基于颜色特征的图像检索算法的实现

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录

摘要 (1)

关键字 (1)

1绪论 (1)

1.1 基于内容的图像检索的概念 (1)

1.2 基于内容的图像检索的发展历史 (1)

1.3 基于内容的图像检索的特点和主要应用 (1)

1.4 基于内容的图像检索的关键技术 (2)

1.5 国内外研究现状 (3)

1.5.1 国外研究现状 (3)

1.5.2 国内研究现状 (4)

2 基于颜色特征的图像检索方法 (4)

2.1 颜色度量体系 (4)

2.2 颜色空间 (5)

2.2.1 RGB颜色空间 (5)

2.2.2 HSV颜色空间 (5)

2.2.3 CMY颜色空间 (6)

3 颜色特征的表达 (7)

3.1 颜色直方图 (7)

3.2 累加直方图 (8)

4 图像特征的相似性匹配 (9)

4.1 距离度量方法 (9)

4.2直方图的交集的方法 (9)

4.3 欧式距离法 (9)

5 图像检索算法实现 (10)

5.1程序开发运行环境 (10)

5.2 程序检索逻辑 (10)

5.3 算法具体实现 (11)

5.4 实例演示 (14)

6 全文总结与展望 (15)

6.1 全文总结 (15)

6.2 展望 (15)

致谢 (15)

参考文献 (16)

英文摘要 (16)

基于颜色特征的图像检索算法的实现

摘要:文章介绍了一种基于颜色特征的图像检索技术的算法并给出了程序实现。首先介绍了基于内容的图像检索技术、发展历史及基于内容的图像检索技术的特点和主要应用,并在此基础上探讨了该领域所用到的一些关键技术。文章着重探讨了图像的颜色空间、图像特征提取及图像相似性度量等内容,并利用matlab技术实现了一个简单图像检索的程序。文章最后则对当前基于内容图像检索技术研究热点和今后的发展方向进行简单的阐述。

关键字:基于内容的图像检索;颜色特征;颜色直方图;相似度度量方法

1 绪论

1.1 基于内容的图像检索的概念

基于内容的图像检索[1](Content Based Image Retrieval, CBIR)是一项从图像数据库中找出与检索式内容相似的图像的检索技术。它利用从图像中自动抽取出来的底层特征,如颜色、纹理、轮廓和形状等特征,进行计算和比较,检索出符合用户需求的结果图像集。目前图像检索系统技术实现的基础是对底层特征信息的计算和比较,也即是“视觉相似”。

1.2 基于内容的图像检索的发展历史

图像检索技术的发展[2]可以分为两个阶段,第一阶段始于70年代,当时的图像检索是通过人工的标注来实现的,随着计算机技术和通信网技术的发展,特别是因特网的快速发展,图像数据的容量越来越大了,这种“以关键字找图”的方法越来越不适应检索技术的发展了。由于图像内容的丰富内涵以及人们对图像内容进行抽象时的主观性不同的人对同一幅图像有不同的理解,这就引入了主观多义,不利于检索。为了克服文本标注检索的弊端,90年代研究者提出了基于内容的图像检索,其方法是:根据图像的颜色特征、纹理特征、形状特征以及空间关系等作为索引,计算查询图像和目标图像之间的相似距离,然后按相似度匹配进行检索,这种技术很大程度地利用了人们的视觉客观特性,避免不同人对图像主观理解的不同而达不到理想的搜索效果。从研究方向的层面来看,基于内容的图像检索可分为三层:第一层是根据图像的底层特性来进行检索,如颜色、纹理,形状等等,涉及图像信息处理、图像分析和相似性匹配技术;第二层是基于图像对象语义,如图像中实体及实体之间的拓扑关系的检索,对象级检索技术建立在下层特征基础上,并引入了对象模型库、对象识别和人工智能等图像理解技术;第三层是基于图像的抽象属性如行为语义,情感语义和场景语义的推理学习来进行检索。需要用到知识库和更加有效的人工智能和神经网络技术。这三个层次由低到高,与人的认知接近,下一个层次通常包含了比上一个层次更高级的语义,更高层的语义往往通过较低层的语义推理获得。尽管经过了多年的研究,较为成熟的基于内容的图像检索技术目前仍处于底层水平,由于底层研究是上层研究的基础,为了给上层建立准确、有效的图像特征提取方法,底层的研究仍在不断的发展。

1.3 基于内容的图像检索的特点和主要应用

基于内容的图像检索技术有以下特点[3]:

一是它突破了传统的基于表达式检索的局限,从媒体内容中提取信息线索。

利用图像内容特征建立索引进行检索,使得检索更加有效,适应性更强。

二是基于内容的图像检索是一种近似匹配,即按照某种相似性度量,比较图像特征间的差异度。相似度较低的图像将作为检索结果返回给用户。

三是它是大型数据库的快速检索。在实际的多媒体数据库中,数据量巨大,而且种类和数量巨大,因此要求CBIR技术快速地实现对多媒体信息的检索。

四是以相关反馈为有效手段。为了提高检索的准确性,整个过程是个逐步逼近和相关反馈的过程。用户的交互性增强了表达查询、评价查询结果和基于评价结果进行进一步检索的能力。

CBIR己经成功地应用于一些专门领域。典型应用领域[4]包括:

(1)搜索引擎:随着各种电子商务网站的发展,图像搜索引擎将成为这些网站的重要工具。

(2)家庭用图像检索:数码科技使得普通家庭也会产生成千上万的图像,家庭图像检索系统将是家庭PC的一个基本工具。

(3)数字图书馆:数字图书馆实际上是一个数字信息资源库,其中有字符数值库、文本库、声音库、图像库等。因此,如何快速、高效地从数字图书馆中找出用户所需的信息就成为现代图书馆研究的热点和关键技术之一。

(4)商标检索系统:可在收录了己注册商标的数据库中查找是否有与注册商标类似的,防止商标权受侵害。

(5)法律及公安:它是图像数据库技术的一个重要应用领域。典型的例子有:面部数据库、指纹数据库、犯罪纪录数据库以及建筑物保安数据库等。我国在“人脸”及“指纹”数据库建立方面已做了不少工作,并有一批实用性的成果投入应用。

(6)邮票资料库:主要用于邮票资料的管理与查询,也可以提供邮票鉴定等更高级的应用服务。

(7)教育与培训:在教育与培训领域,例如远程教学、交互式培训、自学教育及雇员再教育等有着广阔的应用前景。国外在培训系统领域已投入了大量的经费,开展了相关课题的研究工作。我国多媒体教学研究工作也已经开展,网上教学与辅导已进入实用阶段,这些都为图像数据库应用于教育培训领域提供了广阔的前景。

(8)工业与商业:工业应用包括企业多媒体信息系统、CAD/CAM等商业应用有电子商务、在线广告、在线购物、股票等。

(9)保健及医疗:图像数据库在该领域中应用范围很广,除了专用的图像管理与检索系统外,还包括建立多媒体医疗信息管理系统,将庞杂的医疗数据管理起来.这些数据包括病历、病人的图像信息(如X光片、CT扫描及MRI照片等)以及描述手术过程的视频信息等。它为现有的医学系统带来了一场革命,其中最有前景的应用是远程医疗(Telemedicine)、远程外科手术(Tele-surgery)及远程诊断(Tele-diagnoses)等。

1.4 基于内容的图像检索的关键技术[5]

目前,对于通用的静止图像检索,用于检索的特征主要有颜色(Color)、纹理(Texture)、形状(Shape)等,其中颜色、纹理、形状应用尤为普遍;活动视频检索脱胎于序列图像分析中的技术。本文主要研究对静止图像检索,其中数据库是专用的图像库。

对于目标图像和检索图像进行颜色空间转换、亮度图像的边缘提取和二值分割、提取目标区域的颜色特征。颜色内容包含两个一般的概念,一个对应于全局

相关文档
最新文档