高盐浓度有机废水处理技术
高盐废水生化处理
高盐废水生化处理:技术要点与解决方案一、引言随着工业的快速发展,高盐废水已成为重要的环境问题。
高盐废水主要来自化工、印染、食品加工等行业,具有高浓度、高毒性、难以生物降解等特点,对环境和人类健康造成严重影响。
因此,高盐废水的处理成为当前的重要课题。
本文将详细解析高盐废水生化处理的技术要点和解决方案,以提供实用的参考。
二、高盐废水生化处理技术要点1.预处理:高盐废水进入生化系统前,需要进行预处理。
预处理的目的是去除大颗粒物质、降低污染物浓度,为后续生化处理创造有利条件。
常用的预处理方法包括沉淀、过滤、吸附等。
2.微生物选择:在高盐环境下,常规的微生物可能无法适应,因此需要选择耐盐、耐高浓度污染物的微生物。
通过驯化、筛选和培养,可以得到适合高盐废水的微生物种群。
3.生物膜反应器:生物膜反应器是一种有效的生化处理方法,通过在反应器内形成生物膜,提高微生物的附着和降解能力。
在高盐废水处理中,生物膜反应器能够适应高盐环境,保持较高的降解效率。
4.高效分离:生化处理过程中,需要将污染物转化为无害物质或将其从废水中分离出来。
因此,高效分离技术是生化处理的重要环节。
常用的高效分离技术包括活性炭吸附、膜分离、光化学反应等。
三、高盐废水生化处理解决方案1.高效曝气池:高效曝气池是一种常见的生化处理方法,通过增加曝气量、优化曝气方式等手段,提高有机污染物的降解效率。
在高盐废水处理中,高效曝气池可以与其他工艺结合,如活性污泥法、A2O等,实现高效去除污染物。
2.生物膜反应器与高效分离技术结合:将生物膜反应器与高效分离技术结合,可以实现高盐废水的高效处理。
具体流程为:生物膜反应器对废水进行生物降解,然后通过高效分离技术将污染物从废水中分离出来。
这种解决方案具有较高的处理效率和稳定性。
3.光化学氧化法:光化学氧化法是一种新型的污水处理技术,利用光能将有机污染物转化为无害物质。
在高盐废水处理中,光化学氧化法具有较高的降解效率和较强的适应性。
工业高盐废水的处理方法
工业高盐废水的处理方法一、物理方法物理方法是利用物理原理对高盐废水进行处理,常见的物理方法有蒸发结晶法、逆渗透法和电渗析法。
1.蒸发结晶法:将高盐废水加热蒸发,水分蒸发后形成结晶,从而分离出盐分。
蒸发结晶法适用于废水盐浓度高的情况,但处理过程中能源消耗较大。
2.逆渗透法:逆渗透法利用半透膜的选择性透过性,将高盐废水通过压力驱动,使盐分和水分分离,生成淡水和盐浓缩液。
逆渗透法处理效果好,但设备投资和运行成本较高。
3.电渗析法:电渗析法是利用电场力驱动离子在离子膜中的迁移,并通过离子膜的选择性透过性对离子进行分离。
电渗析法适用于盐分浓度较低的高盐废水处理,但存在电能消耗问题。
二、化学方法化学方法是利用化学原理对高盐废水进行处理,常见的化学方法有化学沉淀法、离子交换法和电化学法。
1.化学沉淀法:化学沉淀法通过添加化学药剂,使废水中的盐分形成易沉淀的固体颗粒,从而实现盐分的分离。
化学沉淀法易于实施和控制,但产生的沉淀物需要进一步处理。
2.离子交换法:离子交换法通过固体离子交换树脂吸附或释放离子,将废水中的盐分去除。
离子交换法处理效果好,但需要定期对树脂进行再生或更换,产生的废液也需要处理。
3.电化学法:电化学法通过电场作用将废水中的盐分转化为氧化物或析出在电极上,从而实现分离。
电化学法能耗较低,但设备投资较高且操作复杂。
三、生物方法生物方法是利用微生物对高盐废水进行处理,常见的生物方法有生物接触氧化法、生物膜法和生物降解法。
1.生物接触氧化法:生物接触氧化法通过将高盐废水与含有微生物的床体接触,使有机物被微生物降解。
生物接触氧化法适用于有机物浓度较高的高盐废水,但存在对高盐浓度不敏感的问题。
2.生物膜法:生物膜法通过在附着剂上培养微生物来进行高盐废水的降解。
生物膜法处理效果好,但需要定期维护和更换附着剂。
3.生物降解法:利用特定微生物对废水中有机物进行分解降解的方法。
生物降解法适用于有机物含量较高的高盐废水,但对高盐浓度和抗腐蚀性要求较高。
高浓度含盐废水处理工艺
高浓度含盐废水处理工艺一、高浓度含盐废水的定义及危害高浓度含盐废水是指废水中含有较高浓度的盐类(如氯化钠、硫酸盐、碳酸盐等)。
这种废水往往来自于化工、电子、矿业等行业,在生产过程中产生。
高浓度含盐废水假如直接排放到环境中,会造成以下危害:1. 对水体生态环境造成直接破坏,导致水生生物死亡和生态平衡失调。
2. 加重土地污染,对植被生长和土壤质量造成不良影响。
3. 造成大气污染,严重影响四周居民的日常生活。
因此,高浓度含盐废水的处理特别紧要,需要找寻适合的处理技术。
二、高浓度含盐废水处理技术1. 浓缩技术浓缩技术是指将高浓度含盐废水通过蒸发、冷冻结晶、扩散等方式,将废水中的水分蒸发掉,使废水中的盐分达到肯定的浓度。
这种技术可以将高浓度含盐废水中的盐分浓缩到较高的浓度,降低处理的难度和成本。
浓缩后的盐分可以进一步用于回收利用或销售。
2. 离子交换技术离子交换技术是指通过树脂对废水中的离子进行吸附和交换。
通过选择特定的吸附树脂,可以将废水中的高浓度离子快速吸附到树脂上并得到纯洁的水。
这种技术可以有效地去除废水中的高浓度盐分,得到高品质的废水。
3. 反渗透技术反渗透技术是指利用半透膜对废水进行过滤,过滤后的废水中水分较少,离子浓度较高。
通过这种技术,可以将废水中的高浓度离子和溶解物分别出来。
反渗透技术一般需要高压和高能耗,但是可以得到纯洁的废水,是一种特别有效的处理方法。
4. 气浮沉淀技术气浮沉淀技术是指将高浓度含盐废水中的悬浮物通过气浮或沉淀的方式分别出来。
这种技术特别适用于处理含大量悬浮物的高浓度废水,可以有效地去除废水中的物质,得到更纯洁的水。
5. 生物处理技术生物处理技术是指通过生物菌群对废水进行分解、转化和吸附,以去除其中的污染物。
这种技术可以完成一些常规的废水处理,如去除有机物和氨氮等污染物。
但是,对于高浓度含盐废水,生物处理技术往往只能起到辅佑襄助作用。
三、综合处理方案针对高浓度含盐废水的特点,综合采纳多种处理技术是特别有效的。
高盐废水处理工艺流程
高盐废水处理工艺流程
高盐废水是一种常见的工业废水,其处理工艺流程对于保护环境、节约资源至关重要。
下面将介绍一种高盐废水处理工艺流程,希望能对相关行业提供一定的参考。
首先,高盐废水处理工艺流程的第一步是预处理。
在预处理阶段,需要对废水进行初步的过滤和调节,以去除大颗粒杂质和调整水质参数,为后续处理工艺创造良好的条件。
接下来是膜分离工艺。
膜分离是一种高效的废水处理技术,通过膜的选择性通透性,可以有效地去除废水中的盐分和有机物,提高水质。
然后是离子交换工艺。
离子交换是一种常用的高盐废水处理方法,通过离子交换树脂的选择性吸附作用,可以将废水中的盐离子去除,从而达到净化水质的目的。
接着是蒸发结晶工艺。
对于高盐废水,蒸发结晶是一种有效的处理方法,通过蒸发浓缩废水中的盐分,最终得到盐类固体物质和相对清洁的水。
最后是终端处理工艺。
在终端处理阶段,需要对处理后的水质进行最后的调节和净化,确保废水处理达到排放标准,或者实现循环利用的目的。
综上所述,高盐废水处理工艺流程包括预处理、膜分离、离子交换、蒸发结晶和终端处理等环节,通过这些工艺的组合应用,可以有效地处理高盐废水,保护环境,节约资源。
希望这些内容能为相关行业提供一定的参考,推动高盐废水处理工艺的进步和应用。
高含盐废水处理可行技术
高含盐废水处理可行技术
高含盐废水处理可行的技术主要包括以下几种:
1. 浓缩结晶技术:通过蒸发浓缩的方式将高含盐废水中的水分逐渐蒸发,从而使废水中的盐类逐渐结晶沉淀,达到净化水质的目的。
2. 逆渗透技术:利用逆渗透膜过滤的方式进行废水处理,该膜具有特殊的孔径,可以有效去除水中的盐类和其他污染物,生成净水。
3. 离子交换技术:利用具有特殊吸附能力的离子交换树脂对废水中的盐类进行吸附和分离,从而将盐类与水分离,并最终得到去盐的水。
4. 蒸发结晶技术:通过加热和蒸发的方式将废水中的水分蒸发,使盐类逐渐结晶沉淀,最终得到净化的水。
5. 生物处理技术:利用微生物对高含盐废水中的污染物进行降解和转化,通过生物反应器等设备将废水处理成可排放的水。
这些技术在高含盐废水处理中具有一定的可行性,但具体选择哪种技术还需要根据废水的盐含量、处理效果要求、处理工艺成本等因素来综合考虑。
高盐废水处理工艺
高盐废水处理工艺高盐废水是指含盐量大于15000mg/L的废水,常见于化工、制药、电镀等行业。
由于高盐废水的处理难度较大,使得处理成本较高,因此探究高效、低成本的高盐废水处理工艺具有紧要意义。
下面将介绍几种常见的高盐废水处理工艺。
一、蒸发結晶法蒸发结晶法是一种基于物理方法处理高盐废水的传统技术。
该方法依靠加热使废水蒸发,除水分以外的盐类物质渐渐浓集、结晶,形成盐渣,通过离心、过滤等步骤分别出盐渣。
该方法具有处理效率高、处理本领大、耗能低等优点。
但是,由于该方法需要高温进行,因此需要大量能源,且处理过程中易产生二次污染物。
二、电渗析法电渗析法是一种基于电化学方法处理高盐废水的技术。
该方法利用电场作用下离子在水中的运动来实现溶质的分别,电渗析法成本较低,处理效率高,且易于操作,具有较广泛的应用前景。
然而,由于渗析膜的寿命较短,且简单受到脏物质沉积而失效,因此需要定期更换渗析膜,加添了处理成本。
三、生物法生物法重要是指利用细菌、藻类等生物对高盐废水中的有机物进行生物降解处理的技术,同时也可以兼顾除盐的作用。
处理高盐废水中常用的生物法有反硝化—厌氧氧化(R—ANOX)法和光合活性池法等。
其中,R—ANOX法的原理是在无氧环境下进行反硝化,将硝酸盐还原为氮气,同时利用厌氧氧化还原废水中的有机物;光合活性池法则是利用藻类的光合作用将废水中的酸碱度降低,同时将废水中的氮气有机物降低至安全范围。
四、反渗透法反渗透法是一种利用半透膜对高盐废水进行过滤处理的技术,该方法具有对高盐废水的适应性强、处理效率高等优点。
该方法将高盐废水经由反渗透膜过滤后,将其中的盐类物质渐渐排放,排放的水质量可达到纯化水的标准。
但是,反渗透法成本较高,半透膜简单污染,不适用于废水处理量较大的情况。
综上所述,以上几种高盐废水处理工艺各具特色,应用于不同的废水处理场景中。
在实际操作过程中,可以依据废水的参数和处理需求选择合适的工艺进行实施,以达到最佳处理效果。
高浓度含盐废水处理工艺
高浓度含盐废水处理工艺一、前言高浓度含盐废水是指含有较高浓度盐类的废水,如海水淡化、化工废水、煤矿废水等。
这种废水处理难度大,处理成本高。
本文将介绍一种适用于处理高浓度含盐废水的工艺。
二、工艺流程该工艺主要包括以下步骤:1.初次沉淀:将废水经过初次沉淀,去除悬浮物和部分重金属离子。
2.反渗透:将初次沉淀后的水进入反渗透设备中,通过反渗透膜过滤去除大部分盐类离子。
3.电渗析:将反渗透后的水进入电渗析设备中,利用电场作用分离出剩余的少量离子。
4.蒸发结晶:将电渗析后的浓缩液进入蒸发器进行结晶,得到固体盐类。
5.固体处理:对产生的固体盐类进行处理和处置。
三、各步骤详解1.初次沉淀初次沉淀是指将高浓度含盐废水经过物理或化学方法去除其中的悬浮物和部分重金属离子。
常用的初次沉淀方法包括慢速过滤、沉淀池、膜过滤等。
其中,沉淀池法是最常见的一种方法,其原理是将废水静置在一个大型容器中,使悬浮物和重金属离子沉淀到底部。
经过初次沉淀后,水质明显改善。
2.反渗透反渗透是指利用半透膜将水中的溶质和离子分离出来的一种技术。
其原理是利用高压作用下,将含盐水通过半透膜过滤,使得水分子可以通过半透膜而盐类离子无法通过,从而达到去除盐类的目的。
反渗透设备通常由预处理系统、高压泵、反渗透膜组件和控制系统组成。
3.电渗析电渗析是指利用电场作用将带电离子从水溶液中分离出来的一种技术。
其原理是利用两个极板之间形成的电场,使得带电离子向相应的极板移动并被收集起来。
该技术主要应用于处理低浓度的溶液,但在高浓度含盐废水处理中也有一定的应用。
4.蒸发结晶蒸发结晶是指将液体中的溶质通过加热蒸发使其达到饱和状态,然后通过自然结晶或人工结晶得到固体溶质。
该技术主要应用于处理高浓度含盐废水中的固体盐类。
5.固体处理固体处理是指对产生的固体盐类进行处理和处置。
常见的方法包括填埋、焚烧、回收等。
其中,填埋法是最常见的一种方法,其原理是将固体废物掩埋在地下,利用土壤自然降解。
高盐废水处理方法
高盐废水处理方法高盐废水是指总含盐质量分数至少1%的废水.其主要来自化工厂及石油和天然气的采集加工等.这种废水含有多种物质(包括盐、油、有机重金属和放射性物质)。
含盐废水的产生途径广泛,水量也逐年增加。
去除含盐污水中的有机污染物对环境造成的影响至关重要。
高盐废水如何处理,首先我们对其不同情况做一个简单的分析。
1、在盐度小于2g/L条件下,可能通过驯化处理含盐污水。
但是驯化盐度浓度必须逐渐提高,分阶段的将系统驯化到要求盐度水平。
突然高盐环境会造成驯化的失败和启动的延迟。
2、稀释进水盐度。
既然高盐成为微生物的抑制和毒害剂,那么将进水进行稀释,使盐度低于毒域值,生物处理就不会收到抑制。
这种方法简单,易于操作和管理;其缺点就是增加处理规模,增加基建投资,增加运行费用,浪费水资源。
3、在盐度大于2g/L时,蒸发浓缩除盐是最经济也是最有效的可行办法。
其它的方法如培养含盐菌等的方法都存在工业实践难以运行的问题。
高盐废水如何处理能达到更好的效果,我们需要对其处理的生物流程有一个详细的认识和理解:(1)调节池。
含盐废水调节池考虑的主要因素是废水盐浓度的变化,除生产波动周期、冲击因素外,应重点考虑水中盐浓度的变化和如何进行调整,如低含盐水量的减少或过高含盐来水的冲击。
(2)曝气池。
根据废水中含盐类型不同,曝气池选择也应有所不同。
生物处理含CaCL2较高的废水,应采用传统曝气方式。
钙离子能增加活性污泥的絮体强度,高CaCL2可使污泥中灰分达到40%~50%,污泥密度增加,曝气池中的污泥浓度可在5000mg/L以上。
因此,应采用提升力较大的传统曝气、深井曝气、流化床曝气等曝气方法。
曝气也应选用气泡较大、提升力较强的散流曝气器等曝气方式。
不可采用气泡较小的微孔曝气器和可变孔曝气器,防止曝气孔被无机盐堵塞,不利于曝气池的搅动。
在水量小于1000m3条件下也可以采用射流曝气,射流曝气氧的传递效率高,而且不易堵塞曝气设备。
曝气强度也应大于普通生物处理,在10m3/(m2?h)左右,或用中心管来增加提升和搅拌能力。
高浓度含盐废水处理
高浓度含盐废水处理处理高盐有机废水的工艺方法有物理法、化学法、生物法,一般都是以降低废水的COD和含盐量为目的。
一、物化法(1)焚烧法:对于热值较高的高盐废水,COD含量高,在800-1000℃的条件下充分与空气中的氧气反应,COD转化为气体和固体残渣,一般适用于COD 值大于100g/L的废水,且能耗较高。
(2)电解法:高盐废水具有较高的导电性,在电解过程中,有机物电解质溶液可以发生一系列氧化还原反应,生成不溶于水的物质,经过沉淀或生成无害气体除去,降低COD。
该方法处理与有机物和无机盐的种类也有关,Cl-存在时可在阳极放电,生成ClO-降解COD。
但也有实验表明苯酚废水通过电解法处理只改变了COD的存在形式并没有减少TOC的存在总量。
(3)膜分离工艺:目前较成熟的常用膜分离工艺有微滤、超滤、纳滤、反渗透、电渗析。
微滤和超滤所用膜的孔径较大,对于COD和悬浮物(SS)的截留作用较好,但不能有效去除污水中的盐分。
纳滤可以截留大部分二价离子。
反渗透(RO)能够截留一价离子,可以除去部分溶解性有机物,但在水处理应用上有一定的限制。
电渗析技术是比较有效和常用的脱盐技术。
根据不同的要求可以选择不同的膜分离工艺处理,但当有机物浓度高时,膜易被污染,且成本较高。
(4)蒸发结晶工艺:蒸发结晶工艺适用于COD值较低的工艺,其主要目的是使高盐废水固液分离。
目前常用的是多效蒸发工艺和机械压缩蒸发工艺,蒸发结晶工艺瓶颈在于能耗大,各企业含盐废水的水质差异较大,处理效果和费用不同,经济效益不好,也会带来二次污染,常被用于预处理阶段。
(5)吸附工艺:活性炭晶格结构独特,表面有很多含氧官能团,可吸附大量无机物和有机物在表面,同时一些有机物进入活性炭内部微孔形成螯合物,从而净化水质。
Fenton氧化工艺可产生强氧化自由基,自由基可使有机物裂解,从而提高生化活性或去除有机物。
在Fenton试剂体系中引入活性炭,可提高氧化基附近的有机物浓度,提高氧化效率。
污水处理中的高盐废水处理技术
海水淡化
随着全球水资源短缺问题日益严重,海水淡化成为解决人类 用水需求的重要途径。然而,海水淡化过程中会产生大量的 高盐废水。
高盐废水排入环境后,不仅对生态环境造成危害,还会对淡 水资源的供给产生影响。因此,如何有效处理这些高盐废水 成为海水淡化技术发展的关键问题之一。
高盐废水对城市污水处理厂的生物处理过程产生不利影响,如抑制微生物的生长和代谢,降低污水处 理效率。同时,高盐废水也会对城市污水处理厂的出水水质产生影响,导致出水水质不稳定,难以达 到排放标准。
02
高盐废水处理技术
物理法
01
02
03
反渗透法
利用半透膜,在压力作用 下使水分子和无机离子透 过膜,而盐类物质被截留 ,从而实现脱盐。
污水处理中的高盐废水处理 技术
汇报人:可编辑 2024-01-05
contents
目录
• 高盐废水来源及危害 • 高盐废水处理技术 • 高盐废水处理技术应用与案例分析 • 高盐废水处理技术经济性分析
01
高盐废水来源及危害
工业生产排放
工业生产过程中,如石油化工、制药 、造纸等,会产生大量的高盐废水。 这些废水中的盐分主要来源于生产过 程中添加的化学物质和反应副产物。
02
随着膜技术的不断发展,膜分离技术将在高盐废水处理中发挥越来越 重要的作用。
03
高级氧化技术具有强氧化能力和广谱性,将成为高盐废水处理领域的 研究热点。
04
生物法在高盐废水处理中具有成本低、能耗小、无二次污染等优势, 未来将得到更广泛的应用。
04
高盐废水处理技术经济性 分析
工艺方法——高盐废水处理技术
工艺方法——高盐废水处理技术工艺简介高盐废水是指含有有机物和至少 3.5%(质量浓度)的总溶解固体物(TDS)的废水。
这种废水来源广泛,一是,在化工、制药、石油、造纸、奶制品加工、食品罐装等多种工业生产过程中,会排放大量废水,水中不但含有很多高浓度的有机污染物,且伴有大量钙、钠、氯、硫酸根等离子;二是,为了充分利用水资源,很多沿海城市直接利用海水作为工业生产用水或是冷却水,一些地方把海水用于消防、冲洗厕所和道路,虽然这部分污水不含有大量的有毒物质,但水量大、含盐量高,也较难处理。
高含盐量有机废水的有机物根据生产过程不同,所含有机物的种类及化学性质差异较大,但所含盐类物质多为Cl-、SO42-、Na+、Ca2+等盐类物质。
虽然这些离子都是微生物生长所必需的营养元素,在微生物的生长过程中起着促进酶反应,维持膜平衡和调节渗透压的重要作用,但是若这些离子浓度过高,会对微生物产生抑制和毒害作用。
高盐废水中盐浓度高、渗透压高、微生物细胞脱水引起细胞原生质分离;盐析作用使脱氢酶活性降低;氯离子高对细菌有毒害作用;盐浓度高,废水的密度增加,活性污泥易上浮流失,从而严重影响生物处理系统的净化效果。
一、常规处理方法(1)电解法高盐废水具有较高的导电性,因此可以通过电解法即在阴、阳两级间产生强电流使有毒有害物质发生氧化还原反应从而去除水中污染物,电解法能有效地降低废水中的COD,对污水适应性强,去除效果好,缺点是运行费用较高。
王宏等采用电解絮凝法处理紫胶合成树脂生产过程中排放出的高盐度有机废水,不但能有效降低废水中的COD,增加透明度,同时对BOD,TP和TN都有较高的去除率。
(2)离子交换法离子交换法的关键在于离子交换树脂,它是一种带有官能团,具有网状结构与不溶性的高分子聚合物,这类聚合物中含有的氨基、羟基基团可以把高盐废水中的金属离子鳌合、置换出来。
离子交换法可以作为预处理工艺脱除各种金属离子,达到有效除盐的目的,它的缺点是废水中的固体悬浮物会堵塞树脂从而使离子交换树脂失去效果。
高含盐量有机废水处理工艺
四种高盐废水处理工艺高含盐量有机废水的有机物根据生产过程不同,所含有机物的种类及化学性质差异较大,但所含盐类物质多为Cl-、SO42-、Na+、Ca2+等盐类物质。
这些离子都是微生物生长所必需的营养元素,在微生物的生长过程中起着促进酶反应,维持膜平衡和调节渗透压的重要作用,但是若这些离子浓度过高,会对微生物产生抑制和毒害作用。
高盐废水中盐浓度高、渗透压高、微生物细胞脱水引起细胞原生质分离;盐析作用使脱氢酶活性降低;氯离子高对细菌有毒害作用;盐浓度高,废水的密度增加,活性污泥易上浮流失,从而严重影响生物处理系统的净化效果。
高盐废水处理工艺:1、碟管式反渗透(DTR0)技术+蒸发结晶技术碟管式反渗透(DTRO)技术是一种高效反渗透技术,始于德国,相对于卷式反渗透其耐高压、抗污染特点更加明显,即使在高浊度、高SDI值、高盐分、高COD的情况下,也能经济有效稳定运行,更加适应高盐废水的处理。
国内主要应用于垃圾渗滤液与海水淡化、苦咸水淡化工程。
2、焚烧工艺技术对于高COD、高盐废水,可采用直接焚烧的方法进行处理。
焚烧法处理高盐废水始于20世纪50年代,是将高盐废水呈雾状喷入高温燃烧炉中,使水雾完全汽化,让废水中的有机物在炉内氧化分解成为二氧化碳、水及少许无机物灰分。
3、蒸发浓缩-冷却结晶工艺技术蒸发浓缩-冷却结晶工艺技术是通过蒸发,使高盐废水浓缩,最后对浓缩液进行冷却,从而使高盐废水中可溶性盐类物质结晶分离出来的工艺技术。
该工艺能使部分盐类物质分离出来,得到结晶盐类化合物,而结晶母液则需要返回至前面蒸发阶段进行再循环蒸发浓缩处理。
该工艺技术适用于高盐废水中COD相对较低、所含盐类的溶解度相对温度变化敏感的高盐废水,通过控制结晶温度,可能得到比较纯净的结晶盐。
4、蒸发-热结晶工艺技术首先将高盐废水进行蒸发、浓缩,随后利用旋转薄膜蒸发器,对高盐废水浓缩液进行继续加热,使其进一步蒸发、浓缩,形成过饱和盐液。
最后,通过冷却,使过饱和盐液温度降低至40℃以下,得到盐泥,从而实现高盐废水中可溶性盐类物质的彻底分离。
高盐废水特点、处理工艺及发展趋势详解
高盐废水特点、处理工艺及发展趋势详解高盐废水是指总含盐质量分数至少1%的废水,其主要来自化工厂及石油和天然气的采集加工等。
这种废水含有多种物质(包括盐、油、有机重金属和放射性物质)。
含盐废水的产生途径广泛,水量也逐年增加。
去除含盐污水中的有机污染物对环境造成的影响至关重要。
采用生物法进行处理,高浓度的盐类物质对微生物具有抑制作用,采用物化法处理,投资大,运行费用高,且难以达到预期的净化效果。
采用生物法对此类废水进行处理,仍是目前国内外研究的重点。
高含盐量有机废水的有机物根据生产过程不同,所含有机物的种类及化学性质差异较大,但所含盐类物质多为Cl-、SO42-、Na+、Ca2+等盐类物质。
虽然这些离子都是微生物生长所必需的营养元素,在微生物的生长过程中起着促进酶反应,维持膜平衡和调节渗透压的重要作用。
但是若这些离子浓度过高,会对微生物产生抑制和毒害作用,主要表现:盐浓度高、渗透压高、微生物细胞脱水引起细胞原生质分离;盐析作用使脱氢酶活性降低;氯离子高对细菌有毒害作用;盐浓度高,废水的密度增加,活性污泥易上浮流失,从而严重影响生物处理系统的净化效果。
高盐废水处理是现阶段工业发展面临的重大环保问题。
综合利用是解决高盐废水瓶颈的重要路径。
现阶段,规模化处理高盐废水仍然存在处理效率低、运行成本高的特点,还存在很多需要突破和解决的关键技术问题。
例如,采用正渗透法处理高盐废水时,正渗透膜和汲取液等核心问题仍未很好解决;如何提高反渗透处理的水量,如何延长膜件的使用寿命,如何有效防止膜污染等问题仍需函待解决。
一、高盐废水简介高盐废水指来源于生活污水和工业废水的总含盐量大于1%的排放废水,含有较高的如Cl-,SO42-,Na+,Ca2+等无机离子,也含有如甘油、中低碳链的有机物。
由于其成分复杂多样,盐分高,对微生物生长具有较强的抑制作用,因此该废水处理技术难度远比普通污水处理要大得多。
我国高盐废水产生数量在总废水中达5%,每年仍以2%的速率增长。
高盐废水的形成及其处理技术分析
高盐废水的形成及其处理技术分析高盐废水是指其盐度超过一定浓度的废水,通常是由于工业生产、采矿、化工、自来水与地下水混合等过程中产生。
高盐废水的处理具有一定的难度,需要特定的处理技术来降低盐度并达到排放标准。
本文将围绕高盐废水的形成原因及其处理技术展开详细介绍。
一、高盐废水的形成原因1. 工业生产废水在工业生产过程中,一些化工厂、电镀厂、制革厂等都会产生高盐废水。
这些废水中含有大量的盐化物、重金属离子等,对环境造成严重污染。
2. 采矿过程在采矿过程中,经常会产生含有一定盐度的排放废水。
这些废水中含有大量的盐类物质,导致废水变得高盐,对周围的生态环境造成不良影响。
3. 自来水与地下水混合由于地下水中含有一定量的盐类物质,当地下水与自来水混合使用时,容易产生高盐废水。
二、高盐废水处理技术1. 电渗析技术电渗析是利用外加电场作用于溶液中的离子,使正负离子在电场的作用下向相反方向迁移,并通过隔膜的选择性通透性分离离子的一种物理化学方法。
通过这种方法可以有效地分离出高盐废水中的盐类物质,降低废水的盐度。
2. 离子交换技术离子交换技术是通过具有特定功能的离子交换树脂从废水中吸附或交换物质的离子。
它具有很高的选择性和效率,可以有效地去除高盐废水中的盐离子和重金属离子,达到处理废水的目的。
3. 蒸发结晶技术蒸发结晶技术是将高盐废水进行蒸发处理,使盐类物质在蒸发的过程中结晶沉淀,从而分离出废水中的盐分。
这种方法适合于处理盐度较高的废水,但需要消耗大量的能源和设备投资。
4. 膜分离技术膜分离技术是利用特定的膜材料对废水进行分离,膜的孔径大小和结构可以选择性地分离出废水中的盐类物质和杂质。
这种技术具有分离效率高、操作简便等优点,但对膜材料的选择和维护要求较高。
以上所述的高盐废水处理技术各有特点,适用于不同类型的废水处理。
在实际处理过程中,需要根据废水的盐度和成分等因素选择合适的处理技术,确保废水达到环保要求。
还需要考虑废水处理后的再利用,降低水资源的浪费和环境污染。
关于高盐废水的处理方法
关于高盐废水的处理方法高盐废水是指盐含量高于普通废水的废水,其主要来源包括化工生产、制造业、海水淡化和电镀等行业。
高盐废水的处理是环境保护和可持续发展的重要课题。
下面将介绍几种常用的高盐废水处理方法。
1. 浓缩结晶法浓缩结晶法是将高盐废水进行蒸发浓缩,使盐类溶解度超过饱和度而结晶沉淀,以此来减少溶液中的盐含量。
该方法适用于高盐废水,尤其是海水淡化废水的处理。
通过多级浓缩结晶,可以将废水中的盐类浓缩至一定程度,然后进行沉淀、过滤和干燥,得到盐类固体产物,同时获得较为清洁的水。
2. 膜分离技术膜分离技术主要包括反渗透、纳滤和超滤等方法。
这些方法通过膜孔径的选择和压力差驱动,将盐类和其他污染物分离出来,从而实现高盐废水的处理和去盐。
反渗透是将高盐废水通过半透膜进一步除盐,可得到高品质的水,适用于海水淡化和水再利用。
纳滤和超滤技术则更适用于低盐废水的处理,去除其中的溶解性有机物和微生物等。
3. 离子交换法离子交换法利用树脂的特殊结构和性质,将废水中的盐类离子与树脂颗粒表面的功能基团进行交换,从而实现去盐和去除杂质的目的。
该方法适用于低盐废水的处理,如电镀废水和化工废水等。
离子交换法可以有效去除废水中的金属离子、重金属和放射性物质等。
4. 蒸发结晶法蒸发结晶法是将高盐废水通过蒸发浓缩,将水分脱水除去,使溶液中的盐类达到饱和度而结晶沉淀。
该方法适用于海水淡化废水和含盐废水的处理。
蒸发结晶法具有设备简单、操作稳定的优点,但能耗较高。
5. 多效蒸发法多效蒸发法是一种高效的高盐废水处理方法,通过利用废热蒸发器的多效蒸发效应,将废水中的水分逐渐蒸发掉,使盐类得以浓缩和分离。
其优点是能耗低,适用于低温高盐废水的处理。
除了上述常用的高盐废水处理方法外,还可以采用化学沉淀、电化学方法、生物处理等技术来处理高盐废水。
在实际应用中,应根据废水的盐含量、水质特点和具体要求来选择合适的处理方法。
同时,为了提高高盐废水处理的效果和经济性,可以考虑采用多种方法的组合应用,以综合解决高盐废水的处理问题。
高盐废水处理工艺技术详解
⽣物降解不仅能氧化分解⼀般的有机物并将其转化为稳定的⽆机物,⽽且还具有转化有毒有害有机污染物的能⼒,是有机化合物在⾃然界中去除和再循环的重要途径和⽅式。
2.5.1传统活性污泥⼯艺
传统活性污泥法是普遍采⽤的⽣物处理⽅法之⼀,通过活性污泥的驯化过程培养出具有良好有机物降解性能的耐盐微⽣物是处理⾼盐有机废⽔的重要前提。
⽣物膜法具有较强的抗毒性和耐冲击负荷能⼒,可以维持较⾼的污泥龄,⽣物相相对稳定,容积负荷较⾼,⽔⼒停留时间较常规活性污泥法⼤为缩短。
有研究结果表明,盐度和有机负荷对系统有明显的抑制作⽤,要保持较好的出⽔⽔质,必须控制盐度和有机负荷。
总之,各种⽅法都有⾃⼰的优点和不⾜。
混合使⽤的话⾃然是最好的选择。
当然,⾼盐废⽔的⼯艺选择,必须实际情况实际分析!是视乎⽔质,现场条件和排放标准⽽定!。
高盐废水处理工艺流程
高盐废水是指含有较高浓度盐类的废水,处理高盐废水需要采用特定的工艺流程来降低盐浓度和净化水质。
以下是常见的高盐废水处理工艺流程:预处理:高盐废水通常含有悬浮固体和沉淀物,因此首先进行预处理以去除悬浮物和固体颗粒。
常用的预处理方法包括筛网过滤、沉淀池或沉淀槽沉淀等。
逆渗透(RO):逆渗透是高盐废水处理中常用的膜分离技术。
通过逆渗透膜的选择性渗透作用,将水中的溶解盐分和其他杂质分离出来,产生低盐水。
逆渗透膜一般具有较小的孔径,可以有效过滤掉盐类离子和其他溶解物质。
离子交换(IX):离子交换是一种将废水中的离子通过离子交换树脂吸附和交换的过程。
树脂具有特定的化学性质,可以选择性地吸附和去除特定的离子,如钠离子、钙离子和镁离子等。
蒸发结晶(ME):蒸发结晶是通过蒸发废水中的水分,使盐类溶解度超过饱和度而结晶沉淀。
这种方法适用于高盐废水中含有大量结晶盐的情况,如氯化钠、硫酸钠等。
蒸发结晶可以使废水的体积大幅度减少,并得到高纯度的盐产品。
气浮和沉淀:气浮和沉淀是常用的物理处理方法,通过气体细小气泡的作用使废水中的悬浮颗粒和部分溶解物质浮起并聚集,形成浮渣,然后通过沉淀槽或沉淀池沉淀和分离出来。
膜分离:除了逆渗透,其他膜分离技术如超滤和微滤也可以用于去除高盐废水中的悬浮物和颗粒。
离子选择性电极(ISE):离子选择性电极是一种基于电化学原理的测量方法,可以测定废水中特定离子的浓度。
通过对离子浓度的监测,可以控制和调节高盐废水处理过程中的操作参数。
需要根据具体的高盐废水的成分和特点选择合适的处理工艺流程。
在实际应用中,可能需要结合多种工艺方法,根据废水的水质要求和处理成本进行优化设计和操作。
同时,为了确保处理过程的稳定性和效果,需要定期监测和维护处理设备。
高含盐废水的5种处理方式
高含盐废水的5种处理方式有关高盐废水处理工艺的简短总结,大家一起来学习吧!染料、农药、制药和日用化工等精细化工生产过程中产生的废水含盐量为3~10%(以质量计)、COD在50000~150000mg/L范围内,行业内将这类废水统称为高浓度高盐废水,是一种极难处理的废水,对微生物生长的毒害尤其大。
处理高浓度含盐废水通常是“预处理+蒸发浓酸结晶除盐”工艺。
1、加药混凝—气浮、沉淀传统预处理工艺当含盐原水COD浓度在5000mg/L以下,而且对结晶盐质量没有要求时,传统工艺是将含盐原水经过“调节—加药混凝—气浮、沉淀” 预处理后,再进入“蒸发浓缩结晶除盐系统”。
该方法投资少,运行成本低,但结晶盐质差,难销。
2、Fenton 或电—Fenton 催化氧化预处理工艺Fenton试剂含有H2O2和Fe2+,对废水中有机污染物具有很强的氧化力,且反应速度快,投资低,出水经沉淀净化后可实现预处理目的。
但Fenton或电-Fenton催化氧化工艺要求特定的反应条件:pH值2~4,而且产生较多含铁污泥,出水会有颜色。
当含盐原水pH值偏低时使用较经济,否则“加酸降pH,加碱中和”的过程增加运行成本。
COD浓度在10000mg/L左右尚好,如过高,就要多级氧化净化处理,Fenton工艺就无优势了。
3、双膜法预处理工艺先利用孔径在20~2000Ao(10-6.5-10-4.5cm)的半透膜进行超滤,可截留蛋白质、各类酶、细菌等胶体物质和大分子物质在浓缩液中,而水、溶剂、小分子和形成盐的离子则可通过膜,进入透过水中。
由于透过水水量减少,而盐量没变,所以透过水含盐浓度增加。
这时再用孔径在1~20Ao(10-7.5-10-6.5cm)的半透膜进行反渗透,无机盐、糖类、氨基酸、BOD、COD等被截留在浓缩液中,只有水和溶剂进入透过水中,盐在浓缩液中浓度进一步增加,送去蒸发结晶除盐。
双膜法除盐的优势在于大幅度降低了蒸发结晶除盐的水量,从而明显降低蒸发结晶除盐的运行成本和投资。
高盐废水处理方案
高盐废水处理方案
一废水检测:通过检测废水的酸度碱度,PH,溶解氧(DO),氮磷硫化合物,臭和味,色度,浊度,固体物,电导率,化学需氧量(COD),生化需氧量(BOD),总有机碳(TOC)等等性质,来确定不同的废水处理方案。
二实验方案的确立
1.电解凝絮法(用于高盐度有机废水)
将废水放入高位水箱,在搅拌的条件下流入电解凝絮反应器;等水位到达规定的刻度时,开启电源,进行电解凝絮反应;一定时间后取样测定透光率和COD 值,透光率用721 分
光光度计测定;COD 用重铬酸钾法测定(标准法) 和COD Cr校正方法进行测定,达标后排放。
2.膜生物反应器(MBR)
1:通过格栅,滤网等,拦截废水中的悬浮物。
2:水体通过调节池,加入絮凝剂,使水中的细小微粒和自然胶粒凝聚成大块絮状物,从而自水中除去。
3:沉淀浓缩,去除絮凝下来的沉淀。
4:水体进入膜反应器,通过膜分离技术与生物处理法的高效结合实现对污水深度净化。
5:检验处理后的废水相关指标,符合国家标准,既可排放。
三:根据实验后的效果,调整工艺方案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高盐浓度有机废水处理技术[摘要] 废水中含盐浓度(so42-, cl-)高会影响废水生物处理效果,采用阴离子交换树脂(r-oh)除去废水中的so42-离子和cl-离子,采用铁碳微电解法处理高盐度有机废水,废水的可生化性得到改善,采用硝化-反硝化(a/o)脱氮工艺,对废水进行有效的处理。
[关键词] 废水处理技术,高盐浓度有机废水,离子交换,铁碳微电解,可生化性,硝化-反硝化(a/o)high salinity organic wastewater treatment techniczhou wen hua(shanghai kaiyinda chemical engineering design and consultant co., ltd)abstract: the high salinity concentration of wastewater influence the effect of wastewater biological treatment. the sulfate ion(so42) and the chlorine ion(cl-) in the wastewater is removed by the anion-exchange resin(r-0h). iron-carbon microelectrolysis process is used in the treatment of high salinity organic wastewater. the biodegradability of treated wastewater is improve. nitrification and denitrification process is used in effective treatment of wastewater.key words: wastewater treatment technic; high salinity organic wasterwater; ion-exchange; biodegradability;nitrification and denitrification(a/o)1. 概述高盐浓度废水是一种较难处理的废水,较高的盐浓度会对废水生物处理系统产生抑制作用,从而会影响基质降解速率,导致有机物去除率下降。
在厌氧系统中,当废水中nacl质量浓度由10g/l 增至30g/l时,cod比降速率下降了0.035d-1 由此可见,增加盐质量浓度会对厌氧污泥产生抑制作用。
当盐质量分数大于1%时会导致细胞活性丧失,细胞瓦解,盐浓度的增加会导致盐析作用增强,脱氢酶的活性下降,新陈代谢作用减缓以及细胞组分的不断释放,从而导致cod比降解速率降低。
某一精细化工厂,在生产过程中产生高盐浓度有机废水。
废水中主要含有盐酸、硫酸、醋酸、钠盐、铵盐、水合肼及其聚合物,水弱酸性。
废水量为48m3/d,水质情况为:codcr 2200 mg/l, cl- 7500 mg/l, 氨氮360 mg/l, 硫酸盐1625 mg/l, ph 7.6, 废水中总盐含量达到11g/l。
采用常规的生化处理方法很难实现废水达标排放。
因此需要强化废水的预处理过程,除去废水中的氯离子,改善废水的可生化性,提高废水处理效果。
2.废水处理基本原理2.1 用离子交换树脂除去废水中氯离子: 在废水进调节池前对废水进行离子交换处理,采用强碱性(r-oh)离子交换树脂,除去废水中的无机阴离子,离子交换系统再生采用2%-4%的naoh溶液。
2.2 铁碳微电解法废水预处理:含盐废水具有较高的导电性,这一特点为电化学法在高盐度有机废水处理方面的应用提供了良好的发展空间,利用金属(fe)的电化学腐蚀原理对废水进行处理,从而实现大分子有机污染物的开环,断链,提高废水的可生化性。
在酸性充氧条件下发生电化学反应,反应中产生的了初生态的fe2+和原子h,它们具有高化学活性,能改变污水中许多有机物的结构和特性,使有机物发生断链、开环等作用。
通过鼓风曝气,即充氧和防止铁屑板结。
而由fe2+氧化生成的fe3+逐渐水解生成聚合度大的fe(oh)3 胶体絮凝剂,可以有效地吸附、凝聚水中的污染物,从而增强对污水的净化效果,有利于后续废水生物处理系统的正常运行。
2.3 废水厌氧酸化(a),硝化-反硝化(a/o)生化处理:有机物在完全厌氧消化过程中依次经历水解酸化、产氢产乙酸和甲烷化三个阶段,研究证实:厌氧消化过程中的水解酸化阶段不但能降低cod,,同时还可以提高废水的可生化性。
a/o 生物接触氧化池是兼氧和好氧生物接触氧化组合的生物处理技术,污水在生化系统各个不同的功能段,发生不同的生物化学反应,在好氧段发生硝化反应,在缺氧段发生反硝化反应, 研究表明,正常情况下,废水中氨氮的硝化率很高,达到98%以上,但反硝化率却很低,当以原污水中的有机碳为碳源时,反硝化率仅为15.1%,出水中硝态氮很高.因此当污水c/n 比过低(bod/tkn90%,codcr>85%, nh4-n>90%,t-n>70% ,t-p>60%, ss>90%。
(3) 在厌氧(缺氧),好氧交替运行条件下,丝状菌不能大量繁殖,因而无污泥膨胀之忧.svi值一般小于100,污泥沉降性能良好.(4)对脱氮为主要目标的a2/o工艺系统,剩余污泥产率较常规活性污泥法低.(5)污水中碳,氮,磷三种物质的含量比,以及它们在反应过程中的项目影响,是a2/o工艺系统运行效果的重要因素.3.废水处理工艺过程3. 设计实例设计处理废水量: q=2m3/h废水水质:处理后水质要求: 达到上海市地方标准db31/425-2009《污水排入城镇下水道水质标准》4. 废水处理过程(1)废水预处理工艺废水首先进入废水槽,由泵抽送至离子交换器进行处理,根据废水含盐浓度高,水量小的特点,为满足强碱性离子交换器进水含盐量<500mg/l的要求,采用内循环稀释方法降低废水进水的含盐浓度,稀释倍数达到25倍。
经过处理后废水排入废水调节池,再由泵抽送至催化氧化池处理,处理后废水自流进入斜板沉淀池,沉淀后废水去a2/o生物处理,沉淀池排泥去污泥处理。
离子交换器反洗采用洁净水,反洗排水直接进入废水调节池,树脂再生采用naoh(2-4%)溶液,再生液排入再生液池,循环使用。
(2)a2/o生物接触氧化来自废水预处理的废水,首先进入厌氧酸化池,废水厌氧处理后与内循环硝化液混合进入缺氧池和好氧池处理,内循环硝化液回流倍数为5倍。
经过生物处理后废水进入斜板沉淀池,最后达标排入城镇污水排水管。
污泥由回流污泥泵抽出回流,剩余污泥去污泥处理。
(3)污泥处理各类污泥首先进入污泥浓缩池,池内投加适量的助凝剂ram,经过浓缩后上清液返回废水调节池,浓缩污泥由螺杆泵抽送至板框压滤机进行脱水处理。
滤清液返回废水调节池,干污泥外运处理。
(4)主要工艺设备设计参数阴离子交换器:处理量50m3/h , 进水含盐浓度 <500mg/l。
废水调节池:废水停留时间hrt48hr。
催化反应池:废水停留时间hrt7.5hr ,硫酸亚铁浓度 50mg/h,h2o2 100 mg/h.。
a2/o生物接触氧化池:废水总停留时间hrt 40hr, 硝化液回流倍数 5倍, 磷盐投加浓度:5mg/l。
5. 技术经济分析(1) 药剂消耗:硫酸亚铁投加量为50mg/l,h202投加量为100mg/l,磷盐投加量为5mg/l, pam 投加量为1mg/l,药剂费:0.5 元/吨水(2)耗电:运行装机容量:22.5kw。
电费:6.0元/吨水(3)日常运行费用约为: 7.2 元/吨水6. 节能(1) 耗电量大的设备主要是水泵和鼓风机,通过比较在满足流量和压力的前提下,合理选择水泵,使水泵工作点位于效率最高区,以节省电耗。
(2) 在高程布置上,除必要的提升外(集水池,废水调节池等),尽可能做到重力流,避免水泵的重复提升,相关设施合理布置,节约水头损失,减少跃水高度。
7. 结束语(1) 对于高盐含量有机废水必须加强废水的预处理,采用离子交换措施,降低废水中的盐含量,有利于后续废水生化处理的正常运行。
如采用反渗透膜法处理高盐含量有机废水要注意二个问题:(a)废水中的有机物会影响膜的使用寿命,(b)膜清洗废水会产生二次污染。
(2)高盐含量废水具有较高的导电性,可以利用金属的电化学腐蚀原理,分解废水中难降解的有机物质,改善废水的可生化性。
参考文献:[1] 邹小铃,许柯,丁丽丽等 nacl和kcl对厌氧污泥抑制的动力学研究化工环保 2009,29(5)394-397[2] 刘正高浓度含盐废水生物处理技术化工环保2004,24(2),209-211[3] 黄瑾胡翔李毅等铁碳微电解法处理高盐度有机废水化工环保 2007,27(3) 250-252[4] 崔有为,王淑莹,宋学起等 nacl 盐度对活性污泥处理系统的影响环境工程,2004,22(1):19-35[5] 操卫平高氮低碳废水生物脱氮研究进展化工环保2004,22(4) 266-269[6] 彭赵旭,左金龙等同步硝化-反硝化的影响因素研究给水排水 2009 vol35 no.5 167-171[7] 兰淑澄,司亚安污水a2/o 生物去除营养源系统的c/n及c/p 给水与废水处理国际会议论文集作者简介:周文华男毕业于中国纺织大学(现东华大学)环境工程专业本科,工程师,长期从事企业环保管理和项目设计等工作,目前在上海化工研究院设计所从事给排水和环保项目设计工作。
注:文章内所有公式及图表请以pdf形式查看。