【附20套中考模拟试题】湖南省永州市双牌县2019-2020学年中考数学模拟试卷含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖南省永州市双牌县2019-2020学年中考数学模拟试卷
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,等腰直角三角形ABC 位于第一象限,2AB AC ==,直角顶点A 在直线y x =上,其中点A 的横坐标为1,且两条直角边AB ,AC 分别平行于x 轴、y 轴,若反比例函数k y x
=
的图象与ABC △有交点,则k 的取值范围是( ).
A .12k <<
B .13k ≤≤
C .14k ≤<
D .14k ≤≤
2.如图,在△ABC 中,点D 在BC 上,DE ∥AC ,DF ∥AB ,下列四个判断中不正确的是( )
A .四边形AEDF 是平行四边形
B .若∠BA
C =90°,则四边形AEDF 是矩形
C .若A
D 平分∠BAC ,则四边形AEDF 是矩形
D .若AD ⊥BC 且AB =AC ,则四边形AEDF 是菱形
3.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC ,②∠ABC=90°,③AC=BD ,④AC ⊥BD 中选两个作为补充条件,使▱ABCD 为正方形(如图),现有下列四种选法,你认为其中错误的是( )
A .①②
B .②③
C .①③
D .②④
4.抛物线y=ax 2﹣4ax+4a ﹣1与x 轴交于A ,B 两点,C (x 1,m )和D (x 2,n )也是抛物线上的点,且x 1<2<x 2,x 1+x 2<4,则下列判断正确的是( )
A .m <n
B .m≤n
C .m >n
D .m≥n
516 )
A .±4
B .4
C .±2
D .2
6.4的算术平方根为()
A.2
±B.2C.2±D.2
7.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为( )
A.0.7米B.1.5米C.2.2米D.2.4米
8.如图,在三角形ABC中,∠ACB=90°,∠B=50°,将此三角形绕点C沿顺时针方向旋转后得到三角形A′B′C,若点B′恰好落在线段AB上,AC、A′B′交于点O,则∠COA′的度数是()
A.50°B.60°C.70°D.80°
9.下列事件中,属于必然事件的是()
A.三角形的外心到三边的距离相等
B.某射击运动员射击一次,命中靶心
C.任意画一个三角形,其内角和是180°
D.抛一枚硬币,落地后正面朝上
10.如图,∠ACB=90°,D为AB的中点,连接DC并延长到E,使CE=1
3
CD,过点B作BF∥DE,与
AE的延长线交于点F,若AB=6,则BF的长为()
A.6 B.7 C.8 D.10
11.如图,一个铁环上挂着6个分别编有号码1,2,3,4,5,6的铁片.如果把其中编号为2,4的铁片取下来,再先后把它们穿回到铁环上的仼意位置,则铁环上的铁片(无论沿铁环如何滑动)不可能排成的情形是()
A.B.
C.D.
12.一个几何体的三视图如图所示,则该几何体的表面积是()
A.24+2πB.16+4πC.16+8πD.16+12π
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,等腰三角形ABC的底边BC长为4,面积是12,腰AB的垂直平分线EF分别交AB,AC于点E、F,若点D为底边BC的中点,点M为线段EF上一动点,则△BDM的周长的最小值为_____.
14.如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为_______.
15.如图,△ABC中,DE垂直平分AC交AB于E,∠A=30°,∠ACB=80°,则∠BCE=_____ °.
16.观察下列图形:它们是按一定的规律排列的,依照此规律,第n个图形共有___个★.
17.如图,把△ABC 绕点C 顺时针旋转得到△A'B'C',此时A′B′⊥AC 于D ,已知∠A =50°,则∠B′CB 的度数是_____°.
18.不等式1253
x ->的解集是________________ 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,在△ABC 中,已知AB=AC ,AB 的垂直平分线交AB 于点N ,交AC 于点M ,连接MB .若∠ABC=70°,则∠NMA 的度数是 度.若AB=8cm ,△MBC 的周长是14cm .
①求BC 的长度;
②若点P 为直线MN 上一点,请你直接写出△PBC 周长的最小值.
20.(6分)已知关于x 的一元二次方程(3)(2)(1)x x p p --=+.试证明:无论p 取何值此方程总有两个
实数根;若原方程的两根1x ,2x 满足222121231x x x x p +-=+,求p 的值.
21.(6分)一辆汽车在某次行驶过程中,油箱中的剩余油量y (升)与行驶路程x (千米)之间是一次函数关系,其部分图象如图所示.求y 关于x 的函数关系式;(不需要写定义域)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?
22.(8分)某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月
就可以多售出5件.降价前商场每月销售该商品的利润是多少元?要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?
23.(8分)如图,已知直线AB经过点(0,4),与抛物线y=1
4
x2交于A,B两点,其中点A的横坐标是
2 .求这条直线的函数关系式及点B的坐标.在x轴上是否存在点C,使得△ABC是直角三角形?若存在,求出点C的坐标,若不存在请说明理由.过线段AB上一点P,作PM∥x轴,交抛物线于点M,点M在第一象限,点N(0,1),当点M的横坐标为何值时,MN+3MP的长度最大?最大值是多少?
24.(10分)如图所示,点B、F、C、E在同一直线上,AB⊥BE,DE⊥BE,连接AC、DF,且AC=DF,BF=CE,求证:AB=DE.
25.(10分)已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处,如图1,已知折痕与边BC交于点O,连接AP、OP、OA.若△OCP与△PDA的面积比为1:4,求边CD的长.如图2,在(Ⅰ)的条件下,擦去折痕AO、线段OP,连接BP.动点M在线段AP上(点M 与点P、A不重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP 于点E.试问当动点M、N在移动的过程中,线段EF的长度是否发生变化?若变化,说明变化规律.若不变,求出线段EF的长度.
26.(12分)一个不透明的口袋中装有2个红球(记为红球1、红球2)、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.从中任意摸出1个球,恰好摸到红球的概率是;先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率.27.(12分)山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这
种核桃要想平均每天获利2240元,请回答:每千克核桃应降价多少元?在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.D
【解析】
设直线y=x 与BC 交于E 点,分别过A 、E 两点作x 轴的垂线,垂足为D 、F ,则A (1,1),而AB=AC=2,
则B (3,1),△ABC 为等腰直角三角形,E 为BC 的中点,由中点坐标公式求E 点坐标,当双曲线与△ABC 有唯一交点时,这个交点分别为A 、E ,由此可求出k 的取值范围.
解:∵2AC BC ==,90CAB ∠=︒.()1,1A .又∵y x =过点A ,交BC 于点E ,∴2EF ED ==, ∴()2,2E ,∴14k ≤≤.故选D.
2.C
【解析】
A 选项,∵在△ABC 中,点D 在BC 上,DE ∥AC ,DF ∥A
B ,
∴DE ∥AF ,DF ∥AE ,
∴四边形AEDF 是平行四边形;即A 正确;
B 选项,∵四边形AEDF 是平行四边形,∠BAC=90°,
∴四边形AEDF 是矩形;即B 正确;
C 选项,因为添加条件“A
D 平分∠BAC”结合四边形AEDF 是平行四边形只能证明四边形AEDF 是菱形,而不能证明四边形AEDF 是矩形;所以C 错误;
D 选项,因为由添加的条件“AB=AC ,AD ⊥BC”可证明AD 平分∠BAC ,从而可通过证
∠EAD=∠CAD=∠EDA 证得AE=DE ,结合四边形AEDF 是平行四边形即可得到四边形AEDF 是菱形,所以D 正确.
故选C.
3.B
【解析】
【详解】
A 、∵四边形ABCD 是平行四边形,当①AB=BC 时,平行四边形ABCD 是菱形,
当②∠ABC=90°时,菱形ABCD 是正方形,故此选项正确,不合题意;
B 、∵四边形ABCD 是平行四边形,
∴当②∠ABC=90°时,平行四边形ABCD 是矩形,当AC=BD 时,这是矩形的性质,无法得出四边形ABCD 是正方形,故此选项错误,符合题意;
C 、∵四边形ABC
D 是平行四边形,当①AB=BC 时,平行四边形ABCD 是菱形,当③AC=BD 时,菱形ABCD 是正方形,故此选项正确,不合题意;
D 、∵四边形ABCD 是平行四边形,∴当②∠ABC=90°时,平行四边形ABCD 是矩形,当④AC ⊥BD 时,矩形ABCD 是正方形,故此选项正确,不合题意.
故选C .
4.C
【解析】
分析:将一般式配方成顶点式,得出对称轴方程2x =,根据抛物线2
441y ax ax a =-+-与x 轴交于,A B 两点,得出()()244410a a a =--⨯->V ,
求得 0a >,
距离对称轴越远,函数的值越大,根据121224x x x x <<+<,,判断出它们与对称轴之间的关系即可判定.
详解:∵()2244121y ax ax a a x =-+-=--,
∴此抛物线对称轴为2x =,
∵抛物线2441y ax ax a =-+-与x 轴交于,A B 两点,
∴当24410ax ax a -+-=时,()()244410a a a =--⨯->V ,
得0a >, ∵121224x x x x <<+<,,
∴1222x x ,->-
∴m n >,
故选C .
点睛:考查二次函数的图象以及性质,开口向上,距离对称轴越远的点,对应的函数值越大,
5.B
【解析】
【分析】
16表示16的算术平方根,为正数,再根据二次根式的性质化简.
【详解】
,
解:164
故选B.
【点睛】
本题考查了算术平方根,本题难点是平方根与算术平方根的区别与联系,一个正数算术平方根有一个,而平方根有两个.
6.B
【解析】
分析:先求得4的值,再继续求所求数的算术平方根即可.
详解:∵4=2,
而2的算术平方根是2,
∴4的算术平方根是2,
故选B.
点睛:此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A 的错误.
7.C
【解析】
【分析】
在直角三角形中利用勾股定理计算出直角边,即可求出小巷宽度.
【详解】
在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故选C.
【点睛】
本题考查勾股定理的运用,利用梯子长度不变找到斜边是关键.
8.B
【解析】
试题分析:∵在三角形ABC中,∠ACB=90°,∠B=50°,∴∠A=180°﹣∠ACB﹣∠B=40°.
由旋转的性质可知:BC=B′C,∴∠B=∠BB′C=50°.又∵∠BB′C=∠A+∠ACB′=40°+∠ACB′,
∴∠ACB′=10°,∴∠COA′=∠AOB′=∠OB′C+∠ACB′=∠B+∠ACB′=60°.故选B.
考点:旋转的性质.
9.C
【解析】
分析:必然事件就是一定发生的事件,依据定义即可作出判断.
详解:A、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三边的距离相等,是不可能事件,故本选项不符合题意;
B、某射击运动员射击一次,命中靶心是随机事件,故本选项不符合题意;
C、三角形的内角和是180°,是必然事件,故本选项符合题意;
D、抛一枚硬币,落地后正面朝上,是随机事件,故本选项不符合题意;
故选C.
点睛:解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
10.C
【解析】
∵∠ACB=90°,D为AB的中点,AB=6,
∴CD=1
2
AB=1.
又CE=1
3 CD,
∴CE=1,
∴ED=CE+CD=2.
又∵BF∥DE,点D是AB的中点,∴ED是△AFB的中位线,
∴BF=2ED=3.
故选C.
11.D
【解析】
【分析】
摘掉铁片2,4后,铁片1,1,5,6在铁环上按逆时针排列,无论将铁片2,4穿回哪里,铁片1,1,5,6在铁环上的顺序不变,观察四个选择即可得出结论.
【详解】
解:摘掉铁片2,4后,铁片1,1,5,6在铁环上按逆时针排列,
∵选项A,B,C中铁片顺序为1,1,5,6,选项D中铁片顺序为1,5,6,1.
故选D.
【点睛】
本题考查了规律型:图形的变化类,找准铁片1,1,5,6在铁环上的顺序不变是解题的关键.
12.D
【解析】
【分析】
根据三视图知该几何体是一个半径为2、高为4的圆柱体的纵向一半,据此求解可得.
【详解】
该几何体的表面积为2×1
2
•π•22+4×4+
1
2
×2π•2×4=12π+16,
故选:D.
【点睛】
本题主要考查由三视图判断几何体,解题的关键是根据三视图得出几何体的形状及圆柱体的有关计算.二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.2
【解析】
【分析】
连接AD交EF与点M′,连结AM,由线段垂直平分线的性质可知AM=MB,则BM+DM=AM+DM,故此当A、M、D在一条直线上时,MB+DM有最小值,然后依据要三角形三线合一的性质可证明AD为△ABC底边上的高线,依据三角形的面积为12可求得AD的长.
【详解】
解:连接AD交EF与点M′,连结AM.
∵△ABC是等腰三角形,点D是BC边的中点,
∴AD⊥BC,
∴S△ABC=1
2
BC•AD=
1
2
×4×AD=12,解得AD=1,
∵EF是线段AB的垂直平分线,
∴AM=BM.
∴BM+MD=MD+AM.
∴当点M位于点M′处时,MB+MD有最小值,最小值1.
∴△BDM的周长的最小值为DB+AD=2+1=2.
【点睛】
本题考查三角形的周长最值问题,结合等腰三角形的性质、垂直平分线的性质以及中点的相关属性进行分析.
14.215
【解析】
【分析】
如图,作OH⊥CD于H,连结OC,根据垂径定理得HC=HD,由题意得OA=4,即OP=2,在Rt△OPH
中,根据含30°的直角三角形的性质计算出OH=1
2
OP=1,然后在在Rt△OHC中,利用勾股定理计算得
到CH=15,即CD=2CH=215.
【详解】
解:如图,作OH⊥CD于H,连结OC,
∵OH⊥CD,
∴HC=HD,
∵AP=2,BP=6,
∴AB=8,
∴OA=4,
∴OP=OA﹣AP=2,
在Rt△OPH中,
∵∠OPH=30°,
∴∠POH=60°,
∴OH=1
2
OP=1,
在Rt△OHC中,∵OC=4,OH=1,
∴=
∴
故答案为
【点睛】
本题主要考查了圆的垂径定理,勾股定理和含30°角的直角三角形的性质,解此题的关键在于作辅助线得到直角三角形,再合理利用各知识点进行计算即可
15.1
【解析】
【分析】
根据△ABC中DE垂直平分AC,可求出AE=CE,再根据等腰三角形的性质求出∠ACE=∠A=30°,再根据∠ACB=80°即可解答.
【详解】
∵DE垂直平分AC,∠A=30°,
∴AE=CE,∠ACE=∠A=30°,
∵∠ACB=80°,
∴∠BCE=80°-30°=1°.
故答案为:1.
+
16.13n
【解析】
【分析】
分别求出第1个、第2个、第3个、第4个图形中★的个数,得到第5个图形中★的个数,进而找到规律,得出第n个图形中★的个数,即可求解.
【详解】
第1个图形中有1+3×1=4个★,
第2个图形中有1+3×2=7个★,
第3个图形中有1+3×3=10个★,
第4个图形中有1+3×4=13个★,
第5个图形中有1+3×5=16个★,
…
第n个图形中有1+3×n=(3n+1)个★.
故答案是:1+3n.
【点睛】
考查了规律型:图形的变化类;根据图形中变化的量和n 的关系与不变的量得到图形中★的个数与n 的关系是解决本题的关键. 17.1 【解析】 【分析】
由旋转的性质可得∠A =∠A'=50°,∠BCB'=∠ACA',由直角三角形的性质可求∠ACA'=1°=∠B′CB . 【详解】
解:∵把△ABC 绕点C 顺时针旋转得到△A'B'C', ∴∠A =∠A'=50°,∠BCB'=∠ACA' ∵A'B'⊥AC
∴∠A'+∠ACA'=90° ∴∠ACA'=1° ∴∠BCB'=1° 故答案为:1. 【点睛】
本题考查了旋转的性质,熟练运用旋转的性质是本题的关键. 18.7<-x 【解析】 【分析】
首先去分母进而解出不等式即可. 【详解】
去分母得,1-2x>15 移项得,-2x>15-1 合并同类项得,-2x>14 系数化为1,得x<-7. 故答案为x<-7. 【点睛】
此题考查了解一元一次不等式,解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(1)50;(2)①6;②1 【解析】
试题分析:(1)根据等腰三角形的性质和线段垂直平分线的性质即可得到结论;
(2)①根据线段垂直平分线上的点到线段两端点的距离相等的性质可得AM=BM,然后求出△MBC的周长=AC+BC,再代入数据进行计算即可得解;
②当点P与M重合时,△PBC周长的值最小,于是得到结论.
试题解析:解:(1)∵AB=AC,∴∠C=∠ABC=70°,∴∠A=40°.∵AB的垂直平分线交AB于点N,
∴∠ANM=90°,∴∠NMA=50°.故答案为50;
(2)①∵MN是AB的垂直平分线,∴AM=BM,∴△MBC的周长
=BM+CM+BC=AM+CM+BC=AC+BC.∵AB=8,△MBC的周长是1,∴BC=1﹣8=6;
②当点P与M重合时,△PBC周长的值最小,理由:∵PB+PC=PA+PC,PA+PC≥AC,∴P与M重合时,PA+PC=AC,此时PB+PC最小,∴△PBC周长的最小值=AC+BC=8+6=1.
20.(1)证明见解析;(2)-2.
【解析】
分析:(1)将原方程变形为一般式,根据方程的系数结合根的判别式,即可得出△=(2p+1)2≥1,由此即可证出:无论p取何值此方程总有两个实数根;
(2)根据根与系数的关系可得出x1+x2=5、x1x2=6-p2-p,结合x12+x22-x1x2=3p2+1,即可求出p值.
详解:(1)证明:原方程可变形为x2-5x+6-p2-p=1.
∵△=(-5)2-4(6-p2-p)=25-24+4p2+4p=4p2+4p+1=(2p+1)2≥1,
∴无论p取何值此方程总有两个实数根;
(2)∵原方程的两根为x1、x2,
∴x1+x2=5,x1x2=6-p2-p.
又∵x12+x22-x1x2=3p2+1,
∴(x1+x2)2-3x1x2=3p2+1,
∴52-3(6-p2-p)=3p2+1,
∴25-18+3p2+3p=3p2+1,
∴3p=-6,
∴p=-2.
点睛:本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当△≥1时,方程有两个实数根”;(2)根据根与系数的关系结合x12+x22-x1x2=3p2+1,求出p值.
21.(1)该一次函数解析式为y=﹣x+1.(2)在开往该加油站的途中,汽车开始提示加油,这时离加油
站的路程是10千米.
【解析】
【分析】(1)根据函数图象中点的坐标利用待定系数法求出一次函数解析式;
(2)根据一次函数图象上点的坐标特征即可求出剩余油量为8升时行驶的路程,即可求得答案. 【详解】(1)设该一次函数解析式为y=kx+b,
将(150,45)、(0,1)代入y=kx+b中,得
,解得:,
∴该一次函数解析式为y=﹣x+1;
(2)当y=﹣x+1=8时,
解得x=520,
即行驶520千米时,油箱中的剩余油量为8升.
530﹣520=10千米,
油箱中的剩余油量为8升时,距离加油站10千米,
∴在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.
【点睛】本题考查了一次函数的应用,熟练掌握待定系数法,弄清题意是解题的关键.
22.(1) 4800元;(2) 降价60元.
【解析】
试题分析:(1)先求出降价前每件商品的利润,乘以每月销售的数量就可以得出每月的总利润;(2)设每件商品应降价x元,由销售问题的数量关系“每件商品的利润×商品的销售数量=总利润”列出方程,解方程即可解决问题.
试题解析:
(1)由题意得60×(360-280)=4800(元).即降价前商场每月销售该商品的利润是4800元;
(2)设每件商品应降价x元,
由题意得(360-x-280)(5x+60)=7200,
解得x1=8,x2=60.
要更有利于减少库存,则x=60.
即要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价60元.
点睛:本题考查了列一元二次方程解实际问题的销售问题,解答时根据销售问题的数量关系建立方程是关键.
23.(1)直线y=3
2
x+4,点B的坐标为(8,16);(2)点C的坐标为(﹣
1
2
,0),(0,0),(6,0),(32,
0);(3)当M 的横坐标为6时,MN+3PM 的长度的最大值是1. 【解析】 【分析】
(1)首先求得点A 的坐标,然后利用待定系数法确定直线的解析式,从而求得直线与抛物线的交点坐标; (2)分若∠BAC=90°,则AB 2+AC 2=BC 2;若∠ACB=90°,则AB 2=AC 2+BC 2;若∠ABC=90°,则AB 2+BC 2=AC 2三种情况求得m 的值,从而确定点C 的坐标;
(3)设M (a ,14a 2),得MN=14a 2+1,然后根据点P 与点M 纵坐标相同得到x=2166
a -,从而得到
MN+3PM=﹣14
a 2
+3a+9,确定二次函数的最值即可. 【详解】
(1)∵点A 是直线与抛物线的交点,且横坐标为-2,
21
(2)14
y =⨯-=,A 点的坐标为(-2,1),
设直线的函数关系式为y=kx+b , 将(0,4),(-2,1)代入得4
21
b k b =⎧⎨
-+=⎩
解得324
k b ⎧=⎪⎨⎪=⎩
∴y =
3
2
x +4 ∵直线与抛物线相交,
231424
x x ∴+= 解得:x=-2或x=8, 当x=8时,y=16,
∴点B 的坐标为(8,16); (2)存在.
∵由A(-2,1),B(8,16)可求得AB 2=22(82)(161)++-=325 .设点C(m ,0),
同理可得AC 2=(m +2)2+12=m 2+4m +5, BC 2=(m -8)2+162=m 2-16m +320,
①若∠BAC =90°,则AB 2+AC 2=BC 2,即325+m 2+4m +5=m 2-16m +320,解得m =-
1
2
; ②若∠ACB =90°,则AB 2=AC 2+BC 2,即325=m 2+4m +5+m 2-16m +320,解得m =0或m =6; ③若∠ABC =90°,则AB 2+BC 2=AC 2,即m 2+4m +5=m 2-16m +320+325,解得m =32,
∴点C 的坐标为(-1
2
,0),(0,0),(6,0),(32,0) (3)设M(a ,
14
a 2
),
则MN 2114a =+, 又∵点P 与点M 纵坐标相同, ∴
3
2x +4=14
a 2, ∴x=2166
a - ,
∴点P 的横坐标为216
6a -,
∴MP =a -216
6
a -,
∴MN +3PM =14a 2+1+3(a -216
6
a -)=-14a 2+3a +9=-14 (a -6)2+1,
∵-2≤6≤8,
∴当a =6时,取最大值1,
∴当M 的横坐标为6时,MN +3PM 的长度的最大值是1 24.证明见解析 【解析】
试题分析:证明三角形△ABC ≅△DEF,可得AB =DE . 试题解析:
证明:∵BF =CE , ∴BC=EF,
∵AB ⊥BE ,DE ⊥BE , ∴∠B=∠E=90°,AC=DF, ∴△ABC ≅△DEF, ∴AB=DE.
25.(1)10;(2) 【解析】 【分析】
(1)先证出∠C=∠D=90°,再根据∠1+∠3=90°,∠1+∠2=90°,得出∠2=∠3,即可证出△OCP ∽△PDA ;
根据△OCP与△PDA的面积比为1:4,得出CP=1
2
AD=4,设OP=x,则CO=8﹣x,由勾股定理得x2=
(8﹣x)2+42,求出x,最后根据AB=2OP即可求出边AB的长;
(2)作MQ∥AN,交PB于点Q,求出MP=MQ,BN=QM,得出MP=MQ,根据ME⊥PQ,得出EQ=1
2 PQ,
根据∠QMF=∠BNF,证出△MFQ≌△NFB,得出QF=1
2
QB,再求出EF=
1
2
PB,由(1)中的结论求出
PB=22
8445
+=,最后代入EF=1
2
PB即可得出线段EF的长度不变
【详解】
(1)如图1,∵四边形ABCD是矩形,
∴∠C=∠D=90°,
∴∠1+∠3=90°,
∵由折叠可得∠APO=∠B=90°,
∴∠1+∠2=90°,∴∠2=∠3,
又∵∠D=∠C,
∴△OCP∽△PDA;
∵△OCP与△PDA的面积比为1:4,
∴,∴ CP=1
2
AD=4
设OP=x,则CO=8﹣x,
在Rt△PCO中,∠C=90°,由勾股定理得x2=(8﹣x)2+42,解得:x=5,∴AB=AP=2OP=10,∴边CD的长为10;
(2)作MQ∥AN,交PB于点Q,如图2,
∵AP=AB,MQ∥AN,
∴∠APB=∠ABP=∠MQP.∴MP=MQ,∵BN=PM,
∴BN=QM.
∵MP=MQ,ME⊥PQ,
∴EQ=PQ.∵MQ∥AN,∴∠QMF=∠BNF,∴△MFQ≌△NFB.
∴QF=FB,∴EF=EQ+QF=1
2
(PQ+QB)=
1
2
PB,
由(1)中的结论可得:PC=4,BC=8,∠C=90°,
∴
=EF=
1
2
∴在(1)的条件下,当点M、N在移动过程中,线段EF的长度不变,它的长度为
【点睛】
本题考查了相似三角形的判定与性质、全等三角形的判定与性质、勾股定理、等腰三角形的性质,关键是做出辅助线,找出全等和相似的三角形
26.(1)1
2
(2)
1
6
【解析】
试题分析:(1)因为总共有4个球,红球有2个,因此可直接求得红球的概率;
(2)根据题意,列表表示小球摸出的情况,然后找到共12种可能,而两次都是红球的情况有2种,因此可求概率.
试题解析:解:(1)1
2
.
(2)用表格列出所有可能的结果:
由表格可知,共有12种可能出现的结果,并且它们都是等可能的,其中“两次都摸到红球”有2种可能.
∴P(两次都摸到红球)=
2
12
=
1
6
.
考点:概率统计
27.(1)4元或6元;(2)九折. 【解析】
【详解】
解:(1)设每千克核桃应降价x元.
根据题意,得(60﹣x﹣40)(100+x
2
×20)=2240,
化简,得x2﹣10x+24=0,解得x1=4,x2=6.
答:每千克核桃应降价4元或6元.
(2)由(1)可知每千克核桃可降价4元或6元.
∵要尽可能让利于顾客,∴每千克核桃应降价6元.
此时,售价为:60﹣6=54(元),54
100%=90% 60
.
答:该店应按原售价的九折出售.
中考模拟数学试卷
一、选择题(本大题有10小题,每小题3分,共30分)
1. -2013的相反数是
A .20131 B.2013 C .-2013 D .20131-
考点: 相反数
分析: 根据相反数的定义作答.
解答: 解:﹣2013的相反数是2013.
故选B .
点评: 本题考查了相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.
2. 如果 32=b a ,则b
b a += A .31 B .21 C .35 D .5
3
考点: 比例的性质
专题: 计算题.
分析: 因为
,所以a=b ,代入求解即可. 解答: 解:∵
,
∴a=b , ∴原式=
=+1=.
故选C . 点评: 能够用字母表示出相关线段,再进一步求其比值即可.
3.(3分)(2013•浙江一模)“谁知盘中餐,粒粒皆辛苦”.有统计数据显示,中国人每年在餐桌上浪费的粮食价值高达2000亿元,被倒掉的食物相当于2亿多人一年的口粮.现在,从中央到地方都在倡导勤俭节约,拒绝铺张浪费的“光盘行动”.其中2000亿元用科学记数法表示为( )
A . 2×1010元
B . 211元
C . 2×1011元
D . 0.2×1012元
考点: 科学记数法—表示较大的数
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于2000亿有12位,所以可以确定n=12﹣1=11.
解答:解:2000亿=200 000 000 000=2×1011.
故选C.
点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.
4.(3分)(2013•浙江一模)如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32°,那么∠2的度数是()
A.32°B.58°C.68°D.60°
考点:平行线的性质;余角和补角
专题:计算题;压轴题.
分析:本题主要利用两直线平行,同位角相等及余角的定义作答.
解答:解:根据题意可知∠1+∠2=90°,所以∠2=90°﹣∠1=58°.故选B.
点评:主要考查了平行线的性质和互余的两个角的性质.互为余角的两角的和为90°.解此题的关键是能准确的从图中找出这两个角之间的数量关系,从而计算出结果.
5.(3分)(2013•浙江一模)不等式组的解在数轴上表示为()
A.B.C.D.
考点:在数轴上表示不等式的解集;解一元一次不等式组
专题:计算题;数形结合.
分析:先解每一个不等式,再根据结果判断数轴表示的正确方法.
解答:解:由不等式①,得2x>2,解得x>1,
由不等式②,得﹣2x≤﹣4,解得x≥2,
∴数轴表示的正确方法为C,
故选C.
点评:本题考查了一元一次不等式组的解法及其数轴表示法.把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”
要用实心圆点表示;“<”,“>”要用空心圆点表示.
6.(3分)(2013•浙江一模)实数在数轴上的位置如图所示,下列式子正确的是()
A.a﹣b<0 B.﹣a<﹣b C.|a|<|b| D.a>b
考点:实数与数轴
分析:根据数轴表示数的方法得到a<0<b,数a表示的点比数b表示点离原点远,则a<b;﹣a>﹣b;
b﹣a>0,|a|>|b|.
解答:解:根据题意得,a<0<b,
∴a<b;﹣a>﹣b;b﹣a>0,
∵数a表示的点比数b表示点离原点远,
∴|a|>|b|,
∴选项A正确,选项B、C、D不正确.
故选A.
点评:本题考查了实数与数轴:数轴上的点与实数一一对应;数轴上原点左边的点表示负数,右边的点表示正数;右边的点表示的数比左边的点表示的数要大.
7.(3分)(2013•浙江一模)分式方程的解是()
A.x=2 B.x=﹣2 C.D.无解
考点:解分式方程
专题:计算题.
分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:3x﹣5﹣x+1=x﹣2,
移项合并得:x=2,
经检验x=2是增根,原分式方程无解.
故选D
点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解
分式方程一定注意要验根.
8.(3分)(2011•福州)从1,2,﹣3三个数中,随机抽取两个数相乘,积是正数的概率是()A.0B.C.D.1
考点:列表法与树状图法
分析:列举出所有情况,看积是正数的情况数占总情况数的多少即可.
解答:
解:
共有6种情况,积是正数的有2种情况,故概率为,
故选B.
点评:考查概率的求法;用到的知识点为:概率=所求情况数与总情况数之比.得到积是正数的情况数是解决本题的关键.
9.(3分)(2011•随州)一个几何体的三视图如下:其中主视图和左视图都是腰长为4,底边为2的等腰三角形,则这个几何体侧面展开图的面积为()
A.2πB.C.4πD.8π
考点:圆锥的计算;由三视图判断几何体
专题:计算题;压轴题.
分析:由几何体的主视图和左视图都是等腰三角形,俯视图是圆,可以判断这个几何体是圆锥.
解答:解:依题意知母线长l=4,底面半径r=1,
则由圆锥的侧面积公式得S=πrl=π•1•4=4π.
故选C.
点评:本题主要考查三视图的知识和圆锥侧面面积的计算;解决此类图的关键是由三视图得到立体图形;
学生由于空间想象能力不够,找不到圆锥的底面半径,或者对圆锥的侧面面积公式运用不熟练,易造成错误.。