高中物理 整体法和隔离法
整体法与隔离法的应用(详解)
例1
A. F1
a
B. F2
C. (F1+ F2) / 2
F1
D. (F1- F2) / 2
A
B
F2
分析:
物体A和B加速度相同, 求它们之间的相互作用力, 采取先整体后隔离的方法, 先求出它们共同的加速度, 然后再选取A或B为研究对象, 求出它们之间的相互作用力.
选取A和B整体为研究对象, 共同加速度a为:
m
θ M
F
[解析]隔离m,由平行四边形定则可得: FN=mg/cosθ F合=mgtanθ 由牛顿第二定律可得:a= F合/m =gtanθ 对整体,由牛顿第二定律可得: F合 F=(M+m)a=(M+m)gtanθ [答案]BD F
FN θ
Hale Waihona Puke mF Mmg
θ
课程小结 (1)解答问题时,决不能把整体法和隔离法对立起来, 而应该把这两种方法结合起来,从具体问题的实际 情况出发,灵活选取研究对象,恰当选择使用隔离和 整体法. (2)在使用隔离法解题时,所选取的隔离对象可以使连接 体中的某一部分物体,也可以使连接体中的某一个物体(包 含两个或两个以上的单个物体),而这“某一部分”的选取, 也应根据问题的实际情况,灵活处理.
解:(1)由牛顿第二定律,
对整体可得:F=(M+m)a
F
m
M
F
隔离m可得:T=ma 联立解得:T=mF/(M+m)
T
(2)已知内力求外力。 先隔离分析计算加速度,然后 整体分析,计算外力。 例2 如图所示, A、B、C三物体
的质量分别为m1、m2、m3 , 带有 滑轮的 C 放在光滑的水平面上, 细绳质量及一切摩擦均不计, 为 使三物体无相对运动, 试求水平 推力F的大小?
整体法和隔离法
A
F
B
❖ A、B可能受到3个或者4个力的作用 ❖ B、斜面对B的摩擦力方向可能沿斜面向下 ❖ C、A对B的摩擦力可能为0 ❖ D、AB整体可能受到三个力作用
思考:
1、用整体法还是隔离法?
2、是先整体后隔离?还是先 隔离后整体?
分析方法:对于受力复杂的系统,先整体
研究对象的选择:
1、对于连结体问题,通常用隔离法,但有时也可 采用整体法.
2、如果能够运用整体法,我们应该优先采用整体 法,这样涉及的研究对象少,未知量少,方程少, 求解简便;
3、 不计物体间相互作用的内力,或物体系内的物 体的运动状态相同,一般首先考虑整体法.
4、 对于大多数动力学问题,单纯采用整体法并不 一定能解决,通常采用整体法与隔离法相结合的 方法.
G 2G
❖ 整体法:求系统外力
N
f地
F
ABC
3G
由图中可知:AB间的摩擦力为0,BC、 C与地面间的摩擦力为F。
(2)、若A、B、C一起以加速度a向右加速运动, AB、BC、C与地间的摩擦力又为多少?
(注:学生在练习本画受力分析)
❖ 练习题、如图所示,固定斜面上叠放着A、B两木块,木块 A与B的接触面是水平的,水平力F作用于木块A,使木块A、
后隔离。
N
N1
FN
f
f
F AB
FA
f f’ B mAg
G (1)、整体法
mAg
mBg
(2)、隔离法
❖ 例2、如图所示,人的质量为60kg,木板A的质量 为30kg,滑轮及绳的质量不计,若人想通过绳子拉 住木板,他必须用力的大小( )
❖ A. 225N B. 300N C. 450N D. 600N
专题01隔离法和整体法-高中物理八大解题方法
专题01隔离法和整体法-高中物理八大解题方法隔离法和整体法是高中物理中常用的解题方法之一、在解题的过程中,有时我们需要将问题进行隔离,逐步分析求解;而有时候我们又需要将问题作为一个整体考虑,从整体出发进行分析和求解。
隔离法是指通过将问题进行隔离,将其划分为多个独立、相对简单的小问题进行逐步求解。
这种方法适用于问题比较复杂,需要进行多次分析和求解的情况。
例如,在力学中,我们经常会遇到复杂的力的合成和分解问题。
此时,我们可以通过将力进行分解成多个独立的分力,分别分析并求解每个分力的作用,最后再将各个分力的作用结果进行合成,得到最终的结果。
整体法则是指将问题看作一个整体,从整体出发进行分析和求解。
这种方法适用于问题比较简单,无需进行多次分析和求解的情况。
例如,在电路中,我们经常会遇到串联和并联电路的问题。
此时,我们可以将串联电路看作一个整体,总电压等于各个电压的代数和;将并联电路看作一个整体,总电流等于各个电流的代数和。
通过这种整体法,我们可以更加简洁和快速地求解问题。
在解题过程中,我们需要根据具体问题的要求和条件选择合适的解题方法。
有时候可能需要同时运用隔离法和整体法。
例如,在力学中,当我们需要求解多个力的合力时,可以首先使用隔离法将问题分解为每个力的分解,并分别求解每个分力的作用;然后再使用整体法将各个分力的作用结果进行合成,得到最终的合力。
总之,隔离法和整体法是高中物理中常用的解题方法,具有较强的普适性和实用性。
在解题过程中,我们应根据具体问题的要求和条件进行选择和运用,以期更有效地解决物理问题。
高中物理整体法、隔离法受力分析专题讲解
受力分析、物体的平衡1.隔离法:将某物体从周围物体中隔离出来,单独分析该物体所受到的各个力,称为隔离法。
隔离法的原则:把相连结的各个物体看成一个整体,如果要分析的是整体内物体间的相互作用力(即内力),就要把跟该力有关的某物体隔离出来。
当然,对隔离出来的物体而言,它受到的各个力就应视为外力了。
2.整体法:把相互连结的几个物体视为一个整体(系统),从而分析整体外的物体对整体中各个物体的作用力(外力),称为整体法。
整体法的基本原则:(1)当整体中各物体具有相同的加速度(加速度不相同的问题,中学阶段不建议采用整体法)或都处于平衡状态(即a =0)时,命题要研究的是外力,而非内力时,选整体为研究对象。
(2)整体法要分析的是外力,而不是分析整体中各物体间的相互作用力(内力)。
(3)整体法的运用原则是先避开次要矛盾(未知的内力)突出主要矛盾(要研究的外力)这样一种辨证的思想。
3.整体法、隔离法的交替运用对于连结体问题,多数情况既要分析外力,又要分析内力,这时我们可以采取先整体(解决外力)后隔离(解决内力)的交叉运用方法,当然个别情况也可先隔离(由已知内力解决未知外力)再整体的相反运用顺序。
考点二:共点力作用下物体的平衡1.平衡状态一个物体在力的作用下保持静止或匀速直线运动状态,就说这个物体处于平衡状态.如光滑水平面上做匀速直线滑动的物块、沿斜面匀速直线下滑的木箱、天花板上悬挂的吊灯等,这些物体都处于平衡状态.2.共点力的平衡条件 在共点力作用下物体的平衡条件是合力为零,即0F =合。
3.平衡条件的推论(1)如果物体在两个力的作用下处于平衡状态,这两个力必定大小相等、方向相反,为一对平衡力。
(2)如果物体在三个力的作用下处于平衡状态,其中任意两个力的合力一定与第三个力大小相等、方向相反。
(3)如果物体受多个力作用而处于平衡状态,其中任何一个力与其他力的合力大小相等、方向相反。
(4)当物体处于平衡状态时,沿任意方向物体所受的合力均为零。
高中物理整体法和隔离法
1. 物体的受力分析(隔离法与整体法)2. 共点力作用下的物体的平衡【要点扫描】一、物体的受力分析(隔离法与整体法)(一)物体受力分析方法把指定的研究对象在特定的物理情景中所受到的所有外力找出来,并画出受力图,就是受力分析。
对物体进行正确地受力分析,是解决好力学问题的关键。
1、受力分析的顺序:先找重力,再找接触力(弹力、摩擦力),最后分析其它力(场力、浮力等)2、受力分析的几个步骤.①灵活选择研究对象:也就是说根据解题的目的,从体系中隔离出所要研究的某一个物体,或从物体中隔离出某一部分作为单独的研究对象,对它进行受力分析。
所选择的研究对象要与周围环境联系密切并且已知量尽量多;对于较复杂的问题,由于物体系各部分相互制约,有时要同时隔离几个研究对象才能解决问题.究竟怎样选择研究对象要依题意灵活处理。
②对研究对象周围环境进行分析:除了重力外查看哪些物体与研究对象直接接触,对它有力的作用。
凡是直接接触的环境都不能漏掉分析,而不直接接触的环境千万不要考虑进来.然后按照重力、弹力、摩擦力的顺序进行力的分析,根据各种力的产生条件和所满足的物理规律,确定它们的存在或大小、方向、作用点。
③审查研究对象的运动状态:是平衡状态还是加速状态等等,根据它所处的状态有时可以确定某些力是否存在或对某些力的方向作出判断。
④根据上述分析,画出研究对象的受力分析图;把各力的方向、作用点(线)准确地表示出来。
3、受力分析的三个判断依据:①从力的概念判断,寻找施力物体;②从力的性质判断,寻找产生原因;③从力的效果判断,寻找是否产生形变或改变运动状态。
(二)隔离法与整体法1、整体法:以几个物体构成的整个系统为研究对象进行求解的方法。
在许多问题中用整体法比较方便,但整体法不能求解系统的内力。
2、隔离法:把系统分成若干部分并隔离开来,分别以每一部分为研究对象进行受力分析,分别列出方程,再联立求解的方法。
3、通常在分析外力对系统作用时,用整体法;在分析系统内各物体之间的相互作用时,用隔离法。
高一物理受力分析(整体法和隔离法)
受力分析—隔离法与整体法一、物体受力分析方法把指定的研究对象在特定的物理情景中所受到的所有外力找出来,并画出受力图,就是受力分析。
对物体进行正确地受力分析,是解决好力学问题的关键。
1、受力分析的顺序:先找重力,再找接触力(弹力、摩擦力),最后分析其它力(场力、浮力等)2、受力分析的几个步骤.①灵活选择研究对象②对研究对象周围环境进行分析③审查研究对象的运动状态:根据它所处的状态有时可以确定某些力是否存在或对某些力的方向作出判断.④根据上述分析,画出研究对象的受力分析示意图;把各力的方向、作用点(线)准确地表示出来.3、受力分析的三个判断依据:①从力的概念判断,寻找施力物体;②从力的性质判断,寻找产生原因;③从力的效果判断,寻找是否产生形变或改变运动状态。
二、隔离法与整体法1、整体法:以几个物体构成的整个系统为研究对象进行求解的方法。
在许多问题中可以用整体法比较方便,但整体法不能求解系统的内力。
(区分内力和外力,对几个物体的整体进行受力分析时,这几个物体间的作用力为内力,不能在受力图中出现,当把某一物体单独隔离分析时,原来的内力变成了外力,要画在受力图上。
)2、隔离法:把系统分成若干部分并隔离开来,分别以每一部分为研究对象进行受力分根据地,分别列出方程,再联立求解的方法。
3、通常在分析外力对系统作用时,用整体法;在分析系统内各物体之间的相互作用时,用隔离法。
有时在解答一个问题时要多次选取研究对象,需要整体法与隔离法交叉使用注意:实际问题中整体法与隔离法要结合起来灵活运用........。
........................,通常先整体后隔离三、例题例1.在粗糙的水平面上有一个三角形木块,在它的两个粗,糙的斜面上分别放置两个质量为m1和m2的木块,m m12如图1所示,已知三角形木块和两个物体都是静止的,则粗糙水平面对三角形木块()A. 有摩擦力作用,方向水平向右;B. 有摩擦力作用,方向水平向左;C. 有摩擦力作用,但方向不确定;图1D. 以上结论都不对。
(完整word版)高中物理整体法和隔离法
整体法和隔离法一、整体法整体法就是把几个物体视为一个整体,受力分析时,只分析这一整体之外的物体对整体的作用力,不考虑整体内部物体之间的相互作用力。
当只涉及系统而不涉及系统内部某些物体的力和运动时,一般可采用整体法。
运用整体法解题的基本步骤是:(1)明确研究的系统或运动的全过程;(2)画出系统或整体的受力图或运动全过程的示意图;(3)选用适当的物理规律列方程求解。
二、隔离法隔离法就是把要分析的物体从相关的物体系中假想地隔离出来,只分析该物体以外的物体对该物体的作用力,不考虑该物体对其它物体的作用力。
为了弄清系统(连接体)内某个物体的受力和运动情况,一般可采用隔离法。
运用隔离法解题的基本步骤是;(1)明确研究对象或过程、状态;(2)将某个研究对象或某段运动过程、或某个状态从全过程中隔离出来;(3)画出某状态下的受力图或运动过程示意图;(4)选用适当的物理规律列方程求解。
三、应用整体法和隔离法解题的方法1、合理选择研究对象。
这是解答平衡问题成败的关键。
研究对象的选取关系到能否得到解答或能否顺利得到解答,当选取所求力的物体,不能做出解答时,应选取与它相互作用的物体为对象,即转移对象,或把它与周围的物体当做一整体来考虑,即部分的看一看,整体的看一看。
但整体法和隔离法是相对的,二者在一定条件下可相互转化,在解决问题时决不能把这两种方法对立起来,而应该灵活把两种方法结合起来使用。
为使解答简便,选取对象时,一般先整体考虑,尤其在分析外力对系统的作用(不涉及物体间相互作用的内力)时。
但是,在分析系统内各物体(各部分)间相互作用力时(即系统内力),必须用隔离法。
2、如需隔离,原则上选择受力情况少,且又能求解未知量的物体分析,这一思想在以后牛顿定律中会大量体现,要注意熟练掌握。
3、有时解答一题目时需多次选取研究对象,整体法和隔离法交叉运用,从而优化解题思路和解题过程,使解题简捷明了。
所以,注意灵活、交替地使用整体法和隔离法,不仅可以使分析和解答问题的思路与步骤变得极为简捷,而且对于培养宏观的统摄力和微观的洞察力也具有重要意义。
高中物理教学中隔离法整体法
浅谈高中物理教学中的隔离法与整体法隔离法与整体法是高中物理教学中常用的思维方法,所谓隔离法,就是把所研究的对象从整体或系统中隔离出来进行研究,这种方法称为隔离法。
所谓整体法,就是将整个系统看做一个整体,对系统进行整体研究,这种方法称为整体法。
下面就其应用介绍如下。
一、隔离法的应用1.物块a和b用轻绳相连后悬挂在轻弹簧下端静止不动,如图(甲)所示;连接a和b的绳子被烧断后,a上升到某一位置时速度的大小为v,这时b的下落速度大小为u,如图(乙)所示。
已知a和b的质量分别为m和m。
从甲状态到乙状态的过程中,弹簧的弹力作用于物块a的冲量等于多少?解:设弹力对a的冲量为i,取向上为正方向,根据动量定理:对a物体:i-mgt=mv-0(1)对b物体:-mgt=m(-u)-0(2)由(2)式得:t=,代入(1)式得:i=m(v+u)a、b都停止时相距s,s=l+s0+sa-sb=l+s02.如图所示,在真空中,匀强电场的方向竖直向下,匀强磁场方向垂直纸面向里,三个油滴a、b、c带有等量的同种电荷,已知a静止,b向右匀速运动,c向左匀速运动,比较他们的质量应有()a.a油滴质量最大b.b油滴质量最大c.c油滴质量最大d.abc质量一样大解:对于a粒子:ma g=qe ma=qe/g对于b粒子:mbg+qvb=qemb=q(e-vb)/g对于c粒子:mcg=qvb+qemc=q(e+vb)/g故mc>ma>mb二、整体法的运用3.质量为m的木块在光滑水平面上以速度v1向右运动,质量为m的子弹以速度v2水平向左射入木块,要使木块停下来,必须发射子弹数目为(子弹留在木块中不穿出)()a.b.c.d.解:以n颗子弹和m组成的系统动量守恒,n颗子弹入射前为初状态,子弹入射后木块停下来为末状态,以子弹方向为正。
nmv2=m-v1=0 n=4.在粗糙水平面上有一个三角形木块abc,在它的两个粗糙斜面上分别放两个质量为m1和m2的木块,m1>m2,如图所示。
高中物理力学方法-整体法 隔离法
整体法和隔离法一、整体法整体法就是把几个物体视为一个整体,受力分析时,只分析这一整体之外的物体对整体的作用力,不考虑整体内部物体之间的相互作用力。
当只涉及系统而不涉及系统内部某些物体的力和运动时,一般可采用整体法。
运用整体法解题的基本步骤是:(1)明确研究的系统或运动的全过程;(2)画出系统或整体的受力图或运动全过程的示意图;(3)选用适当的物理规律列方程求解。
二、隔离法隔离法就是把要分析的物体从相关的物体系中假想地隔离出来,只分析该物体以外的物体对该物体的作用力,不考虑该物体对其它物体的作用力。
为了弄清系统(连接体)内某个物体的受力和运动情况,一般可采用隔离法。
运用隔离法解题的基本步骤是;(1)明确研究对象或过程、状态;(2)将某个研究对象或某段运动过程、或某个状态从全过程中隔离出来;(3)画出某状态下的受力图或运动过程示意图;(4)选用适当的物理规律列方程求解。
三、应用整体法和隔离法解题的方法1、合理选择研究对象。
这是解答平衡问题成败的关键。
研究对象的选取关系到能否得到解答或能否顺利得到解答,当选取所求力的物体,不能做出解答时,应选取与它相互作用的物体为对象,即转移对象,或把它与周围的物体当做一整体来考虑,即部分的看一看,整体的看一看。
但整体法和隔离法是相对的,二者在一定条件下可相互转化,在解决问题时决不能把这两种方法对立起来,而应该灵活把两种方法结合起来使用。
为使解答简便,选取对象时,一般先整体考虑,尤其在分析外力对系统的作用(不涉及物体间相互作用的内力)时。
但是,在分析系统内各物体(各部分)间相互作用力时(即系统内力),必须用隔离法。
2、如需隔离,原则上选择受力情况少,且又能求解未知量的物体分析,这一思想在以后牛顿定律中会大量体现,要注意熟练掌握。
3、有时解答一题目时需多次选取研究对象,整体法和隔离法交叉运用,从而优化解题思路和解题过程,使解题简捷明了。
所以,注意灵活、交替地使用整体法和隔离法,不仅可以使分析和解答问题的思路与步骤变得极为简捷,而且对于培养宏观的统摄力和微观的洞察力也具有重要意义。
高一物理-必修1-相互作用-受力分析-整体法与隔离法
(1)若对B施加向右的水平拉力,使B向右运动, 而A不离开B的斜面,这个拉力不得超过多少?
(2)若对B施以向左的水平推力,使B向左运动, 而A不致在B上移动,这个推力不得超过多少?
解析:这是一道有临界状态的问题的题,(1) 若拉力F太大,B的加速度大,使A脱离,当 恰好不脱离时拉力为F1则有图(1)
整体法与隔离法在较为复杂的问题中常常需要 有机地结合起来联合、交叉运用,这将会更快 捷有效.
例1两个物体A和B,质量分别为m1和m2,互相接 触放在光滑水平面上,如图所示,对物体A施以水平的
推力F,则物体A对物体B的作用力等于
()
A.m1m+1m2F
B.m1m+2m2F
C.F
D.mm12F
答案:B
根据牛顿第三定律,人对吊板的压力FN′与 吊板对人的支持力等大反向,故FN′=330N.
规律总结:要使物体与斜面保持相对静止,即
相对斜面不上滑也不下滑,加速度就应水 平.这是一种临界状态,考虑一下,当F大于 (m+M)gtanθ或小于(m+M)gtanθ时,物块相对 斜面将怎样运动?
变式训练2 如右图所示一只质量为m的猫,
抓住用绳吊在天花板上的质量为M的垂直杆
子.当悬绳突然断裂时,小猫急速沿杆竖直向
C.3μmg
D.4μmg
答案:C
2.如右图所示,跨过定滑轮的细绳的一端挂 一吊板,另一端被吊板上的人拉住,已知人的 质量为70kg,吊板的质量为10kg,绳及定滑轮 的质量、滑轮的摩擦均可不计,取重力加速度 g=10m/s2.当人以440N的力拉绳时,人与吊板 的加速度和人对吊板的压力分别为多少?
在求解连接体问题时常常用到整体法与隔离 法.所谓“连接体”问题,是指运动中的几 个物体或上下叠放在一起、或前后挤靠在一 起、或通过细绳、轻杆、轻弹簧连在一起、 或由间接的场力(如万有引力、电场力、磁场 力)作用在一起的物体组.
高中物理复习:解答物理问题的10种思想方法
高中物理复习:解答物理问题的10种思想方法专题概述现如今,高考物理愈来愈注重考查考生的能力和科学素养,其命题愈加明显地渗透着对物理思想、物理方法的考查.在平时的复习备考过程中,物理习题浩如烟海,千变万化,我们若能掌握一些基本的解题思想,就如同在开启各式各样的“锁”时,找到了一把“多功能的钥匙”.思想方法1:整体法、隔离法1.整体法和隔离法的选用原则(1)如果动力学系统各部分运动状态相同,求解整体的物理量优先考虑整体法;如果要求解系统各部分的相互作用力,再用隔离法.(2)如果系统内部各部分运动状态不同,一般选用隔离法.2.在比较综合的问题中往往两种方法交叉运用,相辅相成,两种方法的取舍,并无绝对的界限,必须具体问题具体分析,灵活运用.如图所示,质量均为m 的斜面体A 、B 叠放在水平地面上,A 、B 间接触面光滑,用一与斜面平行的推力F 作用在B 上,B 沿斜面匀速上升,A 始终静止.若A 的斜面倾角为θ,下列说法正确的是( )A .F =mg tan θB .A 、B 间的作用力为mg cos θC .地面对A 的支持力大小为2mgD .地面对A 的摩擦力大小为F解析:B 以B 为研究对象,在沿斜面方向、垂直于斜面方向根据平衡条件求得F =mg sin θ,支持力N =mg cos θ,故A 错误,B 正确;以整体为研究对象,根据平衡条件可得地面对A 的支持力大小为F N =2mg -F sin θ,地面对A 的摩擦力大小为f =F cos θ,故C 、D 错误.思想方法2:估算与近似计算1.物理估算题,一般是指依据一定的物理概念和规律,运用物理方法和近似计算方法,对所求物理量的数量级或物理量的取值范围,进行大致的、合理的推算.物理估算是一种重要的方法,有的物理问题,在符合精确度的前提下可以用近似的方法便捷处理;有的物理问题,由于本身条件的特殊性,不需要也不可能进行精确计算.在这些情况下,估算就很实用.2.估算时经常用到的近似数学关系(1)角度θ很小时,弦长近似等于弧长.(2)θ很小时,sin θ≈θ,tan θ≈θ,cos θ≈1.(3)a ≫b 时,a +b ≈a ,1a +1b ≈1b. 3.估算时经常用到的一些物理常识数据解题所需数据,通常可从日常生活、生产实际、熟知的基本常数、常用关系等方面获取,如成人体重约600 N ,汽车速度约10~20 m/s ,重力加速度约为10 m/s 2……引体向上是中学生体育测试的项目之一,引体向上运动的吉尼斯世界纪录是53次/分钟.若一个普通中学生在30秒内完成12次引体向上,该学生此过程中克服重力做功的平均功率最接近于( )A .5 WB .20 WC .100 WD .400 W解析:C 学生体重约为50 kg ,每次引体向上上升的高度约为0.5 m ,引体向上一次克服重力做功为W =mgh =50×10×0.5 J =250 J ,全过程克服重力做功的平均功率为P =nW t=12×250 J 30 s=100 W ,故C 正确,A 、B 、D 错误. 思想方法3:控制变量法在比较复杂的物理问题中,某一物理量的变化可能与多个变量均有关,定性分析或定量确定因变量与自变量的关系时,常常需要用到控制变量法,即先保持其中一个量不变,研究因变量与另外一个变量的关系,如研究加速度与质量和合外力的关系时,先保持物体的质量不变,研究加速度与合外力的关系,再保持合外力不变,研究加速度与物体质量的关系,最终通过数学分析,得到加速度与质量和合外力的关系.如果有三个或三个以上的自变量,需要控制不变的量,做到变量每次只能有一个.在研究球形固体颗粒在水中竖直匀速下沉的速度与哪些因素有关的实验中,得到的实验数据记录在下面的表格中(水的密度为ρ0=1.0×103 kg/m 3). 次序固体颗粒的半径 r /(×10-3 m) 固体颗粒的密度 ρ/(×103 kg ·m -3) 匀速下沉的速度 v /(m ·s -1) 10.50 2.0 0.55 21.002.0 2.20 31.502.0 4.95 40.50 3.0 1.10 51.00 3.0 4.40 60.50 4.0 1.65 7 1.00 4.0 6.60 颗粒的半径r 的关系:v 与________(填“r ”或“r 2”)成正比.(2)根据以上1、4、6组实验数据,可知球形固体颗粒在水中匀速下沉的速度v 与水的密度ρ0、固体的密度ρ的关系:v 与________(填“ρ”或“ρ-ρ0”)成正比.(3)综合以上实验数据,推导球形固体颗粒在水中匀速下沉的速度与水的密度、固体的密度、固体颗粒的半径的关系表达式v =________,比例系数可用k 表示.解析:(1)由控制变量法容易得出,当ρ一定时,从表格中1、2、3组数据可以得出结论:v ∝r 2.(2)观察表格中的1、4、6组数据,当r 一定时,v 和ρ的关系难以立即判断,因此需要换个角度考虑.当r 一定时,在每个ρ值后都减去1.0×103 kg/m 3(即水的密度),得到的数值与v 成正比,即v ∝(ρ-ρ0).(3)综合以上实验数据,可推导出球形固体颗粒在水中匀速下沉的速度与水的密度、固体的密度、固体颗粒的半径的关系表达式:v =kr 2(ρ-ρ0),k 为比例系数.答案:(1)r 2 (2)ρ-ρ0 (3)k (ρ-ρ0)r 2思想方法4:对称思想对称是一种美,只要对称,必有相等的某些量存在.对称法是从对称的角度研究、处理物理问题的一种思维方法,时间和空间上的对称,表明物理规律在某种变换下具有不变的性质.用这种思维方法来处理问题可以开拓思路,使复杂问题的求解变得简捷.高中物理中的对称主要有受力对称和运动对称.电场中等量电荷产生的电场具有对称性,带电粒子在匀强有界磁场中的运动轨迹具有对称性,简谐运动和波在时间和空间上具有对称性,光路具有对称性……解题时,要充分利用这些特点.如图所示,挂钩连接三根长度均为L 的轻绳,三根轻绳的另一端与一质量为m 、直径为1.2L 的水平圆环相连,连接点将圆环三等分,在轻绳拉力作用下圆环以加速度a =12g 匀加速上升,已知重力加速度为g ,则每根轻绳上的拉力大小为( )A.512mg B .59mg C.58mg D .56mg 解析:C 设每根轻绳与竖直方向的夹角为θ,由几何关系可知sin θ=0.6,则cos θ=0.8;对圆环进行受力分析,由牛顿第二定律有3T cos θ-mg =ma ,解得T =58mg ,故选C. 思想方法5:分解思想有些物理问题的运动过程、情景较为复杂,在运用一些物理规律或公式不奏效的情况下,将物理过程按照事物发展的顺序分成几段熟悉的子过程来分析,或者将复杂的运动分解成几个简单或特殊的分运动(如匀速直线运动、匀变速直线运动、圆周运动等)来考虑,往往能事半功倍.某弹射管每次弹出的小球速度相等.在沿光滑竖直轨道自由下落过程中,该弹射管保持水平,先后弹出两只小球.忽略空气阻力,两只小球落到水平地面的( )A .时刻相同,地点相同B .时刻相同,地点不同C .时刻不同,地点相同D .时刻不同,地点不同解析:B 弹射管沿光滑竖直轨道自由下落,向下的加速度大小为g ,且下落时保持水平,故先后弹出的两只小球在竖直方向的分速度与弹射管的分速度相同,即两只小球同时落地;又两只小球先后弹出且水平分速度相等,故两只小球在空中运动的时间不同,则运动的水平位移不同,落地点不同,选项B 正确.思想方法6:数形结合的思想数形结合的思想,就是把物体的空间形式和数量关系结合起来进行考查,通过“数”与“形”之间的对应和转化来解决问题的思想,其实质是把抽象的数学语言、数量关系与直观的图形结合起来,把抽象思维和形象思维结合起来.数形结合的思想,一方面可以以“形”助“数”,实现抽象概念与具体形象的联系与转化,化抽象为直观,化难为易;另一方面可以以“数”解“形”,可以由数入手,将有些涉及图形的问题转化为数量关系来研究,对图形做精细的分析,从而使人们对直观图形有更精确、理性的理解.一弹簧秤的秤盘质量为m 1,盘内放一质量为m 2的物体,弹簧质量不计,其劲度系数为k ,系统处于静止状态,如图所示.t 0时刻给物体施加一个竖直向上的力F ,使物体从静止开始向上做加速度为a 的匀加速直线运动,经2 s 物体与秤盘脱离,用F N 表示物体与秤盘间的相互作用力的大小,已知重力加速度大小为g ,则下列F 和F N 随时间变化的关系图像正确的是( )解析:C 对秤盘和物体整体分析,系统处于静止状态时,弹簧形变量为x 0,利用牛顿第二定律得,kx 0=(m 1+m 2)g ,F +kx -(m 1+m 2)g =(m 1+m 2)a ,又x =x 0-12a (t -t 0)2,解上述两式得F =(m 1+m 2)a +12ka (t -t 0)2,所以选项A 、B 错误;以物体为研究对象,物体静止时,F N =m 2g ,运动后对秤盘受力分析,利用牛顿第二定律得kx -m 1g -F N =m 1a ,F N =m 2g -m 1a -12ka (t -t 0)2,所以选项C 正确,D 错误. 思想方法7:特殊值法与极限法在中学物理问题中,有一类问题具有这样的特点,如果从题中给出的条件出发,需经过较复杂的计算才能得到结果的一般形式,并且条件似乎不足,使得结果难以确定,这时我们可以尝试采用极限思维的方法,将其变化过程引向极端的情况,就能把比较隐蔽的条件或临界现象暴露出来,从而有助于结论的迅速取得.对于某些具有复杂运算的题目,还可以通过特殊值验证的方法排除错误选项,提高效率.图示为一个内、外半径分别为R 1和R 2的圆环状均匀带电平面,其单位面积带电量为σ.取环面中心O 为原点,以垂直于环面的轴线为x 轴.设轴上任意点P 到O 点的距离为x ,P 点电场强度的大小为E .下面给出E 的四个表达式(式中k 为静电力常量),其中只有一个是合理的.你可能不会求解此处的场强E ,但是你可以通过一定的物理分析,对下列表达式的合理性做出判断.根据你的判断,E 的合理表达式应为( )A .E =2πk σ⎝ ⎛⎭⎪⎫R 1x 2+R 21-R 2x 2+R 22x B .E =2πk σ⎝ ⎛⎭⎪⎫1x 2+R 21-1x 2+R 22x C .E =2πk σ⎝ ⎛⎭⎪⎫R 1x 2+R 21+R 2x 2+R 22x D .E =2πk σ⎝ ⎛⎭⎪⎫1x 2+R 21+1x 2+R 22x 解析:B 当R 1=0时,带电圆环演变为带电圆面,则中心轴线上任意一点的电场强度的大小E 不可能小于0,而A 项中,E <0,故A 错误;当x →∞时E →0,而C 项中E =2πk σ·⎝ ⎛⎭⎪⎫ R 21x 2x 2+R 21+ R 22x 2x 2+R 22=2πk σ·⎝ ⎛⎭⎪⎪⎫ 11x 2+1R 21+ 11x 2+1R 22,x →∞时,E →2πk σ(R 1+R 2),同理可知D 项中x →∞时,E →4πk σ,故C 、D 错误;所以正确选项只能为B.思想方法8:等效思想1.等效法是科学研究中重要的思维方法之一,所谓等效法就是在保证某方面效果相同的前提下,用熟悉和简单的物理对象、过程、现象替代实际上陌生和复杂的物理对象、过程、现象的方法.例如:合力与分力、合运动与分运动、总电阻与分电阻等.利用等效法不但能将问题、过程由繁变简、由难变易,由具体到抽象,而且能启迪思维,增长智慧,从而提高能力.2.运用等效法解决实际问题时,常见的有:过程等效、概念等效、条件等效、电器元件等效、电路等效、长度等效、场等效等.在运用等效法时,一定要注意必须是在效果相同的前提下,讨论两个不同的物理过程或物理现象的等效及物理意义.若在运用等效法解决问题时,不抓住效果相同这个条件,就会得出错误的结论.近年来,含有等效法思维方式的试题在高考中频频出现,主要考查物理模型等效、过程等效、条件等效、电路等效等.如图所示,在方向水平向左、范围足够大的匀强电场中,固定一由内表面绝缘光滑且内径很小的圆管弯制而成的圆弧BD ,圆弧的圆心为O ,竖直半径OD =R ,B 点和地面上A 点的连线与地面成θ=37°角,AB =R .一质量为m 、电荷量为q 的小球(可视为质点)从地面上A 点以某一初速度沿AB 方向做直线运动,恰好无碰撞地从管口B 进入管道BD 中,到达管中某处C (图中未标出)时恰好与管道间无作用力.已知sin 37°=0.6,cos 37°=0.8,重力加速度大小为g .求:(1)匀强电场的场强大小E 和小球到达C 处时的速度大小v ;(2)小球的初速度大小v 0以及到达D 处时的速度大小v D .解析:(1)小球做直线运动时的受力情况如图甲所示,小球带正电,则qE =mg tan θ,得E =4mg 3q, 小球到达C 处时电场力与重力的合力恰好提供小球做圆周运动的向心力,如图乙所示,OC ∥AB ,则mg sin θ=m v 2R得v = 53gR . (2)小球“恰好无碰撞地从管口B 进入管道BD ”,说明AB ⊥OB小球从A 点运动到C 点的过程,根据动能定理有-mg sin θ·2R =12m v 2-12m v 20得v 0=253gR , 小球从C 处运动到D 处的过程,根据动能定理有mg sin θ(R -R sin θ)=12m v 2D -12m v 2, 得v D =3gR .答案:(1)4mg 3q 53gR (2) 253gR 3gR思想方法9:微元累积法高中物理中有很多复杂模型不能直接用已有知识和方法解决,可以在对问题做整体的考察后,选取该问题过程中的某一微小单元进行分析,通过对微元的物理分析和描述,找出该微元所具有的物理性质和运动变化规律,从而获得解决该物理问题整体的方法.比如,物体做变加速运动时,若从整体着手研究,则难以在高中物理层面展开,不过当我们用过程微元法,把物体的运动过程按其经历的位移或时间等分为多个小量,将每个微元过程近似为高中物理知识所能处理的过程,在得出每个微元过程的相关结果后,再进行数学求和,这样就能得到物体复杂运动过程的规律.再比如研究对象难以选择的情形,可以把实体模型等分为很多很多的等份,变成一个理想化模型,如刚体可以等分成无数个质点、带电体可以等分成很多点电荷来研究,先研究其中一份,再研究个体与整体的关系,运用物理规律,辅以数学方法求解,由此求出整体受力或运动情况,在中学阶段比较常见的有流体或类似流体问题、链条类的连续体模型等.如图所示,空间存在竖直向下的匀强磁场,磁感应强度B =0.5 T .在匀强磁场区域内,同一水平面内有一对足够长的光滑平行金属导轨,导轨间距L =1 m ,电阻可忽略不计.质量均为m =1 kg 、电阻均为R =2.5 Ω的金属导体棒MN 和PQ 垂直放置于导轨上,且与导轨接触良好.先将PQ 暂时锁定,金属棒MN 在垂直于棒的拉力F 作用下,由静止开始以加速度a =0.4 m/s 2向右做匀加速直线运动,5 s 后保持拉力F 的功率不变,直到棒以最大速度v m 做匀速直线运动.(1)求棒MN 的最大速度v m ;(2)当棒MN 达到最大速度v m 时,解除PQ 锁定,同时撤去拉力F ,两棒最终均匀速运动.求解除棒PQ 锁定后,到两棒最终匀速运动的过程中,电路中产生的总焦耳热;(3)若PQ 始终不解除锁定,当棒MN 达到最大速度v m 时,撤去拉力F ,棒MN 继续运动多远后停下来?(运算结果可用根式表示)解析:(1)棒MN 做匀加速直线运动,5 s 时的速度为:v =at 1=2 m/s此时对棒MN 由牛顿第二定律得:F -BIL =ma棒MN 做切割磁感线运动,产生的感应电动势为:E =BL v在两棒组成的回路中,由闭合电路欧姆定律得:I =E 2R联立并代入数据解得:F =0.5 N5 s 时拉力F 的功率为:P =F v联立并代入数据解得:P =1 W棒MN 最终做匀速直线运动,则有:P v m-BI m L =0, 其中I m =BL v m 2R联立并代入数据解得:v m =2 5 m/s.(2)解除棒PQ 锁定后,两棒运动过程中动量守恒,最终两棒以相同的速度做匀速运动,设速度大小为v ′,以水平向右为正方向,则有:m v m =2m v ′设从解除棒PQ 锁定到两棒达到相同速度的过程中,两棒共产生的焦耳热为Q ,由能量守恒定律可得:Q =12m v 2m -12×2m v ′2 联立并代入数据解得:Q =5 J.(3)以棒MN 为研究对象,设某时刻棒中电流为i ,在极短时间Δt 内,由动量定理得:-BiL Δt =m Δv对式子两边求和有:∑(-BiL Δt )=∑(m Δv )而Δq =i Δt联立解得:BLq =m v m又对于电路有:q =It =E 2Rt 设棒MN 继续运动距离为x 后停下来,由法拉第电磁感应定律得:E =BLx t联立得q =BLx 2R代入数据解得:x =2Rq BL =2Rm v m B 2L 2=40 5 m. 答案:(1)2 5 m/s (2)5 J (3)40 5 m思想方法10:守恒思想物理学中最常用的一种思维方法——守恒.高中物理涉及的守恒定律有能量守恒定律、动量守恒定律、机械能守恒定律、质量守恒定律、电荷守恒定律等,它们是我们处理高中物理问题的主要工具.如图所示,长R =0.6 m 的不可伸长的细绳一端固定在O 点,另一端系着质量m 2=0.1 kg 的小球B ,小球B 刚好与水平面相接触.现使质量m 1=0.3 kg 的物块A 沿光滑水平面以v 0=4 m/s 的速度向B 运动并与B 发生弹性正碰,A 、B 碰撞后,小球B 能在竖直平面内做圆周运动.已知重力加速度g =10 m/s 2,A 、B 均可视为质点,试求:(1)在A 与B 碰撞后瞬间,小球B 的速度v 2的大小;(2)小球B 运动到最高点时对细绳的拉力.解析:(1)物块A 与小球B 碰撞时,由动量守恒定律和机械能守恒定律有: m 1v 0=m 1v 1+m 2v 212m 1v 20=12m 1v 21+12m 2v 22 解得碰撞后瞬间物块A 的速度v 1=m 1-m 2m 1+m 2v 0=2 m/s 小球B 的速度v 2=2m 1m 1+m 2v 0=6 m/s (2)碰撞后,设小球B 运动到最高点时的速度为v ,则由机械能守恒定律有: 12m 2v 22=12m 2v 2+2m 2gR 又由向心力公式有:F +m 2g =m 2v 2R联立解得F =1 N ,由牛顿第三定律知小球B 对细绳的拉力F ′=F =1 N.答案:(1)6 m/s (2)1 N。
新人教高中物理必修1第三章第5节 力的分解利用整体法和隔离法求解平衡 20张-课件
都二
能分
运浇
用灌
好,
“八
二分
八等
定待
律;
”二
,分
我管
们教
一,
起八
,分
静放
待手
花;
开二
。分
成
➢ Pure of heart, life is full of sweet and joy!
绩 ,
八
分
方
法
。
愿
全
天
下
所
有
父
母
我们,还在路上……
作业2.如图所示,倾角为θ的三角滑块及其斜面上 的物块静止在粗糙水平地面上.现用力F垂直作用 在物块上,物块及滑块均未被推动,则滑块受到 地面的静摩擦力大小为
A.0
B.Fcos θ
C.Fsinθ D.Ftanθ
C
作业3.如图所示,粗糙的水平地面上有一斜劈,斜
劈上一物块正在沿斜面以速度v0匀速下滑,斜劈保
例1
m1 m2
M
FN1
F静 1 F静 2
FN2
m1
m2
m1g
m2g
FN
FN2 '
F 静 1'
M
F静 2'
F N 1'
Mg
例2.如图所示,质量为M的木板悬挂在滑轮组下,上端由一根悬 绳C固定在横梁下.质量为m的人手拉住绳端,使整个装置保持在 空间处于静止状态.求 (1)悬绳C所受拉力多大? (2)人对木板的压力(滑轮的质量不不变,T变小 C.N变大,T变大
B
D.N变大,T变小
变式.如图所示,在一根水平的粗糙的直横梁上,套有两 个质量均为m的铁环,两铁环系有等长的细绳,共同拴着 质量为M的小球,两铁环与小球均保持静止。现使两铁环 间距离增大少许,系统仍保持静止,则水平横梁对铁环
高中物理解题方法---整体法和隔离法
高中物理解题方法---整体法和隔离法选择研究对象是解决物理问题的首要环节.在很多物理问题中,研究对象的选择方案是多样的,研究对象的选取方法不同会影响求解的繁简程度。
合理选择研究对象会使问题简化,反之,会使问题复杂化,甚至使问题无法解决。
隔离法与整体法都是物理解题的基本方法。
隔离法就是将研究对象从其周围的环境中隔离出来单独进行研究,这个研究对象可以是一个物体,也可以是物体的一个部分,广义的隔离法还包括将一个物理过程从其全过程中隔离出来。
整体法是将几个物体看作一个整体,或将看上去具有明显不同性质和特点的几个物理过程作为一个整体过程来处理。
隔离法和整体法看上去相互对立,但两者在本质上是统一的,因为将几个物体看作一个整体之后,还是要将它们与周围的环境隔离开来的。
这两种方法广泛地应用在受力分析、动量定理、动量守恒、动能定理、机械能守恒等问题中。
对于连结体问题,通常用隔离法,但有时也可采用整体法。
如果能够运用整体法,我们应该优先采用整体法,这样涉及的研究对象少,未知量少,方程少,求解简便;不计物体间相互作用的内力,或物体系内的物体的运动状态相同,一般首先考虑整体法。
对于大多数动力学问题,单纯采用整体法并不一定能解决,通常采用整体法与隔离法相结合的方法。
一、静力学中的整体与隔离通常在分析外力对系统的作用时,用整体法;在分析系统内各物体(各部分)间相互作用时,用隔离法.解题中应遵循“先整体、后隔离”的原则。
【例1】 在粗糙水平面上有一个三角形木块a ,在它的两个粗糙斜面上分别放有质量为m1和m2的两个木块b 和c ,如图所示,已知m1>m2,三木块均处于静止,则粗糙地面对于三角形木块( )A .有摩擦力作用,摩擦力的方向水平向右B .有摩擦力作用,摩擦力的方向水平向左C .有摩擦力作用,但摩擦力的方向不能确定D .没有摩擦力的作用【解析】由于三物体均静止,故可将三物体视为一个物体,它静止于水平面上,必无摩擦力作用,故选D .【点评】本题若以三角形木块a 为研究对象,分析b 和c 对它的弹力和摩擦力,再求其合力来求解,则把问题复杂化了.此题可扩展为b 、c 两个物体均匀速下滑,想一想,应选什么?【例2】有一个直角支架 AOB ,AO 水平放置,表面粗糙,OB 竖直向下,表面光滑,AO 上套有小环P ,OB 上套有小环 Q ,两环质量均为m ,两环间由一根质量可忽略、不可伸展的细绳相连,并在某一位置平衡,如图。
新教科版高中物理必修1第四章第2节共点力平衡条件的应用整体法与隔离法(15张ppt)
例2 如图所示,粗糙的水平地面上有一斜劈,斜劈上一物块 正在沿斜面以速度v0匀速下滑,斜劈保持静止,则地面对斜劈的 摩擦力( )
A.等于零 B.不为零,方向向右 C.不为零,方向向左 D.不为零,v0较大时方向向左,v0较小时方向向右
解析:斜劈和物块都平衡对斜劈和物块整体受力分析知地面对斜劈的摩擦力为零,选A
体放在两竖直墙和水平面之间,处于静止状态.m与M相接触,若
不计一切摩擦,求
(1)水平面对正方体的弹力大小;
m
(2)墙面对正方体的弹力大小。
α
解(1)对M和m组成的系统进行受
M
力分析,根据平衡条件得水平面对
正方体的弹力
N=(M+m)g ①
N
(2)对M进行受力分析
F1=F2cosα ②
Mg+F2sinα=N ③
• 10、人的志向通常和他们的能力成正比例。2021/3/182021/3/182021/3/183/18/2021 2:04:48 PM • 11、夫学须志也,才须学也,非学无以广才,非志无以成学。2021/3/182021/3/182021/3/18Mar-2118-Mar-21 • 12、越是无能的人,越喜欢挑剔别人的错儿。2021/3/182021/3/182021/3/18Thursday, March 18, 2021 • 13、志不立,天下无可成之事。2021/3/182021/3/182021/3/182021/3/183/18/2021
解析:选择环P、Q和细绳为研 究对象.在竖直方向上只受重
O
P
A
FT
力和支持力FN的作用,而环动
移前后系统的重力保持不变,
Q
故FN保持不变.取环Q为研究
什么是整体法与隔离法
一、什么是整体法与隔离法(一).整体法与隔离法的基本定义整体法——在研究物理问题时,当所研究的对象不是一个物体,而是有两个或两个以上物体构成的系统时,若不需要求出物体之间的相互作用力,可以将整个系统作为一个整体来研究;或者,一个物体的运动是由多个运动过程所组成,可以适当的组合某些运动过程或整个过程,以整体的运动情况来进行求解。
这两种情况所采取的方法均叫整体法。
隔离法——将系统中所研究的某个物体与其他物体隔离开,研究这个物体受其他物体对它的作用力;或者当物体运动是由多个运动过程组合而成时,逐个研究其运动过程,这两种情况所采取的方法叫做隔离法。
(二).整体法与隔离法在物理学发展中的作用高考越来越注重考能力,从一定意义上说方法是能力的基础。
但高考不会纯粹考方法。
方法的考查一般会采取隐性的形式,渗透在具体的物理问题中。
大纲明确指出:“要重视概念和规律的应用,使学生学会运用物理知识解释现象,分析和解决实际问题”,这就是说,不仅要运用物理知识解决实际问题,而且要有意识的领悟物理解题的思维方法。
物理学是一门研究物质世界及其运动规律的自然科学。
物理学的最小研究对象是数量级约为10-15m的微观粒子,最大研究对象是数量级约为(1026—1027)m 的宇宙。
共跨越了42—43个数量级,可以说物理学的研究范围涉及到了我们所认识到的整个世界。
那么我们又如何从如此繁杂、庞大的体系中灵活恰当的选取我们研究的对象,就成了我们方便、简捷解决问题的前提。
整体法和隔离法的掌握正是培养我们具备这种素质的良好训练。
例如,使用整体法时,不必考虑所选系统物体间的相互作用,或不用考虑各个运动阶段的详细情况,运用整体法时,由于体系中的内力都是成对出现,因此其合力必为零,这样就减少了物理量的个数,从而简化了方程;忽略无关因素,抓住主要矛盾,这样可以使复杂问题简单化。
二、整体法和隔离法的特征(一).整体法与隔离法现象表现运用整体法解决问题的思维特点,在于把物理客体作为一个整体,以整体或全过程为研究对象,从整体上把握物理现象的本质和规律,这种思维叫做整体思维,又叫做系统思维。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整体法和隔离法一、静力学中的整体与隔离通常在分析外力对系统的作用时,用整体法;在分析系统内各物体(各部分)间相互作用时,用隔离法.解题中应遵循“先整体、后隔离”的原则。
【例1】 在粗糙水平面上有一个三角形木块a ,在它的两个粗糙斜面上分别放有质量为m1和m2的两个木块b 和c ,如图所示,已知m1>m2,三木块均处于静止,则粗糙地面对于三角形木块( )A .有摩擦力作用,摩擦力的方向水平向右B .有摩擦力作用,摩擦力的方向水平向左C .有摩擦力作用,但摩擦力的方向不能确定D .没有摩擦力的作用【解析】由于三物体均静止,故可将三物体视为一个物体,它静止于水平面上,必无摩擦力作用,故选D .【点评】本题若以三角形木块a 为研究对象,分析b 和c 对它的弹力和摩擦力,再求其合力来求解,则把问题复杂化了.此题可扩展为b 、c 两个物体均匀速下滑,想一想,应选什么?【例2】有一个直角支架 AOB ,AO 水平放置,表面粗糙,OB竖直向下,表面光滑,AO 上套有小环P ,OB 上套有小环 Q ,两环质量均为m ,两环间由一根质量可忽略、不可伸展的细绳相连,并在某一位置平衡,如图。
现将P 环向左移一小段距离,两环再次达到平衡,那么将移动后的平衡状态和原来的平衡状态比较,AO 杆对P 环的支持力N 和细绳上的拉力T 的变化情况是( )A .N 不变,T 变大B .N 不变,T 变小C .N 变大,T 变大D .N 变大,T 变小【解析】隔离法:设PQ 与OA 的夹角为α,对P 有:mg +Tsinα=N对Q 有:Tsinα=mg所以 N=2mg , T=mg/sinα 故N 不变,T 变大.答案为B整体法:选P 、Q 整体为研究对象,在竖直方向上受到的合外力为零,直接可得N=2mg ,再选P 或Q 中任一为研究对象,受力分析可求出T=mg/sinα【点评】为使解答简便,选取研究对象时,一般优先考虑整体,若不能解答,再隔离考虑.【例3】如图所示,设A 重10N ,B 重20N ,A 、B 间的动摩擦因数为0.1,B 与地面的摩擦因数为0.2.问:(1)至少对B 向左施多大的力,才能使A 、B 发生相对滑动?(2)若A 、B 间μ1=0.4,B 与地间μ2=0.l ,则F 多大才能产生相对滑动?【解析】(1)设A 、B 恰好滑动,则B 对地也要恰好滑A OB P Q动,选A 、B 为研究对象,受力如图,由平衡条件得:F=f B +2T选A 为研究对象,由平衡条件有T=f A f A =0.1×10=1N f B =0.2×30=6N F=8N 。
(2)同理F=11N 。
【例4】将长方形均匀木块锯成如图所示的三部分,其中B 、C 两部分完全对称,现将三部分拼在一起放在粗糙水平面上,当用与木块左侧垂直的水平向右力F 作用时,木块恰能向右匀速运动,且A 与B 、A 与C 均无相对滑动,图中的θ角及F 为已知,求A 与B 之间的压力为多少?【解析】以整体为研究对象,木块平衡得F=f 合又因为 m A =2m B =2m C 且动摩擦因数相同,所以 f B =F/4再以B 为研究对象,受力如图所示,因B 平衡,所以F 1=f B sinθ 即:F 1=Fsinθ/4【点评】本题也可以分别对A 、B 进行隔离研究,其解答过程相当繁杂。
【例5】如图所示,在两块相同的竖直木板间,有质量均为m 的四块相同的砖,用两个大小均为F 的水平力压木板,使砖静止不动,则左边木板对第一块砖,第二块砖对第三块砖的摩擦力分别为A .4mg 、2mgB .2mg 、0C .2mg 、mgD .4mg 、mg【解析】设左、右木板对砖摩擦力为f1,第 3块砖对第2块砖摩擦为f2,则对四块砖作整体有:2f1=4mg ,∴ f1=2mg 。
对1、2块砖平衡有:f1+f2=2mg ,∴ f2=0,故B 正确。
【例6】如图所示,两个完全相同的重为G 的球,两球与水平地面间的动摩擦因市委都是μ,一根轻绳两端固接在两个球上,在绳的中点施加一个竖直向上的拉力,当绳被拉直后,两段绳间的夹角为θ。
问当F 至少多大时,两球将发生滑动?【解析】首先选用整体法,由平衡条件得F +2N=2G ①再隔离任一球,由平衡条件得Tsin(θ/2)=μN ② 2·Tcos(θ/2)=F ③①②③联立解之 。
【例7】如图所示,重为8N 的球静止在与水平面成370角的光滑斜面上,并通过定滑轮与重4N 的物体A 相连,光滑挡板与水 A T f A F A B C θ θ f B f 1 F 1平而垂直,不计滑轮的摩擦,绳子的质量,求斜面和挡板所受的压力(sin370=0.6)。
【解析】分别隔离物体A、球,并进行受力分析,如图所示:由平衡条件可得: T=4NTsin370+N2cos370=8N2sin370=N1+Tcos370得 N1=1N N2=7N。
【例8】如图所示,光滑的金属球B放在纵截面为等边三角形的物体A与坚直墙之间,恰好匀速下滑,已知物体A的重力是B重力的6倍,不计球跟斜面和墙之间的摩擦,问:物体A与水平面之间的动摩擦因数μ是多少?【解析】首先以B为研究对象,进行受力分析如图由平衡条件可得: N2=m B gcot300①再以A、B为系统为研究对象.受力分析如图。
由平衡条件得:N2=f,f=μ(m A+m B)g ②解得μ=√3/7【例9】如图所示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧。
在这过程中下面木块移动的距离为【分析】本题主要是胡克定律的应用,同时要求考生能形成正确的物理图景,合理选择研究对象,并能进行正确的受力分析。
求弹簧2原来的压缩量时,应把m1、m2看做一个整体,2的压缩量x1=(m1+m2)g/k2。
m1脱离弹簧后,把m2作为对象,2的压缩量x2=m2g/k2。
d=x1-x2=m1g/k2。
答案为C。
【例10】如图所示,有两本完全相同的书A、B,书重均为5N,若将两本书等分成若干份后,交叉地叠放在一起置于光滑桌面上,并将书A固定不动,用水平向右的力F 把书B匀速抽出。
观测得一组数据如下:根据以上数据,试求:(1)若将书分成32份,力 F应为多大?(2)该书的页数。
(3)若两本书任意两张纸之间的动摩擦因数μ相等,则μ为多少?【解析】(l)从表中可看出,将书分成 2,4,8,16,…是2倍数份时,拉力F将分别增加6N,12N,24N,…,增加恰为2的倍数,故将书分成32份时,增加拉力应为 48N,故力 F=46.5+48=94.5N ;(2)逐页交叉时,需拉力F=190.5N ,恰好是把书分成 64份时,增加拉力 48×2=96N,需拉力 F=94.5+96=190.5N可见,逐页交叉刚好分为64份,即该书有64页;(3)两张纸之间动摩擦因数为μ,则F=190.5=μG/64+μ2G/64+μ3G/64+……+μ128G/64=μG/64·(1+2+3+……+128)=129μ×5∴ μ=190.5/(129×5)=0.3。
【点评】请注意,将书分成份数不同,有所不同。
二、牛顿运动定律中的整体与隔离当系统内各物体具有相同的加速度时,应先把这个系统当作一个整体(即看成一个质点),分析受到的外力及运动情况,利用牛顿第二定律求出加速度.如若要求系统内各物体相互作用的内力,则把物体隔离,对某个物体单独进行受力分析,再利用牛顿第二定律对该物体列式求解.隔离物体时应对受力少的物体进行隔离比较方便。
【例11】如图所示的三个物体A 、B 、C ,其质量分别为m 1、m 2、m 3,带有滑轮的物体B 放在光滑平面上,滑轮和所有接触面间的摩擦及绳子的质量均不计.为使三物体间无相对运动,则水平推力的大小应为F =__________。
【解析】以F 1表示绕过滑轮的绳子的张力,为使三物体间无相对运动,则对于物体C 有:F 1=m 3g ,以a 表示物体A 在拉力F 1作用下的加速度,则有g m m m F a 1311==,由于三物体间无相对运动,则上述的a 也就是三物体作为一个整物体运动的加速度,故得F =(m 1+m 2+m 3)a =13m m (m 1+m 2+m 3)g【例12】如图,底座A 上装有一根直立竖杆,其总质量为M ,杆上套有质量为m 的环B ,它与杆有摩擦。
当环从底座以初速向上飞起时(底座保持静止),环的加速度为a ,求环在升起的过程中,底座对水平面的压力分别是多大?【解析】采用隔离法:选环为研究对象,则 f+mg=ma (1)选底座为研究对象,有F+f ’-Mg=0 (2)又f=f ’ (3)联立(1)(2)(3)解得:F=Mg-m(a-g)采用整体法:选A 、B 整体为研究对象,其受力如图,A 的加速度为a ,向下;B 的加速度为0.选向下为正方向,有:(M+m)g-F=ma解之:F=Mg-m(a-g)要求出a)g【例13】如图,质量M=10kg 的木楔ABC 静置于粗糙水平地面上,与地面动摩擦因数μ=0.02.在木楔的倾角θ为300的斜面上,有一质量为m=1.0kg 的物块由静止开始沿斜面下滑。
当滑行路程s=1.4m 时,其速度v=1.4m/s 。
在这个过程中木楔没有动。
求地面对木楔的摩擦力的大小和方向。
(重力加速度g=10m/s 2) 【解析】由匀加速运动的公式v 2=v o 2+2as ,得物块沿斜面下滑的加速度为7.04.124.1222=⨯==s v a m/s 2 (1)由于θsin g a <=5m/s 2,可知物块受到摩擦力作用。
分析物块受力,它受三个力,如图.对于沿斜面的方向和垂直于斜面的方向,由牛顿定律,有 ma f mg =-1sin θ (2) 0cos 1=-F mg θ (3) 分析木楔受力,它受五个力作用,如图.对于水平方向,由牛顿定律,有 0sin cos 112=-+θθF f f (4)由此可解的地面对木楔的摩擦力θθθθθθcos )sin (sin cos cos sin 112ma mg mg f F f --=-=61.0cos ==θma N此力方向与图中所设的一致(由C 指向B 的方向).上面是用隔离法解得,下面我们用整体法求解(1)式同上。
选M 、m 组成的系统为研究对象,系统受到的外力如图.将加速度a 分解为水平的acos θ和竖直的asin θ,对系统运用牛顿定律(M 加速度为0),有水平方向:61.0cos -=-=θma f N“-”表示方向与图示方向相反竖直方向:θsin )(ma F g m M =-+可解出地面对M 的支持力。