且OA⊥OB,点P从点A出发,在⊙O以每秒一个单位长度度速度匀速运动,回到点A运动结束,设P点的运动时间为x(单位:s),弦BP的长为y,那么在图乙中可能表示y与x函数关系的是( )A. ①B. ②C. ②或④D. ①或③【答案】D【解析】分两种情形讨论当点顺时针旋转时,图象是③,当点逆时针旋转时,图象是①,由此即可解决问题.【详解】解:当点顺时针旋转,到达⊙O顶点时,运动过程中BP逐渐增大,从增大到4,据此可以判断,y与x函数图象是③,当点逆时针旋转,到达B点时,运动过程中BP逐渐减小,从减小到0,据此可以判断,y与x函数图象是①,故①③正确,故选:D.【点拨】本题考查动点问题函数图象、圆的有关知识,解题的关键理解题意,学会用分类讨论的思想思考问题.5. 如图1,四边形是轴对称图形,对角线,所在直线都是其对称轴,且,相交于点E.动点P从四边形的某个顶点出发,沿图1中的线段匀速运动.设点P运动的时间为x,线段的长为y,图2是y与x的函数关系的大致图象,则点P的运动路径可能是()A. B.C. D.【答案】D【解析】根据图像,以及点的运动变化情况,前两段是y关于x的一次函数图像,判断y随x的增减变化趋势,第一段的最高值与第二段的最高值不相等,即可排除A,B,C选项.【详解】根据图像,前端段是y关于x的一次函数图像,∴应在A C,B D两段活动,故A,B错误,第一段y随x的增大而减小,第二段y随x增大而增大,第一段的最高值与第二段的最高值不相等,∵A E=E C∴C错误故选:D【点拨】本题考查函数的图像,比较抽象,解题的关键是根据图像判断函数值随自变量的值的增减变化情况,以及理解分段函数的最值是解题的关键.6.如图,菱形ABCD的边长为5 cm,s in A=,点P从点A出发,以1 cm/s的速度沿折线AB﹣BC﹣CD运动,到达点D停止;点Q同时从点A出发,以1 cm/s的速度沿AD运动,到达点D停止设点P运动x(s)时,△APQ的面积为y(cm2),则能够反映y与x之间函数关系的图象是( )A. B.C. D.【答案】C【解析】根据题意可以分别得到各段y与x的函数解析式,从而可以解答本题.【详解】解:∵菱形ABCD的边长为5 cm,P,Q的速度都是1 cm/s,当时,,点都在运动,, 故选项A、\D错误,当时,点停止,点运动,高不变,,当时,点停止,点运动,,故选项B错误,选项C正确,故选:C.【点拨】本题考察了三角函数,菱形性质等知识点,讨论动点在不同边的情况,求出对应函数关系式,再去判断是解题关键.7.李叔叔开车上班,最初以某一速度匀速行驶,中途停车加油耽误了几分钟,为了按时到单位,李叔叔在不违反交通规则的前提下加快了速度,仍保持匀速行驶,则汽车行驶的路程y(千米)与行驶的时间t(小时)的函数关系的大致图象是()A. B. C. D.【答案】B【解析】根据“路程速度时间”可得与之间的函数关系式,再根据加完油后,加快了速度可得后面的一次函数的一次项系数更大,图象更陡,由此即可得.【详解】解:设最初的速度为千米/小时,加快了速度后的速度为千米/小时,则,由题意得:最初以某一速度匀速行驶时,,加油几分钟时,保持不变,加完油后,,,函数的图象比函数的图象更陡,观察四个选项可知,只有选项B符合,故选:B.【点拨】本题考查了一次函数的图象,熟练掌握一次函数图象的特征是解题关键.8..如图,在中,,,点从点沿边,匀速运动到点,过点作交于点,线段,,,则能够反映与之间函数关系的图象大致是()A. B. C. D.【答案】D【解析】分两种情况:①当P点在OA上时,即0≤x≤2时;②当P点在A B上时,即2<x≤4时,求出这两种情况下的P C长,则y=P C•OC的函数式可用x表示出来,对照选项即可判断.【详解】解:∵△AOB是等腰直角三角形,A B=,∴O B=4.①当P点在OA上时,即0≤x≤2时,P C=O C=x,S△P OC=y=PC•OC=x2,是开口向上的抛物线,当x=2时,y=2;O C=x,则B C=4-x,P C=B C=4-x,S△P OC=y=PC•OC=x(4-x)=-x2+2x,是开口向下的抛物线,当x=4时,y=0.综上所述,D答案符合运动过程中y与x的函数关系式.故选:D.【点拨】本题主要考查了动点问题的函数图象,解决这类问题要先进行全面分析,根据图形变化特征或动点运动的背景变化进行分类讨论,然后动中找静,写出对应的函数式.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(53)第53课时 8分题专题(3)
图象信息题专题
1.甲、乙两车在连通A、B、C三地的公路上行驶,甲车从A地出发匀速向C 地行驶,同时乙车从C地出发匀速向B地行驶,到达B地并在B地停留1小时后,按原路原速返回到C地.在两车行驶的过程中,甲、乙两车距B地的路程y(千米)与行驶时间x(小时)之间的函数图象如图所示,请结合图象回答下列问题:
(1)求甲、乙两车的速度,并在图中()内填上正确的数;
(2)求乙车从B地返回到C地的过程中,y与x之间的函数关系式;
(3)当甲、乙两车行驶到距B地的路程相等时,甲、乙两车距B地的路程是多少?
)
2.甲、乙两组工人同时开始加工某种零件,乙组在工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)
与时间x(时)之间的函数图象如图所示.
(1)求甲组加工零件的数量y与时间x之间的函数关系式.
(2)求乙组加工零件总量a的值.
(3)甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?再经过多长时间恰好装满第2
箱?
3.如图1,某容器由A 、B 、C 三个长方体组成,其中A 、B 、C 的底面积分别
为25cm 2、10cm 2、5cm 2,C 的容积是容器容积的 1
4
(容器各面的厚度忽略不
计).现以速度v (单位:cm 3/s )均匀地向容器注水,直至注满为止.图2是注水全过程中容器的水面高度h (单位:cm )与注水时间t (单位:s )的函数图象.
(1)求A 的高度h A 及注水的速度v ;
(2
4.因长期干旱,甲水库蓄水量降到了正常水位的最低值.为灌溉需要,由乙水库向甲水库匀速供水,20h 后,甲水库打开一个排灌闸为农田匀速灌溉,又经过20h ,甲水库打开另一个排灌闸同时灌溉,再经过40h ,乙水库停止供水.甲水库每个排灌闸的灌溉速度相同,图中的折线表示甲水库蓄水量Q (万
m 3)与时间t (h )之间的函数关系. 求:(1)线段BC 的函数表达式;
(2)乙水库供水速度和甲水库一个排灌闸的灌溉速度;
(3)乙水库停止供水后,经过多长时间甲水库蓄水量又降到了正常水位的最低值?
Q (
图1 图2
5.周六上午8∶00小明从家出发,乘车1小时到郊外某基地参加社会实践活动,在基地活动2.2小时后,因家里有急事,他立即按原路以4千米/小时的平均速度步行返回,同时他的爸爸开车从家出发沿同一路线接他,在离家28千米处与小明相遇,接到小明后保持车速不变,立即按原路返回.设小明离开家的时间为x 小时,小名离家的路程y (干米)与x (小时)之间的函数图象如图所示. (1)小明去基地乘车的平均速度是______千米/小时,爸爸开车的平均速度是______千米/小时;
(2)求线段CD 所表示的函数关系式;
(3)小明能否在12∶00前回到家?若能,请说明理由;若不能,请算出12∶
00时他离家的路程.
6.甲乙两车同时从A 地出发,以各自的速度匀速向B 地行驶.甲车先到达B 地,停留一小时后按原路以另一速度匀速返回,直到两车相遇.乙车的速度为60km/h ,两车间距离y(km)与乙车行驶时间x(h)之间的函数图象如下. (1)将图中( )填上适当的值,并求甲车从A 到B 的速度. (2)求从甲车返回到与乙车相遇过程中y 与x 的函数关系式,自变量取值范围. (3) 求出甲车返回时行驶速度及AB 两地的距离.
x (小时)
7. A 、B 两座城市之间有一条高速公路,甲、乙两辆汽车同时分别从这条路两端的入口处驶入,并始终在高速公路上正常行驶.甲车驶往B 城,乙车驶往A 城,甲车在行驶过程中速度始终不变.甲车距B 城高速公路入口处的距离y (千米)与行驶时间x (时)之间的关系如图. (1)求y 关于x 的表达式; (2)已知乙车以60千米/时的速度匀速行驶,设行驶过程中,两车相距的路程为s (千米).请直接写出s 关于x 的表达式;
(3)当乙车按(2)中的状态行驶与甲车相遇后,速度随即改为a (千米/时)并保持匀速行驶,结果比甲车晚40分钟到达终点,求乙车变化后的速度a .在下图中画出乙车离开B 城高速公路入口处的距
离y (千米)与行驶时间x (时)之间的函数图象.
8.小华观察钟面(图1),了解到钟面上的分针每小时旋转360度,时针毎小时旋转30度.他为了进一步探究钟面上分针与时针的旋转规律,从下午2 : 00开始对钟面进行了一个小时的观察.为了探究方便,他将分针与分针起始位置OP (图2)的夹角记为y 1,时针与OP 的夹角记为y 2度(夹角是指不大于平角的角),旋转时间记为t 分钟.观察结束后,利用获得的数据绘制成图象(图3),并求出y 1与t 的函数关系式:y 1=⎩⎨⎧6t (0≤t ≤30)-6t +360(30<t ≤60),请你完成:
(1)求出图3中y 2与t 的函数关系式;
(2)直接写出A 、B 两点的坐标,并解释这两点的实际意义; (3)若小华继续观察一个小时,请你在图3中补全图象.
图1
图2
图3 )
24. (2012河南省9分)甲、乙两人同时从相距90千米的A地前往B地,甲乘汽车,乙骑摩托车,甲到达B地停留半个小时后返回A地,如图是他们离A地的距离y(千米)与x(时间)之间的函数关系图像
(1)求甲从B地返回A地的过程中,y与x之间的函数关系式,并写出自变量x的取值范围;
(2)若乙出发后2小时和甲相遇,求乙从A地到B地用了多长时间?
18. (2012辽宁大连9分)甲、乙两人从少年宫出发,沿相同的路线分别以不同的速度匀速跑向体育馆,甲先跑一段路程后,乙开始出发,当乙超出甲150米时,乙停在此地等候甲,两人相遇后乙又继续以原来的速度跑向体育馆。
图是甲、乙两人在跑步的全过程中经过的路程y(米)与甲出发的时间x(秒)的函数图象。
(1)在跑步的全过程中,甲共跑了___米,甲的速度为___米/秒;
(2)乙跑步的速度是多少?乙在途中等候甲用了多长时间?
(3)甲出发多长时间第一次与乙相遇?此时乙跑了多少米?
6. (2012浙江义乌10分)周末,小明骑自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象.已知妈妈驾车的速度是小明骑车速度的3倍.
(1)求小明骑车的速度和在甲地游玩的时间;
(2)小明从家出发多少小时后被妈妈追上?此时离家多远?
(3)若妈妈比小明早10分钟到达乙地,求从家到乙地的路程.
17. (2011江苏南京,22,7分)小颖和小亮上山游玩,小颖乘会缆车,小亮步行,两人相约
在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍,小颖在小亮出发后50 min才乘上缆车,缆车的平均速度为180 m/min.设小亮出发x min 后行走的路程为y m.图中的折线表示小亮在整个行走过程中y与x的函数关系.
⑴小亮行走的总路程是____________㎝,他途中休息了________min.
⑵①当50≤x≤80时,求y与x的函数关系式;
②当小颖到达缆车终点为时,小亮离缆车终点的路程是多少?
(第22题)
36.(2010辽宁大连)某物流公司的甲、乙两辆货车分别从A、B两地同时相向而行,并以各自的速度匀速行驶,途径配货站C,甲车先到达C地,并在C地用1小时配货,然后按原速度开往B地,乙车从B地直达A地,图16是甲、乙两车间的距离y(千米)与乙车出发x(时)的函数的部分图像
(1)A、B两地的距离是千米,甲车出发小时到达C地;
(2)求乙车出发2小时后直至到达A地的过程中,y与x的函数关系式及x的取值范围,并在图16中补全函数图像;
(3)乙车出发多长时间,两车相距150千米
y
16.(2010浙江湖州)一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶.设行驶的时间为x(时),两车之间的距离为y(千米),图中的折线表示从两车出发至快车到达乙地过程中y与x之间的函数关系.
(1)根据图中信息,求线段AB所在直线的函数解析式和甲乙两地之间的距离;
(2)已知两车相遇时快车比慢车多行驶40千米,若快车从甲地到达乙地所需时间为t 时,求t的值;
(3)若快车到达乙地后立刻返回甲地,慢车到达甲地后停止行驶,请你在图中画出快车从乙地返回到甲地过程中y关于x的函数的大致图像. (温馨提示:请画在答题卷相对应的图上)
7.(淮安市启明外国语学校2010-2011学年度第二学期初三数学期中试卷)校运动会前,小明和小亮相约晨练跑步.小明比小亮早1分钟离开家门,3分钟后迎面遇到从家跑来的小亮.两人沿并行跑了2分钟后,决定进行长跑比赛,比赛时小明的速度始终是180米/分,小亮的速度始终是220米/分.下图是两人之间的距离y(米)与小明离开家的时间x(分钟)之间的函数图象,根据图象回答下列问题:
(1)请直接写出小明和小亮比赛前的速度;
(2)请在图中的()内填上正确的值,并求两人比赛过程中y与x之间的函数关系式.(不用写自变量x的取值范围)
(3)若小亮从家出门跑了14分钟后,按原路以比赛时的速度返回,则再经过多少分钟两人相
遇?
y
(
第7题图。