数学竞赛模拟题1及答案

合集下载

小学四年级数学竞赛试卷(附答案)一图文百度文库

小学四年级数学竞赛试卷(附答案)一图文百度文库

小学四年级数学竞赛试卷(附答案)一图文百度文库一、拓展提优试题1.(8分)如图,已知正方形的面积是100m2,图中灰色部分的面积是m2.2.定义新运算:a△b=(a+b)×b,a□b=a×b+b,如:1△4=(1+4)×4=20,1□4=1×4+4=8,按从左到右的顺序计算:1△2□3=.3.用0、1、2、3、4这五个数字可以组成个没有重复数字的偶数.4.少先队员计划做一些幸运星送给幼儿园的小朋友.如果每人做10个,还差6个没完成计划;如果其中4人各做8个,其余每人各做12个,就正好完成计划.问一共计划做颗幸运星.5.如果今天是星期五,那么从今天算起,57天后的第一天是星期.6.只能被1和它本身整除的自然数叫做质数,如:2,3,5,7等.那么,比40大并且比50小的质数是,小于100的最大的质数是.7.定义运算:A△B=2A+B,已知(3△2)△x=20,x=.8.一辆公共汽车有78个座位,空车出发,第一站上一位乘客,第二站上二位乘客,第三站上三位乘客,依次下去,多少站以后,车上坐满乘客?9.一个三位数A的三个数字所组成的最大三位数与最小三位数的差仍是A,那么,这个数A等于几?10.五个人站成一排,每个人戴一顶不同的帽子,编号为1、2、3、4、5.每人只能看到前面的人的帽子.小王一顶都看不到;小孔只看到4号帽子;小田没有看到3号帽子,但看到了1号帽子;小严看到了有3顶帽子,但没有看到3号帽子;小韦看到了3号帽子和2号帽子,小韦戴号帽子.11.一个正方形的面积与一个长方形的面积相等,若长方形的长是1024,宽是1,则正方形的周长是.12.一个质数的2倍和另一个质数的5倍的和是36,求这两个质数的乘积是多少?13.(8分)2015年1月1日是星期四,那么2015年6月1日是星期.14.甲、乙、丙、丁四人参加了一次考试,甲、乙的成绩比丙、丁的成绩和高17分,甲比乙低4分,丙比丁高5分.四人中最高分比最低分高分.15.100只老虎和100只狐狸分别为100组,每组两只动物,老虎总说真话,狐狸总说假话.当问及“组内另一只动物是狐狸吗?”结果这200只动物中恰有128只回答“是”,其它的都回答“不是”.那么同组2只动物都是狐狸的共有组.【参考答案】一、拓展提优试题1.解:根据分析可得,100÷2=50(平方米)答:图中灰色部分的面积是 50m2.故答案为:50.2.【分析】定义新运算需要理解题中给出的运算过程,△的运算是两数和再乘以第二个数的积运算.□的运算是两数的积与第二个数的和运算.解:依题意可知:a△b=(a+b)×b得1△2=(1+2)×2=6a□b=a×b+b得6□3=3×6+3=21故答案为:21【点评】本题的关键是找到新定义的符号的意义和运用.同时注意做题时的顺序是从左向右的顺序计算,那么代表他们是同级运算.问题解决.3.解:一位偶数有:0,2和4,3个;两位偶数:10,20,30,40,12,32,42,14,24,34,一共有10个;三位偶数:位是0时,十位和百位从4个元素中选两个进行排列有A42=12种结果,当末位不是0时,只能从2和4中选一个,百位从3个元素中选一个,十位从三个中选一个共有A21A31A31=18种结果,根据分类计数原理知共有12+18=30种结果;四位偶数:当个位数字为0时,这样的四位数共有:=24个,当个位数字为2或者4时,这样的四位数共有:2×C41×=36个,一共是24+36=60(个)五位偶数:当个位数字为0时,这样的五位数共有:A44=24个,当个位数字为2或者4时,这样的五位数共有:2×C31A33=36个,所以组成没有重复数字的五位偶数共有24+36=60个.一共是:3+10+30+60+60=163(个);答:可以组成 163个没有重复数字的偶数.故答案为:163.4.解:[(12﹣8)×4+6]÷(12﹣10),=[16+6]÷2,=22÷2,=11(人);10×11+6=116(个);答:一共计划做116颗幸运星.故答案为:116.5.【分析】今天算起,57天后的第一天也就是经过了57天,用57除以7,求出经过了多少周,还余几天,然后根据余数推算.解:57÷7,=57÷7,=8(周)…1(天);余数是1,星期五再过1天是星期六.故答案为:六.【点评】解决这类问题先求出经过的天数,再求经过的天数里有几周还余几天,再根据余数推算.6.【分析】根据质数的概念:指在一个大于1的自然数中,除了1和此整数自身外,没其它约数的数;然后列举出比40大并且比50小的质数;求小于100的最大的质数,应从100以内的最大数找起:99、98是合数;进而得出结论.解:比40大比50小的质数有:41、43、47;小于100的最大质数是97;故答案为:41、43、47,97.【点评】解答此题的关键:根据质数的定义,并结合题意,进行例举即可.7.解:(3△2)△x=20,(2×3+2)△x=20,8△x=20,2×8+x=20,16+x=20,x=20﹣16,x=4;故答案为:4.8.解:设第n站以后车上坐满了乘客,可得:[1+1+(n﹣1)×1]×n÷2=78[2+n﹣1]×n÷2=78,[1+n]×n÷2=78,(1+n)×n=156,由于12×13=156,即n=12.答:12站以后,车上坐满乘客.9.解:设组成三位数A的三个数字是a,b,c,且a>b>c,则最大的三位数是a×100+b×10+c,最小的三位数是c×100+b×10+a,所以差是(a×100+b×10+c)﹣(c×100+b×10+a)=99×(a﹣c).所以原来的三位数是99的倍数,可能的取值有198,297,396,495,594,693,792,891,其中只有495符合要求,954﹣459=495.答:这个三位数A是495..10.解:根据分析,首先从“小王一顶都看不到”判断出小王排在第一位的位置上;然后从“小孔只看到4号帽子”判断出小孔排在第二的位置上;接着从“小严看到了有3顶帽子”判断出小严在第四的位置上;结合小田没看到3,小韦看到3对比可知小田在第三位,小韦在第五位;由于第二位的小孔只看到4,所以小王的帽子编号为4;由第三位的小田看到1,可知第二位的小孔的帽子编号为1;因为第四位的小严没看到3,而第五位的小韦看到了3和2,所以小田帽子编号为2,小严帽子编号为3,小韦帽子编号为5.故答案是:5.11.【分析】若长方形的长是1024,宽是1,根据长方形的面积=长×宽,可求出长方形的面积,再根据正方形的面积公式可求出正方形的边长,然后再根据正方形的周长=边长×4可求出它的周长.解:1024×1=10241024=2×2×2×2×2×2×2×2×2×2=32×32,所以正方形的边长是32.32×4=128答:正方形的周长是128.【点评】本题主要考查了学生对长方形面积和正方形面积与周长公式的掌握.12.【分析】一个质数的2倍一定是偶数,一个质数的5倍一定是5的倍数,而36要拆成两个数的和,要么都是偶数,要么都是奇数,本题中2的倍数一定是偶数,所以只能拆成两个偶数,故此5的倍数只能是个位上带0的数,当是10时,36﹣10=26,26÷2=13当是20时,4×5=20,4不是质数当是30时,5×6=30,6不是质数,据此解答.解:根据分析可得:符合题意的5的倍数只能是10,20,305×2=10,5×4=20,5×6=30,4和6不是质数,所以只能是2,36﹣10=26.答:这两个质数的乘积是26.【点评】本题考查了质数的定义及其奇数与偶数的性质.13.解:因为2015÷4=503…3,所以2015年是平年,2月有28天,(31×3+30+28)÷7=151÷7=21(个)…4(天)因为2015年1月1日是星期四,4+4﹣7=1所以2015年6月1日是星期一.故答案为:一.14.解:设乙得了x分,则甲得了x﹣4分,丙得了y分,则丁得了y﹣5分,所以(x+x﹣4)﹣(y+y﹣5)=17,整理,可得:2x﹣2y+1=17,所以2x﹣2y=16,所以x﹣y=8,所以乙比丙得分高;因为x﹣y=8,所以(x﹣4)﹣(y﹣5)=9,所以甲比丁得分高,所以乙得分最高,丁得分最低,所以四人中最高分比最低分高:x﹣(y﹣5)=x﹣y+5=8+5=13(分)答:四人中最高分比最低分高13分.故答案为:13.15.解:128÷2=64(组)100﹣64=36(组)36÷2=18(组)答:那么同组2只动物都是狐狸的共有18组.故答案为:18.。

小学六年级数学竞赛试卷及答案_学科竞赛一

小学六年级数学竞赛试卷及答案_学科竞赛一

一、拓展提优试题1.如图,圆P的直径OA是圆O的半径,OA⊥BC,OA=10,则阴影部分的面积是.(π取3)2.(15分)如图,半径分别是15厘米、10厘米、5厘米的圆形齿轮A、B、C 为某传动机械的一部分,A匀速转动后带动B匀速转动,而后带动C匀速转动,请问:(1)当A匀速顺时针转动,C是顺时针转动还是逆时针转动?(2)当A转动一圈时,C转动了几圈?3.若质数a,b满足5a+b=2027,则a+b=.4.若A:B=1:4,C:A=2:3,则A:B:C用最简整数比表示是.5.有三杯重量相等的溶液,它们的浓度依次是10%,20%,45%,如果依次将三个杯子中的溶液重量的,,倒入第四个空杯子中,则第四个杯子中溶液的浓度是%.6.如图,设定E、F分别是△ABC的边AB、AC上的点,线段CE,BF交于点D,若△CDF,△BCD,△BDE的面积分别为3,7,7,则四边形AEDF的面积是.7.用1,2,3,4,5,6,7,8,9九个数字组成三个三位数(每个数字只能用1次),使最大的数能被3整除;次大的数被3除余2,且尽可能的大;最小的数被3除余1,且尽可能的小,求这三个三位数.8.某日是台风天气,雨一直均匀地下着,在雨地里放一个如图1所示的长方体容器,此容器装满雨水需要1小时.请问:雨水要下满如图2所示的三个不同的容器,各需要多长时间?9.对于一个多边形,定义一种“生长”操作:如图1,将其一边AB变成向外凸的折线ACDEB,其中C和E是AB的三等分点,C,D,E三点可构成等边三角形,那么,一个边长是9的等边三角形,经过两次“生长”操作(如图2),得到的图形的周长是;经过四次“生长”操作,得到的图形的周长是.10.若三个不同的质数的和是53,则这样的三个质数有组.11.对任意两个数x,y规定运算“*”的含义是:x*y=(其中m是一个确定的数),如果1*2=1,那么m=,3*12=.12.甲挖一条水渠,第一天挖了水渠总长度的,第二天挖了剩下水渠长度的,第三天挖了未挖水渠长度的,第四天挖完剩下的100米水渠.那么,这条水渠长米.13.已知A是B的,B是C的,若A+C=55,则A=.14.从1,2,3,…,2016中任意取出n个数,若取出的数中至少有两个数互质,则n最小是.15.能被5和6整除,并且数字中至少有一个6的三位数有个.16.已知x是最简真分数,若它的分子加a,化简得;若它的分母加a,化简得,则x=.17.如图,将正方形纸片ABCD折叠,使点A、B重合于点O,则∠EFO=度.18.张强晚上六点多外出锻炼身体,此时时针与分针的夹角是110°;回家时还未到七点,此时时针与分针的夹角仍是110°,则张强外出锻炼身体用了分钟.19.小明把一本书的页码从1开始逐页相加,加到最后,得到的数是4979,后来他发现这本书中缺了一张(连续两个页码).那么,这本书原来有页.20.一根绳子,第一次剪去全长的,第二次剪去余下部分的30%.若两次剪去的部分比余下的部分多0.4米,则这根绳子原来长米.21.(15分)快艇从A码头出发,沿河顺流而下,途经B码头后继续顺流驶向C码头,到达C码头后立即反向驶回B码头,共用10小时,若A、B相距20千米,快艇在静水中航行的速度是40千米/时,河水的流速是10千米/时,求B、C间的距离.22.张阿姨和李阿姨每月的工资相同,张阿姨每月把工资的30%存入银行,其余的钱用于日常开支,李阿姨每月的日常开支比张阿姨多10%,余下的钱也存入银行,这样过了一年,李阿姨发现,她12个月存入银行的总额比张阿姨少了5880元,则李阿姨的月工资是元.23.A,B两校的男、女生人数的比分别为8:7和30:31,两校合并后男、女生人数的比是27:26,则A,B两校合并前人数比是.24.有2013名学生参加数学竞赛,共有20道竞赛题,每个学生有基础分25分,此外,答对一题得3分,不答题得1分,答错一题扣1分,则所有参赛学生得分的总和是数(填“奇”或“偶”).25.有一个温泉游泳池,池底有泉水不断涌出,要想抽干满池的水,10台抽水机需工作8小时,9台抽水机需工作9小时,为了保证游泳池水位不变(池水既不减少,也不增多),则向外抽水的抽水机需台.26.甲、乙两人分别从A、B两地同时出发,相向而行,甲乙两人的速度比是4:5,相遇后,如果甲的速度降低25%,乙的速度提高20%,然后继续沿原方向行驶,当乙到达A地时,甲距离B地30km,那么A、B两地相距km.27.小红整理零钱包时发现,包中有面值为1分,2分,5分的硬币共有25枚,总值为0.60元,则5分的硬币最多有枚.28.如图,三个同心圆分别被直径AB,CD,EF,GH八等分,那么,图中阴影部分面积与非阴影部分面积之比是.29.如图所示的“鱼”形图案中共有个三角形.30.如图.从楞长为10的立方体中挖去一个底面半径为2,高为10的圆柱体后,得到的几何体的表面积是,体积是.(π取3)31.有一口无水的井,用一根绳子测井的深度,将绳对折后垂到井底,绳子的一端高出井口9m;将绳子三折后垂到井底,绳子的一端高出井口2m,则绳长米,井深米.32.22012的个位数字是.(其中,2n表示n个2相乘)33.一列快车从甲地开往乙地需要5小时,一列慢车从乙地开往甲地所需时间比快车多,两车同时从甲乙两地相对开出2小时后,慢车停止前进,快车继续行驶40千米后恰与慢车相遇,则甲乙两地相距千米.34.若算式(□+121×3.125)÷121的值约等于3.38,则□中应填入的自然数是.35.认真观察图4中的三幅图,则第三幅图中的阴影部分应填的数字是.36.图中每一个圆的面积都是1平方厘米,则六瓣花形阴影部分的面积是平方厘米.37.早晨7点10分,妈妈叫醒小明,让他起床,可小明从镜子中看到的时刻还没有到起床的时刻,他对妈妈说:“还早呢!”小明误以为当时是点分.38.从1,2,3,4,…,15,16这十六个自然数中,任取出n个数,其中必有这样的两个数:一个是另一个的3倍,则n最小是.39.王涛将连续的自然数1,2,3,…逐个相加,一直加到某个自然数为止,由于计算时漏加了一个自然数而得到错误的结果2012.那么,他漏加的自然数是.40.从1开始的n个连续的自然数,如果去掉其中的一个数后,余下的各个数的平均数是,那么去掉的数是.【参考答案】一、拓展提优试题1.解:3×102÷2﹣3×(10÷2)2=3×100÷2﹣3×25=150﹣75=75答:阴影部分的面积是75.故答案为:75.2.解:(1)如图,答:当A匀速顺时针转动,C是顺时针转动.(2)A:B:C=15:10:5=3:2:1答:当A转动一圈时,C转动了3圈.3.解:依题意可知:两数字和为奇数,那么一定有一个偶数.偶质数是2.当b=2时,5a+2=2027,a=405不符合题意.当a=2时,10+b=2027,b=2017符合题意,a+b=2+2017=2019.故答案为:2019.4.解:A:B=1:4=:=(×6):(×6)=10:29C:A=2:3=:=(×15):(×15)=33:55=3:5=6:10这样A的份数都是10,所以A:B:C=10:29:6.故答案为:10:29:6.5.解:依题意可知:设三杯溶液的重量为a.根据浓度=×100%=×100%=20%故答案为:20%6.解:连接AD,因△CDF和△BCD的高相等,所以FD:DB=3:7,所△AFD和△ABD的面积比也是3:7,即可把△AFD的面积看作是3份,△ABD的面积看作是7份,S△BCD=7,S△BDE=7所以CD=DE,S△ACD=S△ADE,S△ACD+S△BDE=S△ABD,S△ACD+S△BDE=7份,S△AFD+S△CDF+S△BDE=7份,3份+3+7=7份,则1份=2.5,S四边形AEDF=10份﹣7=10×2.5﹣7=25﹣7=18答:四边形AEDF的面积是18.故答案为:18.7.解:根据分析,最大的数最高位是:9,次大的数最高位是:8,最小的数最高位是1,次大的数倍3除余2,且要尽可能的大,则次大的三位数为:875;最小的数被3除余1,且要尽可能的小,则最小的三位数为:124;剩下的三个数字只有,3,6,9,故最大的三位数为:963.故答案是:963、875、124.8.解:图1所示的长方体容器的容积:10×10×30=3000(立方厘米)接水口的面积为:10×30=300(平方厘米)接水口每平方厘米每小时可接水:3000÷300÷1=10(立方厘米)所以,图①需要:10×10×30÷(10×10×10)=3(小时)图②需要:(10×10×20+10×10×10)÷(10×10×20)=1.5(小时)图③需要:2÷2=1(厘米)3.14×1×1×20÷(3.14×1×10)=2(小时)答:容器①需要3小时,容器②需要1.5小时,容器③需要2小时.9.解:边长是9的等边三角形的周长是9×3=27第一次“生长”,得到的图形的周长是:27×=36第二次“生长”,得到的图形的周长是:36×=48第三次“生长”,得到的图形的周长是:48×=64第四次“生长”,得到的图形的周长是:64×==85答:经过两次“生长”操作,得到的图形的周长是48,经过四次“生长”操作得到的图形的周长是85.故答案为:48,85.10.解:53以内的质数有:2、3、5、7、11,13,17,19,23,29,31,37,41,43,47,51,53;若三个不同的质数的和是53,可以有以下几组:(1)3,7,43;(2)3,31,19;(3)3,37,13;(4)5,11,37;(5)5,7,41;(6)5,17,31;(7)5,19,29;(8)7,17,29;(9)11,13,29;(10)11,23,19;(11)13,17,23;所以这样的三个质数有11组.故答案为:11.11.解:①因为:x*y=(其中m是一个确定的数)且1*2=1所以:=18=m+6m+6=8m+6﹣6=8m=2②3*12===故答案为:2,.12.解:把这条水渠总长度看作单位“1”,则第一天挖的分率为,第二天挖的分率(1﹣)×=,第三天挖的分率为(1﹣)×=,100÷((1﹣﹣﹣)=100÷=350(米)答:这条水渠长350米.故答案为:350.13.解:A是C的×=,即A=C,A+C=55,则:C+C=55C=55C=55÷C=40A=40×=15故答案为:15.14.解:根据分析,1~2016数中,有奇数1008个,偶数1008个,因为偶数和偶数之间不能互质,故:①n<1008时,有可能取的n个数都是偶数,就不能出现至少有两个数互质的情况;②n=1008时,若取的数都是偶数,也不能出现至少有两个数互质的情况;③n≥1009时,则取的n个数里至少有一个为奇数,取出的这个奇数和它相邻的偶数一定互质,综上,n最小是1009.故答案是:1009.15.解:根据分析,分解质因数6=2×3∴这个三位数能同时被2、3、5整除,而且数字中至少含有一个6∴这个三位数的个位数必须为偶数或0,因被5整除的数个位数必须是0或5,故个位数为0,设此三位数为,按题意a、b中至少有一个数字为6,①a=6时,则6+b+0 是3的倍数,则b=0,3,6,9,符合的三位数为:600、630、660、690②b=6时,则6+a+0 是3的倍数,则a=3,6,9,符合的三位数为:360、660、960综上所述,符合题意的三位数为:360、660、960、600、630、690故答案为:6.16.解:设原来的分数x是,则:=则:b=3(c+a)=3c+3a①=则:4c=a+b②①代入②可得:4c=a+3c+3a4c=4a+3c则:c=4a③③代入①可得:b=3c+3a=3×4a+3a=15a所以==即x=.故答案为:.17.解:沿DE折叠,所以AD=OD,同理可得BC=OC,则:OD=DC=OC,△OCD是等边三角形,所以∠DCO=60°,∠OCB=90°﹣60°=30°;由于是对折,所以CF平分∠OCB,∠BCF=30°÷2=15°∠BFC=180°﹣90°﹣15°=75°所以∠EFO=180°﹣75°×2=30°.故答案为:30.18.解:依题意可知:分针开始落后时针共格;后来分针领先格,路程差为格.锻炼身体的时间为:=40(分);故答案为:40.19.解:设这本书的页码是从1到n的自然数,正确的和应该是1+2+…+n=n(n+1),由题意可知,n(n+1)>4979,由估算,当n=100,n(n+1)=×100×101=5050,所以这本书有100页.答:这本书共有100页.故答案为:100.20.解:第二次剪求的占全长的:(1)×30%==,0.4÷[(1)]=0.4÷[]==0.4×15=6(米);答:这根绳子原来长6米.故答案为:6.21.解:设B、C间的距离为x千米,由题意,得+=10,解得x=180.答:B、C间的距离为180千米.22.解:(1﹣30%)×(1+10%)=70%×110%,=77%;5880÷12÷[30%﹣(1﹣77%)]=490÷[30%﹣23%],=490÷7%,=7000(元).即李阿姨的月工资是 7000元.故答案为:7000.23.解:设A、B两校的男生、女生人数分别为8a、7a、30b、31b,由题意得:(8a+30b):(7a+31b)=27:26,27×(7a+31b)=26×(8a+30b),189a+837b=208a+780b,837b﹣780b=208a﹣189a,57b=19a,所以a=3b,所以A、B两校合并前人数的比是:(8a+7a):(30b+31b),=15a:61b,=45b:61b,=(45b÷b):(61b÷b)=45:61;答:A,B两校合并前人数比是45:61.故答案为:45:61.24.解:每人答对x道,不答y道,答错z道题目,则显然x+y+z=20,z=20﹣x﹣y;所以一个学生得分是:25+3x+y﹣z,=25+3x+y﹣(20﹣x﹣y),=5+4x+2y;4x+2y显然是个偶数,而5+4x+2y的和一定是个奇数;2013个奇数相加的和仍是奇数.所以所有参赛学生得分的总和是奇数.故答案为:奇.25.解:设1台抽水机1小时抽1份水,每小时新增水:9×9﹣10×8=1;答:向外抽水的抽水机需1台.26.解:根据题意可得:相遇时,甲走了全程的4÷(4+5)=,乙走了全程的1﹣=;相遇后,甲乙的速度比是4×(1﹣25%):5×(1+20%)=1:2;当乙到达A地时,乙又走了全程的1﹣=,甲又走了全程的×=;A、B两地相距:30÷(1﹣﹣)=90(km).答:A、B两地相距90km.27.解:因为0.60元=60分,设1分,2分,5分的硬币各有x枚、y枚和z枚,则有x+y+z=25,x+2y+5z=60,把上面的两个式子相减得出y+4z=35,要使5分的硬币最大,即Z最大,y最小,因为35是奇数,所以y必须是奇数,当y=1时,z的值不是整数,当y=3时,z=8,所以z=8;答:5分的硬币最多有8枚;故答案为:8.28.解:由图可知,阴影部分的面积是图中最大圆面积的,非阴影部分的面积是图中最大圆面积的,所以图中阴影部分面积与非阴影部分面积之比是::=1:3;答:图中阴影部分面积与非阴影部分面积之比是1:3.故答案为:1:3.29.解:由一个三角形组成:14个;由两个三角形组成:8个;由三个三角形组成:8个;由四个三角形组成:4个;由六个三角形组成:1个;总共:14+8+8+4+1=35个.故共有35个三角形.故答案为:35.30.解:10×10×6﹣3×22×2+2×3×2×10,=600﹣24+120=696;10×10×10﹣3×22×10,=1000﹣120=880;答:得到的几何体的表面积是696,体积是880.故答案为:696,880.31.解:(9×2﹣2×3)÷(3﹣2),=(18﹣6)÷1,=12÷1,=12(米),(12+9)×2,=21×2,=42(米).故答案为:42,12.32.解:2012÷4=503;没有余数,说明22012的个位数字是6.故答案为:6.33.解:慢车行完全程需要:5×(1+),=5×,=6(小时);全程为:40÷[1﹣(+)×2],=40÷[1﹣],=40÷,=40×,=150(千米);答:甲乙两地相距150千米.故答案为:150.34.解:令□=x,那么:(x+121×3.125)÷121,=(x+121×3.125)×,=x+121×3.125×,=x+3.125;x+3.125≈3.38,x≈0.255,0.255×121=30.855;x=30时,x=×30≈0.248;x=31时,x=×31≈0.255;当x=31时,运算的结果是3.38.故答案为:31.35.解:由每个图形的数字表示该图形所含曲边的数目可得:第三幅图中的阴影部分含有5个曲边,所以阴影部分应填的数字是5,故答案为:5.36.解:1×2=2(平方厘米);答:六瓣花形阴影部分的面积是2平方厘米.故答案为:2.37.解:早晨7点10分,分针指向2,时针指7、8之间,根据对称性可得:与4点50分时的指针指向成轴对称,故小明误以为是4点50分.故答案为:4,50.38.解:将有3倍关系的放入一组为:(1,3,9)、(2,6)、(4,12)、(5,15)共有4组,其余7个数每一个数为一组,即将这16个数可分为11组,.则第一组最多取2个即1和9,其余组最多取一个,即最多能取12个数保证没有一个数是另一个的三倍,此时只要再任取一个,即取12+1=13个数必有一个数是另一个数的3倍.所以n最小是13.39.解:设这个等差数列和共有n项,则末项也应为n,这个等差数列的和为:(1+n)n÷2=;经代入数值试算可知:当n=62时,数列和=1953,当n=63时,数列和=2016,可得:1953<2012<2016,所以这个数列共有63项,少加的数为:2016﹣2012=4.故答案为:4.40.解:设去掉的数是x,那么去掉一个数后的和是:(1+n)n÷2﹣x=×(n﹣1);显然,n﹣1是7的倍数;n=8、15、22、29、36时,x均为负数,不符合题意.n=43时,和为946,42×=912,946﹣912=34.n=50时,和为1225,49×=1064,1225﹣1064=161>50,不符合题意.答:去掉的数是34.故答案为:34.。

高中数学竞赛模拟试题(含详细答案)

高中数学竞赛模拟试题(含详细答案)

高中数学竞赛试题(模拟)一、选择题:(本大题共10个小题;每小题5分,共50分,在每小题给出的四个选项中, 有且只有一项是符合题目要求的)1.已知函数f(x)是R 上的奇函数,g(x)是R 上的偶函数,若129)()(2++=-x x x g x f ,则=+)()(x g x f ( )A .1292-+-x x B .1292-+x xC .1292+--x xD . 1292+-x x2.有四个函数:① y=sinx+cosx ② y= sinx-cosx ③ y=x x cos sin ⋅ ④ xxy cos sin = 其中在)2,0(π上为单调增函数的是 ( )A .①B .②C .①和③D .②和④3.方程x xx x x x ππ)1(12122-+=-+-的解集为A(其中π为无理数,π=3.141…,x 为实数),则A 中所有元素的平方和等于 ( ) A .0 B .1C .2D .44.已知点P(x,y)满足)(4)sin 4()cos 4(22R y x ∈=-+-θθθ,则点P(x,y)所在区域的面积为 A .36π B .32π C .20π D .16π ( )5.将10个相同的小球装入3个编号为1、2、3的盒子(每次要把10个球装完),要求每个盒子里球的个数不少于盒子的编号数,这样的装法种数为 ( ) A .9 B .12 C .15 D .186.已知数列{n a }为等差数列,且S 5=28,S 10=36,则S 15等于 ( ) A .80B .40C .24D .-487.已知曲线C :x x y 22--=与直线0:=-+m y x l 有两个交点,则m 的取值范围是 ( )A .)2,12(--B .)12,2(--C .)12,0[-D .)12,0(-8.过正方体ABCD-A 1B 1C 1D 1的对角线BD 1的截面面积为S ,S max 和S min 分别为S 的最大值和最小值,则minmaxS S 的值为 ( ) A .23 B .26 C .332 D .362 9.设7log ,1sin ,82.035.0===z y x ,则x 、y 、z 的大小关系为 ( )A .x<y<zB .y<z<xC .z<x<yD . z<y<x10.如果一元二次方程09)3(222=+---b x a x 中,a 、b 分别是投掷骰子所得的数字,则该二次方程有两个正根的概率P= ( )A .181 B .91 C .61 D .1813 二、填空题(本大题共4个小题,每小题8分,共32分)11.设P 是椭圆191622=+y x 上异于长轴端点的任意一点,F 1、F 2分别是其左、右焦点,O 为中心,则=+⋅221||||||OP PF PF ___________.12.已知△ABC 中,==,,试用、的向量运算式子表示△ABC 的面积,即S △ABC = ____________________.13.从3名男生和n 名女生中,任选3人参加比赛,已知3人中至少有1名女生的概率为3534,则n=__________.14.有10名乒乓球选手进行单循环赛,比赛结果显示,没有和局,且任意5人中既有1人胜其余4人,又有1人负其余4人,则恰好胜了两场的人数为____________个.三、解答题(本大题共5个小题,15-17题每小题12分,18题、19题每小题16分,共68分) 15.对于函数f(x),若f(x)=x,则称x 为f(x)的“不动点”,若x x f f =))((,则称x 为f(x)的“稳定点”,函数f(x)的“不动点”和“稳定点”的集合分别记为A 和B ,即x x f x A ==)(|{}})]([|{x x f f x B ==.(1). 求证:A ⊆B(2).若),(1)(2R x R a ax x f ∈∈-=,且φ≠=B A ,求实数a 的取值范围.16.某制衣车间有A 、B 、C 、D 共4个组,各组每天生产上衣或裤子的能力如下表,现在上衣及裤子要配套生产(一件上衣及一条裤子为一套),问在7天内,这4个组最多能生产多少套?17.设数列}{n a 满足条件:2,121==a a ,且 ,3,2,1(12=+=++n a a a n n n ) 求证:对于任何正整数n ,都有 nnn n a a 111+≥+18.在周长为定值的△ABC 中,已知|AB|=6,且当顶点C 位于定点P 时,cosC 有最小值为257. (1).建立适当的坐标系,求顶点C 的轨迹方程.(2).过点A 作直线与(1)中的曲线交于M 、N 两点,求||||BN BM ⋅的最小值的集合.19.已知三棱锥O-ABC 的三条侧棱OA 、OB 、OC 两两垂直,P 是底面△ABC 内的任一点,OP 与三侧面所成的角分别为α、β、γ. 求证:33arcsin32≤++<γβαπ参考答案一、选择题: ADCBC CCCBA 二、填空题:11. 25 12.13. 4 14. 1 三、解答题:15.证明(1).若A=φ,则A ⊆B 显然成立;若A ≠φ,设t ∈A ,则f(t)=t,f(f(t))=f(t)=t,即t ∈B,从而 A ⊆B. 解 (2):A 中元素是方程f(x)=x 即x ax =-12的实根.由 A ≠φ,知 a=0 或 ⎩⎨⎧≥+=∆≠0410a a 即 41-≥aB 中元素是方程 x ax a =--1)1(22 即 0122243=-+--a x x a x a 的实根 由A ⊆B ,知上方程左边含有一个因式12--x ax ,即方程可化为 0)1)(1(222=+-+--a ax x a x ax因此,要A=B ,即要方程 0122=+-+a ax x a ① 要么没有实根,要么实根是方程 012=--x ax ② 的根. 若①没有实根,则0)1(4222<--=∆a a a ,由此解得 43<a 若①有实根且①的实根是②的实根,则由②有 a ax x a +=22,代入①有 2ax+1=0.由此解得 a x 21-=,再代入②得,012141=-+a a 由此解得 43=a . 故 a 的取值范围是 ]43,41[-16.解:A 、B 、C 、D 四个组每天生产上衣与裤子的数量比分别是:76,117,129,108,且11712910876>>> ① 只能让每天生产上衣效率最高的组做上衣,生产裤子效率最高的组做裤子,才能使做的套数最多.由①知D 组做上衣效率最高,C 组做裤子效率最高,于是,设A 组做x 天上衣,其余(7-x)天做裤子;B 组做y 天上衣,其余(7-y)天做裤子;D 组做7天上衣,C 组做7天裤子.则四个组7天共生产上衣 6×7+8x+9y (件);生产裤子11×7+10(7-x)+12(7-y) (条)依题意,有 42+8x+9y=77+10(7-x)+12(7-y),即 769x y -=. 令 μ= 42+8x+9y=42+8x+9(769x -)=123+x 72 因为 0≤x ≤7,所以,当x=7时,此时y=3, μ取得最大值,即μmax =125.因此,安排A 、D 组都做7天上衣,C 组做7天裤子,B 组做3天上衣,4天裤子,这样做的套数最多,为125套.17.证明:令 10=a ,则有 11-++=k k k a a a ,且 ),2,1(1111 =+=+-+k a aa a k k k k 于是 ∑∑=+-=++=nk k k nk k k a aa a n 11111由算术-几何平均值不等式,可得nn n a a a a a a 132211+⋅⋅⋅≥ +n n n a aa a a a 113120+-⋅⋅⋅ 注意到 110==a a ,可知nn n nn a a a 11111+++≥,即 nnn n a a 111+≥+18.解:(1) 以AB 所在直线为x 轴,线段AB 的中垂线为y 轴建立直角坐标系,设 |CA|+|CB|=2a(a>3)为定值,所以C 点的轨迹是以A 、B 为焦点的椭圆,所以焦距 2c=|AB|=6.因为 1||||182||||236||||2|)||(|||||26||||cos 22222--=--+=-+=CB CA a CB CA CB CA CB CA CB CA CB CA C又 22)22(||||a a CB CA =≤⋅,所以 2181cos a C -≥,由题意得 25,25718122==-a a. 此时,|PA|=|PB|,P 点坐标为 P(0,±4).所以C 点的轨迹方程为)0(1162522≠=+y y x (2) 不妨设A 点坐标为A(-3,0),M(x 1,y 1),N(x 2,y 2).当直线MN 的倾斜角不为900时,设其方程为y=k(x+3) 代入椭圆方程化简,得 0)1169(83)16251(2222=-+++k x k x k 显然有 △≥0, 所以 222122212516400225,2516150k k x x k k x x +-=+-=+而由椭圆第二定义可得25165311442553125251614453125251614481251645025259)(325)535)(535(||||22222222212121+-⋅+=+-+=+-+++=++-=--=⋅k k kk k k k k x x x x x x BN BM只要考虑251653114422+-k k 的最小值,即考虑2516531144251612++-k 取最小值,显然. 当k=0时,||||⋅取最小值16.当直线MN 的倾斜角为900时,x 1=x 2=-3,得 16)534(||||2>=⋅BN BM 但)0(1162522≠=+y y x ,故0≠k ,这样的M 、N 不存在,即||||⋅的最小值的集合为空集.19.证明:由 题意可得 1sin sin sin 222=++γβα,且α、β、 )2,0(πγ∈所以 )cos()cos()2cos 2(cos 21sin sin 1sin 222γβγβγβγβα-+=+=--= 因为 )cos()cos(γβγβ+>-,所以 )](2[sin )(cos sin 222γβπγβα+-=+>当2πγβ≥+时,2πγβα>++.当2πγβ<+时,)(2γβπα+->,同样有 2πγβα>++故 2πγβα>++另一方面,不妨设 γβα≥≥,则 33sin ,33sin ≤≥γα 令 βγα2211sin )33(1sin ,33sin --==, 则 1sin sin sin12212=++γβα)cos()cos()cos()cos(sin 11112γαγαγαγαβ-+=-+=因为 γαγα-≤-11,所以 )cos()cos(11γαγα-≥- 所以 )cos()cos(11γαγα+≥+ 所以 11γαγα+≤+如果运用调整法,只要α、β、γ不全相等,总可通过调整,使111γβα++增大. 所以,当α=β=γ=33arcsin时,α+β+γ取最大值 333arcsin . 综上可知,33arcsin32≤++<γβαπ。

奥林匹克数学竞赛试题及答案

奥林匹克数学竞赛试题及答案

奥林匹克数学竞赛试题及答案奥林匹克数学竞赛是一项国际性的数学竞赛,旨在激发中学生对数学的兴趣和热爱。

以下是一份奥林匹克数学竞赛的模拟试题及答案,供参考:奥林匹克数学竞赛模拟试题一、选择题(每题2分,共10分)1. 如果一个数的平方等于它本身,那么这个数是:A. 0B. 1C. -1D. 0或12. 下列哪个数不是有理数?A. πB. √2C. -3D. 1/33. 将一个圆分成三个扇形,每个扇形的圆心角都是120°,那么这三个扇形的面积之和等于:A. 圆的面积B. 圆面积的1/3C. 圆面积的2/3D. 圆面积的1/24. 如果一个三角形的三边长分别为a, b, c,且满足a^2 + b^2 =c^2,那么这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定5. 一个数列的前三项为1, 1, 2,从第四项开始,每一项都是前三项的和。

这个数列的第10项是:A. 144B. 145C. 146D. 147二、填空题(每题3分,共15分)6. 一个数的立方根等于它本身,这个数可以是______。

7. 如果一个直角三角形的两条直角边长分别为3和4,那么它的斜边长是______。

8. 一个圆的半径为5,那么它的周长是______。

9. 一个等差数列的前5项之和为50,如果这个数列的公差为3,那么它的首项是______。

10. 如果一个多项式f(x) = ax^3 + bx^2 + cx + d,其中a, b, c, d是整数,且f(1) = 5,f(-1) = -1,那么a - d的值是______。

三、解答题(每题5分,共20分)11. 证明:对于任意的正整数n,1^3 + 1^2 + 1 + ... + 1/n^3总是大于1/n。

12. 解不等式:2x^2 - 5x + 3 > 0。

13. 一个圆的直径为10,求圆内接正六边形的边长。

14. 给定一个等比数列的前三项分别为2, 6, 18,求这个数列的第20项。

2025年全国中学生数学奥林匹克竞赛(预赛)模拟卷(全国高中数学联赛一试)(解析版)

2025年全国中学生数学奥林匹克竞赛(预赛)模拟卷(全国高中数学联赛一试)(解析版)

2025年全国中学生数学奥林匹克竞赛(预赛)暨2025年全国高中数学联合竞赛 一试全真模拟试题1参考答案及评分标准说明:1.评阅试卷时,请依据本评分标准.填空题只设8分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题5分为一个档次,不得增加其他中间档次.一、填空题:本大题共8小题,每小题8分,满分64分.1.已知函数()sin()f x x 是定义在R 上的偶函数,则cos(2) 的值为 . 答案:0.解:由于()sin()f x x 是偶函数,故()2k kZ ,所以 cos(2)cos cos sin 02k k. 2.若关于z 的复系数一元二次方程2i 0()z z R 的一个根为11z =,则另一个根2z .答案:i 12. 解:由题意得201i 1 ,解得i 12.因此12i 12i z z ,所以2i 12z . 3.设数列{}n a 的通项公式为2[log ]n a n n ,其中[]x 表示不超过x 的最大整数,则{}n a 的前32项和为 .答案:631.解:事实上,22[log ][log ]n a n n n n .而当1n 时,2[log ]0n ;当2,3n 时,2[log ]1n ;当4,5,6,7n 时,2[log ]2n ;当8,9,,15n 时,2[log ]3n ;当16,17,,31n 时,2[log ]4n ;当32n 时,2[log ]5n ,因此{}n a 的前32项和为321232102142831645631S .4.已知向量,a b的最小值为 .答案:2.解:设向量,a b的夹角为 ,其中(0,) ,则. 令254()((1,1))1x f x x x ,则222(2)(21)()(1)x x f x x .因此()f x 在11,2 单调递减,1,12单调递增,所以()f x 的最小值为142f .2,此时1cos 2 . 5.在梯形ABCD 中,,2260A D C A B B ,M 为CD 边点Q (异于的中点,动点P 在BC 边上,ABP 与CMP 的外接圆交于点P ),则BQ 的最小值为 .1.解:由熟知的结论,,,ABP CMP AME 的外接圆有唯一公共点,该公共点即为题中的点Q ,故点Q 在AME 的外接圆上,如图所示.而AME 是直角三角形,故其外接圆半径1R AD .在ABD中,由余弦定理,BD ,所以BQ1,此时P 在线段BC 上,且CP .6.已知双曲线 的两条渐近线互相垂直,过 的右焦点F 且斜率为3的直线与 交于,A B 两点,与 的渐近线交于,C D 两点.若||5AB ,则||CD .答案:.7.已知某圆台的侧面是一个圆环被圆心角为90 的扇形所截得的扇环,且圆台的侧面积为2 ,则该圆台体积的取值范围是 .答案:.解:设圆台上底面为圆1O ,半径为1R ,下底面为圆2O ,半径为2R ,圆台母线为l .由圆台的侧面积为2 可得21(222)π2lR R ,故212l R R ①.由侧面展开是圆心角为90 的扇形所截得的扇环,可得 11122222l R l l R,故2144l R R ②.因此圆台的高21)h R R ,圆台的体积2222121212211(()3)V R R h R R R R R R .结合①②可得222112R R.由于210R R,故21R R.令21x R R ,则12124124x R x x R x,进而可得3134V x x .令31()34f x x x x ,则43()304f x x .因此()f x在 上单调递增,故()f x f .所以V ,即圆台体积的取值范围是 . 8.用 表示11元集合{1,2,3,,10,2024}A 的三元子集的全体.对 中任意一个三元子集{,,}()T x y z x y z ,定义()m T y ,则()T m T的值为 .答案:990.解:不妨将集合A 视为{}1,2,3,,10,11 (这是因为,将“2024”改成“11”不影响每个()()m T T 的值).对每个T ,定义*{12|}T t t T ,则*T ,且*)12()(T m T m . 由于当T 遍历 的所有三元子集时,*T 也遍历 的所有三元子集,所以**311()666C 990()()(2)T T T T m T m T m T m T .二、解答题:本大题共3小题,满分56分,解答应写出文字说明、证明过程或演算步骤.9.(本题满分16分)已知,,0a b c ,二次函数2()f x ax bx c 存在零点,求a b cb c a的最小值.解:令,b c m n a a ,则,0m n 且1a b c mn b c a m n.由题意得240b ac ,即24m n,故m .考虑11()f m m m n,则()f m在) 上单调递增.所以()a b c f m n f n n b c a,当n m 时等号成立.因此a b c b c a. 10.(本题满分20分)在ABC 中,,30AB AC BAC .在AB 边上取五等分点12345,,,,T T T T T (12345,,,,,,A T T T T T B 顺次排列).记(1,2,3,4)k k BT C k ,求31141tan tan tan tan tan tan k k k A B 的值.解:在AB 延长线上任取一点D ,记05,A DBC B ,则所求式子即为410tan tan kk k.为方便,记05,T A T B .作CH AB 于点H ,则tan (04)k k CH k T H(这里及以下,有向线段的方向约定为AB方向).注意到,30AB AC BAC ,有111112tan tan 555k k k k k k AC T H T H T T ABCH CHCH CH , 故115tan tan (tan tan (04))2k k k k k .进而4411500055tan tan (ta )n tan (tan tan 22)k k k kk k575tan tan (252126211.(本题满分20分)已知A 是抛物线22(0)y px p 上一点(异于原点),斜率为1k 的直线1l 与抛物线恰有一个公共点A (1l 与x 轴不平行),斜率为2k 的直线2l 与抛物线交于,B C两点.若ABC 是正三角形,求12k k 的取值范围.解:设(,),(,),(,)A A B B C C A x y B x y C x y .设直线):(A A AB y y t x x −=−,代入抛物线22y px 得2220A A y p y y p x t t ,故2B A p y y t. 设直线):(A A AC y y s x x ,同理可得2C A py y s. 由AB AC 知2222111)(1()B A C A y y y y t s. 不妨设,,A B C 是绕着ABC 的重心逆时针排列的,则由3BAC知s t ,代入化简得)2A A p t y t p y t.结合t 0t 时B A y y 与C A y y 同号可知A py , 又22B C B C B C y y p k x x y y,进而121112B C AA y y k p k y t s y ,代入化简得1211k k0,t . 因此121111,,00,227k k.当t时,易知AC x 轴,B 位于坐标原点,此时12122B C A y y k k y.而0,t 均不符合题意.k k 的取值范围是1(1,0)0,7.因此,12。

小学数学一年级上学期竞赛模拟模拟试题测试卷(及答案)

小学数学一年级上学期竞赛模拟模拟试题测试卷(及答案)

小学数学一年级上学期竞赛模拟模拟试题测试卷(及答案)一、一年级上册数学竞赛题1.请你把0、1、2、3、4、5 这六个数字填在苹果里,使算式成立,每个数字只能用一次。

2.按规律填上括号里的数。

2,5,8,11,( ),17,20。

3.一队小学生,李平前面有8个学生比他高,后面9个学生比他矮,这队小学生共有多少人?4.同学们排队做操,从前面数,小明排第4,从后面数,小明排第5,这一队一共有多少人?5.新星小学美术兴趣小组有学生9人,书法兴趣小组的人数和美术兴趣小组的人数同样多,这两个兴趣小组共有多少名学生?6.有8个皮球,如果男生每人发一个,就多2个,如果女生每人发一个,就少2个,男生有多少人,女生有多少人?7.按规律填出空缺的项。

1,9,2,8,3,( ),4,6,5,5。

8.大牛从1楼走到5楼需要4分钟,那么用同样的速度,他从1楼走到8楼需要( )分钟。

9.有两根粗细一样但长度不同的蜡烛,长蜡烛有20厘米,短蜡烛有12厘米。

把它们同时点燃,当短蜡烛还剩2厘米时,长蜡烛还剩( )厘米。

10.雁雁有10颗巧克力,旦旦有8颗巧克力。

雁雁给旦旦一些巧克力后,旦旦有15颗巧克力,那么此时雁雁有( )颗巧克力。

11.计算:10+9-8+7-6+5-4+3-2+1=_______。

12.小明有2个桃子,小芳有4个桃子,为了使两人的桃子一样多,应该再给小明桃子还是再给小芳?13.☆+△=12,☆-△=8。

☆=( ),△=( )。

14.冬冬有5支铅笔,南南有9支铅笔,冬冬再买几支就和南南的一样多?15.小红有9只铅笔,小明有5只铅笔,小红给小明( )支铅笔两人的铅笔同样多。

16.一只小猫5分钟吃完一条小鱼,5只小猫同时吃5条同样的小鱼要( )分钟。

17.小花买一支铅笔和一块橡皮用去3元,小力买同样的铅笔和一个卷笔刀用了5元,橡皮和卷笔刀相比,( )贵,贵( )元。

18.小明家养了4只白兔,2只黑兔,每只小黑兔生了4只小兔,小明家一共有( )只兔。

初中数学竞赛模拟题50题含答案

初中数学竞赛模拟题50题含答案

初中数学竞赛模拟题50题含答案一、单选题1.下列说法正确的是( ) A .正有理数和负有理数统称有理数 B .正整数和负整数统称整数 C .整数和分数统称有理数D .一个有理数不是正数就是负数2.在一年的某月里,周五、周六出现的天数比周日多,周一、周二、周三、周四出现的天数不超过周日,则该月份一定不是( ) A .三月B .四月C .六月D .十一月3.当m 为自然数时,2(45)9m +-一定能被下列哪个数整除( ) A .5B .6C .7D .84.定义运算()()()()()()12211221a a a a b a b a b b b b --⨯⋅⋅⋅⨯-+-+*=--⨯⋅⋅⋅⨯⨯,则107*=( )A .720B .120C .240D .805.已知()123123,,x x x x x x <<为关于x 的方程323(2)0x x a x a -++-=的三个实数根,则22211234x x x x -++=( )A .5B .6C .7D .86.一个盒子中有红球m 个、白球10个,黑球n 个,每个球除颜色外都相同,从中任取一个球,取得是白球的概率与不是白球的概率相同,那么,m n 的关系是( ). A .10m n +=B .5m n +=C .10m n ==D .2,3m n ==7.已知x ,y 为整数,且满足224411112113x y x y x y ⎛⎫⎛⎫⎛⎫++=-- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,则x y +的可能的值有( ) A .1个B .2个C .3个D .4个8.若223894613M x xy y x y =-+-++(,x y 是实数),则M 的值一定是( ). A .正数 B .负数C .零D .整数9.若34567201520162017201820195N++++++++=,则N =( )A .2015B .2016C .2017D .201810.如图,在ABC 中,过点C 作CD AB ⊥,垂足为点D ,过点D 分别作DE AC ⊥,DF BC ⊥,垂足分别为E ,F .连接EF 交线段CD 于点O ,若CO =CD =EO FO ⋅的值为( ).A .B .4C .D .611.锐角ABC 中,BC 边的中垂线和ABC ∠的角平分线相交于点P .若72A ∠=︒,24ACP ,则ABP ∠=( )A .24︒B .28︒C .30︒D .36︒12.如果21x x --是31ax bx ++的一个因式,则b 的值是( ). A .2-B .1-C .0D .213.满足等式22(2)1m m m ---=的所有实数m 的和为( ) A .3B .4C .5D .614.点D 、E 、F 分别在ABC 的三边BC 、AB 、AC 上,且AD 、BF 、CE 相交于一点M ,若5AB AC BE CF+=,则AMMD =( ) A .72B .3C .52D .215.矩形ABCD 中,5AD =,10AB =,E 、F 分别为矩形外的两点,4BE DF ==,3AF CE ==,则EF =( )A .B .15CD .16.已知实数a ,b 满足()()330a b --≥2 ) A .0B .1C .2D .317.某种产品由甲、乙、丙三种元件构成,如图为生产效率最高,在表示工人分配的扇形图中,生产甲、乙、丙元件的工人数量所对应的扇形圆心角的大小依次是( ).A .120,180,60︒︒︒B .108,144,108︒︒︒C .90,180,90︒︒︒D .72,216,720︒︒︒18.从正整数里取出k 个不同的数,使得这k 个数中任意两个数之差的绝对值是质数,则k 的最大值是( ). A .3B .4C .5D .619.若直角三角形的一条直角边长为12,另两条边长均为整数,则符合这样条件的直角三角形共有( )个. A .1B .6C .4D .无数多二、填空题20.把7串葡萄放在6个盘子里,总有一个盘子里至少要放( )串葡萄. 21.如图,已知直角三角形ABC ,90A ∠=,4AB =cm ,5BC =cm .将ABC 沿AC 方向平移1.5cm 得到A B C ''',求四边形BCC B ''的面积为________2cm .22.若正整数n 有6个正约数(包括1和本身),称其为“好数”,则不超过50的好数有______个.23.已知ABC 的最大边BC 上的高线AD 和中线AM 恰好把BAC ∠三等分,AD =AM =__________.24.若a ,b ,c ,d 均为素数,且满足2a b d +=,32b c d -=,则d 的最小值是________.25.在一张冬景照片上,人们分别戴着帽子、系着围巾和戴着手套.只戴帽子的人数等于只系围巾和只戴手套的人数之和;只有4人没有戴帽子;戴着帽子和系着围巾,但没有戴手套的有5人;只戴帽子的人数两倍于只系围巾者;未戴手套有8人,未系围巾有7人;三样东西都用的人数比只戴帽子的人数多一个.那么: (1)有______人同时用上了帽子、围巾和手套; (2)有______人只戴了手套; (3)有______人只系了围巾;(4)有______人既戴了帽子,又戴了手套,但没有系围巾; (5)有______人戴着手套.26.若n n =______. 27.设x =a 是x 的小数部分,b 是x -的小数部分,则333a b ab ++=__________ .28.军训基地购买苹果慰问学员.已知苹果总数用八进位制表示为abc ,七进位制表示为cba .那么,苹果的总数用十进位制表示为________. 29.方程1433x y+=有_________组正整数解. 30.已知函数(1)1kx k y ++=(k 为正整数)的图象与两坐标轴围成的图形面积为(1,2,,2000)k S k =⋅⋅⋅,则122000S S S ++⋅⋅⋅+=_______.31.如图,在ABC ∆中,90BAC ∠=︒,AB =AC =5,点D 在AC 上,且2AD =,点E 是AB 上的动点,连结DE ,点F ,G 分别是BC ,DE 的中点,连接AG ,FG ,当AG =FG 时,线段DE 长为______32.从1到2001连续的2001个自然数按某种顺序排列,然后每连续三项计算和数,得到1999个和,则这些和数中为奇数的个数最多是_________. 33.计算:239912232421002+⨯+⨯+⨯++⨯=________.(结果可用2的幂表示)34.如图所示,点A C 、都在函数0)y x =>的图象上,点B D 、都在x 轴上,且使得OAB ,BCD △都是等边三角形,则点D 的坐标是_______.35.已知正整数n 大于30,且使得41n -整除2002n ,则n 等于_______. 36.射线AB 绕点A 逆时针旋转a ︒,射线BA 绕点B 顺时针旋转b ︒,090a ︒︒<<,090b ︒︒<<,旋转后的两条射线交点为C ,如果将逆时针方向旋转记为“+”,顺时针方向旋转记为“-”,则称()a b -,为点C 关于线段AB 的“双角坐标”,如图1,已知ABC ∆,点C 关于线段AB 的“双角坐标”为(5060)-,,点C 关于线段BA 的“双角坐标”为(6050)-,.如图2,直线:AB y =x 轴、y 轴于点A 、B ,若点D 关于线段AB 的“双角坐标”为()m n -,,y 轴上一点E 关于线段AB 的“双角坐标”为()n m -,,AE 与BD 交点为F ,若ADE ∆与ADF ∆相似,则点F 在该平面直角坐标系内的坐标是________.37.如图,在四边形ABCD 中,90BCD ∠=︒,BC =,60BAC ∠=︒,若=5AB ,=2AD ,则线段AC 的长为______.38.某演艺公司将观赏厅分为上、中、下三大区位,同一区位包含若干个座位数相同的桌位(不同区位的单个桌位所含座位数不一定相同).演艺公司对近三天的的上座情况进行统计发现,三天中每个区位坐有观众的桌位均刚好坐满.第一天上、中、下区的坐有观众的桌位数之比为3:2:1,中区的观众数占入场观众数的14,上座率为35;第二天上、中、下区的坐有观众的桌位数之比为1:1:2,上区的观众数占入场观众数的25,上座率为34;第三天上区的观众数与第二天上区的观众数相同,中区的观众数是第一天的中区的观众数的13,下区的观众数是当天上区和中区观众数的总和.则第三天的上座率为______.(上座率=入场观众数全场总座位数)三、解答题39.如图,在菱形ABCD 中,3AB =,60DBA ∠=︒,E 为线段BD 延长线的动点,连接AE 、CE ,AE 交CD 延长线于点F .(1)求证:AE CE =; (2)若1DF =.①求点E 到CD 的距离; ①求EFED的值. 40.设,a b 是实数且422223a b a b =+,求22222010a b a b -+的值. 41.几何计算中,常利用面积法(等积法)构造方程来求线段的长,请利用这种面积法(等积法)解决下列两个问题:(1)如图①,ABC 中,13AB =,5AC =,=12BC ,求AB 边上的高;(2)在一张正方形纸张的四个角剪去四个相同的小正方形,得到如图①所示的图形,再将它分割成三块拼成如图①所示的长方形,已知m n 、满足:22818970m m n n -+-+=,求拼成新长方形的长m 、宽n 的值及被剪去的小正方形的边长.42.求证:若3|(4)x y -,则229472|()x xy y +-. 43.两位数ab 能整除十位数字为零的三位数0a b ,求ab .44.如图,点E 在四边形ABCD 的边AB 上,ABC 和CDE 都是等腰直角三角形,AB AC =,DE DC =.(1)证明://AD BC ;(2)设AC 与DE 交于点P ,如果30ACE ∠=︒,求DPPE. 45.从1,2,3,…,50这50个正整数中任取n 个数,在这n 个数中总能找到3个数,它们两两互质.求n 的最小值.46.已知m ,n 都是正整数,若130m n ≤≤≤,且mn 能被21整除,求满足条件的数对(,)m n 的个数.47.证明数列49,4489,444889,4448889,…的每一项都是一个完全平方数. 48.在元旦晚会上,学校组织了一次关于语文、数学、外语、奥运及日常生活常识的知识竞赛,设定每科满分为40分,以下依次为30分、20分、10分和0分,共5个评分等级,每个小组分别回答这五个方面的问题.现将A 、B 、C 、D 、E 五个小组的部分得分列表1如下: 表1表1中,(1)每一竖行的得分均不相同(包括单科和总分);(2)C组有4个单科得分相同.求B、C、D、E组的总分并填表进行检验.参考答案:1.C【分析】根据有理数的含义和分类方法,逐一判断即可. 【详解】解:A 、正有理数、负有理数和0统称有理数, ∴选项A 不正确,不符合题意;B 、正整数与负整数、0统称为整数, ∴选项B 不正确,不符合题意;C 、整数和分数统称有理数 ∴选项C 正确,符合题意;D 、一个有理数不是正数,可能是负数或0, ∴选项D 不正确,不符合题意.故选:C .【点睛】本题主要考查了有理数的含义和分类方法,解题的关键是要熟练掌握有理数的分类:①有理数可以分为正有理数,0,负有理数;正有理数可以分为正整数和正分数,负有理数分为负整数和负分数;①有理数可以分为整数和分数;整数分为正整数,0负整数;分数分为正分数和负分数;按两种分类一一判断即可. 2.A【详解】每个月的后28天,周一至周日出现的天数相同,因此在这28天之外只能出现周五和周六,故这个月有30天 3.D【分析】多项式利用平方差公式分解因式,变形后即可作出判断. 【详解】解:2(45)9m +-[][](45)3(45)3m m =+-++ (42)(48)m m =++ 8(21)(2)m m =++①无论m 为任何自然数,2(45)9m +-始终能被8整除, 故选:D .【点睛】本题考查了平方差公式,熟练掌握平方差公式是解答本题的关键. 4.B【解析】略 5.A【详解】方程即()2(1)20x x x a --+=,它的一个实数根为1,另外两个实数根之和为2,其中必有一根小于1,另一根大于1,于是21x =,132x x +=,故()()222112331311441x x x x x x x x x -++=+-++()()31131241215x x x x x =-++=++=.6.A【详解】盒中共有10m n ++个球,取得的是白球的概率是10m np m n +=++,取得的不是白球的概率为10m n p m n '+=++.依题意有101010m nm n m n +=++++,所以10m n +=.故应选A .7.C【详解】由已知等式得2244224423x y x y x y xy x y x y++-⋅=-⋅,显然x ,y 均不为0,所以0x y +=或()32xy x y =-.若()32xy x y =-,则()()32324x y +-=-.又x ,y 为整数,可求得12x y =-⎧⎨=⎩或2,1x y =-⎧⎨=⎩.所以1x y +=或1x y +=- 因此,x y +的可能的值有3个.【点睛】本题考查了等式的性质,分式的化简,解决此题的关键是熟练运用x 、y 是整数这个条件. 8.A 【详解】因为22222222(44)(44)(69)2(2)(2)(3)0M x xy y x x y y x y x y =-++-++++=--++≥+,并且2,2,3x y x y --+不能同时等于零,所以0M >.故选A .9.C 【解析】略 10.B【分析】由题意易得出90DEC DFC ∠=∠=︒,即说明点C ,E ,D ,F 四点共圆,得出DEO FCO ∠=∠,从而易证DOE FOC ∽,得出EO DOCO FO=.由题意可求出DO CD CO =-4EO FO CO DO ⋅=⋅=.【详解】解:①DE AC ⊥,DF BC ⊥, ①90DEC DFC ∠=∠=︒, ①点C ,E ,D ,F 四点共圆,①DEF FCD ∠=∠,即DEO FCO ∠=∠. 又①DOE FOC ∠=∠, ①DOE FOC ∽, ①EO DOCO FO=, ①EO FO CO DO ⋅=⋅.①CO =CD = ①DO CD CO =-=①4EO FO CO DO ⋅=⋅==. 故选B .【点睛】本题考查相似三角形的判定和性质,四点共圆的知识,圆周角定理.确定点C ,E ,D ,F 四点共圆,从而可得出证明DOE FOC ∽的条件是解题关键. 11.B【详解】①直线BP 为ABC ∠的角平分线,①ABP CBP ∠=∠.①直线PM 为BC 的中垂线,①BP CP =,①CBP BCP ∠=∠,①ABP CBP BCP ∠=∠=∠. 在ABC 中,三内角之和为180︒,①3180ABP A ACP ∠+∠+∠=︒, 即37224180ABP ∠++=°°°,解得28ABP ∠=°. 12.D【详解】(解法一)依题意可设32321(1)()()()ax bx x x ax c ax c a x a c x c ++=--+=+--+-,比较系数得(),0,1,b a c c a c =-+⎧⎪-=⎨⎪-=⎩所以1,2c a b ==-=.故选D .(解法二)依题意21x x --是3221(1)()1ax bx ax x x ax b a x ++---=+++的因式, 所以1111a b a +==--, 解得1,2a b =-=.故选D .(解法三)用长除法可得321(1)()(2)(1)ax bx x x ax a a b x a ++=--+++++,所以20,10,a b a +=⎧⎨+=⎩得1,2a b =-=.故选D .13.A【详解】当21m -=即1m =时,满足所给等式;当21m -=-即3m =时,224(2)(1)1m m m ---=-=,满足所给等式;当21m -≠±即1m ≠且3m ≠时,由已知等式可得:220m m --=且20m -≠,解得1m =-. 因此,满足等式22(2)1m m m ---=的所有实数m 的和为()1313++-=.14.B【详解】设AM t MD =,由题设可得AMC DMC BMC BMC S tS AE EB S S ==△△△△,AMB BMD BMC BMC S tS AF FC S S ==△△△△,所以22DMC BMD BMC BMCtS tS AB AC AE AFBE CF EB FC S S ∆∆+=++=++△△ ()222DMC BMD BMC BMC BMCt S S tSt S S +=+=+=+△△△△△,又已知5AB AC BE CF +=,所以25t +=,所以3t =,即3AM MD=. 15.C【详解】易知90AFD BEC ∠=∠=︒,BEC DFA ≅△△,①DAF BCE ∠=∠. 延长FA ,EB 交于点G .①90GAB DAF ADF ∠=︒-∠=∠,90GBA CBE BCE DAF ∠=︒-∠=∠=∠, ①BGA AFD △△,且90AGB ∠=︒,①8AG =,6BG =, ①11GF =,10GE =,①EF ==16.B【详解】因为40b -≥,30b ->,所以3a ≥1,所以令3a =,8b =,得到最小值为1. 17.B【详解】解 设分配生产甲、乙、丙3种元件的人数分别为x 人,y 人,z 人,于是每小时生产甲、乙、丙三种元件的个数分别为50,30,20x y z .为了提高效率应使生产出来的元件全部组成成品而没有剩余.设共可组成k 件成品,则503020504020x y zk ===,即4,,3x k y k z k ===,从而4::1::13:4:33x y z ==.设在扇形图中生产甲、乙、丙三种元件的圆心角分别为,,αβγ,则3336036036010834310x x y z α=⨯︒=⨯︒=⨯︒=︒++++,4436036036014434310y x y z β=⨯︒=⨯︒=⨯︒=︒++++,3336036036010834310z x y z γ=⨯︒=⨯︒=⨯︒=︒++++.故应选B . 18.B【详解】解法一 首先4个数1,3,6,8满足题目要求,故所求k 的最大值4≥. 若5k ≥,记第n 个数为(1,2,,)n a n k =,且12 k a a a <<<,则分下列几种情形:(1)1a 为奇,2a 为奇,于是21a a -为偶数. 又21a a -为质数,故212a a -=,即212a a =+.若3a 为奇数,又32a a ≠,故31a a -为不等于2的偶数,即31a a -为不小于4的偶数,即31a a -为合数,矛盾.故3 a 为偶数,4a 也只能为偶数.那么,若5a 为奇,则51312a a a a ->-≥为偶数,即51a a -为不小于4的偶数,从而51a a -为合数,矛盾.若5a 为偶数,则53432a a a a ->-≥为偶数,从而53a a -为合数,矛盾. (2)1a 为奇,2a 为偶,于是21a a -为奇数,即213a a -≥. 若3a 为奇数,则31213a a a a ->-≥为偶数,故31a a -为合数,矛盾. 所以3a 为偶数,且322a a -=.若4a 为奇数,则41313a a a a ->-≥为不小于4的偶数,即41a a -为合数,矛盾. 若4a 为偶数,则42322a a a a -->=为不小于4的偶数,即42a a -为合数,矛盾. (3)1a 为偶,2a 为奇或偶,都类似于(1),(2)可导致矛盾. 综上得所求k 的最大值是4,故选B .解法二 同解法一得4k ≥.若5k ≥,则将全体正整数分为4个不相交的子集1M ,2M ,3M ,4M ,其中i M 由全体被4除余i 的正整数组成(0,1,2,3)i =于是任取5k ≥个数,其中必有2个数a ,b (a b >)属于同一个子集i M ,于是a b -被4整除,a b -不是质数,矛盾.故所求k 的最大值等于4. 19.C【详解】选C .理由:设12a =,c 为斜边,则有222144c b a -==. 因为4214423=⨯,所以, ()()722c b c b +-=⨯; ()()364c b c b +-=⨯; ()()188c b c b +-=⨯; ()()169c b c b +-=⨯; ()()483c b c b +-=⨯; ()()246c b c b +-=⨯.又因为c b +与c b -同奇偶,故符合题意条件的直角三角形有以下四个: 12.5.13;a b c =⎧⎪=⎨⎪=⎩12.9.15;a b c =⎧⎪=⎨⎪=⎩12,16,20;a b c =⎧⎪=⎨⎪=⎩12.35.37.a b c =⎧⎪=⎨⎪=⎩20.2【分析】把6个盘子看作6个抽屉,7串葡萄看作7个元素,从最不利的情况考虑,每个抽屉先放一个,共需要6个,余下这一个无论放在哪个抽屉里,总有一个至少有1+1=2(个),据此解答. 【详解】解:761÷=(串)1(串), 1+1=2(串),①总有一个盘子里至少要放2串葡萄. 故答案为:2.【点睛】本题考查了抽屉原理,解决本题的关键是掌握抽屉原理:如果有n 个抽屉,而每一个苹果代表一个元素,假如有n +1个元素放到n 个抽屉中去,其中必定有一个抽屉里至少有两个元素. 21.6【分析】根据题意,再结合平移的性质,可得AB A B ='', 1.5AA BB CC ===′′′cm ,BB CC ∥′′,ABC A B C S S '''=△△,然后再根据等量代换,得出=AA OB OCC B S S 四边形四边形′′′,然后再根据等量代换,得出BCC B AA B B S S =四边形四边形′′′′,然后再根据长方形的特征,得出四边形AA B B ''是长方形,然后再根据长方形的面积公式,算出长方形AA B B ''的面积,即可得出四边形BCC B ''的面积.【详解】解:如图,①ABC 沿AC 方向平移1.5cm 得到A B C ''',①A 的对应点为点A ',点B 的对应点为点B ',点C 的对应点为点C ',①由平移的性质,可得:4AB A B =''=cm , 1.5AA BB CC ===′′′cm ,BB CC ∥′′, 又①ABC 沿AC 方向平移1.5cm 得到A B C ''', ①ABC A B C S S '''=△△,又①ABC A OC AA OB S S S =+△△四边形′′, A B C A OC OCC B S S S =+△四边形′′′′′′,①=AA OB OCC B S S 四边形四边形′′′, ①=BOB BCC B OCC B S S S +△四边形四边形′′′′′, BOB AA B B AA OB S S S =+△四边形四边形′′′′,①BCC B AA B B S S =四边形四边形′′′′,①AB A B ='',AA BB '=',90A ∠=,①根据长方形的特征,可得:四边形AA B B ''是长方形, ①4 1.56AA B B S AB AA =⋅=⨯=长方形′′′2cm , ①6BCC B AA B B S S ==四边形四边形′′′′2cm故答案为:6【点睛】本题考查了平移的性质,等量代换,根据长方形的特征判定长方形,长方形的面积公式,解本题的关键在熟练掌握平移的性质.平移的性质:1、形状大小不变;2、对应点的连线平行(或在同一直线上)且相等;3、对应线段平行(或在同一直线上)且相等,对应角相等. 22.8. 【详解】n 有6个正约数故n 的标准质因数分解式为5n P =或2n pq =(p 、q 为素数,(,)1p q =) 若5n p =,由50n ≤知52 若2n p q =⋅,则223n =⋅,225⋅ 232⋅,252⋅,253⋅,272⋅,2112⋅①“好数”共有8个. 23.2【详解】依题意得BAD DAM MAC ∠=∠=∠,90ADB ADC ∠=∠=︒,故ABC ACB ∠≠∠. (1)若ABC ACB ∠>∠时,如答案图1所示,ADM ADB ≅△△,①12BD DM CM ==,又AM 平分DAC ∠,①12AD DM AC CM ==,在Rt DAC 中,即1cos 2DAC ∠=,①60DAC ∠=︒,从而90BAC ∠=︒,30ACD ∠=︒.在Rt ADC 中,tan tan 603CD AD DAC ⋅∠︒==,1DM =.在Rt ADM △中,2AM =. (2)若ABCACB 时,如答案图2所示.同理可得2AM =.综上所述,2AM =.24.17【分析】根据题意,求得的最小值,可将等式变形得到4a b c =-,则b c -是合数,且为4的倍数,以此为突破,求得a b c d ,,, 【详解】2a b d +=①,32b c d -=①①×2-①得:40a b c -+=, 即4a b c =-,求d 的最小值,则,a b 尽量小 当2a =时,8b c -=,根据20以内的素数可知,11,3b c ==,或者13,5b c == 此时241115d a b =+=+=,此时d 为合数,故不符合题意, 当13,5b c ==时,此时241317d a b =+=+=,经检验,a b c d ,,,皆为素数,满足题意, 故答案为:17.【点睛】本题考查了素数的定义,二元一次方程组的加减消元法,掌握20以内的素数是解题的关键.25. 3 1 1 4 10【详解】如图,按题目中条件顺序依次可列方程:(1)A C F =+;(2)4C E F ++=;(3)5B =;(4)2A C =;(5)8A B C ++=;(6)7A G F ++=;(7)1D A =+.可求出2,5,1,3,2,1,4A B C D E F G =======.于是,题目中各空白区应填入的数依次是①3,①1,①1,①4,①10.26.14-或7-或2-或5p =(p 为非负整数),则2222229304361204(29)394n n p n n p n p ++=⇒++=⇒++= 39(229)(229)p n p n ⇒=++--,2291102293914p n p p n n ++==⎧⎧⇒⎨⎨--==-⎩⎩ 或229391022915p n p p n n ++==⎧⎧⇒⎨⎨--==⎩⎩ 或22934229137p n p p n n ++==⎧⎧⇒⎨⎨--==-⎩⎩ 或22913422932p n p p n n ++==⎧⎧⇒⎨⎨--==-⎩⎩ ①14n =-或7-或2-或5 27.1【详解】解 ①1x ==,而213<<, ①21a x =-=.又①1x -=,而312-<<-,①()33223()3++=+-++a b ab a b a ab b ab2223()1a ab b ab a b =-++=+=.28.220【详解】填220.理由:因1a ≤,b ,6c ≤,288a b c ⨯+⨯+=277c b a ⨯+⨯+,即63480a b c +-=,即3(1621)b c a =-,所以,0b =,3,6.经检验,3b =符合题意.故3b =,4c =,3a =.则238384220⨯+⨯+=. 29.5【详解】理由:因为133x ≥, 所以141833333x y =-≤-=,则1432184y ⨯≥=, 即6y ≥.原方程可化为429xy y +=, 则42(9)x y =-. 所以42能被y 整除.所以y 可取6,7,14,21,42.相应地得到五组解:112,6,x y =⎧⎨=⎩223,7,x y =⎧⎨=⎩336,14,x y =⎧⎨=⎩447,21,x y =⎧⎨=⎩558,42.x y =⎧⎨=⎩ 30.10002001【详解】解原函数关系化为111k y x k k -=+++.令0x =得11y k =+,令0y =得1x k,即直线111k y x k k -=+++与y 轴、x 轴的交点分别为10,1k A k ⎛⎫ ⎪+⎝⎭和1,0k B k ⎛⎫ ⎪⎝⎭,所以 11111(1,2,,2000)22(1)21k kk OA B k k S SOA OB k k k k k ⎛⎫==⨯⨯==-= ⎪++⎝⎭,于是122000111111111212223220002001S S S ⎛⎫⎛⎫⎛⎫+++=-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1110001220012001⎛⎫=-=⎪⎝⎭. 故填10002001. 注:本题中用到第一章§3-3中介绍的裂项抵消求和方法. 31【分析】连接DF ,EF ,过点F 作FN AC ⊥,FM AB ⊥,结合直角三角形斜边中线等于斜边的一半求得点A 、D 、F 、E 四点共圆,=90DFE ∠︒,然后根据勾股定理及正方形的判定和性质求得AE 的长度,从而求解.【详解】解:如图,连接DF ,EF ,过点F 作FN AC ⊥,FM AB ⊥. ①在ABC 中,90BAC ∠=︒,点G 是DE 中点, ①AG DG EG ==. ①AG =FG ,①A 、D 、F 、E 四点共圆,G 点为圆心,DE 为直径, ①90DFE ∠=︒.①在Rt ABC 中,5AB AC ==,①BC == 又①点F 是BC 中点,①12CF BF BC ===1522FN FM AB ===. ①四边形AMFN 是正方形, ①52AN AM FN FM =====. ①90NFD DFM ∠+∠=︒,90MFE DFM ∠+∠=︒, ①NFD MFE ∠=∠.①在NFD △和MFE 中90DNF EMF NF MF NFD MFE ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩,①()NFD MFE ASA ≅, ①51222ME DN AN AD ==-=-=, ①51322AE AM MD =+=+=, ①在Rt DAE中,DE【点睛】本题考查直角三角形的性质,圆周角定理,四点共圆,正方形的判定和性质,全等三角形的判定和性质以及勾股定理,综合性强,较难.正确的作出辅助线是解答本题的关键. 32.1998【详解】用0表示偶数,1表示奇数,则按如下方法排列时:5011500100100100100111A B C个个,仅有一个数为偶数:A B C ++,故所求和数个数的最大值不小于199911998-=.其次,我们证明对任意排列,都至少有一个和为偶数,分4种情形.情形①:第一项为奇数,第二项为偶数.为了使和不出现偶数,第3项只能是奇数,接下去只能是1001000…这样出现了500个100后,所有1000个偶数全都排出,余下只有501个奇数,这时只能是上述排列,其中有一个和:A B C ++为偶数.情形①:第一项是奇数,第2项也是奇数.为了使和不出现偶数,以后各项只能都是奇数,排完1001个奇数后,剩下1000个偶数,再排下去必出现偶数:奇+奇+偶=偶. 情形①和①:第一项是偶数,第二项是奇数或偶数,同样必会出现和为偶数的情形. 综上可知,所求和数个数的最大值是1998. 33.1009921⨯+【详解】解:设239912232421002S =+⨯+⨯+⨯++⨯,则23991002222329921002S =+⨯+⨯++⨯+⨯,于是,由公式①得 ()299100212221002S S S =-=-+++++⨯10010021100221-=-+⨯+1009921=⨯+.故答案为:1009921=⨯+.34.【详解】解 如图所示,分别过A C 、作x 轴垂线,垂足分别为E F 、.设,OE a BF b ==,则,AE CF ==,所以A C 、的坐标分别是(),(2)A a C a b +,代入xy =得2)a b b =+=解得a b ⎧=⎪⎨=⎪⎩因此,(22,0)D a b +的坐标为.35.36【详解】解 因为对正整数n ,41n -整除2002n , 所以200241nn -是整数. 而20022(250)5004141n n n n +=+--, 又因为41n -是奇数,所以25041n n +-是整数. 则4(250)100114141n n n +=+--,可知1001能被41n -整除.因为30n >,100171113=⨯⨯,所以可得41n -只能是143.所以36n =. 故应填36.36.,-1)##(11)【分析】由y =x 轴、y 轴于点A 、B ,得到点B 的坐标是(0,OB =A 的坐标是(﹣1,0),OA =1,①ABO =30°,①OAB =60°,分别求得直线BF 的解析式为=-+y x AF 的解析式为2)2y x =,联立解方程组即可得到点F 在该平面直角坐标系内的坐标.【详解】解:①直线AB :y =x 轴、y 轴于点A 、B 当x =0时,y①点B 的坐标是(0,OB当y =0时,0x =﹣1, ①点A 的坐标是(﹣1,0),OA =1①tan ①ABO =AO BO =①①ABO =30°,①OAB =90°-①ABO =60°如图所示,由题意得①EAB =①ABD ,①ABE =①BAD , ①①ABE ①①BAD ①①AEB =①ADB①A 、E 、D 、B 四点共圆,如图所示, ①①ADE =①ABE =30°,①EAD =①EBD ①①F AB =①FBA ①①ADE ①①AFD①①F =①ADE =30°,①F AB =①FBA =75°①①F AO =①F AB -①BA 0=15°,①FBE =①F AB -①ABO =45°, ①①OGB =90°-①FBE =45° ①①OGB =①OBG ①OG =OB①点G0),设直线BF 的解析式为y =kx +b ,代入G 0),B (0b b +==⎪⎩ 解得1k b =-⎧⎪⎨=⎪⎩①直线BF 的解析式为=-+y x在线段AO 上取点H ,使得AH =EH ,则①HAE =①HEA =15°, ① ①OHE =①HAE +①HEA =30° 设OE =t , 则OH=tan 30OE=︒,22HE OE t AH ===①21OA AH OH t =+==①2t ==①点E 的坐标为(02)设直线AF 的解析式为y =k 1x +b 1,代入A (﹣1,0),E (02)得11102k b b -+=⎧⎪⎨⎪⎩解得1122k b ⎧=⎪⎨=⎪⎩ ①直线AF的解析式为2)2y x =, 联立直线BF 和AF 的解析式得2)2y x y x ⎧=-⎪⎨=⎪⎩解得11x y ⎧=⎪⎨=-⎪⎩①点F,-1) 故答案为:,-1)【点睛】本题考查了一次函数的图像和性质、解直角三角形、相似三角形的判定与性质、 解二元一次方程组、四点共圆等知识,综合性非常强,难度较大,利用待定系数法求解析式是关键. 37.2.5+【分析】连接BD ,过B 作BH ①AC 于H 点,根据①BCD 是直角三角形,可证明①BAC =①BDC ,则有A 、B 、C 、D 四点共圆,进而有BD 是该圆的直径,可得①BAD =90°,利用勾股定理可得BD =12CD BD ==BC ==,根据BH ①AC ,可得①ABH 、①BCH 是直角三角形,则有①ABH =30°,即1522AH AB ==,利用勾股定理可得BH =,再在①BCH 是直角三角形,可得CH 可得解.【详解】连接BD ,过B 作BH ①AC 于H 点,如图,①①BCD =90°,①①BCD 是直角三角形, ①222BD CD BC =+,①BC =,①2BD CD =, ①在Rt ①BCD 中,①DBC =30°, 即①BDC =60°, ①①BAC =60°, ①①BAC =①BDC , ①A 、B 、C 、D 四点共圆, ①①BCD =90°, ①BD 是该圆的直径, ①①BAD =90°, ①AB =5,AD =2,①BD①12CD BD =BC ==, ①BH ①AC ,①①ABH 、①BCH 是直角三角形,①①BAC =60°, ①①ABH =30°, ①1522AH AB ==,即BH ===, ①①BCH 是直角三角形,①CH ==①52AC AH CH =+=故答案为:52+【点睛】本题考查了勾股定理、四点共圆、圆周角定理以及含30°角的直角三角形的性质等知识,利用四点共圆是解答本题的关键. 38.710【分析】设上区的桌位数为x ,单个桌位座位数为a ,中区的桌位数为y ,单个桌位座位数为b ,下区的桌位数为z ,单个桌位座位数为c ,第一天下区的坐有观众的桌位数为m ,根据中区的观众数占入场观众数的14,上座率为35,可得3ma +2mb +mc =35(xa +yb +zc ),6b=3a +c ①,设第二天上区的坐有观众的桌位数为n ,根据上区的观众数占入场观众数的25,上座率为34,可得na +nb +2nc =34(xa +yb +zc ),3a =2b +4c ①,联立①①可得b =54c ,a =136c ,进一步得到mc =350(xa +yb +zc ),nc =965(xa +yb +zc ),根据第三天上区的观众数与第二天上区的观众数相同,中区的观众数是第一天的中区的观众数的13,下区的观众数是当天上区和中区观众数的总和,可得第三天上区的观众数为na =136nc ,中区的观众数为13×2mb =23 mb =56mc ,下区的观众数为136nc +56mc ,依此可求第三天的上座率.【详解】解:设上区的桌位数为x ,单个桌位座位数为a ,中区的桌位数为y ,单个桌位座位数为b ,下区的桌位数为z ,单个桌位座位数为c ,第一天下区的坐有观众的桌位数为m ,∵中区的观众数占入场观众数的14,上座率为35,∴3ma+2mb+mc=35(xa+yb+zc),2mb=14(3ma+2mb+mc),∴6b=3a+c①,设第二天上区的坐有观众的桌位数为n,∵上区的观众数占入场观众数的25,上座率为34,∴na+nb+2nc=34(xa+yb+zc),na=25(na+nb+2nc),∴3a=2b+4c①,把①代入①得6b=2b+4c+c,即b=54 c,把b=54c代入①得3a=52c+4c,即a=136c,∴3m×136c+2m×54c+mc=35(xa+yb+zc),整理得mc=350(xa+yb+zc),∴n×136c+n×54c+2nc=34(xa+yb+zc),整理得nc=965(xa+yb+zc),∵第三天上区的观众数与第二天上区的观众数相同,中区的观众数是第一天的中区的众数的13,下区的观众数是当天上区和中区观众数的总和,∴第三天上区的观众数为na=136nc,中区的观众数为13×2mb=23mb=56mc,下区观众数为136nc+56mc,∴第三天的上座率为135266nc mcxa yb zc⎛⎫+⎪⎝⎭++()()135276610xa yb zc xa yb zcxa yb zc⎡⎤+++++⎢⎥⎣⎦==++.故答案为:710.【点睛】本题考查了应用类问题,不定方程的应用,解题的关键是正确读懂题意列出方程和代数式.39.(1)证明见解析【分析】(1)根据题意和菱形的性质,利用SAS 证明ADE CDE ≌△△,即可得出结论. (2)①首先根据题意,得到ABD △为等边三角形,然后过点D 作DH AB ⊥于H ,在Rt ADH 中,依据30ADH ∠=︒,得到32AH =,然后利用勾股定理,得到DH 的长,然后再过点E 作EG DF ⊥于G ,依据1DF =,3CD =,得到3CDE FDE S S =△△,再由(1)得ADE CDE ≌△△,得到3ADE FDE S S =△△,进而得到2ADF FDE S S =△△,然后利用三角形的面积,算出EG 的长.即得到点E 到CD 的距离;①在Rt EDG 中,依据60EDG ∠=︒,得到30DEG ∠=︒,EG =DG x =,利用30︒所对的直角边等于斜边的一半,得到2DE x =,再利用勾股定理,解出x 的值,即可得到DE 的长,然后在Rt EFG 中,31144EF =-=,EG =EF 的长,即可得出EF ED 的值. (1)证明:①在菱形ABCD 中,60DBA ∠=︒, ①AD DC =,120ADE CDE ∠=∠=︒, 在ADE 和CDE 中, AD DCADE CDE DE DE =⎧⎪∠=∠⎨⎪=⎩, ①ADE CDE ≌△△(SAS ), ①AE CE =. (2)解:①依题意ABD △为等边三角形,过点D 作DH AB ⊥于H , 在Rt ADH 中,60DAH ∠=︒,30ADH ∠=︒,3AD =,则32AH =,①DH ==过点E 作EG DF ⊥于G , ①1DF =,3CD =,①3CDE FDE S S =△△,由(1)得,ADE CDE ≌△△, ①3ADE FDE S S =△△, ①2ADF FDE S S =△△, 由12ADF S DF DH =⋅△,12FDE S DF EG =⋅△,①12EG DH ==;①在Rt EDG 中,60EDG ∠=︒,则30DEG ∠=︒,EG = 设DG x =,则2DE x =,222(2)x x +=⎝⎭, 解得:34x =±(负值舍去)①34x =, ①32=DE , 在Rt EFG 中,31144EF =-=,EG =①EF =①232EF ED == 【点睛】本题考查了菱形的性质、全等三角形的性质与判定、等边三角形的性质、勾股定理、面积与等量代换、30︒所对的直角边等于斜边的一半等知识点,解本题的关键在熟练掌握相关性质与定理. 40.135【详解】由422223a b a b =+得4224230a ab b --=,即2222(3)()0a b a b -+=. 但220a b +≠(否则22230a b +=,与已知条件矛盾), 所以2230a b -=,即223a b ,22222222312010601035a b b b a b b b --==++. 41.(1)AB 边上的高为6013(2)4m =,9n =,被剪去的小正方形的边长为54【分析】(1)先利用勾股定理的逆定理证明ABC 是直角三角形,然后再利用等面积法进行计算即可解答;(2)利用拆项配成两个完全平方式,然后求出m ,n 的值,再利用等面积法进行计算即可解答.【详解】(1)解:①2222512169AC BC +=+=,2213169AB ==, ①222AC BC AB +=, ①ABC 是直角三角形,过点C 作CD AB ⊥于点D ,如图①,①1122ABC S BC AC AB CD =⋅=⋅△, ①560121313AC CD BC AB =⋅=⨯=; (2)解:①22818970m m n n -+-+=, ①2281618810m m n n -++-+=, ①()()22490m n +-=-,①()240m -≥,()290n -≥,①40m -=,90n -=, ①4m =,9n =,设剪去的小正方形的边长x , ①()2224m x x mn +-=, ①()2242449x x +-=⨯, 解得:54x =, 答:剪去的小正方形的边长为54.【点睛】本题考查了配方法的应用,勾股定理的逆定理,偶次方的非负性,剪纸问题,熟练掌握等面积法是解题的关键. 42.见解析【详解】因2(4)3()x y x y x y +=---,而3|(4)x y -,3|3()x y -,则3|(2)x y +. 又22472x xy y +-(2)(4)x y x y =+-,则()229|472x xy y +-.43.符合条件的两位数一共有12个:10,15,18,20,30,40,45,50,60,70,80,90 【详解】设0a b n ab =⨯(n 为自然数),则 10010a b na nb +=+,所以10(10)(1)n a n b -=-.由于19,09a b ≤≤≤≤,因此可得110n ≤≤.分析n 取值从1到10,符合条件的两位数一共有12个:10,15,18,20,30,40,45,50,60,70,80,90.44.(1)见解析;(2【详解】解 (1)由题意知45ACB DCE ∠=∠=︒,BC ,EC =, 所以DCA ECB ∠=∠,AC DCBC EC=,所以ADC BEC △△,故45DAC EBC ∠=∠=︒, 所以DAC ACB ∠=∠,所以//AD BC .(2)设AE x =,因为30ACE ∠=︒,可得AC =,2CE x =,DE DC =.因为90EAP CDP ∠=∠=︒,EPA CPD ∠=∠,所以APE DPC △△, 故可得12APE DPC S S =△△.又2EPC APE ACE S S S +=△△△,2EPC DPC CDE S S S x +==△△△,于是可得2(2DPC S x =△,21)EPC S x =△.所以DPC EPC S DP PE S ==△△ 45.n 的最小值等于34. 【详解】记{1,2,3,,50}S =,i A 是S 中能被i 整除的正整数组成的集合(1,2, 3)i =,2A ,3A 分别2A ,3A 中数的个数,由容斥原理有23A A ⋃=2323A A A A +-⋂5050502323⎡⎤⎡⎤⎡⎤=+-⎢⎥⎢⎥⎢⎥⨯⎣⎦⎣⎦⎣⎦2516833=+-=. 从23A A ⋃中任取3个数,其中至少有2个数属于2A 或3A 中同一个集合,它们不互质. 故所求n 的最小值34≥.其次,设1{1,2,3,5,7,11,13,17,19,23,29,31,37,41,43,47}B =,22222{2,3,5,7}B =,3{223,317,59}B =⨯⨯⨯,则1B ,2B ,3B 中共有164323++=个数,于是从S 内任取34个数,其中至少有34(5023)7--=个数属于123B B B ⋃⋃.由抽屉原理知,这7个数中至少有71133-⎡⎤+=⎢⎥⎣⎦个数属于1B ,2B ,3B 中同一个子集,它们两两互质. 综上所述,所求n 的最小值等于34. 46.57个【详解】因为正整数m ,n 满足mn 能被21整除,且130m n ≤≤≤,所以, (1)若21m =,则21n =,22,…,30.故满足条件的数对(,)m n 有10个. (2)若21m ≠,(①)当21n =时,1m =,2,…,20.满足条件的数对(,)m n 有20个. (①)当21n ≠时,因为2137=⨯,所以,1)如果3m a =,7n b =(a ,b +∈N ,且7≠a ,3b ≠),得13730a b ≤≤≤.1b =时,1a =,2; 2b =时,1a =,2,3,4;4b =时,1a =,2,3,4,5,6,8,9.故满足条件的数对(,)m n 有24814++=(个).2)如果7m a =,3n b =(a ,b +∈N ,且3a ≠,7b ≠),得17330a b ≤≤≤. 3b =,4时,a 的值均为1;5b =,6,8,9时,a 的值均为1,2;10b =时,a 的值为1,2,4.故满足条件的数对(,)m n 有2142313⨯+⨯+=(个). 综上,满足条件的数对(,)m n 共有1020141357+++=(个). 47.见解析.【详解】利用开平方运算检验前几项均符合(必要时可多算几项). 2222497,448967,444889667,444488896667====.由此我们猜想2144448889(66661)n nn+⋅⋅⋅⋅⋅⋅=⋅⋅⋅+.事实上,可设2144448889(1){1,2,,},9n nnxx xx x +⋅⋅⋅⋅⋅⋅=⋅⋅⋅+∈⋅⋅⋅, 即24111110811111(1111)n nnnx ⨯⋅⋅⋅⨯+⨯⋅⋅⋅+=⨯⋅⋅⋅+.令1111nm⋅⋅⋅=,则1091111191n nm =⨯⋅⋅⋅+=+, 代入上式,得()()2491811m m m mx +++=+, 整理成关于x 的方程,得22(3612)0mx x m +-+=, 解此方程,得6x =(负根舍去了).所以,2144448889(66661)n nn +⋅⋅⋅⋅⋅⋅=⋅⋅⋅+.另证1 21111444488894108109n nkkk n k n n+=+=+⋅⋅⋅⋅⋅⋅++∑∑()()221141101010411010n n +=+++++++++()()1221114101410199n n ++=+⋅-+⋅- ()221141041019n n ++=⋅+⋅+221121012110333n n ++⎛⎫⋅+⎛⎫==⋅+ ⎪ ⎪⎝⎭⎝⎭()21621101010933n +⎡⎤=-+⋅+⎢⎥⎣⎦()221610101076667n nn+⎡⎤=++++=⋅⋅⋅⎣⎦. 另证2144448889444488881n nnn+⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅+1144400088881n n n++=⋅⋅⋅⋅⋅⋅+⋅⋅⋅+1141111081111n n n ++=⋅⋅⋅⋅⋅+⋅⋅⋅⋅+1114111(91111)81111n n n +++=⋅⋅⋅⋅⋅⋅⋅⋅⋅++⋅⋅⋅⋅+21136(111)121111n n ++=⋅⋅⋅⋅+⋅⋅⋅⋅+21(61111)n +=⋅⋅⋅⋅+.48.本题有两种可能答案:情形1:B 组110分,C 组80分,D 组70分,E 组60分;情形2:B 组100分,C 组90分,D 组70分,E 组60分.填表进行检验见解析. 【详解】根据条件(1),每一竖行中,五组得分各不相同.对于一门单科,全部可能的不同得分是0,10,20,30和40,只有5种. 五门单科各组的分数总和是()5010203040500⨯++++=. 从500分中减去第1名A 组180分,其余四组总分之和是320分. 为了叙述简洁,约定B 组总分记为B ,C 组总分记为C ,其余类推. 那么,402060,E B C D E ≥+=>>>. 由此得60708090300E D C B +++≥+++=.这四组实际总分之和是320,只比最低可能限度多出20分.多出的20分,只有两种可能分配方案:或者都加给第2名B ,或者B 与第3名C 各加10分.因而,本题有两种可能答案:情形1:B 组110分,C 组80分,D 组70分,E 组60分; 情形2:B 组100分,C 组90分,D 组70分,E 组60分.为了满足条件(2),在情形1中,C 组应该有四门20分,一门0分;在情形2中,C 组有。

初中数学竞赛模拟题50题-含参考答案

初中数学竞赛模拟题50题-含参考答案

初中数学竞赛模拟题50题含答案一、单选题1.已知2πx <,x 是整数,则符合条件的x 的值有( )A .5个B .6个C .11个D .13个 2.已知a ,b 为正整数,满足2240ab b a ---=,则a b +的最大值为( ) A .7 B .18 C .29 D .30 3.若x a =,代数式22x x +的值为1-,则当x a =-时,代数式22x x +的值为( )A .1-B .1C .2D .3 4.在实数范围内,方程x 4﹣16=0的实数根的个数是( )A .1B .2C .3D .4 5.若a ,b ,c ,d 为整数,且a <2b ,b <3c ,c <4d ,d <100,则a 可能取的最大值是( )A .2367B .2375C .2391D .2399 6.关于x的方程1x x -=的根的个数为( ). A .0个 B .1个C .3个D .4个 7.若方程22320x px p +--=的两个不相等的实数根1x ,2x 满足()232311224x x x x +=-+,则实数p 的所有可能的值之和为( )A .0B .34-C .-1D .54- 8.已知22211148()34441004A =⨯+++---,则3A 的整数部分[]3A 是( ) A .72 B .73 C .74D .75 9.已知a ,b 满足(a +1)2﹣(b ﹣2c ﹣3|=0,则a +b +c 的值等于( ) A .2 B .3 C .4 D .5 10.若2(3)(5)15x x x mx -+=+-,则m 的值为( )A .-8B .2C .-2D .-511x 的取值范围是( )A .>4xB .x ≥5x ≠C .>4x 且5x ≠D .45x << 12.已知a ,b 满足|a ﹣3|+(b +2)2=0,则单项式﹣5axa ﹣by 的系数和次数分别是( )A .﹣15,6B .﹣15,5C .﹣5,6D .﹣5,5 13.已知333411112212221A =++++++-,则A 与1的大小关系是( ). A .1A >B .1A =C .1A <D .无法确定 14.111100011000100011000n n n n ---⋅⋅⋅⨯⋅⋅⋅-⋅⋅⋅-⋅⋅⋅=个个个个( ) A .10n B .210n + C .210n D .2210n +15.在11,,0.2020,722πn 是大于3的整数)这5个数中,分数的个数为( )A .2B .3C .4D .516.点D 、E 、F 分别在ABC 的三边BC 、AB 、AC 上,且AD 、BF 、CE 相交于一点M ,若5AB AC BE CF+=,则AM MD =( ) A .72 B .3 C .52 D .217.计算=( )A 1B .1CD .218.有2014个数排成一行,其中任意相邻三个数中,中间的数等于它前后两数的和,若第一个数和第二个数都是1,则这2014个数的和等于( )A .2014B .1C .0D .-119.若p 为质数,33p +仍为质数,则3333p +的末位数字是( ).A .5B .7C .9D .不能确定 20.若1059,1417,2312分别被自然数x 除时,所得余数都是y ,则x y -=( ). A .15 B .1 C .164 D .179二、填空题21.能使2256n +是完全平方数的正整数n 的值为__________.22.在一张冬景照片上,人们分别戴着帽子、系着围巾和戴着手套.只戴帽子的人数等于只系围巾和只戴手套的人数之和;只有4人没有戴帽子;戴着帽子和系着围巾,但没有戴手套的有5人;只戴帽子的人数两倍于只系围巾者;未戴手套有8人,未系围巾有7人;三样东西都用的人数比只戴帽子的人数多一个.那么:(1)有______人同时用上了帽子、围巾和手套;(2)有______人只戴了手套;(3)有______人只系了围巾;(4)有______人既戴了帽子,又戴了手套,但没有系围巾;(5)有______人戴着手套.23.如图,ABC 中,90ACB ∠=︒,D 、E 分别在AC 、BC 边上,BE AD =,AE 、BD 相交于点F ,且4tan 3AFD ∠=,若13AE =,15BD =,则AD 的长为______.24.如图所示,正方形ABCD 的边长为10cm ,点E 在边CB 的延长线上且10cm EB =,点P 在边CD 上运动,EP 与AB 的交点为F .设cm DP x =,EFB △与四边形AFPD 的面积和为2cm y ,那么y 与x 之间的函数关系式是________.25.若方程219990x x a -+=有两个质数根,则=a ______.26.若实数,x y 满足333333331,134365456x y x y +=+=++++,则x y +=_____. 27.一组同学被分派去给1775棵小树苗浇水,每位同学每小时浇完30棵小树苗.1小时后,一些同学被分派去做其它工作;2小时后,相同数量的同学被分派去做其它工作;3小时后,又有相同数量的同学被分派去做其它工作;浇完这些小树苗共用3小时10分钟.则在开始的1.5小时内浇完的小树苗数为______.28.将若干个红、黑两种颜色的球摆成一行,要求两种颜色的球都要出现,且任意中间夹有5个或10个球的两个球必为同一种颜色的球.按这种要求摆放,最多可以摆放____个球.29.如果某数可以表示成91的某个倍数的数字和,就把这个数叫做“和谐数”那么,在1,2,…,2008中,和谐数的个数是_________.30.边长为整数,周长为12的三角形的面积的最大值是_________.31.如图,正方形ABCD 中,点E 在AB 边上且2AE BE =.连接CE ,取CE 边上中点G ,作GH CG ⊥且CG GH =,连接.CH 将CGH 绕着点C 逆时针旋转得到''.CG H当'H 恰好落在AH 的延长线上时,连接'.'HG CG 与'HH 交于F ,若AH =FH =______.32.有8个整数,它们都不是5的倍数,那么它们的4次方的和被5除,得到的余数是__________.33.4444412319901991+++++的个位数字是_________.34.已知k 为不超过50的正整数,使得对任意正整数n ,6312321n n k +⨯+⨯-都能被7整除.则这样的正整数k 有______个.35.如图,在△ABC 中,△B =△CAD ,32BD AC =,则ABD CADS S ∆∆=______36.1998年某人的年龄恰等于他出生的公元年数的数字之和,那么他的年龄是__________岁.37.若a ,b ,c ,d 为非负整数,且()()22221993a b c d ++=,则a b c d +++=_________.38.已知19921991199031555522A =+⋅+⋅+为自然数,则A 被3除的余数为______. 39.已知整数13456ab (a ,b 各表示一个数字)能被198整除,那么=a ______,b =_____.三、解答题40.分解因式:222222()()x x a a x a x a ++++.41.某项工程,甲工程队先做20天后,由于另有任务不做,由乙工程队接替,结果乙队再做50天就恰好完成任务.已知乙队单独完成任务的时间是甲队的2.5倍.请问:(1)甲队单独做需要多少天才能完成任务?(2)若甲工程队先做x 天后,由乙工程队接替,结果乙队再做y 天就恰好完成任务.其中x ,y 都是正整数,且甲队做的时间不到15天,乙队做的时间不到70天,那么两队实际各做了多少天?42.如图(1),大正方形的面积可以表示为()2a b +,同时大正方形的面积也可以表示成两个小正方形面积与两个长方形的面积之和,即222a ab b ++.同一图形(大正方形)的面积,用两种不同的方法求得的结果应该相等,从而验证了完全平方公式:()2222a b a ab b +=++.把这种“同一图形的面积,用两种不同的方法求出的结果相等,从而构建等式,根据等式解决相关问题”的方法称为“面积法”.(1)用上述“面积法”,通过如图(2)中图形的面积关系,直接写出一个等式:______;(2)如图(3),Rt ABC △中,90ACB ∠=︒,3CA =,4CB =,5AB =,CH 是斜边AB 边上的高.用上述“面积法”求CH 的长;(3)如图(4),等腰ABC 中,AB AC =,点O 为底边BC 上任意一点,OM AB ⊥,ON AC ⊥,CH AB ⊥,垂足分别为点M ,N ,H ,连接AO ,用上述“面积法”求证:OM ON CH +=.43.设,,,a b x y 满足2233443,7,16,42ax by ax by ax by ax by +=+=+=+=,求55ax by +的值.44.试比较1111(1)13521x n n =+++++-与1111()242y n n =+++的大小. 45.已知()1n n >个整数(可以相同)12,,,n x x x ,满足12129111n n x x x x x x +++==.求当n 取最小值时,12,,,n x x x 中的最大值. 46.计算:(1)2222123n +++⋯+;(2)3333123n +++⋯+.47.将8个数14,30,33,75,143,169,4445,4953分成两组,每组4个数,使一组中4个数的乘积与另一组中4个数的乘积相等,应该怎样分组?48.任给20个互不相等的正整数,每一个数都不大于100.证明:把这20个正整数两两相减(大减小)所得的差中至少有三个相等.49.如图.已知ABC 为等腰直角三角形,90A ∠=︒,D 、E 分别为AC BC 、上的两点,CD ,连接DE ,将DE 绕点E 逆时针旋转90︒得EF ,连接DF 与AB 交于点M .(1)如图1,当30DEC ∠=︒时,若2BC =AD 的长;(2)如图2,连接CF ,N 为CF 的中点,连接MN ,求证:MN =; (3)如图3,连接AF ,将AF 绕点A 顺时针旋转60︒得AG ,连接FG 、BG 、CG ,若4AC =,当ACG 周长取得最小值时,直接写出BCG 的面积.参考答案:1.D【分析】利用去绝对值符号,得出关于x 的解集范围,再根据整数的定义,求出符合条件的值的个数.【详解】解:||2x π<,22x ππ∴-<<,3.14π≈,6.28 6.28x ∴-<<, x 是整数,x ∴可取6,5,4,3,2,1,0,1,2,3,4,5,6------有13个,故选:D .【点睛】本题考查了去绝对值符号及无理数,解题的关键是:会去绝对值符号求解不等式的解集.2.D【详解】由2240ab b a ---=得2426122a b a a +==+--. a ,b 为正整数,226a ∴-∣. △3a =,27b = △4a =,14b = △15a =,3b = △28a =,2b =a b ∴+最大为30.3.D【分析】将等式变形可得()210a +,然后利用非负数性质得出12a n =-=,,然后将当1x =时,代入代数式求值即可.【详解】解:△x a =,代数式22x x +的值为1-,△221a a +=-,△()210a +=,△()210a +≥,△1020a n +=-=,,解得12a n =-=,, 当1x =时,代数式22123x x +=+=.故选择D .【点睛】本题考查完全平非负数性质,算术平方根非负性质,完全平方公式,代数式求值,掌握完全平非负数性质,算术平方根非负性质,完全平方公式,代数式求值是解题关键.4.B【分析】先移项得出x 4=16,再根据四次方根的定义求出方程的解即可.【详解】解:x 4-16=0,x 4=16,x =±2,即方程x 4-16=0的实数根的个数是2,故选:B .【点睛】本题考查了解高次方程,能求出x5.A【分析】需要根据题意确定d 的取值,然后依次可得出c 、b 、a 的最大值,继而可得出答案.【详解】解:△d <100,d 为整数,△d 的最大值为99,△4499396c d <=⨯=,c 为整数,△c 的最大整数为395,△333951185b c <=⨯=,b 为整数,△b 的最大整数为1184,△2211842368a b <=⨯=,a 为整数,△a 的最大整数为2367.故选:A【点睛】本题考查了整数问题,解答本题的关键是根据题意确定d 的值.6.B【详解】依题意0x ≥且2x ≥,故2x ≥,原方程化为1x x -1,所以3x =.故选B .7.B【详解】解:由一元二次方程的根与系数的关系可得122x x p +=-,1232x x p ⋅=--.△()22221212122464x x x x x x p p +=+-⋅=++, ()()()23321212121232496x x x x x x x x p p p ⎡⎤+=++-⋅=-++⎣⎦. △()232311224x x x x +=-+得()223312124x x x x +=-+,△()2246442496p p p p p ++=+++, △(43)(1)0p p p ++=,△10p =,234p =-,31=-p . 代入检验可知:以10p =,234p =-均满足题意,31=-p 不满足题意. 因此,实数p 的所有可能的值之和为1233044p p ⎛⎫+=+-=- ⎪⎝⎭. 故选B .8.B 【详解】因211111()4(2)(2)422n n n n n ==---+-+, 所以11111111148()()()()415263798102A ⎡⎤=⨯-+-+-++-⎢⎥⎣⎦ 1111111112()123499*********=⨯+++----11125121001011021()99=-⨯+++. 若设111112()99100101102B =⨯+++,则4163312 1.59911B <⨯⨯=<,且4243312 1.410217B >⨯⨯=>,故375373.5A B =->,且375373.6A B =-<,所以[]373A =.故选B9.C【分析】根据完全平方和算术平方根以及绝对值都是非负数,列出方程求解即可.【详解】解:根据题意,得,2(1)|3|0a c +-=,△a +1=0,2﹣b =0,c ﹣3=0,解得a =﹣1,b =2,c =3,所以a +b +c =﹣1+2+3=4.故选:C .【点睛】本题考查了完全平方和算术平方根以及绝对值都是非负数,非负数的性质:几个非负数的和为0,那么这几个数都为0,掌握非负数的性质是解题的关键.10.B【分析】利用多项式乘以多项式法则展开,再根据对应项的系数相等列式求解即可.【详解】解:△22(3)(5)21515x x x x x mx -+=+-=-+,△2m =.故选:B .【点睛】本题主要考查了多项式乘以多项式,恒等原理等,熟练掌握多项式乘以多项式的法则,恒等的两个代数式对应项系数相等,是求解的关键.11.C【详解】依题意得270321544x x x x x x x x ⎧⎧-≥≤≥⎪⎪-≠⇒≠≠⎨⎨⎪⎪>>⎩⎩且,4x ⇒>且5x ≠.故选C . 12.A【分析】先根据绝对值和偶次方的非负数的性质得出a ﹣3=0,b +2=0,解方程求出a 与b ,然后代入单项式得出单项式,根据单项式的系数与次数定义求解即可.【详解】解:△|a ﹣3|+(b +2)2=0,|a ﹣3|≥0,(b +2)2≥0,△根据绝对值与偶次方非负数性质可得a ﹣3=0,b +2=0,解得a =3,b =-2,△单项式﹣15x5y 的系数为-15,次数为5+1=6次.故选择A .【点睛】本题考查绝对值与偶次方非负数性质,单项式的次数与系数,解一元一次方程,掌握非负数性质,和单项式相关定义是解题关键.13.C【详解】解 因11111818910158A =++++<⨯=.故选C 14.C 【详解】原式()()221011011010n n n n =+-+-= 15.B【分析】先把12【详解】解:1111222==-,当(3)n n >n 与2n -不可能同时取到完全平方数,设2n s =,22n t -=,有222s t -=,()()21s t s t +-=⨯, △2s t +=,1s t -=, △32s =,12t =不是整数解,不是分数. 2π是无理数,不是分数, 故分数有三个:17,0.2020,12. 故选:B .【点睛】本题考查的是实数的分类,把12进行化简是解答此题的关键.16.B 【详解】设AM t MD =,由题设可得AMC DMC BMC BMC S tS AE EB S S ==△△△△,AMB BMD BMCBMC S tS AF FC S S ==△△△△, 所以22DMC BMD BMC BMC tS tS AB AC AE AF BE CF EB FC S S ∆∆+=++=++△△ ()222DMC BMD BMC BMC BMCt S S tS t S S +=+=+=+△△△△△, 又已知5AB AC BE CF +=,所以25t +=,所以3t =,即3AM MD=. 17.B【详解】1)(31=-+=.18.B【详解】由已知可知,前n 个数的排列顺序为1,1,0,-1,-1,0,1,1,0,…由此可见,从第7个数开始循环,即每隔6个数循环,这6个数的和等于0.又因为201463354=⨯+,所以这2014个数的和等于1,故选B .19.A【详解】由33p +为质数可知p 为偶数,又p 为质数,则2p =.故()833334332332233p +=+=⨯+. 因为()842的末位数字为6,故()8422⨯的末位数字为2.因此,3333p +的末位数字为5. 20.A【详解】设三数除以x 的商分别为a ,b ,c ,则可得1059,1417,2312.ax y bx y cx y +=⎧⎪+=⎨⎪+=⎩①②③ △-△得()3582179b a x -==⨯,△-△得()8955179c b x -==⨯,△-△得()12537179c a x -==⨯.即179,164x y ==.故15x y -=.21.11【详解】当8n <时,()82256212n n n -+=+,若它是完全平方数,则n 必为偶数.若2n =,则22256265n +=⨯;若4n =,则42256217n +=⨯;若6n =,则6225625n +=⨯;若8n =,则8225622n +=⨯.所以,当8n ≤时,2256n +都不是完全平方数.当8n >时,()882256221n n -+=+,若它是完全平方数,则821n -+为一奇数的平方.设8221(21)n k -+=+(k 为自然数),则102(1)n k k -=+.由于k 和1k +一奇一偶,所以1k =,于是1022n -=,故11n =.22. 3 1 1 4 10【详解】如图,按题目中条件顺序依次可列方程:(1)A C F =+;(2)4C E F ++=;(3)5B =;(4)2A C =;(5)8A B C ++=;(6)7A G F ++=;(7)1D A =+.可求出2,5,1,3,2,1,4A B C D E F G =======.于是,题目中各空白区应填入的数依次是△3,△1,△1,△4,△10.23.【分析】作出辅助线,由AAS 证明△ADM ≅△BEH ,再由4tan tan 3DM BH AFD BFH FM FH ∠∠====,设DM =4x ,FM =3x ,BH =4y ,FH =3y ,利用勾股定理列式计算即可求解.【详解】解:过B 作BH △AE 交AE 的延长线于H ,过D 作DM △AE 于M ,△△ACB =△AHB =90︒,△A 、C 、H 、B 四点共圆,△△CAH =△CBH ,即△DAM =△EBH ,△BE =AD ,△DMA =△EHB =90︒,△△ADM ≅△BEH (AAS ),△DM =EH ,AM =BH , △4tan tan 3DM BH AFD BFH FM FH ∠∠====, 设DM =4x ,FM =3x ,BH =4y ,FH =3y ,△DM =EH =4x ,AM =BH =4y ,EF =FH -EH =3y -4x ,AE =AM +MF +FE =4y +3x +(3y -4x )=7y -x =13,△BD =DF +BF 5515x y +=,△由△△解得:1x =,2y =,△DM =4,AM =8,△AD=故答案为:【点睛】本题考查了全等三角形的判定和性质,锐角三角函数的定义,勾股定理等知识,解题的关键是学会利用参数构建方程组解决问题,24.550(010)y x x =+<<【详解】解 由DP x =得10PC x =-. 又12BF BE PC EC ==,即11(10),10(10)22BF x AF BF x =-=-=+, 所以EFB AFPD y S S =+四边形11()22BE BF AF DP AD =⨯⨯++⨯ 111110(10)(10)102222x x x ⎡⎤=⨯⨯-+++⨯⎢⎥⎣⎦550(010)x x =+<<.故应填550(010)y x x =+<<.25.3994【详解】设219990x x a -+=的两根为12,x x ,则12121999,x x x x a +==.因1999必是一个偶数与一个奇数之和,且偶数中只有2为质数,故12,x x 中必有一个为2,另一个为199921997-=,所以219973994a =⨯=.故填3994.26.432【详解】解 因题目中条件去分母整理后可写为:()()()223323333346364460x y x y -+--⋅-+-⋅=, (()()()223323333546564460x y x y -+--⋅-+-⋅=,故依题目条件知33t =或35t =是关于t 的方程()()23333334664460t x y t x y -+---+-⋅=的两根.由韦达定理,得33333546x y +=+--,所以33333456432x y +=+++=.27.945【详解】设开始有n 位同学,每次有k 位同学被分派去做其它工作.因为每位同学浇完一棵小树苗需要2分钟,所以10分钟内每位同学浇完5棵小树苗.因此,3030()30(2)5(3)1775n n k n k n k +-+-+-=即21355.19k n +=. 因为n 和k 都是正整数,所以21355k +必须是19的倍数.并且使得n ,n k -,2n k -和3n k -也是正整数的k 值仅有一个,即3k =,从而22n =.故在开始的1.5小时内浇完的小树苗数为30221519945.⨯+⨯=28.15个球【详解】解:先画一个“初始图”:○ A B C D E ○ A B C D E ○按照题目要求,逐一确定各个字母的颇色,得到:○ ○ ○ ○ D ○ ○ ○ ○ ○ D ○显然,D 应为黑色.即:○ ○ ○ ○ ● ○ ○ ○ ○ ○ ● ○再按要求尝试增加小球,确定最后结果如下:○ ○ ○ ○ ● ○ ○ ○ ○ ○ ● ○ ○ ○ ○29.2007【详解】理由:注意到91713=⨯.数字和为1的数不是91的倍数.1001,10101,10011001,101011001,100110011001,1010110011001,…都是91的倍数,而它们的数字和依次是2,3,4,5,6,7,…因此,在1,2,…,2008中,能够表示成91的某个倍数的数字和的数的个数是2007.故答案为:2007.30.【详解】设三角形的三边长分别为a ,b ,c ,且a b c ≤≤,则12a b c ++=.可得312c ≥,即4c ≥.又因为a b c +>,所以212c <,即6c <.故46c ≤<,c 可取4或5.当4c =时,4,8a b a b ≤≤+=,所以4a b ==.此时三角形面积为214S == 当5c =时,7a b +=.当1a =时,6b =.此时a c b +=,不合题意.当2a =时,5b =.此时三角形面积为2122S =⋅ 当3a =时,4b =. 此时三角形为直角三角形,三角形面积为313462S =⋅⋅=.显然132S S S >>,所以所求最大面积为31【分析】连接BH ,EH ,设CG 、BH 交于点O ,证明B 、C 、H 、E 四点共圆,CBH △ABH ,求得BC 、AE 的长,过点E 作EM AH ⊥于点M ,作G 关于CH 的对称点J ,连接CJ 交AH 于点T ,过点T 作TN CH ⊥于点N ,则四边形CGHJ 是正方形,设AM a =,则HM AH a ==,由勾股定理及全等三角形的判定与性质即可得到答案.【详解】连接BH ,EH ,设CG 、BH 交于点O ,四边形ABCD 是正方形,90ABC ∴∠=︒,BA BC =,GH CG ⊥且CG GH =,CGH ∴是等腰直角三角形, G 是CE 边上的中点,CG GE ∴=,HC HE ∴=,CHE ∴是等腰直角三角形,B ∴、C 、H 、E 四点共圆,△CH CH =,45CBH CEH ∴∠=∠=︒,45HBA HBC ∴∠=∠=︒,在CBH 和ABH 中,CB AB CBH ABH BH BH =⎧⎪∠=∠⎨⎪=⎩,CBH ∴≌()ABH SAS ,CH AH ∴=,正方形ABCD 中,点E 在AB 边上且2AE BE =,3BC BE ∴=,CE ∴,CHE △是等腰直角三角形,CH ∴==,CH AH ==,2BE ∴=,36BC BE ∴==,4AE =,过点E 作EM AH ⊥于点M ,作G 关于CH 的对称点J ,连接CJ 交AH 于点T ,过点T 作TN CH ⊥于点N ,则四边形CGHJ 是正方形,设AM a =,则HM AH a ==,在Rt AME 中,222EA AM EM -=,在Rt HME 中,222HE HM EM -=,2222EA AM HE HM ∴-=-,即22224)a a -=-,MA ∴=HM∴==EM∴==3tan4HMHEMEM∴∠==,3sin5HMHEMHE∠==,90CHE∠=︒,90CHJ EHM∴∠+∠=︒,90EHM HEM∠+∠=︒,CHJ HEM∴∠=∠,CJ AH⊥,EM AH⊥,90EMH HJC∴∠=∠=︒,在CJH和HME中,EMH HJCCHJ HEMCH HE∠=∠⎧⎪∠=∠⎨⎪=⎩,CJH∴≌()HME AAS,JH EM∴=,THN THC HEM∴∠=∠=∠,3tan4THN∴∠=,3sin5THN∠=,3tan4TNTHNNH∴=∠=,3sin5TNTHNTH=∠=,设3TN b=,则4NH b=,353sin5TN bTH bTHN===∠,45HCG∠=︒,四边形CGHJ是正方形,45TCN∴∠=︒,3CN TN b==,7CH b∴=,b∴=,JT JH TJ ∴=-== 将CGH 绕着点C 逆时针旋转得到''CG H ,'CH CH ∴=,'45HCG HCG ∠=∠=︒,45FCH TCH ∴∠=∠=︒,'CH CH =,'FH C THC ∴∠=∠,在THC 和'FH C 中,''FH C THC CH CH FCH TCH ∠=∠⎧⎪=⎨⎪∠=∠⎩, THC ∴≌()'FH C ASA ,'H F HT ∴=,'CH CH =,'CJ HH ⊥,'JH JH ∴=,''JH TH JH FH ∴-=-,即FJ TJ JH =+==【点睛】此题考查了直径所对的圆周角是直角,解直角三角形,全等三角形的判定与性质,添加辅助线并求得正方形的边长是解题的关键.32.3【详解】一个整数不是5的倍数,它的个位数字可能是1,2,3,4,6,7,8,9,把它们4次方后,研究它们的个位数字,分别是:444411;216;381;4256====;444461296;72401;84096;96561====.即它们的个位数字不是1就是6,并且6被5除也是余1.所以一个不是5的倍数的整数,它的4次方被5除一定余1.这8个整数,它们的4次方的和被5除所得余数为3.33.8【详解】理由:4444123101616561613(mod10)++++≡++++++++≡, 4441112203(mod10)+++≡,……4441981198219903(mod10)+++≡,从而4444123199031997(mod10)++++≡⨯≡,则4444412319901991718(mod10)+++++≡+≡. 所以4444412319901991+++++的个位数字是8.34.7 【详解】填7.理由:6312321n n k +⨯+⨯-2227281n n k =⨯+⨯-22(1)21n k ≡⨯-+-21(mod7)k ≡+.但63123210(mod 7)n n k +⨯+⨯-≡,则210(mod7)k +≡,即217k m +=(m 为奇数).因为150k ≤≤,所以,37101m ≤≤. 故1,3,,13m =,相应的3,10,,45k =,共7个.35.3【分析】由题中条件可得△ACD △△BCA ,得出AC 2=CD •BC ,利用等式的性质进行恒等变式,可得221=0DC BD DC AC AC AC+⋅-,设DC x AC =,建立方程,解方程可求得1=2DC AC ,再根据相似三角形的性质,可求得1=4ADC ABC S S △△,可得3=4ABD ABC S S △△,据此即可求得. 【详解】解:△△B =△CAD ,△C =△C , △△ACD △△BCA , △=AC DC BC AC,即AC 2=DC •BC ,得()22==AC BD DC DC BD DC DC +⋅⋅+, 可得222=1BD DC DC AC AC⋅+, 得221=0DC BD DC AC AC AC+⋅-, 设DC x AC=, 32BD AC =, 23102x x ∴+-=, 解得112x =,22x =-(舍去), 1=2DC AC ∴, 2==4ABC ADC S AC S DC ⎛⎫ ⎪⎝⎭△△, 1=4ADC ABC S S ∴△△, 3==4ABD ABC ADC ABC S S S S ∴-△△△△, 34314ABC ABDCAD ABC S S S S ∆∆==△△, 故答案为:3.【点睛】本题考查了相似三角形的判定与性质,等式的恒等变式,利用方程求解,解题的关键是利用等式的性质进行恒等变式.36.18【详解】设某人出生于19xy 年,则他的年龄应为1910x y x y +++=++(岁).所以19981910xy x y -=++,即981010x y x y --=++,得11288x y +=,则88112x y -=. 又易知x 只能取偶数取0,2,4,6,8x =,相应地,44,33,22,11,0y =.只有8,0x y ==满足条件.所以所求年龄为18岁.37.56【详解】因为1993是质数,22a b +与22c d +都是正整数,所以22a b +与22c d +分别取值1与1993.若22221,1993a b c d +=+=.(1)221a b +=.可知0,1a b ==或1,0a b ==.因此1a b +=.(2)221993c d +=.若31,31c d ≤≤,则22223119921993c d +≤⨯=<.所以c ,d 中至少有一个大于31.又由于24520251993=>.因此,若设c 为c ,d 中较大的一个,则3244c ≤≤.依次取32,33,,43,44c =,可得只有2199343-是完全平方数.所以43,12c d ==或12,43c d ==,则55c d +=.因此,15556a b c d +++=+=.当22221993,1a b c d +=+=,同样可得所求和为56.38.2【详解】填2.理由:199219901990199219903155555585522A =+⋅⋅+⋅+=+⋅+. 因为45被3除余数为1,所以199219905252A ≡+⋅+()()49849744252522≡+⋅⋅+498349712112≡+⋅⋅+5≡2(mod3)≡.所以A 被3除的余数为2.39. 8 0【详解】解 设13456n ab =.因为1982911=⨯⨯,所以n 被9整除,即1345619a b a b ++++++=++能被9整除,所以8a b +=或17a b +=.因为n 能被11整除,所以(146)(35)3a b a b +++-++=-+能被11整除.所以8a b -=或3a b -=-.联立方程组8,8a b a b +=⎧⎨-=⎩;8,3;a b a b +=⎧⎨-=-⎩17,8;a b a b +=⎧⎨-=⎩17,3.a b a b +=⎧⎨-=-⎩ 可得只有第1个和第4个方程组有整数解8,0,a b =⎧⎨=⎩和7,10.a b =⎧⎨=⎩ 而10b =不合题意,所以8,0a b ==.40.222()x ax a ++【详解】解法一 原式222222[()()]x x a a x a a x =++++22222()()x a x a a x ++=+222222()(2)x a x ax a a x =++++222222()2()()x a ax x a ax =++++222()x a ax =++222()x ax a =++.解法二 原式22222[()]()x x a a a x a =++++22222(22)()x x ax a a x a =++++2222()2()[()]x x a x a a x a =++++⋅22[()]x a x a =++222()x ax a =++.41.(1)甲队单独做需要40天才能完成任务;(2)甲队实际做了14天,乙队做了65天.【分析】(1)甲队单独做需要x 天才能完成任务,则乙队单独做需要2.5x 天才能完成任务,总任务量为1,根据题意列分式方程,求解即可得到答案;(2)根据题意列分式方程,整理得到51002y x =-,再根据x 、y 的取值范围得不等式,求整数解即可得到答案.【详解】(1)解:甲队单独做需要x 天才能完成任务,则乙队单独做需要2.5x 天才能完成任务,由题意得:11205012.5x x⨯+⨯=, 解得:40x =,2.5100x =, 经检验,40x =是原方程的解,答:甲队单独做需要40天才能完成任务;(2)解:由题意得:11140100x y +=, 整理得:51002y x =-,70y <,5100702x ∴-<, 12x ∴>,15x <且为整数,13x ∴=或14,当13x =时,51100136722y =-⨯=,不是整数,不符合题意,舍去,当14x =时,510014652y =-⨯=,答:甲队实际做了14天,乙队做了65天.【点睛】本题考查了分式方程的应用,不定方程求特殊解。

初中七年级数学竞赛试题及参考答案1

初中七年级数学竞赛试题及参考答案1

七年级数学竞赛试题一.选择题(每小题4分,共32分) 1.x 是随意有理数,则2 的值( ).A .大于零B . 不大于零C .小于零D .不小于零 2.在-0.1428中用数字3交换其中的一个非0数码后,使所得的数最大,则被交换的数字是( ) A .1 B .4 C .2 D .83.如图,在数轴上1的对应点A 、B , A 是线段的中点,则点C 所表示的数是( )A.2 B2 C1 D.14.桌上放着4张扑克牌,全部正面朝下,其中恰有1张是老K 。

两人做嬉戏,嬉戏规则是:随机取2张牌并把它们翻开,若2张牌中没有老K ,则红方胜,否则蓝方胜。

则赢的时机大的一方是( )A .红方B .蓝方C .两方时机一样D .不知道 5.假如在正八边形硬纸板上剪下一个三角形(如图①中的阴影局部),那么图②,图③,图④中的阴影局部,均可由这个三角形通过一次平移、对称或旋转而得到.要得到图②,图③,图④中的阴影局部,依次进展的变换不行行...的是( )A.平移、对称、旋转 B.平移、旋转、对称 C.平移、旋转、旋转 D.旋转、对称、旋转6.计算:22221111(1)(1)(1)(1)2342007---⋅⋅⋅-等于( ) A .10042007 B .10032007 C .20082007D .200620077.如图,三个天平的托盘中一样的物体质量相等。

图⑴、⑵所示的两个天平处于平衡状态要使第三个天平也保持平衡,则需在它的右盘中放置( )(3)(2)(1)A. 3个球B. 4个球C. 5个球D. 6个球8.用火柴棒搭三角形时,大家都知道,3根火柴棒只能搭成1种三角形,不妨记作它的边长分别为1,1,1;4根火柴棒不能搭成三角形;5根火柴棒只能搭成一种三角形,其边长分别为2,2,1;6根火柴棒只能搭成一种三角形,其边长分别为2,2,2;7根火柴棒只能搭成2种三角形,其边长分别为3,3,1和3,2,2;…;那么30根火柴棒能搭成三角形个数是( ) A .15 B .16 C .18 D .19 二.填空题(每题4分,共28分)x图①图②图③ 图④9.定义a*,若3*31,则x 的值是。

初中数学竞赛模拟题50题-含答案

初中数学竞赛模拟题50题-含答案

初中数学竞赛模拟题50题含答案一、单选题10,0)a b>>,分别作了如下变形:甲:()a b-====( )A .甲、乙都正确B .甲、乙都不正确C .只有甲正确D .只有乙正确2.若实数a ,b ,c 满足等式36b =,96b c =,则c 可能取的最大值为( ) A .0B .1C .2D .33.设a ,b ,c 的平均数是M ,a ,b 的平均数是N ,N 与c 的平均数是P .若a b c >>,则M 与P 的大小关系是( ). A .M P =B .M P >C .M P <D .不能确定4.1234x x x x -+-+-+-的最小值为( ) A .4B .5C .6D .105.A ,B ,C ,D ,E 五人参加“五羊杯”初中数学竞赛得分都超过91分,其中E 排第三,得96分.又已知A ,B ,C 平均95分,B ,C ,D 平均94分,若A 排第一,则D 得( )分. A .98B .97C .93D .926.如果21x x --是31ax bx ++的一个因式,则b 的值是( ). A .2-B .1-C .0D .27.如图,在ABC 中,过点C 作CD AB ⊥,垂足为点D ,过点D 分别作DE AC ⊥,DF BC ⊥,垂足分别为E ,F .连接EF 交线段CD 于点O ,若CO =CD =EO FO ⋅的值为( ).A .B .4C .D .68.已知3a b -=,则339a b ab --的值是( ). A .3B .9C .27D .819.把三个连续的正整数a ,b ,c 按任意次序(次序不同视为不同组)填入20x x ++=□□□的三个方框中,作为一元二次方程的二次项系数、一次项系数和常数项.使所得方程至少有一个整数根的a ,b ,c ( ). A .不存在B .有一组C .有两组D .多于两组10.已知a ,b 长,则这个三角形的面积是( ) A .32abB .abC .12abD .2ab11.定义:平面直角坐标系中,点(),P x y 的横坐标x 的绝对值表示为||x ,纵坐标y 的绝对值表示为||y ,我们把点(),P x y 的横坐标与纵坐标的绝对值之和叫做点(),P x y 的折线距离,记为||||||M x y =+(其中的“+”是四则运算中的加法),若抛物线21y ax bx =++与直线y x =只有一个交点M ,已知点M 在第一象限,且2||4M ≤≤,令2242022t b a =-+,则t 的取值范围为( ) A .20182019t ≤≤ B .20192020t ≤≤ C .20202021t ≤≤D .20212022t ≤≤12.1991331991+的值用十进制表示时,末位数字是( ). A .8B .4C .2D .013.从正整数里取出k 个不同的数,使得这k 个数中任意两个数之差的绝对值是质数,则k 的最大值是( ). A .3B .4C .5D .614.满足等式2003的正整数对(),x y 的个数是( ).A .1B .2C .3D .415.1898年6月9日英国强迫清政府签约,将香港975.1平方公里土地租借给英国99年.1997年7月1日香港回归祖国,中国人民终于洗刷了百年耻辱,已知1997年7月1日是星期二,那么,1898年6月9日是星期( ).(注:公历纪年,凡年份为4的倍数但不是100的倍数的那年为闰年,年份为400的倍数的那年也为年,年的2月有29天,平年的2月有28天.) A .二B .三C .四D .五16.在实数范围内,设198851111a x a a ⎤⎥+=⎥-⎢⎥+-⎣⎦,则x 的个位数字是( ). A .1B .2C .4D .617.已知a b c d ,,,都是实数,则下列命题中,错误的是( ). A .若222a b c ab bc ca ++=++,则a b c == B .若3333a b c abc ++=,则a b c ==C .若442242242()a b c d a b c d +++=+,则a b c d ===D .若44444a b c d abcd +++=,则a b c d ===18.从1分、2分、5分3种硬币中取出100枚,总计3元,其中2分硬币枚数的可能情况有( )种. A .13B .16C .17D .1919.使424m m -+为完全平方数的自然数m 有( )个. A .2B .3C .4D .无数20.已知a ,b ,c 三个数中有两个奇数、一个偶数,n 是整数,如果()()()12233S a n b n c n =++++++,那么( ).A .S 是偶数B .S 是奇数C .S 的奇偶性与n 的奇偶性相同D .S 的奇偶性不能确定二、填空题21.若243k x -<是关于x 的一元一次不等式,则 k 的值为______. 22.已知(x -3)2+1m +=0,则mx =_______.23.已知:122334!99100a =⨯+⨯+⨯++⨯,243546!100102b =⨯+⨯+⨯++⨯,则a b -=______.24.设a ,b 是一元二次方程210x x --=的两根,则32234a b a ++的值为__________. 25.设n 是小于100的正整数且使2232n n --是6的倍数,则符合条件的所有正整数n 的和是______.26.如图,在Rt ABC 中,90BAC ∠=︒,分别以AB 、BC 、AC 为边向上作正方形,已知Rt ABC 的面积为5,则图中阴影部分面积之和为______.27.今天是星期日,从今天算起,200011111个天是星期________.28.一本书共有61页,顺次编号为1,2,…,61,某人将这些数相加时,有两个两位数的页码都错把个位数和十位数弄反了(形如ab 的两位数被当成了两位数ba ),结果得到总和是2008,那么书上这两个两位数页码之和的最大值是_________. 29.若实数,x y 满足333333331,134365456x y x y+=+=++++,则x y +=_____.30.若化简2x -25x -,则满足条件是x 的取值围是_________.31.使得521m ⨯+是完全平方数的整数m 的个数为__________.32.如图,以△ABC 的边AC 、BC 为边向外作正方形ACDE 和正方形BCGF ,连接AG 、BD 相交于点O ,连接CO 、DG ,取AB 中点M ,连接MC 并延长交DG 于点N .下列结论:①AG =BD ;①MN ①DG ;①CO 平分①DCG ;①S △ABC =S △CDG ;①①AOC =45°.其中正确的结论有______________(填写编号).33.从1,2,…,2008中,至少取________个偶数才能保证其中必定存在两个偶数之和为201234.某个两位自然数,它能被其各位数字之和整除,且除得的商恰好是7的倍数,写出符合条件的所有两位数是_________.35.关于,x y 的方程332232x y x y xy -+-=的正整数解的个数_____个. 36.方程13217219211211215217292x x x xx x x x----+=+----的解是______.37.方程22320060x xy x y --++=的正整数解(,)x y 共有__________对. 38.已知由小到大的10个正整数1210,,,a a a 的和是2000,那么5a 的最大值是_________,这时10a 的值应是_________.39.已知在正方形ABCD 中,5AB =,点N 在DC 的延长线上,过D 作BN 的垂线分别交BC 、BN 于点P 和点M ,点Q 在CD 边上且满足1010DQ BP BQBN --=,连接AE 、CE ,则)1CE AE +的最小值等于 __.40.如图所示,已知边长为2的正三角形ABC 中,P 0是BC 边的中点,一束光线自P 0发出射到AC 上的P 1后,依次反射到AB 、BC 上的点P 2和P 3,且1<BP 3<32(反射角等于入射角),则P 1C 的取值范围是_____.三、解答题41.戴高乐是二战期间领导法国人民赶走德国法西斯的英雄,也是法兰西第五共和国的总统.他去世后,根据他生前的意愿,他的墓前只立有一块小小的碑牌,一面刻着“查尔斯·戴高乐1890—1970”,另一面则刻着一个洛林十字架.洛林十字架由13块相同的小正方形组成,如图1所示.(1)你能否只用一把无刻度直尺画一条直线,使其等分洛林十字架.(面积等分,在图1中画出1种情形即可)(2)戴高乐还是第一个提出并且解决了下面一个非常有趣的有关洛林十字架的数学问题的人.问题如下:如图2,在洛林十字架的A 点处作一条直线,把洛林十字架严格地划分成面积相等的两部分.戴高乐利用圆规,直尺和铅笔解决了该问题,他的作法如下:如图3所示,①标记点D ,B ,M ,连接BM ,与AD 交于点F ;①以点F 为圆心,FD 长为半径作弧,与BF 交于点G ;①以点B 为圆心,BG 长为半径作弧,与BD 交于点C ;①连接CA 并延长,与洛林十字架边界交于点N ,则直线CN 即为所求.请根据戴高乐的作图步骤,证明直线CN 等分洛林十字架.小林同学的部分证明过程如下:标记点H ,P ,Q ,如图3所示.设洛林十字架中每个小正方形的边长为1. 易证BDF MAF ≌, ①FD FA =.由作图,可知1122FG FD FA AD ====.①BF .①12BG BC BF FG ==-=.①1CD BD BC =-==请补全小林同学的证明过程.42.如图1,ABC 中,AC =BC =4,①ACB =90°,过点C 任作一条直线CD ,将线段BC 沿直线CD 翻折得线段CE ,直线AE 交直线CD 于点F .直线BE 交直线CD 于G 点.(1)小智同学通过思考推得当点E 在AB 上方时,①AEB 的角度是不变的,请按小智的思路帮助小智完成以下推理过程: ①AC =BC =EC ,①A 、B 、E 三点在以C 为圆心以AC 为半径的圆上, ①①AEB = ①ACB ,(填写数量关系) ①①AEB = °.(2)如图2,连接BF ,求证A 、B 、F 、C 四点共圆;(3)线段AE 最大值为 ,若取BC 的中点M ,则线段MF 的最小值为 .43.岳池县体育馆今夏外围绿化施工,有一块三角形空地,要在上面栽种四种不同的花草,需将该空地分成面积相等的四块,请你设计出三种不同的划分方案.44.将平面直角坐标系中点集{}(,)1,2,3,4,5,1,2,3,4M x y x y ===内的11个点染成红色,其余点不染色.证明:存在一个矩形,它的边与坐标轴平行,顶点都在M 中,并且都是红色.45.求证:若()8216157|78+,则()8316357|78+.46.10个学生参加n 个课外活动小组,每一小组至多5个人;每两个学生至少参加一个小组;任意两个课外小组至少可找到两个学生,他们都不在这两个课外活动小组中.试求n 的最小值.47.在元旦晚会上,学校组织了一次关于语文、数学、外语、奥运及日常生活常识的知识竞赛,设定每科满分为40分,以下依次为30分、20分、10分和0分,共5个评分等级,每个小组分别回答这五个方面的问题.现将A 、B 、C 、D 、E 五个小组的部分得分列表1如下: 表1表1中,(1)每一竖行的得分均不相同(包括单科和总分);(2)C 组有4个单科得分相同.求B 、C 、D 、E 组的总分并填表进行检验. 48.a ,b 和c 都是两位数的自然数,a ,b 的个位分别是7与5,c 的十位是1.如果它们满足等式2005ab c +=,求a b c ++的值. 49.在正2004边形122004A A A 的各个顶点上随意填上1,2,3,,501中一个数,证明:一定存在四个顶点满足如下条件: (1)这四个顶点构成的四边形是矩形; (2)此四边形相对两顶点所填数之和相等.50.对非负整数n ,满足方程2x y z n ++=的非负整数(),,x y z 的组数记为n a . (1)求3a 的值; (2)求2001a 的值.参考答案:1.D【分析】甲利用分母有理化的知识,可求得;乙先将分子因式分解,然后约分,即可求得.【详解】解:甲:当a b 时,()a b-==当a =b 时,无意义,==①甲错误,乙正确,选项说法错误,不符合题意; 选项说法错误,不符合题意; 选项说法错误,不符合题意; 选项说法正确,符合题意; 故选D .【点睛】本题考查了分母有理化,因式分解,解题的关键是要全面考虑a 与b 之间的数量关系. 2.C【详解】解:由已知,()69315121512c b b b b ==-=-≤,①2≤c . 3.B【详解】解 依题意2,,3224a b c a b N c a b cM N P ++++++====,2()()1212a b c a c b c M P +--+--==. 因a b c >>,故0M P ->,即M P >.故应选B 4.A【详解】()()14143x x x x -+-≥---=,当14x ≤≤时取得等号;()()21233x x x x +-≥---=-,当23x ≤≤时取得等号;因此,1234314x x x x -+-+-+-≥+=,当23x ≤≤时取得等号.所以,1234x x x x -+-+-+-的最小值为4. 5.B【详解】设A ,B ,C ,D ,E 分别得a ,b ,c ,d ,e 分,则a ,b ,c ,d ,e 都是在92与100之间的正整数,其中a 最大,96e =排第三,且395285,394282a b c b c d ++=⨯=++=⨯=.两式相减得3a d -=.若b 排在第二,则197,97,2859192b e a b c a b ≥+=≥≥=--=<,矛盾. 若c 排第二,则97,97,2859192c a b a c ≥≥=--≤<,矛盾.若d 排第二,则97,3973100d a d ≥=+≥+=,故只可能100,97a d ==.所以选B . 6.D【详解】(解法一)依题意可设32321(1)()()()ax bx x x ax c ax c a x a c x c ++=--+=+--+-,比较系数得(),0,1,b a c c a c =-+⎧⎪-=⎨⎪-=⎩所以1,2c a b ==-=.故选D .(解法二)依题意21x x --是3221(1)()1ax bx ax x x ax b a x ++---=+++的因式, 所以1111a b a +==--, 解得1,2a b =-=.故选D .(解法三)用长除法可得321(1)()(2)(1)ax bx x x ax a a b x a ++=--+++++,所以20,10,a b a +=⎧⎨+=⎩得1,2a b =-=.故选D .7.B【分析】由题意易得出90DEC DFC ∠=∠=︒,即说明点C ,E ,D ,F 四点共圆,得出DEO FCO ∠=∠,从而易证DOE FOC ∽,得出EO DOCO FO=.由题意可求出DO CD CO =-4EO FO CO DO ⋅=⋅=.【详解】解:①DE AC ⊥,DF BC ⊥, ①90DEC DFC ∠=∠=︒, ①点C ,E ,D ,F 四点共圆,①DEF FCD ∠=∠,即DEO FCO ∠=∠.又①DOE FOC ∠=∠, ①DOE FOC ∽, ①EO DOCO FO=, ①EO FO CO DO ⋅=⋅. ①CO =CD = ①DO CD CO =-=①4EO FO CO DO ⋅=⋅==. 故选B .【点睛】本题考查相似三角形的判定和性质,四点共圆的知识,圆周角定理.确定点C ,E ,D ,F 四点共圆,从而可得出证明DOE FOC ∽的条件是解题关键. 8.C【详解】3322229()()93()9a b ab a b a ab b ab a ab b ab --=-++-=++-22223(2)3()3327a ab b a b =-⨯+=-==.故选C .9.C【详解】设三个连续的正整数分别为n 1-,n ,1n +(n 为大于1的整数).当一次项系数是n 1-或n 时,∆均小于零,方程无实数根;当一次项系数是1n +1时,22(1)4(1)3(1)4n n n n ∆=+--=--+.因为n 为大于1的整数,所以,要使0∆≥,n 只能取2.当2n =时,方程22320,2310x x x x ++=++=均有整数根,故满足要求的(a ,b ,c )只有两组:(1,3,2)、(2,3,1). 10.A【分析】构造矩形ABCD , E 、F 分别为AD 、AB 的中点,设2AD b =, 2AB a =,将所求三角形面积转化为△△△△矩形=---CEF AEF BCF CDE ABCD S S S S S 即可求解. 【详解】解:如图,在矩形ABCD 中, E 、F 分别为AD 、AB 的中点, 设2AD b =, 2AB a =, ①AF BF a ==,==AE DE b ,①在Rt AEF △、Rt BCF 、Rt CDE △中,依次可得到:EFCF==CE①△△△△矩形=---CEF AEF BCF CDE ABCD S S S S S 1112222222=⨯-⨯⨯-⨯⨯-⨯⨯a b a b a b a b142=---ab ab ab ab32ab =. 故选:A【点睛】本题考查二次根式的应用.能够通过构造矩形及直角三角形,利用等积变换将所求三角形的面积转化为矩形和几个直角三角形的面积之差.利用数形结合是解答本题的关键. 11.C【分析】联立方程组求得M 点坐标,并由只有一个交点条件求得a 、b 的关系式, 再由新定义和2||4M ≤≤列出b 的不等式,,求得b 的取值范围,由2242022t b a =-+,得出t 关于b 的二次函数解析式,再根据函数的性质求得t 的取值范围.【详解】解:①抛物线21y ax bx =++与直线y x =只有一个交点M ,①方程组21y x y ax bx =⎧⎨=++⎩只有一组实数解, ①()2110ax b x +-+=,①()2140b a =--=△, ①()21b =-4a ,即()2114b =-a , ①方程()2110ax b x +-+=可以化为()()22111104b x b x -+-+=, 即()()2214140b x b x -+-+=, ①1221x x b ==-, ①1221y y b==- ①22,11M b b ⎛⎫ ⎪--⎝⎭, ①点M 在第一象限, ①10b ->, ①2||4M ≤≤, ①222||||411b b≤+≤--, ①2121b≤≤-, 解得:10b -≤≤, ①2242022t b a =-+,①()()22221202212020t b b b =--+=++, ①10b -≤≤,①t 随b 的增大而增大, ①1b时,2020t =,0b =时,2021t =,①t 的取值范围为20202021t ≤≤. 故选:C .【点睛】本题考查二次函数的性质、二元二次方程组、一元二次方程及其判别式、一元一次不等式组等知识.把问题转化为方程或方程组,构建二次函数并且利用二次函数的性质解决问题是解题的关键. 12.A【详解】123453,3,3,3,3,……的末位数字分别为3,9,7,1,3,……,它们是以3,9,7,1四个数为一个周期循环出现的.而199144973=⨯+,所以19913的末位数字与33的末位数字相同,都为7.因此,1991331991+的末位数字与71+的末位数字相同,都为8. 13.B【详解】解法一 首先4个数1,3,6,8满足题目要求,故所求k 的最大值4≥. 若5k ≥,记第n 个数为(1,2,,)n a n k =,且12 k a a a <<<,则分下列几种情形:(1)1a 为奇,2a 为奇,于是21a a -为偶数. 又21a a -为质数,故212a a -=,即212a a =+.若3a 为奇数,又32a a ≠,故31a a -为不等于2的偶数,即31a a -为不小于4的偶数,即31a a -为合数,矛盾.故3 a 为偶数,4a 也只能为偶数.那么,若5a 为奇,则51312a a a a ->-≥为偶数,即51a a -为不小于4的偶数,从而51a a -为合数,矛盾.若5a 为偶数,则53432a a a a ->-≥为偶数,从而53a a -为合数,矛盾. (2)1a 为奇,2a 为偶,于是21a a -为奇数,即213a a -≥. 若3a 为奇数,则31213a a a a ->-≥为偶数,故31a a -为合数,矛盾. 所以3a 为偶数,且322a a -=.若4a 为奇数,则41313a a a a ->-≥为不小于4的偶数,即41a a -为合数,矛盾. 若4a 为偶数,则42322a a a a -->=为不小于4的偶数,即42a a -为合数,矛盾. (3)1a 为偶,2a 为奇或偶,都类似于(1),(2)可导致矛盾. 综上得所求k 的最大值是4,故选B .解法二 同解法一得4k ≥.若5k ≥,则将全体正整数分为4个不相交的子集1M ,2M ,3M ,4M ,其中i M 由全体被4除余i 的正整数组成(0,1,2,3)i =于是任取5k ≥个数,其中必有2个数a ,b (a b >)属于同一个子集i M ,于是a b -被4整除,a b -不是质数,矛盾.故所求k 的最大值等于4. 14.B 【详解】原式0⇔==,0>0=,即2003 xy =.又2003是质数,所以1,2003x y =⎧⎨=⎩或2003,1.x y =⎧⎨=⎩故选B15.C【详解】选C .理由:已知1997年7月1日是星期二,则易推知1997年6月9日是星期一.而1898年6月9日至1997年6月9日共99年,其中闰年24次,所以 993652499244(mod7)⨯+≡+≡, 1434(mod7)-≡-≡.16.D【详解】解:要使x 有意义,必须且只需(2)(1)0,(2)(1)0,(2)(1)0,1,110,21101a a a a a a a a a a a ⎧--≥⎪⎧--=--≥⎪⎪⎪⇒≠⇒=-⎨⎨-≠⎪⎪≠⎩⎪+≠⎪-⎩. 所以1988198********05(1)1()(2)(2)1611(1)12x ⨯⨯-+=+=-=-=--+, 故x 的个位数字为6, 故选:D . 17.C【详解】对A ,因2222()2()0a b c ab bc ca +-++=+,即222()()()0a b b c c a -+-+-=,所以0a b b c c a -=-=-=,即a b c ==,故A 成立. 对B ,因3332223()()a b c abc a b c a b c ab bc ca ++-=+++++++ 2221()[]()()()02a b c a b b c c a =++-+-+-=, 所以0a b c ++=,或a b c ==,不一定有a b c ==,故B 不成立. 对C ,因44442222220a b c d a b c d +++--=,即222222()()0a b c d -+-=,所以2222,a b c d ==,即,a b c d =±=±,不一定有a b c d ===,故C 不成立. 对D ,因422442242222(2)(2)2240a a b b c c d d a b c d abcd -++-+++-=, 即2222222()()2()0a b c d ab cd -+-+-=,故2222,,a b c d ab cd ===,由此可推出a b c d ===或a b c d =-==-,不一定有a b c d ===成立,故D 不成立,所以本题应选B 、C 、D .(注:若限定a b c d ,,,都为正数,则B 和D 成立,答案应选C .) 18.C【详解】设1分、2分和5分的硬币分别取了x 枚、y 枚和z 枚,依题意得10025300x y z x y z ++=⎧⎨++=⎩①②,②-①得4200y z +=,可见y 是4的倍数,设4y k =,则100453008x z k x z k +=-⎧⎨+=-⎩,解得503450x k y k z k=-⎧⎪=⎨⎪=-⎩. 因为x 为非负整数,故5030k -≥,即016,k k ≤≤可取0,1,2,,16中任何一个,有17种取法,从而y 可取0,4,8,,64中任何一个,也有17种取法,故选C .19.B【详解】理由:当0,1,2m =时,424m m -+都是完全平方数.当3m ≥时,()()22242214m m m m -<-+<,故424m m -+都不是完全平方数.所以,符合条件的自然数m 只有3个. 故选:B 20.A【详解】选A .理由:考察S 的三个因数和的奇偶性. 21.1或3##3或1【分析】一元一次不等式即为含有一个未知数,且未知数的次数是1的不等式,据此即可确定k 的值.【详解】①|2| 43k x -<是关于x 的一元一次方程, ①21k -=,即21k -=±, 解得:k =1或3,故答案为:1或3.【点睛】本题考查了一元一次不等式的定义,准确理解定义中“一元”与“一次”的含义是解题的关键. 22.-1【分析】根据偶数次幂和绝对值的非负性,求出x ,m 的值,进而即可求解. 【详解】解:①(x ﹣3)2+|m +1|=0,且(x ﹣3)2≥0,|m +1|≥0, ①(x ﹣3)2=0,|m +1|=0, ①x =3,m =-1, ①()311x m =-=-. 故答案是:-1.【点睛】本题主要考查非负数和的性质,代数式求值,掌握偶数次幂和绝对值的非负性,是解题的关键. 23.-15147【详解】323334!3100a b -=-⨯-⨯-⨯--⨯ 3(23!100)3995115147=-⨯+++-⨯⨯=-24.11【详解】①a ,b 是一元二次方程210x x --=的两根,①1ab =-,1a b +=,21a a =+,21bb =+.①332222343423(1)42(1)3362a b a b b a a b b a a b a++=++=++++=+++ 3(1)3626()511a a b a b =++++=++=.25.1634【详解】①2232n n --是6的倍数,①()22232n n --,①23n ,①2n ,设2n m =(m 是正整数),则()22228626612232m m m m m n n =--=-+---.①2232n n --是6的倍数,①21m -是3的倍数,①31m k =+或32m k =+,其中k 是非负整数.①()23162n k k =+=+或()23264n k k =+=+,其中k 是非负整数. ①符合条件的所有正整数n 的和是()()2814869298410168288941634+++⋅⋅⋅+++++++⋅⋅⋅+++=.26.10【分析】利用勾股定理和正方形的面积公式可得+=四边形四边形四边形ABHL ACMN BCEG S S S ,利用正方形的性质证明()Rt ABC Rt HBG HL ≌和()DBC FCE ASA ≌,根据全等三角形的面积相等,从而得出5=△HBG S ,5=四边形ADEF S ,再根据三个正方形面积的关系可得出5+=△四边形FGL DCMN S S ,从而可得阴影面积之和.【详解】解:如图,设AC a =,AB b =,BC c =, ①在Rt ABC 中,90BAC ∠=︒,5ABCS =①222+=a b c ,①四边形BCEG ,四边形ABHL 和四边形ACMN 都是正方形,①2=四边形BCEG S c ,2=四边形ABHL S b ,2=四边形ACMN S a ,①+=四边形四边形四边形ABHL ACMN BCEG S S S , ①四边形BCEG 和四边形ABHL 是正方形, ①BC BG =,BA BH =,90H ∠=︒, ①HBG 是直角三角形, 在Rt ABC 和Rt HBG △中,BC BGBA BH=⎧⎨=⎩, ①()Rt ABC Rt HBG HL ≌ ①5==△△HBG ABC S S ,①四边形BCEG 和四边形ABHL 是正方形, ①BC CE =,90∠=∠=︒BCD CEF ,①90∠+∠=︒DBC BCA ,90∠+∠=︒FCE BCA , ①∠=∠DBC FCE , 在在DBC △和FCE △中,DBC FCE BC CEBCD CEF ∠=∠⎧⎪=⎨⎪∠=∠⎩,①()DBC FCE ASA ≌, ①=△△DBC FCE S S ,①+=+△△△四边形ABC ACD ACD ADEF S S S S , ①5==△四边形ABC ADEF S S ,①+=四边形四边形四边形ABHL ACMN BCEG S S S ,又①5=++=++△△△四边形四边形四边形HBG FGL FGL ABHL ABGF ABGF S S S S S S , =+△四边形四边形ACD ACMN DCMN S S S ,=+++△△四边形四边形四边形ABC ACD BCEG ADEF ABGF S S S S S 55=+++△四边形ACD ABGF S S10=++△四边形ACD ABGF S S ,①5+=△四边形FGL DCMN S S ,①5510++=+=△△四边形HBG FGL DCMN S S S , ①图中阴影部分面积之和为10. 故答案为:10.【点睛】本题考查正方形的性质,勾股定理,全等三角形的判定和性质,等角的余角相等等知识,运用了等积变换的思想方法.运用等积变换是解题的关键. 27.三【详解】111111158737,200033362=⨯=⨯+,所以200011111个被7除的余数与11被7除的余数相同.因为11714=⨯+,所以从今天算起的第200011111个天是星期三.28.68【详解】解:注意到12361++++616218912⨯==,20081891117-=.因为形如ab 的页码被当成ba 后,加得的和将相差|(10)(10)|9||b a a b b a +-+=-,并且a ,b 只能在1,2,…,9中取值,||8b a -≤,9||72b a -≤.设弄错的两数是ab 和cd ,则9||9||117b a d c -+-=,而将117写成两个正整数之和,其中每个数既要不大于72,又要是9的倍数,只有下列两种可能:11772456354=+=+.当9||72b a -=,9||45d c -=时,||8b a -=,||5d c -=,则只有19ab =,而cd 可取16,27,38,49,此时ab cd +的最大值是194968+=.当9||63b a -=,9||54d c -=,即||7b a -=,||6d c -=,此时ab 可取18,29,cd 可取17,28,39,则ab cd +的最大值是293968+=. 综上所述,ab cd +的最大值是68,故应填68. 29.432【详解】解 因题目中条件去分母整理后可写为:()()()223323333346364460x y x y -+--⋅-+-⋅=,(()()()223323333546564460x y x y -+--⋅-+-⋅=,故依题目条件知33t =或35t =是关于t 的方程()()23333334664460t x y t x y -+---+-⋅=的两根.由韦达定理,得33333546x y +=+--, 所以33333456432x y +=+++=. 30.23x ≤≤【详解】由22232(3)25x x x x x x x -=----=---=-,得2030x x -≥⎧⎨-≤⎩即23x ≤≤.故填23x ≤≤.31.1【详解】解:设2521m n ⨯+=(其中n 为正整数), 则2521(1)(1)m n n n ⨯=-=+-,①52m ⨯是偶数,①n 为奇数,设21n k =-(其中k 是正整数),则524(1)m k k ⨯=-,即()2521m k k -⨯=-,显然1k >,①k 和1k -互质,①25211m k k -⎧=⨯⎨-=⎩或2512m k k -=⎧⎨-=⎩或2215m k k -⎧=⎨-=⎩, 解得:5k =,4m =.因此,满足要求的整数m 只有1个.故答案为:1.32.①①①①【分析】利用正方形的性质,通过证明三角形全等以及利用四点共圆的判定和圆周角定理逐一判断即可得出正确答案.【详解】解:①正方形ACDE 和正方形BCGF ,①CB CG =,AC CD =,ACD BCG ∠=∠;①ACD DCG BCG DCG +=+∠∠∠∠,即ACG BCD =∠∠,①()ACG DCB SAS △≌△,①AG BD =,CAG CDB =∠∠①①正确;①CAG CDB =∠∠,①点A 、D 、O 、C 四点共圆,如图,连接AD ,①°=45AOC ADC =∠∠,故①正确;同理可证°=45BOC ∠,①°=45AGC OCG BDC OCD +=+∠∠∠∠,由()ACG DCB SAS △≌△知=AGC DBC ∠∠,而DBC ∠与BDC ∠不一定相等,①OCG ∠与OCD ∠不一定相等,因此①不一定成立;如图,延长CM 至H ,使MH =CM ,连接AH ,①M 点是AB 的中点,①AM =BM ,又①=AMH BMC ∠∠,①()AMH BMC SAS △≌△,①AMH BMC S S =△△,①AHC ABC S S =△△①AH =BC ,=MAH MBC ∠∠①AH =CG ,=CAH CAM MAH CAM MBC +=+∠∠∠∠∠,①°=180CAM MBC ACB ++∠∠∠,°°°°=3609090=180DCG ACB +--∠∠,①=CAM MBC DCG +∠∠∠,即CAH DCG =∠∠,①()AHC CGD SAS △≌△,①AHC CGD S S =△△,①ABC CGD S S =△△,故①正确;由()AHC CGD SAS △≌△,①ACH CDN =∠∠,①°°==180=90CDN DCN ACM DCN ACD ++-∠∠∠∠∠,①°=90CND ∠,故①正确;因此①①①正确;故答案为:①①①①.【点睛】本题考查了正方形的性质、全等三角形的判定与性质、四点共圆的判定、圆周角定理、倍长中线法构造全等三角形等内容,本题综合性较强、需要学生熟练掌握相关知识并进行灵活运用,本题蕴含了数形结合的思想方法等.33.504【详解】解 填504,理由:从1,2,…,2008中选出两个偶数,和为2012的共有501组,即42008+,62006+,…,10041008+.由于2或1006与其中的任意一个偶数之和均不等于2012,因此,至少取出50121504++=个偶数,才能保证其中一定有两个偶数之和为2012.34.21,42,63,84 【详解】设所有两位数是xy ,则10()x y k x y +=+.其中k 是正整数,且为7的倍数.当7k =时,107()x y x y +=+,即2x y =.当1y =时,2x =;2y =时,4x =;3y =时,6x =;4y =时,8x =.当14k =时,1014()x y x y +=+,即4130x y +=.此方程无正整数解.当21,28,k =⋅⋅⋅⋅⋅⋅,方程均无正整数解.所以满足条件的两位数是:21,42,63,84.35.1【分析】先将原方程等号左边部分因式分解,可得2()()32x y x y +-=,根据题意列举出两个正整数乘积为32的情况,考虑到因式分解后含有2()x y +,在保证正整数集的条件下,可列出三个二元一次方程组,分别解方程组即可获得答案.【详解】解:3322x y x y xy -+-22()()x x y y x y =+-+22()()x y x y =+-()()()x y x y x y =++-2()()x y x y =+-,由题意可知2()()32x y x y +-=,列举出两个正整数乘积为32的情况,可以有以下三种(只是因数位置不同的算一种), 13232⨯=,21632⨯=,4832⨯=,①因式分解后含有2()x y +,在保证正整数集的条件下,则有0x y +>,又①211=,224=,2416=,①根据题意可列出方程组为132x y x y +=⎧⎨-=⎩或28x y x y +=⎧⎨-=⎩或42x y x y +=⎧⎨-=⎩, 解第一个方程组,可得16.515.5x y =⎧⎨=-⎩, 解第二个方程组,可得53x y =⎧⎨=-⎩, 解第三个方程组,可得31x y =⎧⎨=⎩, 只有第三个方程组的解均为正整数,因此原方程的正整数解得个数为1个.故答案为:1.【点睛】本题主要考查了因式分解的应用以及解二元一次方程组,灵活运用相关知识,正确进行因式分解是解题关键.36.132x = 【详解】解 原方程化为2222111111215217292x x x x ⎛⎫⎛⎫⎛⎫⎛⎫+++=+++ ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭⎝⎭, 即111111215217292x x x x+=+----, 即111111292172152x x x x-=-----, 通分得22(112)(92)(172)(152)x x x x --=----, 去分母(172)(152)(112)(92)x x x x --=--,即2225564499404x x x x -+=-+. 解之得132x =.经检验132x =是原方程的根. 故填132x =. 37.4【详解】理由:22(1)320060x x y x ---+=,即2(1)232006x y x x -=-+.显然1x =不满足方程,故1x ≠. 因此22320061x x y x -+=- (1)(21)20051x x x --+=- 2005211x x =-+-. 从而12005x -.由于20054015=⨯,故取2,6,402,2006x =,分别可得相应的正整数y ,故共有4对正整数解.38. 329 335或334【详解】要使10a 最大,必须1a ,2a ,3a ,4a 及6a ,7a ,8a ,9a ,10a 尽量小.又因为1210a a a <<<,且1a ,2a ,3a ,4a 的最小可能值依次为1,2,3,4,于是有2000123≥+++56104a a a ++++,即56101990a a a +++≤.又651a a ≥+,752a a ≥+,853a a ≥+,954a a ≥+,1055a a ≥+,故51990615a ≥+,51975132966a ≤=.又5a 为正整数,所以5329a ≤,于是6710a a a +++=199********-=.又761a a ≥+,862a a ≥+,963a a ≥+,1064a a ≥+,故65101661a +≤,616515a ≤=13305,且6a 为正整数,所以6330a ≤,而651330a a ≥+=,所以6330a =,要7a ,8a ,9a 最小得7331a =,8332a =,9333a =,这时101661a =-()6789335a a a a +++=.但如果取1a ,2a ,3a ,4a 依次为1,2,3,5,那么同样可得569,,,a a a 取上述值,这时10334a =.故应填5a 的最大值是329,这时10a 的值应是335或334.39 【分析】先根据条件证明()ASA BCN DCP ≌△△,再由1010DQ BP BQ BN --=得出120BED ∠=︒,进而有E 在以O 为圆心,BO 为半径的圆上,再延长CA 至F 使得,)1OF OE =,构造AOE EOF ∽△△,从而有)1CE AE CE EF CF +=+≥,再由勾股定理求出CF 即可.【详解】解:四边形ABCD 是正方形,BC CD ∴=,BCN DCP ∠=∠,DM BN ⊥,NBC PDC ∴∠=∠,(ASA)BCN DCP ∴△≌△,CP CN ∴=,5AB =, ∴1010DQ BP BQ BN --=可以变形为552DQ BP BQ BN AB -+-=, ∴2CQ CP BQ BN AB +=, ∴2CQ CN BQ BN AB +=, ∴2QN BQ BN AB=, 在BQN △中,由正弦定理得到sin sin QN BN QBN BQN=∠∠,∴sin 1sin 22QBN QN BQ BQ BQN BN AB BC∠===⋅∠, 在Rt BQC △中,sin BC BQC BQ ∠=, ∴sin 111sin 22sin QBN BQ BQN BC BQC∠=⋅=⋅∠∠, BQC BQN ∠=∠,1sin 2QBN ∴∠=, 30QBN ∴∠=︒,120QBC BCD PCQ BED ∴∠+∠+∠=∠=︒,连接BD ,AC 交于G 点,在BD 上取一点O ,连接BO 、CO ,使得120BQD ∠=︒,则在以O 为圆心,BO 为半径的圆上,延长CA 至F 使得,)1OF OE =,如图所示:5AB =,BD AC ∴==BO OE ∴==,12AG GC AC ===, 30OBG ∠=︒,12OG OB ∴==,OA ∴=∴1OEOA=,∴OE OFOA OE=,AOE EOF∠=∠,AOE EOF∴△∽△,)1EF AE∴=,)1CE AE CE EF CF∴+=+≥,CF OF OC=+,)1CF OE OC∴=+=)1CE AE∴+,.【点睛】本题主要考查了全等三角形的判定与性质、正弦定理、圆周角定理、相似三角形的判定与性质、勾股定理,解决此题的关键是根据正弦定理将1010DQ BP BQBN--=转化为120BED∠=︒,判断出E在以O为圆心,BO为半径的圆上,构造AOE EOF△∽△将)1CE AE+最小值转化为CF.40.1716PC<<【分析】首先利用光的反射定律及等边三角形的性质证明①P0P1C①①P2P1A①①P2P3B,再根据相似三角形对应边成比例得到用含P3B的代数式表示P1C的式子,然后由1<BP3<32,即可求出P1C长的取值范围.【详解】解:①反射角等于入射角,①①P0P1C=①P2P1A=①P2P3B,又①①C=①A=①B=60°,①①P0P1C①①P2P1A①①P2P3B,①01P CPC=21P AP A=23P BP B,设P1C=x,P2A=y,则P1A=2﹣x,P2B=2﹣y.①1x =2y x-=32y P B -, ①322xy x x xy P B =-⎧⎨-=⎩, ①x =13(2+P 3B ). 又①1<BP 3<32, ①1<x <76, 即P 1C 长的取值范围是:1<P 1C <76. 故答案为:1<P 1C 76<. 【点睛】此题考查了等边三角形的性质,解题的关键是根据等边三角形的性质找出对应点是解此题的关键,难度较大.41.(1)见解析(2)见解析【分析】(1)应用作矩形的对角线的方法;(2)因为ACD APH ≅,求出PH 的值,然后求出PQ 的值,根据相似三角形的性质2NPQ APH SPQ S PH ⎛⎫= ⎪⎝⎭,求出NPQ ∆的面积,计算右部分面积之和. (1)解:答案不唯一,合理即可,以下画法仅供参考.(2),,CDA PHA AD AH CAD PAH ∠=∠=∠=∠,∴ACD APH ≅,ACD APH S S ∴=,PH CD ==,1PQ HQ PH ∴=-==, ,APH NPQ AHP NQP ∠=∠∠=∠,∴APH NPQ ~,2NPQ APH SPQ S PH ⎛⎫∴= ⎪⎝⎭, 221•••12NPQ APH PQ PQ S S CD PH CD ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭, 22PQ CD=, 22⎛=÷ ⎝⎭⎝⎭,12=, ①在直线CN 右侧部分的面积=6个小正方形的面积+NPQ △的面积113622=+=, ①直线CN 等分洛林十字架. 【点睛】本题考查图形面积的等积变化,涉及知识点:全等三角形的判定及性质、相似三角形的判定及性质(相似三角形面积的比等于相似比的平方),解题关键应用相似三角形面积的比等于相似比的平方.42.(1)12,45;(2)见解析;(3)8,2【分析】(1)根据同弧所对的圆周角等于圆心角的一半解答;(2)由题意知,CD 垂直平分BE ,连接BF ,则BF=EF ,求得①EBF =①AEB =45°,利用外角的性质得到①AFB =①EBF +①AEB =90°,即可得到结论;(3)当点A 、C 、E 在一条直线上时,线段AE 最大,最大值为4+4=8,当MF ①BC 时线段MF 最小,根据BC 的中点M ,得到CF=BF ,设BG=FG=x ,则x ,CG+1)x ,由勾股定理得222CG BG BC +=,求出28x =-222BM MF BF +=,即可求出2MF =.【详解】(1)解:①AC =BC =EC ,①A 、B 、E 三点在以C 为圆心以AC 为半径的圆上, ①①AEB =12①ACB , ①①AEB =45°. 故答案为:12,45;(2)解:由题意知,CD 垂直平分BE , 连接BF ,则BF=EF , ①①EBF =①AEB =45°. ①①AFB =①EBF +①AEB =90°. ①①ACB =90°,①A 、B 、F 、C 在以AB 为直径的圆上,即A 、B 、F 、C 四点共圆;(3)解:当点A 、C 、E 在一条直线上时,线段AE 最大,最大值为4+4=8, 当MF ①BC 时线段MF 最小, ①BC 的中点M , ①CF=BF ,设BG=FG=x ,则,CG x , ①222CG BG BC +=,①2221)4x x ⎡⎤+=⎣⎦,得28x =- ①222BM MF BF +=,①2222)MF +=,得2MF =,故答案为:8,2 ..【点睛】此题考查了圆周角定理,四点共圆的判定及性质,线段垂直平分线的性质,勾股定理,等腰直角三角形的性质,熟记各知识点并熟练应用解决问题是解题的关键. 43.见解析【分析】利用三角形的中线将三角形分为面积相等的两个三角形,将三角形空地分成面积相等的四块.【详解】解:划分方案如图所示【点睛】本题考查了与三角形中线有关的等面积问题,解决本题的关键是构造三角形的中线. 44.见解析【详解】证明 将M 分为下列4个点集: {}(,)1,2,3,4,5,(1,2,3,4)i M x y x y i i ====.则由第二抽屉原理知1234,,,M M M M 必有一个集合内至多有1124⎡⎤=⎢⎥⎣⎦个红色点,不妨设4M ,内至多有2个红色点,从而123M M M 内至少有1129-=个红色点.再将123M M M 分成下列5个点集:{}(,),1,2,3(1,2,3,4,5)i N x y x i y i ====.由第二抽屉原理,12345,,,,N N N N N 必有一个集合内至多有915⎡⎤=⎢⎥⎣⎦个红色点,不妨设5N 内至多有1个红色点,从而1234N N N N 内至少有918-=个红色点,又将1234N N N N 分成下列3个点集:{}(,)1,2,3,4,(1,2,3)j M x y x y j j '====.由第二抽屉原理知123,,M M M '''中必有一个集合内至多有823⎡⎤=⎢⎥⎣⎦个红点,不妨设3M '内至多有2个红色点,从而{}12(,)1,2,3,4,1,2M M x y x y ''⋃===内至少有826-=个红色点,又将12M M '',分为4个集合:{}(,),1,2(1,2,3,4)i N x y x i y i '====.因为这4个集合内一共至少有6个红色点,且每个集合内只有2点,故必有2个集合内有2个红色点(否则这4个集合内一共至多只有11125+++=个红色点,矛盾).不妨设13,N N ''内4个点都为红色点,这4点即为一个矩形的4个顶点,且矩形的边与坐标轴平行,从而完成了题目的证明. 45.见解析【详解】由8316378+=()82161161778578++⨯及()8216157|78+,得()8316357|78+.46.6【详解】设10个学生为1210,,,a a a ,n 个课外活动小组为12,,,n B B B .首先,每个学生至少参加了两个课外活动小组,否则,若有某个学生只参加一个课外活动小组,不妨设这个学生为1a ,他参加的小组为1B ,则由于每两个学生都至少参加一个小组,所以1B 内就有10个人了,于是对1B ,2B 不存在两人,他们都不在1B 、2B 内.矛盾. 若有一个学生恰参加两个课外活动小组,不妨设1a 恰参加1B 和2B ,由题设,至少有两个学生,他们没有参加这两组,于是,他们与1a 没有参加同一个小组,矛盾. 所以,每个学生至少参加三个课外活动小组. 于是参加n 个课外活动小组1120,,,B B B 的人数之和不小于31030⨯=.另一方面,每个课外活动小组至多有5人参加,所以n 个小组12,,,n B B B 至多有5n 人参加,故530n ≥,6n ≥. 下面例子说明6n =可以达到.。

六年级数学竞赛试题(一)及答案

六年级数学竞赛试题(一)及答案

六年级数学竞赛试卷(一)班级_________ 姓名_________ 成绩__________1、下面算式中的两个( )内应填什么数,才能使这道整数除法题的余数为最大。

( )÷25=104……( ) 2、两根同样长的绳子,一根剪去它的 12 ,另一根剪去 12米。

这时剩下的两段绳子仍是同样长。

这两根绳子原来长 。

3、对于非零自然数a 和b ,规定符号⊙的含义是:a ⊙b=ba b a m ⨯⨯+⨯2 (m 是一个确定的整数)。

如果1⊙4=2⊙3,那么3⊙4=_____4、在16点16分这个时刻,钟表盘面上时针和分针的夹角是______度。

5、一个两位数的中间加上一个0,得到的三位数比原来两位数的8倍小1,原来的两位数是________6、 ABCD 是边长为10厘米的正方形,且AB 是半圆的直径,则阴影部分的面积是_______。

(题6) (∏取3.14) (题7)7、图中的曲线是用半径长度的比为4:3:1的6条半圆曲线连成的,涂有阴影的部分与未涂阴影的部分的面积比是__________8、某部84集的电视连续剧在星期日开播,从星期一到星期五以及星期日每天都要播出一集,星期六停播,最后一集在星期_____播出。

9、有一个电子钟,每走9分钟亮一次灯,每到整点时响一次铃。

中午12时整,电子钟响又亮灯,下一次既响铃又亮灯是___________时。

10、今年儿子的年龄是父亲的41,15年后,儿子的年龄是父亲年龄的115,今年儿子___岁。

11、某班在一次数学测验中,平均成绩是78分,男、女各自平均成绩是75.5分和81分,这个班男女生人数之比是___________。

12、已知19X < 54< 19Y ,X 、Y 为连续自然数。

X=_____ Y=______。

13、一本数学辞典售价a 元,利润是成本的20%。

如果把利润提高到30%,那么应提高售价_____元。

14、有形状、长短都完全一样的红筷子、黑筷子、白筷子、黄筷子、紫筷子和蓝筷子各25根。

初中数学竞赛专项训练(1)及答案

初中数学竞赛专项训练(1)及答案

初中数学(实数)竞赛专项训练(1)一、选择题1、如果自然数a 是一个完全平方数,那么与a 之差最小且比a 大的一个完全平方数是( ) A. a +1B. a 2+1C. a 2+2a+1D. a+2a +12、在全体实数中引进一种新运算*,其规定如下:①对任意实数a 、b 有a *b=(a +b )(b -1)②对任意实数a 有a *2=a *a 。

当x =2时,[3*(x *2)]-2*x +1的值为 ( )A. 34B. 16C. 12D. 63、已知n 是奇数,m 是偶数,方程⎩⎨⎧=+=+m y x n y 28112004有整数解x 0、y 0。

则 ( )A. x 0、y 0均为偶数B. x 0、y 0均为奇数C. x 0是偶数y 0是奇数D. x 0是奇数y 0是偶数4、设a 、b 、c 、d 都是非零实数,则四个数-ab 、ac 、bd 、cd ( )A. 都是正数B. 都是负数C. 两正两负D. 一正三负或一负三正5、满足等式2003200320032003=+--+xy x y x y y x 的正整数对的个数是( ) A. 1B. 2C. 3D. 46、已知p 、q 均为质数,且满足5p 2+3q=59,由以p +3、1-p +q 、2p +q -4为边长的三角形是( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形7、一个六位数,如果它的前三位数码与后三位数码完全相同,顺序也相同,由此六位数可以被( )整除。

A. 111B. 1000C. 1001D. 11118、在1、2、3……100个自然数中,能被2、3、4整除的数的个数共( )个 A. 4 B. 6 C. 8 D. 16二、填空题 1、若20011198********⋯⋯++=S ,则S 的整数部分是____________________2、M 是个位数字不为零的两位数,将M 的个位数字与十位数字互换后,得另一个两位数N ,若M -N 恰是某正整数的立方,则这样的数共___个。

初中数学竞赛模拟题50题含参考答案

初中数学竞赛模拟题50题含参考答案

初中数学竞赛模拟题50题含答案一、单选题1.今年5月8日母亲节,大鹏用30元钱购买了“康乃馨”和“百合”两种花若干支,作为送给妈妈的节日礼物.已知康乃馨花每支2元,百合花每支3元(两种花都买),大鹏购买方案共有( )A .3种B .4种C .5种D .6种 2.定义运算,则2a b a b ⊗=-,则25⊗=( )A .-1B .1C .2D .8 3.一个四位数aabb 为平方数,则a b +的值为( )A .11B .10C .9D .8 4.在ABC 中,12ABC ∠=︒,132ACB ∠=︒,BM 和CN 分别是这两个角的外角平分线,且点M ,N 分别在直线AC 和直线AB 上,则( )A .BM CN >B .BM CN =C .BM CN <D .BM 和CN 的大小关系不确定 5.六名运动员A B C DEF ,,,,,比赛中国象棋,每两人赛一局.第一天A 与B 各赛了3局D ,与C 各赛了4局E ,赛了2局,而且D 和B A ,和C 之间都还没赛过,那么F 已赛了多少局( )A .1B .2C .3D .4 6.如图,AI 、BI 、CI 分别平分BAC ∠、ABC ∠、ACB ∠,ID BC ⊥,ABC 的周长为18,3ID =,则ABC 的面积为( )A .18B .30C .24D .27 7.分母是2007的正的最简真分数有( )个.A .675B .326C .1329D .1332 8.假设时间用十进制表示,即每天有10个小时,每小时有100分钟.按照十进制生00;7:50对应下午6:00.在十进制下,如果一个人想在早上6:36醒来,那么他应该将新电子闹钟定时在( )A .2:00B .2:25C .2:50D .2:759.设[]t 表示不超过实数t 的最大整数,令{}[]t t t =-.已知实数x 满足33118x x +=,则{}1x x ⎧⎫+=⎨⎬⎩⎭( )A .12 B .3C .(132 D .110.1234x x x x -+-+-+-的最小值为( )A .4B .5C .6D .1011.对任意的整数x ,y ,定义@x y x y xy =+-,则使得()()()@@@@@@0x y z y z x z x y ++=的整数组(),,x y z 的个数为( )A .1B .2C .3D .412.一个盒子中有红球m 个、白球10个,黑球n 个,每个球除颜色外都相同,从中任取一个球,取得是白球的概率与不是白球的概率相同,那么,m n 的关系是( ). A .10m n += B .5m n += C .10m n == D .2,3m n == 13.能整除任意三个连续整数之和的最大整数是( ).A .1B .2C .3D .614.一个六位数它是一个完全平方数,且末三位数字都是4,这样的六位数有( )个.A .2B .3C .4D .515.若一个正整数能表示为两个连续偶数的平方差,则称这个正整数为“神秘数”(如22420=-,221242=-,222064=-),下列关于神秘数的叙述,正确的个数为( ).①2008是神秘数;①任意两个正奇数的平方差是神秘数;①任意两个正奇数的平方差不是神秘数;①在1~100这100个数中,神秘数有13个.A .1B .2C .3D .416.a ,b ,c 不全为0,满足3330,0a b c a b c ++=++=.称使得0n n n a b c ++=恒成立的正整数n 为“好数”,则不超过2007的正整数中好数的个数为( )A 2B 1004C 2006D 200717m 的和为( ).A .401B .800C .601D .1203二、填空题18.已知n n 的最小值为___________.19.方程4(34)16x -=的根是______.20.已知实数x y ,满足2510x x y ++-=,则x y +的最大值为_______.21.如图,在边长为6的正ABC 中,D ,E 分别在边AC ,AB 上,13AD AC =,23AE AB =,BD ,CE 相交于点F ,则点A ,D ,F 所在圆的半径______.22.设m 是整数且方程2320x mx +-=的两根都大中95-而小于37,则m =_____. 23.若素数p ,q 满足2337431pq p q p +=++,则p q +=______.24.设x =a 是x 的小数部分,b 是x -的小数部分,则333a b ab ++=__________ .25.1998年某人的年龄恰等于他出生的公元年数的数字之和,那么他的年龄是__________岁.26.函数|1||2||3|y x x x =+++++,当x =_______时,y 有最小值,最小值等于_______.27.方程1111997x y +=中的x ,y 均取正整数时,得出的解(,)x y 叫做方程的一个正整数解,则这个方程的正整数解有_______个.28.两个正整数的和比积小1997,并且其中一个是完全平方数,则较大数与较小数的差是___________.29.有8个整数,它们都不是5的倍数,那么它们的4次方的和被5除,得到的余数是__________.30.如图,在ABC ∆中,90BAC ∠=︒,AB =AC =5,点D 在AC 上,且2AD =,点E是AB上的动点,连结DE,点F,G分别是BC,DE的中点,连接AG,FG,当AG =FG时,线段DE长为______31.学校食堂某窗口销售烤肠、汉堡、可乐和盒饭四个品种的食品,每个品种的单价均为整数,若汉堡的单价比烤肠的单价多3元,可乐的单价比烤肠的单价髙50%,盒饭的单价是汉堡单价的4倍与可乐单价的差.某日烤肠和汉堡一共销售了120份,且烤肠的销售大于40份,盒饭与烤肠的销售量之和不超过400份,而可乐的销售量为60份,当日这四种食物的平均售价是汉堡单价的52倍,则四种食物当日销售总量的最大值为______.32.一个四位数能被9整除,去掉末位数字后所得的三位数恰是4的倍数,则这样的四位数中最大的一个的末位数字是_______.33.一个六位数,如将它的前三位数字与后三位数字整体互换位置,则所得的新六位数恰为原数的6倍.此六位数为___________.34.代数式110x的最小值是_______.35.有一个四位数,把它从中间分成两半,得到前、后两个二位数.将前面的二位数末尾添一个0,然后加上前、后两个二位数的乘积,恰好等于原来的四位数.又知道原数的个位数字是5,那么这个四位数是_________.36.如图所示,已知边长为2的正三角形ABC中,P0是BC边的中点,一束光线自P0发出射到AC上的P1后,依次反射到AB、BC上的点P2和P3,且1<BP3<32(反射角等于入射角),则P1C的取值范围是_____.37.如图,在四边形ABCD 中,90BCD ∠=︒,BC =,60BAC ∠=︒,若=5AB ,=2AD ,则线段AC 的长为______.三、解答题38.阅读下列材料,解答提出的问题.我们知道,二元一次方程1x y +=有无数组解,如果我们把每一组解用有序数对(),x y 表示,就可以标出一些以方程1x y +=的解为坐标的点,过这些点中的任意两点可以作一条直线,发现其它点也都在这条直线上.反之,在这条直线上任意取一点,发现这个点的坐标是方程1x y +=的解.我们把以方程1x y +=的解为坐标的所有点组成的图形叫做方程1x y +=的图象,记作直线1l .(1)【初步探究】下列点中,在方程1x y +=的图象1l 上的是______;A .()1,1B .()2,1-C .()3,2-(2)在所给的坐标系中画出方程23x y -=-的图象2l ;(3)【理解应用】直线1l ,2l 相交于点M ,求点M 的坐标;(4)点()1,P x a ,()2,Q x a 分别在直线1l ,2l 上.当4PQ ≤时,请直接写出a 的取值范围.39.一列火车长x 米,匀速通过300米的隧道,用时25秒,隧道顶部一盏固定的灯在火车上照了10秒,求火车的长度.40.试证:形如abcabc 的六位数总含有7,11,13的因数.41.已知正整数a ,b ,c 满足a b c <<,且ab bc ca abc ++=.求所有符合条件的a ,b ,c .42.分解因式:4444444()()()()a b c a b b c c a a b c ++-+-+-++++.43.平面直角坐标系中,每个整点都被染成为三种颜色之一,并且每种颜色的点都有.证明:可以找到一个直角三角形(其直角边不一定与坐标轴平行或重合),它的三个顶点被分别染成三种不同的颜色.44.某个学生参加军训,进行打靶训练,必须射击10次,在第6、第7、第8、第9次射击中,分别得了9.0环,8.4环,8.1环,9.3环,他的前9次射击所得环数的平均值高于前5次射击所得的平均环数.如果他要使10次射击的平均环数超过8.8环,那么他在第10次射击中最少要得多少环?(每次射击所得环数都精确到0.1环) 45.(1)证明:若x 取任意整数时,二次函数2y ax bx c =++总取整数值,那么2,,a a b c -都是整数;(2)写出上述命题的逆命题,并判断真假,且证明你的结论.46.一个三位数xyz (其中,x ,y ,z 互不相等),将其各个数位的数字重新排列,分别得到的最大数和最小数仍是三位数.若所得到的最大三位数与最小三位数之差是原来的三位数,求这个三位数.47.某种产品按质量分为10个档次,生产最低档次每件获利润8元,每提高一个档次每件产品利润增加2元,最低档次每天可生产60件,提高一个档次将减少3件.如果使一天获利润858元,则应生产哪个档次的产品(最低档次为第1档次,档次依次随质量提高而增加)?参考答案:1.B【分析】设可以购买x支康乃馨,y支百合,根据总价=单价×数量,即可得出关于x,y 的二元一次方程,结合x,y均为正整数即可得出大鹏的购买方案.【详解】解:设可以购买x支康乃馨,y支百合,依题意,得:2330x y,①2103y x =-,①x,y均为正整数,①38xy=⎧⎨=⎩,66xy=⎧⎨=⎩,94xy=⎧⎨=⎩,122xy=⎧⎨=⎩,①大鹏有4种购买方案.故选:B.【点睛】本题考查二元一次方程的应用.找准等量关系,正确列出二元一次方程是解题的关键.2.B【详解】25|225|1⊗=⨯-=3.A【分析】可将aabb表示为11(100a+b),根据aabb四位数为平方数,可设100a+b=11c2,由题意可得:101<100a+b=11c2<999,可将c的值求出,从而可求出a+b的值.【详解】解:①aabb=1000a+100a+10b+b=11(100a+b)由题意可设100a+b=11c2(c为正整数),①101<100a+b=11c2<999,即9<c2<90,于是,4≤c≤9,经检验,c=8时满足条件,此时a=7,b=4,故a+b=11.故选:A.【点睛】本题考查了不等式的应用,理解一个四位数aabb为平方数,这句话中包含的不等关系是解决本题的关键.4.B【详解】①12ABC ∠=︒,BM 为ABC ∠的外角平分线,①()118012842MBC ∠=︒-︒=︒,又180********BCM ACB ∠=︒-∠=︒-︒=︒,①180844848BCM ∠=︒-︒-︒=︒,①BM BC =,又()()111801801322422ACN ACB ∠=︒-∠=︒-︒=︒,①()18018012BNC ABC BCN ACB CAN ∠=︒-∠-∠=︒-︒-∠+∠12ABC =︒=∠,①CN CB =,因此,BM BC CN ==;5.D【分析】共有6个人,A 、B 各参加了3局比赛,C 、D 各参加了4局比赛,E 参加了2局比赛,且A 与C 没有比赛过,B 与D 也没有比赛过,依此类推即可确定.【详解】解:由于A 、B 各参加了3局比赛,C 、D 各参加了4局比赛,E 参加了2局比赛,且A 与C 没有比赛过,B 与D 也没有比赛过,所以与D 赛过的是A 、C 、E 、F 四人;与C 赛过的是B 、D 、E 、F 四人;又因为E 只赛了两局,A 与B 各赛了3局,所以与A 赛过的是D 、B 、F ;而与B 赛过的是A 、C 、F ;所以F 共赛了4局.故选:D .【点睛】考查了推理与论证,根据每人最多赛四盘及每人已赛的盘数间的逻辑关系进行推理是完成本题的关键.6.D【分析】过I 点作IE ①AB 于点E ,IF ①AC 于点F ,如图,利用角平分线的性质得到IE =IF =ID =3,然后根据三角形面积公式得到ABC IAB IBC IAC S S S S =++△△△△,据此即可求得.【详解】解:过I 点作IE ①AB 于点E ,IF ①AC 于点F ,如图,①AI ,BI ,CI 分别平分①BAC ,①ABC ,①ACB ,①IE =IF =ID =3,①ABC IAB IBC IAC S S S S =++△△△△111333222AB BC AC =⨯⨯+⨯⨯+⨯⨯ 3()2AB BC AC =++ 3182=⨯ 27=故选:D .【点睛】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了三角形的面积.7.D【详解】因220073223=⨯,因2007n 是最简真分数的充要条件是12006n ≤≤,并且n 与2007互素,即n 既不被3整除又不被223整除,记{1,2,,2006}I =,3{A a a I =∈并且a 不被3整除223},{A a a I =∈,并且a 不被223整除3223},,A A 在I 中的补集分别记为3A ,和223A ,则由容斥原理知I 中既不被3又不被223整除的数的个数等于()()322332233223||2006A A I A A A A =-+-=-2006200620062006(6688)2133232233223⎛⎫⎡⎤⎡⎤⎡⎤++=-++= ⎪⎢⎥⎢⎥⎢⎥⨯⎣⎦⎣⎦⎣⎦⎝⎭.故选D . 8.D【详解】正常情况下,每天有60241440⨯=分钟.早上6:36表示午夜后396分钟. 在十进制下,每天有1000分钟,因此早上6:36对应午夜后39610002751440⨯=分钟.从而,新电子闹钟应该设定的时间为2:75,故选D .9.D 【详解】设1x a x +=,则()23223211111133x x x x x a a x x x x x ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+=++-=++-=-⎢⎥ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦, 所以()2318a a -=,因式分解得()2(3)360a a a -++=,所以3a =. 由13x x +=解得(132x =,显然{}01x <<,101x ⎧⎫<<⎨⎬⎩⎭,所以{}11x x ⎧⎫+=⎨⎬⎩⎭ 10.A 【详解】()()14143x x x x -+-≥---=,当14x ≤≤时取得等号;()()21233x x x x +-≥---=-,当23x ≤≤时取得等号; 因此,1234314x x x x -+-+-+-≥+=,当23x ≤≤时取得等号. 所以,1234x x x x -+-+-+-的最小值为4.11.D【详解】()()(@)@()@x y z x y xy z x y xy z x y xy z=+-=+-+-+-x y z xy yz zx xyz =++---+,由对称性,同样可得()@@y z x x y z xy yz zx xyz =++---+,()@@z x y x y z xy yz zx xyz =++---+. 所以,由已知可得0x y z xy yz zx xyz ++---+=,即(1)(1)(1)1x y z ---=-. 所以,x ,y ,z 为整数时,只能有以下几种情况:111111x y z -=⎧⎪-=⎨⎪-=-⎩,或111111x y z -=⎧⎪-=-⎨⎪-=⎩,或111111x y z -=-⎧⎪-=⎨⎪-=⎩,或111111x y z -=-⎧⎪-=-⎨⎪-=-⎩,所以,()(),,2,2,0x y z =或()2,0,2或()0,2,2或()0,0,0,故共有4个符合要求的整数组. 12.A【详解】盒中共有10m n ++个球,取得的是白球的概率是10m n p m n +=++,取得的不是白球的概率为10m n p m n '+=++.依题意有101010m n m n m n +=++++,所以10m n +=.故应选A . 13.C【详解】解 设三个连续整数为n 1-,n ,1n +(n 为整数),则(1)(1)3n n n n -+++=能被3整除.虽1236++=能被6整除,但2349++=不能被6整除.故选C .14.B【详解】解:理由:由于末三位都是4且是完全平方数的最小为2381444=,所以这样的六位数与1444的差的末三位都为0.设2k 为满足条件的六位数,那么22381000k m -=(m 为自然数),即(38)(38)1000k k m -+=,则10001258=⨯能整除(38)(38)k k -⋅+.由于(38)k -与(38)k +不能同时被5整除,所以其中一个能被125整除;由于(38)k -与(38)k +除以4余数相同,如果它们都不能被4整除,那么最多只是2的倍数,这时它们的积不是8的倍数,不合题意,所以(38)k -、(38)k +都是4的倍数,这样其中之一是1254500⨯=的倍数,也就是说形如2(50038)n ±(n 为自然数)的数满足题意.这样的数有2222462,538,962,1038,……其中是六位数的有2462213444=,2538289444=,2962925444=,共3个.故选:B15.B【详解】解 选B .理由:设两个连续偶数为22k +和2k ,则22(22)(2)4(21)k k k +-=+. 又21k +是奇数,从而,神秘数是4的倍数,但不是8的倍数.设任意两个正奇数为21m +和21n ,则22(21)(21)4(1)()m n m n m n +-+=++-.由于1m n ++与m n -的奇偶性相反,从而,22(21)(21)m n +-+是8的倍数.故22(21)(21)m n +-+不是神秘数.又20088251=⨯,故2008不是神秘数.不难验证:1~100之间的神秘数有41,43,,425⨯⨯⨯.共计13个.综上,知①、①正确.16.B【详解】解 选B .理由:由()3332223()0a b c abc a b c a b c ab bc ca ++-=++++---=, 知33303a b c abc =++=.从而,abc 中至少有1个为0.由条件知,abc 中只有一个为0,另外两个互为相反数.不妨设0,a b c ==-.于是,当n 为正奇数时,0n n n a b c ++=,反之也成立.所以,不超过2007的正整数中好数共有1004个.17.B【详解】选B n =(n +∈N ),则221203n m -=,从而()()n m n m +-=401312031⨯=⨯.因此,401,3n m n m +=⎧⎨-=⎩或1203,1,n m n m +=⎧⎨-=⎩ 解得199m =或601=m .故和为800.18.2==2n 是完全平方数,由此可以确定满足条件的最小正整数n .【详解】解:①2n 是完全平方数,①n 的最小正整数值为2.故答案为:2.)0a ≥的式子叫做=完全平方数和一个代数式的积的形式.19.2x =或23x =##23x =或2x = 【分析】将方程化为二项方程,因式分解法解方程即可求解.【详解】解:4(34)16x -=,即()434160x --=,①()()223443440x x ⎡⎤⎡⎤-+--=⎣⎦⎣⎦,①()23440x -+>,①()2344x --0=,即()2344x -=, 342x ∴-=±,2x ∴=或23x =, 经检验,2x =或23x =,是原方程的解, ∴方程4(34)16x -=的根是2x =或23x =, 故答案为:2x =或23x =. 【点睛】本题考查了解二项方程,将方程因式分解是解题的关键.20.5【分析】根据已知等式,可用x 表示出x y +再利用二次函数的性质可求得其最大值.【详解】解:①2510x x y ++-=,①251y x x =--+,①2+41x y x x =--+,即:()2++2+5x y x =-①当=1x -时,x y +有最大值5,故答案为:5.【点睛】本题主要考查二次函数的最值,用x 表示出x y +是解题的关键,注意函数性质的应用.21.2【分析】根据SAS 证①BAD ①①CBE ,推出①ADF +①AEF =180°,可得A 、E 、F 、D 四点共圆,取AE 的中点G ,连接GD ,证①ADG 是等边三角形,推出G 是圆心,求出半径即可.【详解】解:在正①ABC 中, ①23AE AB =, ①13BE AB =,又①13AD AC =,①BE =AD ,又①AB =BC ,①BAD =①CBE ,①①BAD ①①CBE (SAS),①①ADB =①BEC ,①①BEC +①AEC =180°,①①ADB +①AEC =180°,①A 、E 、F 、D 四点共圆,取AE 的中点G ,连接GD ,①AG =GE =12AE , ①23AE AB =, ①1623AG GE ==⨯=, 又①116233AD AC ==⨯=,①DAE =60°, ①①ADG 是等边三角形,①GD =AG =AD =2,即GA =GE =GD =2,①点G 是A 、E 、F 、D 四点所在圆的圆心,且半径是2,故答案为:2【点睛】本题主要考查四点共圆和等边三角形的知识,熟练掌握四点共圆的判定和等边三角形的性质是解题的关键.22.4【详解】解 设方程的两根为12,x x ,则212323()()x mx x x x x +-=--. 依题意有129393,5757x x -<<-<<,故95x =-或37时, ()()1230x x x x -->,且1293527x x +-<< 又方程有两个实根,故其判别式0≥,反之也成立,且1226x x m +=-,于是有 29)253)279356743(2)093(()20533(()207m m m m -⎧-<-<⎪⎪=-⨯⨯-≥⎪⎪⎨⨯+⨯-->⎪⎪⎪⨯+⨯->⎪⎩,即2452107424045193021710m m m m ⎧-<<⎪⎪⎪+⎨⎪-+>⎪->⎪⎩ 解之得813342145m << 又m 为整数,所以4m =.因此应填4. 注:所列条件中1293527x x +-<<这一条件不可少,因为仅由其余3个条件,可能12,x x 都大于37也可能都小于95-,不保证12,x x 都在95-与37之间.读者也可用二次函数的图象得出题解中的不等式组合.23.9【详解】显然p ,q 不能均为奇数(否则等式左边为偶数,右边为奇数),于是2p =或2q .(1)若2p =,则可得32143430q q-+=,解得7q =,检验知()(),2,7p q=为一组解. (2)若2q ,则可得329439p p =+,此式一边为奇数一边为偶数,没有整数解. 综上可知2p =,7q =,所以9p q +=.24.1【详解】解①1x ==,而213<<, ①21a x =-=.又①1x -=,而312-<<-,①()33223()3++=+-++a b ab a b a ab b ab2223()1a ab b ab a b =-++=+=.25.18【详解】设某人出生于19xy 年,则他的年龄应为1910x y x y +++=++(岁).所以19981910xy x y -=++,即981010x y x y --=++,得11288x y +=, 则88112x y -=. 又易知x 只能取偶数取0,2,4,6,8x =,相应地,44,33,22,11,0y =.只有8,0x y ==满足条件.所以所求年龄为18岁.26. 2- 2【详解】解 当3x ≤-时,(1)(2)(3)3(2)y x x x x =-+-+-+=-+;当32x -<≤-时,(1)(2)(3)y x x x x =-+-+++=-;当21x -<≤-时,(1)(2)(3)4y x x x x =-+++++=+;当1x >-时,(1)(2)(3)3(2)y x x x x =+++++=+.故|1||2||3|y x x x =+++++在(,2]-∞-上递减,在[2,)-+∞上递增,当2x =-时,y 取最小值2.故应填2,2-(如图).注:①一般说来,对于含绝对值的一次函数,应分区间将绝对值符号去掉变成折线函数,再根据函数的增减性(一次项系数为正时递增,为负时递减)就不难得出所求函数的最大(或最小)值.如果作出其图象,那么其结果是一目了然的.①本题的一种简单解法是利用差的绝对值的几何意义来求解:因为||x a -表示数轴上坐标为x 的点P 到坐标为a 的点A 的距离,故|1||2||3|y x x x =+++++表示数轴上坐标为x 的点P 到坐标分别为1,2,3---的点,,A B C 的距离之和.显然当P 与B 重合时,即2x =-时,这个距离之和为最小,其最小值为线段AC 的长度|(1)(3)|2---=.又如,若要求|9||8||3||1||5||6|y x x x x x x =-+-+-++++++的最小值,则它等价于求数轴上坐标为x 的点P ,分别到坐标为9,8,3,1,5,6---的各点,,,,,A B C D E F 的距离之和的最小值.显然当P 在线段CD 上,即当13x -≤≤时,这个距离之和取最小值,并且最小值|9(6)||8(5)||3(1)|32AF BE CD =++=--+--+--=.27.3【详解】理由:原方程可化为19971997xy x y =+,得(1997)(1997)19971997x y --=⨯,即19971,199719971997x y -=⎧⎨-=⨯⎩或19971997, 19971997x y -=⎧⎨-=⎩或199719971997,1997 1.x y -=⨯⎧⎨-=⎩ 所以共有3个整数解.28.663【详解】设这两个正整数为,()a b a b >.根据题意,可得()1997ab a b -+=,则(1)(1)1998a b --=,即3(1)(1)2337a b --=⨯⨯.因为a b >,即11a b ->-,且a ,b 中有一个是完全平方数,故(1)(1)6663a b --=⨯,所以667,4.a b =⎧⎨=⎩则663a b -=.29.3【详解】一个整数不是5的倍数,它的个位数字可能是1,2,3,4,6,7,8,9,把它们4次方后,研究它们的个位数字,分别是:444411;216;381;4256====;444461296;72401;84096;96561====.即它们的个位数字不是1就是6,并且6被5除也是余1.所以一个不是5的倍数的整数,它的4次方被5除一定余1.这8个整数,它们的4次方的和被5除所得余数为3.30【分析】连接DF ,EF ,过点F 作FN AC ⊥,FM AB ⊥,结合直角三角形斜边中线等于斜边的一半求得点A 、D 、F 、E 四点共圆,=90DFE ∠︒,然后根据勾股定理及正方形的判定和性质求得AE 的长度,从而求解.【详解】解:如图,连接DF ,EF ,过点F 作FN AC ⊥,FM AB ⊥.①在ABC 中,90BAC ∠=︒,点G 是DE 中点,①AG DG EG ==.①AG =FG ,①A 、D 、F 、E 四点共圆,G 点为圆心,DE 为直径,①90DFE ∠=︒.①在Rt ABC 中,5AB AC ==,①BC ==又①点F 是BC 中点,①122CF BF BC ===1522FN FM AB ===. ①四边形AMFN 是正方形, ①52AN AM FN FM =====. ①90NFD DFM ∠+∠=︒,90MFE DFM ∠+∠=︒,①NFD MFE ∠=∠.①在NFD △和MFE 中90DNF EMF NF MF NFD MFE ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩,①()NFD MFE ASA ≅, ①51222ME DN AN AD ==-=-=, ①51322AE AM MD =+=+=, ①在Rt DAE中,DE【点睛】本题考查直角三角形的性质,圆周角定理,四点共圆,正方形的判定和性质,全等三角形的判定和性质以及勾股定理,综合性强,较难.正确的作出辅助线是解答本题的关键.31.536【分析】设烤肠的单价为x 元,设销售总量为y 份,烤肠为a 份()40a >,根据当日平均售价是汉堡单价的52倍,得出等量关系,由a ,x ,y 为整数,且1602x a +是3的倍数,“盒饭与烤肠的销售量之和不超过400份,”可限定a 和x 的取值,再进行筛选即可得到销售总量的最大值.【详解】解:设烤肠的单价为x 元,则汉堡的单价为()3x +元,可乐单价为1.5x ,盒饭单价为()43 1.5 2.512x x x +-=+元,四种食物的平均售价为()532x +,设销售总量为y 份,烤肠为a 份()40a >, ①()()()()()5360 1.560120 2.51231202y x x y x ax x a ⨯+=⨯+--++++-, 整理得:16024003x a y +=+,可知,当x 不变时,y 随a 增大而增大 ①()60120400a y +--≤,①580a y +≤,即:580y a ≤-,即:1605540x a +≤,5200a >,故2x ≤,①a ,x ,y 为整数,且1602x a +是3的倍数,则:当2x =时,44a ≤,16022441363⨯+⨯=,此时536y ≤, 当1x =时,76a ≤,1602761043+⨯=,此时504y ≤, 综上,销售总量的最大值为536份,故答案为:536.【点睛】本题考查了应用类问题,不等式和不定方程的应用,解决问题的关键是正确读懂题意列出方程和代数式.32.3【详解】填3.理由:被4整除的最大的三位数是996. 设满足条件的四位数为996a ,则996a +++被9整除,则6a +被9整除,所以3a =. 故末位数字是3.33.142857【详解】.填142857.理由:设原六位数为abcdef ,则6abcdef defabc ⨯=, 即6(1000)1000abc def def abc ⨯⨯+=⨯+. 所以9945999def abc ⨯=⨯, 即142857def abc ⨯=⨯.因为142与857互质, 所以abc 被142整除,def 被857整除. 又因为,abc def 为三位数, 所以142,857abc def ==. 因此142857abcdef =.34.【详解】解 设110y x =,则()222(110)1133y x x +=+,即22222032233113y xy x +=⨯+⨯.关于x 的方程222322322031130x yx y ⨯-+⨯-=有实根,所以()()222222(220)432233113411332230y y y =--⨯⨯⨯⨯-=⨯-⨯≥(因为22220432234113+⨯⨯=⨯),所以y ≥.当且仅当x =y取最小值故应填35.1995【详解】设前后两个二位数分别是a ,b ,则10100a ab a b +=+,即(1)(90)90a b --=.因为1a >,所以900b ->.又b 是二位数,且个位数为5,故95b =.于是118a -=,所以19=a .故所求四位数是1995.36.1716PC << 【分析】首先利用光的反射定律及等边三角形的性质证明①P 0P 1C ①①P 2P 1A ①①P 2P 3B ,再根据相似三角形对应边成比例得到用含P 3B 的代数式表示P 1C 的式子,然后由1<BP 3<32,即可求出P 1C 长的取值范围. 【详解】解:①反射角等于入射角,①①P 0P 1C =①P 2P 1A =①P 2P 3B ,又①①C =①A =①B =60°,①①P 0P 1C ①①P 2P 1A ①①P 2P 3B , ①01P C PC =21P A P A =23P B P B , 设P 1C =x ,P 2A =y ,则P 1A =2﹣x ,P 2B =2﹣y . ①1x =2y x-=32y P B -, ①322xy x x xy P B=-⎧⎨-=⎩, ①x =13(2+P 3B ). 又①1<BP 3<32, ①1<x <76, 即P 1C 长的取值范围是:1<P 1C <76.故答案为:1<P 1C 76<. 【点睛】此题考查了等边三角形的性质,解题的关键是根据等边三角形的性质找出对应点是解此题的关键,难度较大.37.2.5+【分析】连接BD ,过B 作BH ①AC 于H 点,根据①BCD 是直角三角形,可证明①BAC =①BDC ,则有A 、B 、C 、D 四点共圆,进而有BD 是该圆的直径,可得①BAD =90°,利用勾股定理可得BD =12CD BD ==BC ==,根据BH ①AC ,可得①ABH 、①BCH 是直角三角形,则有①ABH =30°,即1522AH AB ==,利用勾股定理可得BH =,再在①BCH 是直角三角形,可得CH 可得解. 【详解】连接BD ,过B 作BH ①AC 于H 点,如图,①①BCD =90°,①①BCD 是直角三角形,①222BD CD BC =+,①BC =,①2BD CD =,①在Rt ①BCD 中,①DBC =30°,即①BDC =60°,①①BAC =60°,①①BAC =①BDC ,①A 、B 、C 、D 四点共圆,①①BCD =90°,①BD 是该圆的直径,①①BAD =90°,①AB =5,AD =2,①BD①12CD BD =BC ==, ①BH ①AC ,①①ABH 、①BCH 是直角三角形,①①BAC =60°,①①ABH =30°, ①1522AH AB ==,即BH ===, ①①BCH 是直角三角形,①CH ==①52AC AH CH =+=故答案为:52+ 【点睛】本题考查了勾股定理、四点共圆、圆周角定理以及含30°角的直角三角形的性质等知识,利用四点共圆是解答本题的关键.38.(1)B(2)见解析(3)点M 的坐标为(13-,43) (4)803a ≤≤【分析】(1)将所给的点的坐标代入方程,使方程成立的即为所求;(2)利用描点法画出函数图象即可; (3)联立方程组123x y x y +=⎧⎨-=-⎩,方程的解即为点M 的坐标;(4)分别求出11x a =-,223x a =-,再由4PQ ≤,求出a 的范围即可.(1)解:当x =1,y =1时,x +y =2,故点A 不在图象1l 上;当x =2,y =-1时,x +y =1,故点B 在图象1l 上;当x =-3,y =2时,x +y =-1,故点C 不在图象1l 上;故选:B ;(2)当x =1时,y =2,当x =-3时,y =0,则方程x -2y =0的图象l 2如图所示;(3)联立方程组123x y x y +=⎧⎨-=-⎩ ,解得:1343x y ⎧=-⎪⎪⎨⎪=⎪⎩①点M 的坐标为(13-,43). (4)①点()1,P x a 在直线1l 上,①11x a += ,11x a =-,①()2,Q x a 分别在直线2l 上,①223x a -=-,223x a =-,PQ =|2a -3-1+a |=|3a -4|≤4即:4344a -≤-≤, 解得:803a ≤≤ . 故a 的范围:803a ≤≤【点睛】本题考查了一次函数与二元一次方程组,绝对值不等式,熟练掌握求一次函数图象上点的坐标及二元一次方程组的解法是解决解决本题的关键.39.火车长200米【详解】解 设火车速度为y 米/秒,则依题意得25300,10,y x y x =+⎧⎨=⎩消去y 得2530010x x ⨯=+, 解出200x =(米).答:火车长200米.40.见解析【详解】证明 将已知的六位数写成十进制表达形式,得 541010abcabc a b =⨯+⨯32101010c a b c +⨯+⨯+⨯+()()()524310*********a b c =⨯++⨯++⨯+100100100101001a b c =⨯+⨯+⨯1001(10010)a b c =⨯++71113(10010)a b c =⨯⨯++.故abcabc 总含有7,11,13的因数.41.2a =,3b =,6c =【详解】由1a b c ≤<<,知3abc ab bc ca bc =++<,所以,3a <.故1a =或2a =.(1)当1a =时,有b bc c bc ++=,即0b c +=,这与b ,c 为正整数矛盾.(2)当2a =时,有222b bc c bc ++=,即220bc b c --=,所以,(2)(2)4b c --=.又2b c <<,则022b c <-<-.于是,21b -=,24c -=,从而,3b =,6c =.所以,符合条件的正整数仅有一组:2a =,3b =,6c =.42.4444444()()()()12()a b c a b b c c a a b c abc a b c ++-+-+-++++=++【详解】解 设4444444(,,)()()()()f a b c a b c a b b c c a a b c =++-+-+-++++.因为444444(0,,)0()()0f b c b c b b c c b c =++--+-++=,所以(),,f a b c 有因式a . 由(),,f a b c 是,,a b c 的四次对称多项式知(),,f a b c 有因式abc ,而(),,f a b c 与abc 分别是四次、三次对称多项式,所以(),,f a b c 还含有,,a b c 的一个一次对称多项式()k a b c ++,即 4444444(,,)()()()()f a b c a b c a b b c c a a b c =++-+-+-++++()kabc a b c =++.令1a b c ===,得444444*********k ++---+=,所以12k =,故4444444()()()()12()a b c a b b c c a a b c abc a b c ++-+-+-++++=++.43.见解析【详解】证明 用反证法,假设不存在三个顶点被染为三种不同颜色的直角三角形.不难看出,可以找到一条水平方向或竖直方向的直线l ,它上面至少有2种颜色的整点,为了确定起见,设其为水平方向.如果l 上只有两种颜色的点,比方说蓝色和红色,那么平面上任取一个绿色的整点A ,过A 的竖直方向直线与l 的交点为B ,于是B 是整点且B 或为红色或为蓝色,不妨设B 为蓝色.在l 上任取一个红色整点C ,即可得到三个顶点的颜色各异的直角ABC ,此与假设矛盾.所以l 上有三种颜色的整点.在l 上任取一个蓝点B 、一个红点C 、一个绿点D ,那么过B 的竖直直线1l 上的整点都为蓝色,否则可找到三个顶点颜色各异的直角三角形,这与假设矛盾.同理,过D 的竖直直线2l 上的点都为绿色,过C 作与水平方向交成角45︒和135︒的直线3l 和4l ,则3l 与2l 的交点E 是整点,且为绿色,4l 与1l 的交点F 也是整点且为蓝色,于是CEF △为直角三角形且它的三个顶点被染成了三种不同颜色,这与假设矛盾.44.第10次最少要得9.9环.【详解】9.设前5次射击所得平均环数为a ,第10次击中x 环,依题意59.08.48.19.39a a ++++<, ① 59.08.48.19.38.810a x +++++<. ① 由①得8.7a <,从而558.70.143.4a ≤⨯-=.由①得8834.8553.243.49.8x a >--≥-=,所以9.9x ≥,即第10次最少要得9.9环. 45.(1)证明见解析;(2)逆命题为:若2a ,a b -,c 为整数,则对一切整数x ,二次函数2y ax bx c =++总取整数值;逆命题是真命题;证明见解析【详解】解设2m y am bm c =++.(1)当0x =时,2000y a b c c =⋅+⋅+=为整数,所以c 为整数.当=1x -时,1y a b c -=-+为整数,所以1a b y c --=-为整数.当2x =-时,242y a b c -=-+为整数,所以222()a y a b c -=---为整数.于是2,,a a b c -都为整数.(2)所求逆命题为:若2,,a a b c -为整数,则对一切整数x ,二次函数2y ax bx c =++总取整数值.下面证明这是一个真命题.设2,,a a b c -都为整数.由212(1)()2y ax bx c a x x a b x c =++=⋅+--+知对一切整数x ,有(1)x x +为偶数,从而1(1)2x x +为整数. 又2,a a b -及c 为整数,故对任何整数x ,二次函数2y ax bx c =++的值都为整数. 46.495【详解】解 设三位数xyz 经过重新排列后所得到的最大三位数为abc (a b c >>),则最小的三位数是cba .由于19a ≤≤,19b ≤≤,19c ≤≤,且abc cba -=(10010)(10010)a b c c b a ++-++99()a c =-是99的倍数,故所求的三位数xyz 也是99的倍数.而是99的倍数的三位数只有8个:198,297,396,495,594,693,792,891. 经验证知,只有495符合题意.47.第8档次或第10档次【详解】解 设应生产第x 档次的产品.整理得21218800,8,10x x x x -+=∴==. 答:生产第8档次或第10档次的产品,每天可获利858元.注:①如果题目假设产品的档次只分为9个,那么210x =应舍去.①与例2类似,本题中第x 档次产品的每件价及数量是下文中必定涉及的相关量,应在前面用x 的代数式翻译出来.(2)列表分析法.所谓列表分析法,就是在审题后,在理解题意的基础上,尽量将已知数与未知量列成表格,充分利用表格中各个量之间的内在关系进行分析,找出各种量之间的等量关系,再利用等量关系来列出方程的一种方法.。

小学三年级数学竞赛题及答案一

小学三年级数学竞赛题及答案一

小学三年级数学竞赛题及答案一一、拓展提优试题1.公园里有一排彩旗,按3面黄旗、2面红旗、4面粉旗的顺序排列,小红看到这排旗子的尽头是一面粉旗.已知这排彩旗不超过200面,这排旗子最多有面.2.有a,b,c三个数,a×b=24,a×c=36,b×c=54,则a+b+c=.3.11×11=121,111×111=12321,1111×1111=1234321,1111111×1111111=.4.A、B、C、D、E五个盒子中依次有9个、5个、3个、2个、1个小球,第一个同学找到放球最少的盒子,然后从其它盒子中各拿出1个小球放到这个盒子里,第二个同学找到放球最少的盒子,然后从其它盒子中各拿出1个小球放到这个盒子里…;当第199个同学放完后,A、B、C、D、E五个盒子中各有个、个、个、个、个.5.(8分)如图中共有20个三角形.6.小亮家买了72个鸡蛋,他们家还养了一只每天都下一个蛋的母鸡.如果小亮家每天吃4个鸡蛋,那么这些鸡蛋够他们家连续吃天.7.将下图中的圆圈染色,要求有连线的两个相邻的圆圈染不同的颜色,则至少需要_______种颜色.8.用2、4、12、40四个数各一次,可以通过这样的运算得到24.9.有A、B、C、D、E、F六张字母卡片,摆成一行,要求A摆在左端,F摆在右端,有种不同摆法.10.一个数与3的和是7的倍数,与5的差是8的倍数,这个数最小的.11.一根长30厘米的铁丝,可以围成种不同的长方形(边长是整厘米数).12.如图的两个竖式中,相同的字母代表相同的数字,不同的字母代表不同的数字,那么所代表的四位数是()A.5240B.3624C.7362D.756413.动物园的饲养员把一堆桃子分给若干只猴子,如果每只猴子分6个,剩57个桃子;如果每只猴子分9个,就有5只猴子一个也分不到,还有一只猴子只分到3个.那么,有()个桃子.A.216B.324C.273D.30114.在一道没有余数的除法中,被除数、除数与商三个数的和是103,商是3.被除数是()A.25B.50C.7515.期末考试到了,小蕾的前两门语文和数学的平均分是90分,如果他希望自己的语文、数学、英语三门平均分能够不低于92分,那么他的英语至少要考到分.【参考答案】一、拓展提优试题1.解:200÷(3+2+4),=200÷9,=22…2(面);所以剩下的2面彩旗是在第23个循环周期内,是2面黄旗,因为最后一面看到的是粉旗,所以第23个循环周期内没有旗了;这排彩旗最多有:22×9=198(面),答:这排彩旗最多有198面.故答案为:198.2.解:因为,(a×b)×(a×c)÷(b×c)=24×36÷54=16,即a2=16,所以a=4,b=24÷a=6,c=36÷a=9,a+b+c=4+6+9=19;故答案为:19.3.解:根据分析可得:1111111×1111111=1234567654321,故答案为:1234567654321.4.解:由分析可知:第8个小朋友与第3个重复,即5组一循环;则以此类推:(199﹣2)÷5=39…2(次);第199个同学取后ABCDE五个盒子中应分别是:5、6、4、3、2个小球;答:当199个同学放完后,A,B,C,D,E五个盒子中各放5、6、4、3、2个小球.5.解:根据分析可得,图中有三角形:12+6+2=20(个)答:图中共有 20个三角形..故答案为:20.6.解:依题意可知:小亮每天吃4个,吃掉每天鸡下的蛋还需要3个.72÷3=24(天)故答案为:247.找规律【难度】☆☆☆【答案】3找一个圈,按顺序染色.BACBA8.解:40÷4+12+2,=10+12+2,=24;故答案为:40÷4+12+2.9.解:4×3×2=24(种).答:有24种不同摆法.故答案为:24.10.解:7×8﹣3=53.故答案为:53.11.解:长方形的周长=(长+宽)×2,长与宽的和是:30÷2=15(厘米),因为15=1+14=2+13=3+12=4+11=5+10=6+9=7+8,所以可以围成7种不同的长方形.答:可以围成7种不同的长方形.故答案为:7.12.解:根据左边的数字谜中,可分析出A、C是相邻的,B、D是差2 的.右边的数字谜中,显然=19,若个位没有向十位进位,则F、J分别是0、4,E、I是 8、3 或 6、5,但无论是哪组解都不能满足左边数字谜“A、C相邻,B、D差2”的要求.故知右边个位向十位进位了,F+J=14,F、J只能分别是8、6,E+I=10,E、I 只能分别是3、7,此时得到=5240.故选:A.13.解:依题意可知:如果每只猴子分6个,剩57个桃子.如果每只猴子分9个,就有5只猴子一个也分不到,还有一只猴子只分到3个证明少了5×9+6=51;猴子共有(57+51)÷(9﹣6)=36(只);桃子共有36×6+57=273.故选:C.14.解:因为被除数、除数与商三个数的和是103,商是3,所以被除数+除数=103﹣3=100;因为除数=,所以被除数是:100÷(1+)=100÷=75故选:C.15.解:92×3﹣90×2=276﹣180=96(分)答:他的英语至少要考到 96分.故答案为:96.。

2024年广东省中学生数学奥林匹克竞赛一试+加试试题答案及评分标准

2024年广东省中学生数学奥林匹克竞赛一试+加试试题答案及评分标准

2024年广东省中学生数学奥林匹克竞赛答案及评分标准一试一、填空题1已知m ,a ,b ,c 为正整数,且a log m 2+b log m 3+c log m 5=2024,求m +a +b +c 的最小值是.【答案】 30662已知x >0,y >0,-log 3y +3x=y -2x =15⋅32x -1y,则y +x =【答案】 11 .3若A 、 B 为锐角且sin B ⋅sin A +B =sin A ,则tan A 的最大值为.【答案】434数列a n 满足:对任意n ≥2,a n =2024a n -1-n . 如果该数列的每一项都是正数,则a 1的最小值为【答案】40472023240474092529 5投篮测试规则如下:每人最多投三次,投中为止,且第i 次投中得分为4-i 分(i =1,2,3),若三次均未投中则得分为0分. 假设甲同学的投篮的命中率为p 0<p <1 ,若甲参加投篮测试的投篮次数的均值为 1.56,则p = ,甲投篮测试的得分的均值为. 【答案】 2.376 .6设x ,y 均为非零实数,且满足x sin π12+y cos π12x cos π12-y sin π12=tanπ3 . 在△ABC 中,若tan C =y x,则sin3A +3sin2B 的最大值为.【答案】327已知虚数z 满足z +2z∈R ,则z 2+2z -3 的最大值为【答案】1033 .8n 是正整数, 3n -1没有12以上的质因子,则所有满足条件的n 和是【答案】 129已知四面体PABC ,点A 1在△PBC 内,满足△A 1BP ,△A 1CP ,△A 1BC 的面积之比为3:2:1,G 在线段AA 1上,直线PG 交平面ABC 于点M ,且AG GA 1=PGGM ,则四面体PABC 与A 1AMB的体积之比为.【答案】 1210如图,在一个10×10的方格表中填入0和1,使得任意一个3×3的方格表中都恰有一个1 ,则满足要求的填法数共有种【答案】 261二、解答题1已知抛物线C :y 2=18x +27的焦点与椭圆E :x 2a 2+y 2b2=1a >b >0 的右焦点F 2重合, C 的准线经过E 的左顶点.(1)求E 的方程;(2)已知点F 1为E 的左焦点, P 为E 上的一点(异于左、右顶点), △PF 1F 2外接圆的半径为R ,内切圆的半径为r ,求R ⋅r 的取值范围.【解析】(1) 易知 C 的顶点坐标为 -32,0 ,p 2=184=92,所以 C 的焦点坐标为 -32+92,0 ,即 3,0 ,C 的准线方程为 x =-32-92=-6,所以 a =6,c =3,b 2=a 2-c 2=27 ,所以 E 的方程为 E :x 236+y 227=1;4 分(2)设 ∠F 1PF 2=θ,PF 1=a 1,PF 2=a 2,由正弦定理可得 2R =F 1F 2sin θ=2csin θ,即R =c sin θ=3sin θ,则 cos θ=a 21+a 22-2c 22a 1⋅a 2=a 1+a 2 2-2a 1⋅a 2-4c 22a 1⋅a 2=4b 2-2a 1⋅a 22a 1⋅a 2,即a 1⋅a 2=2b 2cos θ+1=54cos θ+1, -8 分S △PF 1F 2=12a 1a 2sin θ=27sin θcos θ+1=27sin θ2cos θ2cos 2θ2=27tanθ2又 S △PF 1F 2=S △IF 1F 2+S △IF 1P +S △IF 2P =12F 1F 2+PF 1+PF 2 r =122a +2c r =9r , -12 分所以 27tanθ2=9r ,即 r =3tan θ2,所以 R ⋅r =9tan θ2sin θ=92cos 2θ2,又因为当 P 在短轴的端点时, θ 最大,此时, θ=60° , -16 分所以 θ∈0,π3 ,即 θ2∈0,π6 ,所以 cos θ2∈32,1 ,故 R ⋅r =92cos 2θ2∈92,6. -20 分2已知方程ln x +x 1-m =0,m ∈R 有两个不同的零点,分别记为a ,b ,且a <b .(1)求实数m 的取值范围;(2)若不等式t +1<ln a +t ln b 恒成立,求正数t 的取值范围.【解析】(1)设 f x =ln x +x 1-m ,m ∈R 的定义域为 0,+∞ ,f x =1x+1-m ,当 m ≤1 时,因 f x >0,故函数 f x 在 0,+∞ 上单调递增,不存在两个零点,不合题意;当 m >1 时,设 g x =f x =1x +1-m ,g x =-1x2<0 ,故 g x 在 0,+∞ 上单调递减,即 f x =1x+1-m 在 0,+∞ 上单调递减,由 f x =0,得 x =1m -1,当 0<x <1m -1时, f x >0;当1m -1<x 时, f x <0;所以当 x =1m -1 时, f x 取得最大值.即 f 1m -1=ln 1m -1+1m -11-m =-ln m -1 -1,-⋯⋯-4 分若函数 f x 有两个不同的零点,则 -ln m -1 -1>0即 ln m -1 <-1=ln1e ,解得 m <1+1e,又 m >1当 x 趋近于 0+ 时, 1-m x 趋近于 0, ln x 趋近于负无穷, f x 趋近于负无穷;当 x 趋近于正无穷时, f x 趋近于负无穷.所以若函数 f x 有两个不同的零点,则实数 m 的取值范围 1<m <1+1e.---8 分(2)因为 f x =ln x +x 1-m m ∈R 有两个不同的零点 a ,b ,由题知 0<a <b ,且 ln a +a -am =0ln b +b -bm =0 ,相减得到:m -1=ln a -ln b a -b由 t +1<ln a +t ln b 恒成立,所以 t +1<am -a +t mb -b 恒成立,即 t +1<a +tb m -1 恒成立,---12 分所以 t +1<a +tb ln a -ln b a -b 恒成立,即 t +1<ab+t a b-1ln a b 恒成立.设 k =ab ,则 k ∈0,1 时,不等式 t +1<t +k ln k k -1恒成立,因为 t +k >0,k -1<0 进而得 ln k -t +1 k -1t +k<0 在 k ∈0,1 时恒成立,设 h k =ln k -t +1 k -1t +k, k ∈0,1 ,注意到 h 1 =0 .则 h k =1k -t +1 t +k -k -1 t +k2 ,即 hk =1k -t +1 2t +k2=t 2+k 2-t 2k -kk t +k 2=k -1 k -t 2 k t +k 2, -16 分又因为 k ∈0,1 且 t >0,则k -1k t +k 2<0 ,所以当 t ≥1 时, k -t 2<0,即 h k >0,故 h k 在 k ∈0,1 单调递增,而 k =1 时 ln k -t +1k -1t +k=0,所以 h k <0 恒成立,故 t ≥1 满足题意.当 0<t <1 时,若 k ∈t 2,1 ,由 h k <0,则 h k 在 k ∈t 2,1 单调递减,所以当 k ∈t 2,1 时 h k >0,与题设不符.综上所述,正数 t 的取值范围 t ≥1. ---20 分加试1设有限集A ,B ,C ⊆R ,A ,B ,C 为有限集,对任意x ∈R ,定义:N A ,B ,C x =a ,b ,c ∣a ∈A ,b ∈B ,c ∈C ,a +b +c =x ∣ . 证明以下结论:(1)存在x ∈R ,使得0<N A ,B ,C x ≤A ⋅B ⋅C A +B +C(2)x ∈A +B +CN A ,B ,C x 2≥A2⋅B 2⋅C 2A +B +C 其中:A 表示集合A 中的元素个数, A +B +C ={a +b +c ∣a ∈A ,b ∈B ,c ∈C } .【解析】(1)x ∈A +B +CN A ,B ,C x =x ∈A +B +C a ,b ,c ∈A ×B ×C ,a +b +c =x1=a ,b ,c ∈A ×B ×C1=A ⋅B ⋅C由平均值原理,存在 x ∈A +B +C ,使得 0<N A ,B ,C x ≤A ⋅B ⋅C A +B +C. .20 分(2)由柯西不等式x ∈A +B +CN A ,B ,C x 2≥X ∈A +B +C N A ,B ,C x 2⋅1A +B +C .. .30 分=1A +B +C x ∈A +B +C a ,b ,c ∈A ×B ×C a +b +c =x12=1A +B +Ca ,b ,c ∈A ×B ×C12=A2⋅B 2⋅C 2A +B +C. .40 分2如图, AB 为圆O 的一条弦(AB <3R ,R 为圆O 的半径), C 为优弧AB的中点, M 为弦AB 的中点. 点D ,E ,N 分别在BC ,CA和劣弧AB上,满足BD=CE,且AD ,BE ,CN 三线共点于F . 延长CN 至G ,使GN =FN . 求证:∠FMB =∠GMB .【解析一】如图,延长 CM 交圆 O 于 T ,以 T 为圆心, TA 为半径作圆,与 CN 延长线交于 G ∵C 为优弧 AB 中点, ∴B 在圆 T 上,且 CA 与 CB 是圆 T 的切线∵∠AFB =AB+ED2=∠ACB +∠CAB =180°-12∠ATB∴F 在圆 T 上. .10 分∵CT 是圆 O 的直径,所以 ∠TNF =90°∴N 为 FG 的中点, G 与 G 重叠∴AFBG 四点共圆. . .20 分(实际上点出圆心 T 的目的是为了证明 AFBG 的共圆,证明共圆之后这个圆心就再也不会 出现, 只要能够证明 AFBG 共圆无论是否点出圆心都可以获得 20 分)∵CA 与 CB 是圆 T 的切线∴△CAF ∽△CGA ,△CBF ∽△CGB∴AF ⋅BG =AG ⋅BF . .30 分由托勒密定理知, AG ⋅BF =12AB ⋅FG =BM ⋅FG ,且 ∠FBM =∠AGF ∴△BFM ∽△GFA ∴∠BMF =∠FAG同理 ∠BMG =∠FAG ∴BM 平分 ∠FMG .40 分证毕(最后导出等角后面的证明调和四边形, 都是相对平凡的步骤了, 各占 10 分)【解析二】解析二使用了调和点列的一些性质, 答案中会备注使用调和点列的地方, 请审卷 老师注意评分如图,连接 NB ,NA ,CN 交 AB 于 Q ∵C 是优弧 AB 的中点∴∠ANC =∠BNC ∵BD=EC∴∠BFN =BN+EC2=BN +BD2=DN2=∠NAF∴△BNF ∞△FNA∴NF 2=NA ⋅NB .10 分又 NC 平分 ∠ANB ,∴△QNB ∽△ANC ∴NA ⋅NB =NQ ⋅NC∴NF2=NQ⋅NC . . .20 分(每一个相似占 10 分)∵N 为 FG 中点∴NF NC =NQNF, ∴NF-NQNC-NF=NF+NQNC+NF,即FQFC=GQGC∴CFQG 成调和点列 (调和点列的性质) . .30 分(注: 有的学生可能会写成 C,Q;F,G=-1 也代表调和点列,可以给分)∵M 是 AB 中点, ∴CM⊥AB∴MQ 与 MC 分别是 ∠FMG 的内角平分线和外角平分线 (调和点列的性质) . .40 分 证毕。

小学生数学竞赛试题及答案

小学生数学竞赛试题及答案

小学生数学竞赛试题及答案【试题一】题目:小明有20个苹果,他给小华5个,又给小亮3个,请问小明现在还剩下多少个苹果?【答案】小明原来有20个苹果,给小华5个后剩下20 - 5 = 15个,再给小亮3个,剩下15 - 3 = 12个苹果。

【试题二】题目:一个班级有40名学生,如果每4名学生组成一个小组,那么可以组成多少个小组?【答案】40名学生每4人一组,可以组成40 ÷ 4 = 10个小组。

【试题三】题目:小华有36个糖果,他想平均分给6个朋友,每个朋友能得到多少个糖果?【答案】36个糖果平均分给6个朋友,每个朋友能得到36 ÷ 6 = 6个糖果。

【试题四】题目:一个数加上5等于21,这个数是多少?【答案】设这个数为x,根据题意,x + 5 = 21,解这个方程得到x = 21 - 5= 16。

【试题五】题目:如果一个长方形的长是10厘米,宽是5厘米,那么它的周长是多少?【答案】长方形的周长公式是周长= 2 × (长 + 宽),所以这个长方形的周长是2 × (10 + 5) = 2 × 15 = 30厘米。

【试题六】题目:一个数的3倍是27,这个数是多少?【答案】设这个数为y,根据题意,3y = 27,解这个方程得到y = 27 ÷ 3 = 9。

【试题七】题目:小亮有40元钱,他花了15元买了一个玩具,还剩多少钱?【答案】小亮原来有40元,花了15元后,还剩下40 - 15 = 25元。

【试题八】题目:一个数的一半加上10等于20,这个数是多少?【答案】设这个数为z,根据题意,z/2 + 10 = 20,解这个方程得到z/2 = 20 - 10 = 10,所以z = 10 × 2 = 20。

【试题九】题目:如果一个班级有60名学生,每10名学生组成一个小组,那么可以组成多少个小组?【答案】60名学生每10人一组,可以组成60 ÷ 10 = 6个小组。

大学数学竞赛题库及答案

大学数学竞赛题库及答案

大学数学竞赛题库及答案一、单项选择题1. 设函数f(x) = (x - 1) / (x + 1),则f(-1)的值为()A. -1B. 0C. 1D. -∞答案:A2. 设矩阵A = [[a, b], [c, d]],则A的行列式det(A)的值为()A. ad - bcB. a + b + c + dC. ab + bd + ca + dcD. |a| |b| |c| |d|答案:A3. 设函数f(x) = x^3 - 6x + 9,则f'(x)的值为()A. 3x^2 - 6B. x^3 - 6C. 9 - 6xD. 3x^2答案:A4. 设函数f(x) = ln(x),则f'(x)的值为()A. 1/xB. xC. 1D. e^x答案:A5. 设向量a = (2, 3),向量b = (-1, 2),则向量a与向量b的点积a·b的值为()A. -5B. 4C. 7D. 0答案:A二、多项选择题6. 以下哪个选项是正确的矩阵乘法规则?()A. AB = BAB. (AB)C = A(BC)C. (A+B)C =AC+BC D. A(B+C) = AB+AC答案:B7. 以下哪个选项是正确的导数运算法则?()A. (f+g)' = f' + g'B. (fg)' = fg' + gf'C. (f/g)' = f'/g - f/g^2D. (f^n)' = nf^(n-1)答案:A、C三、填空题8. 设函数f(x) = x^2 - 4x + 3,则f(x)的图像是一个________。

答案:抛物线9. 设矩阵A = [[1, 2], [3, 4]], 则矩阵A的逆矩阵A^-1为________。

答案:[[2, -1], [-3, 1]]10. 设向量a = (2, 3), 向量b = (-1, 2), 则向量a与向量b的夹角θ的值为________。

北大竞赛数学试题及答案

北大竞赛数学试题及答案

北大竞赛数学试题及答案在数学竞赛中,北京大学作为中国顶尖的高等学府,其竞赛试题往往具有很高的难度和创新性。

以下是一份模拟的北大竞赛数学试题及其答案,供数学爱好者参考和练习。

试题一:设函数f(x)在实数域R上连续,且满足f(x) + f(1/x) = x,求证:f(x) = 0对所有x≠0成立。

解答:首先,我们令x = 1,得到f(1) + f(1) = 1,即f(1) = 1/2。

然后,我们令x = -1,得到f(-1) + f(-1) = -1,即f(-1) = -1/2。

接下来,我们考虑任意非零实数x,根据题目条件,我们有f(x) +f(1/x) = x。

如果我们将x替换为1/x,我们得到f(1/x) + f(x) =1/x。

将这两个等式相加,我们得到2f(x) = x + 1/x。

这意味着f(x) = (x + 1/x) / 2。

但是,我们注意到当x = 1时,这个表达式给出f(1) = 1,这与我们之前得到的f(1) = 1/2矛盾。

因此,我们得出结论,不存在这样的函数f(x)满足题目中的条件,除非f(x)恒等于0。

因此,我们证明了f(x) = 0对所有x≠0成立。

试题二:设a1, a2, ..., an是正整数,且满足a1 ≤ a2 ≤ ... ≤ an,证明:1/a1 + 1/a2 + ... + 1/an ≤ n/a1。

解答:我们使用数学归纳法来证明这个不等式。

当n=1时,不等式显然成立,因为1/a1 ≤ 1/a1。

假设当n=k时不等式成立,即1/a1 +1/a2 + ... + 1/ak ≤ k/a1。

现在我们需要证明当n=k+1时不等式也成立。

根据归纳假设,我们有1/a1 + 1/a2 + ... + 1/ak ≤ k/a1。

由于a1 ≤a2 ≤ ... ≤ ak ≤ ak+1,我们有1/ak+1 ≤ 1/a1。

因此,1/a1 + 1/a2 + ... + 1/ak + 1/ak+1 ≤ k/a1 + 1/a1 =(k+1)/a1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

08一.解答题1.设连续函数),(y x z z =由方程3)()()(222=+++++x z z y y x 确定,求它的极值。

解:由隐函数求导得)2()2(z y x z y x z x ++-=++,)2()2(z y x z y x z y ++-=++。

解方程组3)()()(222=+++++x z z y y x ,0,0==y x z z 可得驻点21,21-=-=y x 和21,21==y x 。

此时,()232121,-=z ,()232121,=--z 。

再求二阶偏导数。

x x x xx z z z z y x z --=++++22)2(2,y y y yy z z z z y x z --=++++22)2(2,y x y x xy z z z z z y x z --=++++12)2(。

当21,21-=-=y x 时,1-==xx z A ,21-==xy z B ,1-==yy z C 。

0432<-=-=∆AC B ,则()232121,=--z 是极大值。

当21,21==y x 时,1==xx z A ,21==xy z B ,1==yy z C 。

0432<-=-=∆AC B ,则()232121,-=z 是极小值。

2. 求极限⎥⎦⎤⎢⎣⎡+-+-+∞→1)(lim 61223x e x x xx x 。

解:当+∞→x 时,由泰勒展开式可得原式=⎥⎦⎤⎢⎣⎡+-+-+∞→63122311)(lim x x e x x x xx ()()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++-⎪⎭⎫ ⎝⎛+++++-=+∞→63163132223211!31!2111)(lim x x x x oxx o x x x x x6161lim 2161lim 333=⎪⎭⎫ ⎝⎛+=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++-⎪⎭⎫ ⎝⎛++=+∞→+∞→o o x x o x x x 。

其中“o ”表示+∞→x 时的无穷小。

3.设半径为r 的圆与某条直线l 相切。

过圆上的点P 作切线l 的垂线,垂足为Q 。

求由点P 、Q 及切点所构成的三角形的最大面积。

解:如右图建立坐标系。

圆的方程为 222)(r r y x =-+。

点P 的坐标为),(y x 。

则△PQO 的面积为2xy 。

由图形的对称性可知,只需讨论点P 在右半圆上的情况即可。

此时 r y y y r x 20,22≤≤-=。

于是△PQO 的面积为r y y y r y y r y y f 20,2222)(432≤≤-=-=。

问题化为求连续函数)(y f 在闭区间]2,0[r 上的最大值。

令02446)('4332=--=y y r y ry y f ,得到驻点23ry =。

因0)2()0(==r f f ,则最大值为 283323r r f =⎪⎭⎫ ⎝⎛。

4.设)(x f 在点0x 有)1(+n 阶导数且0)(0)1(≠+x f n 。

证明:在)(x f 的拉格朗日型余项的n 阶泰勒公式中n n h x f n n x f x f h h h h x f x f h x f n n !)(1)!1()(2!2)"(0000)(0)1(0)(')()(θ+--+++++=+- , 必有110lim +→=n h θ。

证:由皮亚诺型余项的泰勒公式可得)0(,)()(')()(11)!1()(!)(2!2)("0000)1(0)(0→++++++=+++++h h o h h h h x f x f h x f n n n x f n n x f x f n n两个泰勒公式相减可得到)()1()()()(0)1(0)(0)(h o h n x f x fh x fn n n ++=-++θ。

将左式中的)(0)(h x f n θ+展开为一阶的泰勒公式,则)()()()(0)1(0)(0)(h o h x f x f h x fn n n +⋅+=++θθ。

于是 )()1()()()()()(0)1(0)1(0)(0)(h o h n x f h o h x fx f h x fn n n n ++=+⋅=-+++θθ从而 )0(,11)(11→+→++=h n h h o n θ。

5.函数),(y x z z =在某个区域中有二阶连续的偏导数,满足偏微分方程yz x yx z∂∂∂∂∂⋅=212。

试用求偏导数的逆向思维求解下列问题:(1)求),(y x z 的一个表达式(特解)。

(2)求),(y x z 的一般表达式(通解)。

解:原方程可写为0)(21=⋅-∂∂∂∂z xx zy,故)(21x f z xxz=⋅-∂∂()(x f 是关于x 的一元函数,对于y 来讲是常数)。

将它看作关于x 的一阶线性方程,则x y x y dx e x f e z xdxx dx ⋅+=⎥⎦⎤⎢⎣⎡+⎰⎰=⎰-)()()()(22ϕψϕ,(通解) 其中⎰⎰⎰=-dx ex f ex xdxxdx22)()(ψ,)(y ϕ是关于y 的一元函数,对于x 来讲是常数。

或写为[]x y x z )()(ϕφ+=(通解)。

这里 xx x )()(ψφ=,)(y ϕ和)(x φ有二阶连续的导数。

取x x =)(φ,y y =)(ϕ。

则x x y z )(+=(特解)。

二、填空题1.设)(x y y =是常系数方程 xe qy py y 3'"=++的一个特解,满足0)0(')0(==y y 。

则)(sin lim 20x y x x →。

解:用等价无穷小代换,两次使用洛必达法则,及)("x y 的连续性可得)0("2)("2lim )(lim )(sin lim 02020y x y x y x x y x x x x ===→→→。

当0=x 时,由方程1)0()0(')0("=++qy py y 及初始条件知1)0("=y 。

于是,原式=2。

2.极限30)(sin lim x x x x x x -+→。

解:由拉格朗日中值定理,分子)sin ln ln (sin ln ln x x x x e e ex x xx -=-=ξ,其中ξ介于x x x x sin ln ,ln 之间。

当+→0x 时,1→ξe 。

于是由洛必达法则可得,原式61sin ln ln lim 30=-=+→x x x x x x 。

3.曲线2x y =和xy 1=的公切线方程为。

解:设公切线在曲线2x y =和xy 1=上的切点分别为),(211x x 和),(212x x 。

于是切线方程分别为2112x x x y -= 和 22221x x x y +-=。

比较系数应有方程组 22112x x -= , 2212x x =-。

其解为 21,221-=-=x x 。

因此切线方程为 44--=x y 。

4.设)(x f 连续,在1=x 处可导,且满足 )0(,)(8)sin 1(3)sin 1(→+=--+x x o x x f x f 。

则曲线)(x f y =在1=x。

解:在等式两端取极限0→x ,可得0)1(=f 。

于是由xx o x x x f x f sin )(8sin )sin 1(3)sin 1(+=--+, 可得 ,sin )(8sin )sin 1()1(3sin )1()sin 1(xx o x x x f f x f x f +=--⋅+-+令 0→x ,上式变为8)1('3)1('=+f f ,推出2)1('=f 。

切线为22-=x y 。

5.设x e x fxsin )(=,则高阶导数)0()2008(f 。

解:⎪⎭⎫ ⎝⎛+=+=4sin 2)sin (cos )('πx e x x e x f x x 。

由数学归纳法可得()⎪⎭⎫ ⎝⎛⋅+=4sin 2)()(πn x ex fxnn 。

当2008=n 时0)502sin(2)0(01004)2008(==πe f6.设⎪⎩⎪⎨⎧=+≠++=0,00,)(),(222222y x y x y x x y x f p ,若使该函数在原点连续,p 的取值范围是解:当21<p 时,)0,0(),(,0)()(|),(|21222222→→+=++≤-y x y x y x y x y x f p p。

当21≥p 时,沿路径0=y 有 ⎪⎪⎩⎪⎪⎨⎧>∞====→→=→21,21,1lim )0,(lim ),(lim2000)0,0(),(p p xx x f y x f p x x y y x 。

综上所述可知,p 的取值范围是),(21-∞。

7.函数项级数∑∞=+=1)1ln()(n xn n x S 的收敛域为。

解:当1-<x 时,取0>p 使得1-<-<p x ,则一般项 2ln 11)1ln(1)1ln()(0⋅<+<+=≤p p x n n n n n n x u 。

由正项级数∑∞=11n pn收敛,根据比较法可知该函数项级数收敛。

当1-≥x 时,一般项 )1ln(1)1ln()(n n n n x u x n +≥+=。

由积分判别法知∑∞=+1)1ln(1n n n 发散,根据比较法可知该函数项级数发散。

8.数项级数∑∞=--1)!2()!2()1(n nnn n n 的和=S 。

解:2ln 1cos 1)2ln ()1cos 1()1()!2(1)1(11++-=--+-=---=∑∑∞=∞=n nn nn n S 。

9.不定积分⎰=++=421x x dx I。

解:⎰⎰⎰++-++++=++-++=dx xx x dx x x x dx x x x x I 4224224222112111211)1()1(21 ⎰⎰-+-++-+=dx x x x dx x x x 1)1(11213)1(11212222⎰⎰-++-+--=dx x x x x d x x x x d 1)1()1(213)1()1(2122C x x x x x x C xx x x x x ++++---=+++-+--=11ln 4131arctan 3211111ln 4131arctan32122210. 可微函数),,(z y x u u =满足dz e dy xze dx yze du xyxy xy ++=,则=u。

解:由微分公式 dz e xdy ydx ze dz e dy xze dx yze xyxyxyxyxy++=++)( dz e e zd dz e xy d ze xyxyxyxy+=+=)()()(xyze d = 于是,C ze u xy+=。

相关文档
最新文档