六年级正反比例练习题
六年级正反比例应用题精选
![六年级正反比例应用题精选](https://img.taocdn.com/s3/m/d510f431cd1755270722192e453610661fd95a72.png)
六年级正反比例应用题精选1、生产一批零件计划每天生产160个,需要15天完成。
实际每天超产80个,能提前几天完成?答案:每天实际生产240个,只需要7.5天就能完成。
2、电视机厂要生产一批电视机,头30天生产180台,按这个速度,要生产1320台,需要多少天?答案:每天生产180/30=6台,需要220天才能生产1320台。
5、用边长20厘米的方砖铺一块地,需要2000块。
如果改用边长为40厘米的方砖铺地,需要多少块?答案:每块40厘米的方砖面积是20厘米的方砖的4倍,所以只需要500块。
6、一堆煤用载重4吨的汽车运,需要20辆才能一次运完。
如果改用载重5吨的汽车运,需要几辆才能运完?答案:每辆车多运1吨,所以只需要16辆车就能运完。
7、学生参加搬砖劳动,6人搬砖162块,按这个速度,再增加432块,需要多少学生?答案:每个学生平均搬27块砖,所以需要16个学生才能搬完。
8、一捆铅丝重520克,剪下20米后,这捆铅丝少了130克,这捆铅丝还剩多少米?答案:每米铅丝的重量是(520-130)/20=19克,所以这捆铅丝还剩(520-130)/19=20米。
9、运来一批纸装订成练本,每本36页,可订40本。
如果每本30页,可订多少本?答案:每本练本的页数减少了6页,所以可以订的本数增加了40/6=6.67本,即可订46本。
10、比例尺是xxxxxxxx320千米的地图上,量得甲地到乙地的距离是5.6厘米,实际距离应是多少?答案:实际距离是5.6*320/=0.千米,即17.92米。
11、某工程队修一条路,12天共修780米,还剩下325米没有修。
按这个速度,修完这条公路,共需要多少天?答案:每天修65米,还需要修325米,所以需要5天才能完成。
13、食堂有一批煤,计划每天烧105千克可以烧30天。
改进烧煤技术后,每天烧煤90千克,这批煤可以多烧多少天?答案:每天少烧15千克,所以可以多烧30*105/15=210天。
六年级数学下册正反比例判断练习题(人教版)
![六年级数学下册正反比例判断练习题(人教版)](https://img.taocdn.com/s3/m/c34fa3ed690203d8ce2f0066f5335a8103d2665d.png)
正反比例练习题班级:姓名:成绩:一、判断题1.植树的成活率一定,植树的棵树和成活的棵树成正比例。
( )2.圆的面积和半径成正比例。
( )3.正方形的周长和边长成正比例。
( )4.圆柱体的高一定,底面半径与体积成正比例。
( )5.小明的年龄和她的妈妈的年龄成正比例。
( )6.圆锥体的高一定,体积和底面半径的平方成正比例。
( )7.总价一定,单价和数量成反比例。
()8..实际距离一定,图上距离与比例尺成正比例。
()9.正方体体积一定,底面积和高成反比例。
()10.订阅《辽沈晚报》的总钱数和分数成正比例。
()11、方砖的边长一定,要铺地面积和用砖块数成正比例。
()12、用瓷砖铺地,要用的砖数一定,铺地的面积和瓷砖的面积成正比例。
()13、要铺地的总面积一定,每块方砖的边长与需要的块数成正比例。
()16、梯形的面积一定,高和上下底的和成反比例。
()17、圆的半径一定,圆的面积和兀不成比例。
()18、加工时间一定,加工零件个数和加工每个零件所需的时间成反比例。
()19、南京到北京,所行驶的路程和速度不成比例。
()20、出盐率一定,盐的重量和盐水重量成正比例。
()21、正方形的边长和面积成正比例。
()22. y:7=x y和x成()比例。
23.圆柱德高一定,体积和底面积成()关系。
24.圆的周长和直径成()比例。
二、选择题1、因为14 X=2Y,所以X:Y=():(),X和Y成()比例。
2、因为X=2Y,所以X:Y=():(),X和Y成()比例。
3、下列各式中(a、b均不为0),a和b成正比例的是()。
A 、a×8=b×5B 、9a=6bC 、a×13 -1÷b= 0 D、a+710 =b4、下面不成比例的是( )。
A、正方形的周长和边长B、某同学从家到学校的步行速度和所用时间C、圆的体积和表面积5、如果y=15x, x和y成( )比例;如果y=X15, x和y成( )比例6、如果Y = 8X ,X 和Y 成()比例如果Y =X8,X 和Y 成()比例。
六年级正反比例易错题应用题
![六年级正反比例易错题应用题](https://img.taocdn.com/s3/m/26708ca89f3143323968011ca300a6c30c22f131.png)
六年级正反比例易错题应用题一、正比例应用题1. 题目一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时。
甲乙两地之间的公路长多少千米?解析:根据题意可知汽车行驶的速度是一定的。
因为速度 = 路程÷时间,当速度一定时,路程和时间成正比例关系。
设甲乙两地之间的公路长x千米。
先求出汽车的速度,已知汽车2小时行驶140千米,速度为140÷2 = 70(千米/小时)。
根据正比例关系可列出比例式:(140)/(2)=(x)/(5)。
然后交叉相乘得到2x = 140×5,2x=700,解得x = 350千米。
2. 题目小明买9本练习本花了4.5元,如果买同样的练习本20本需要付多少钱?解析:因为练习本的单价是一定的,单价 = 总价÷数量,当单价一定时,总价和数量成正比例关系。
设买20本练习本需要付x元。
先求出单价,4.5÷9 = 0.5(元/本)。
列出比例式:(4.5)/(9)=(x)/(20)。
交叉相乘得9x = 4.5×20,9x = 90,解得x = 10元。
二、反比例应用题1. 题目一间房子要用方砖铺地,用面积是9平方分米的方砖,需要96块,如果改用面积是4平方分米的方砖,需要多少块?解析:房间地面的总面积是一定的。
因为每块砖的面积×砖的块数 = 房间地面总面积,当房间地面总面积一定时,每块砖的面积和砖的块数成反比例关系。
设改用面积是4平方分米的方砖需要x块。
房间地面总面积为9×96 = 864平方分米。
根据反比例关系可列出方程4x = 9×96。
解得x=(9×96)/(4)=216块。
2. 题目一辆汽车从甲地开往乙地,每小时行60千米,5小时到达。
如果要4小时到达,每小时应行多少千米?解析:甲乙两地的路程是一定的。
因为速度×时间 = 路程,当路程一定时,速度和时间成反比例关系。
正反比例练习题及答案
![正反比例练习题及答案](https://img.taocdn.com/s3/m/ba05617f24c52cc58bd63186bceb19e8b8f6ecde.png)
正反比例练习题及答案相关热词搜索:练习题正反比例答案六年级比例练习题答案正反比例的概念正比例和反比例篇一:正比例和反比例习题精选及答案正比例和反比例习题精选一、判断.1.一个因数不变,积与另一个因数成正比例.()2.长方形的长一定,宽和面积成正比例.()3.大米的总量一定,吃掉的和剩下的成反比例.()4.圆的半径和周长成正比例.()5.分数的分子一定,分数值和分母成反比例.()6.铺地面积一定,方砖的边长和所需块数成反比例.()7.铺地面积一定,方砖面积和所需块数成反比例.()8.除数一定,被除数和商成正比例.()二、选择.1.把一堆化肥装入麻袋,麻袋的数量和每袋化肥的重量.()A.成正比例B.成反比例C.不成比例2.和一定,加数和另一个加数.()A.成正比例B.成反比例C.不成比例3.在汽车每次运货吨数,运货次数和运货的总吨数这三种量中,成正比例关系是(),成反比例关系是().A.汽车每次运货吨数一定,运货次数和运货总吨数.B.汽车运货次数一定,每次运货的吨数和运货总吨数.C.汽车运货总吨数一定,每次运货的吨数和运货的次数.三、填空.1.两种()的量,一种量变化,另一种量(),如果这两种量中()的两个数的()一定,这两种量就叫做成正比例的量,它们的关系叫做(),关系式是().2.两种()的量,一种量变化,另一种量(),如果这两种量中()的两个数的()一定,这两种量就叫做成反比例的量,它们的关系叫做(),关系式是().3.一房间铺地面积和用砖数如下表,根据要求填空.铺地面积(平方米)1 2 3 4 5用砖块数25 50 75100 125(1)表中()和()是相关联的量,()随着()的变化而变化.(2)表中第三组这两种量相对应的两个数的比是(),比值是();第五组这两种量相对应的两个数的比是(),比值是().(3)上面所求出的比值所表示的的意义是(),铺地面积和砖的块数的()是一定的,所以铺地面积和砖的块数().4.练习本总价和练习本本数的比值是().当()一定时,()和()成()比例.二、判断下面每题中的两种量是不是成比例,成什么比例,并说明理由.1.平行四边形的高一定,它的底和面积.2.被除数一定,商和除数.3.小明的年龄和他的体重.4.天数一定,生产零件的总个数和每天生产零件的个数.三、思考.、、三种量的关系是:×=1.如果一定,那么和成()比例;2.如果一定,那么和成()比例;3.如果一定,那么和成()比例.参考答案一、判断.(√)(√)(×)(√)(√)(×)(√)(√)二、选择.1.(B )2.(C )3.(C ).1.两种(相关联)的量,一种量变化,另一种量(随着变化),如果这两种量中(相对应)的两个数的(比值)一定,这两种量就叫做成正比例的量,它们的关系叫做(正比例关系),关系式是((一定)).2.两种(相关联)的量,一种量变化,另一种量(随着变化),如果这两种量中(相对应)的两个数的(积)一定,这两种量就叫做成反比例的量,它们的关系叫做(反比例关系),关系式是((一定)).(1)表中(铺地面积)和(用砖块数)是相关联的量,(用砖块数)随着(铺地面积)的变化而变化.(2)表中第三组这两种量相对应的两个数的比是(75∶3),比值是(25);第五组这两种量相对应的两个数的比是(125∶5),比值是(25).(3)上面所求出的比值所表示的的意义是(每平方米用砖块数),铺地面积和砖的块数的(比值)是一定的,所以铺地面积和砖的块数(正比例).4.练习本总价和练习本本数的比值是(练习本单价).当(练习本单价)一定时,(练习本总价)和(练习本本数)成(正)比例.二、判断下面每题中的两种量是不是成比例,成什么比例,并说明理由.1.平行四边形的高一定,它的底和面积.理由:因为,高一定,就是平行四边形面积与底的比值一定.所以,平行四边形的面积与底成正比例.2.被除数一定,商和除数.理由:因为被除数一定,就是商和除数的乘积一定,所以,商和除数成反比例.3.小明的年龄和他的体重.理由:小明的年龄和他的体重虽然也是一对相关联的量,但是这两个量的变化并没有什么规律,找不出哪个是不变量,所以,小明的年龄和他的体重不成比例.4.天数一定,生产零件的总个数和每天生产零件的个数.理由:因为,天数一定,就是生产零件的总个数和每天生产零件的个数的比值一定,所以,生产零件的总个数和每天生产零件的个数成正比例.三、思考.、、三种量的关系是:×=1.如果一定,那么和成(正)比例;2.如果一定,那么和成(正)比例;3.如果一定,那么和成(反)比例.篇二:正反比例练习题正反比例练习题一、选择、填空。
小学六年级数学:正反比例练习题41417
![小学六年级数学:正反比例练习题41417](https://img.taocdn.com/s3/m/026bab19a66e58fafab069dc5022aaea998f41cb.png)
人教版小学六年下册 <正比率和反比率的意 >一、判断.1.一个因数不,与另一个因数成正比率.()2.方形的必定,和面成正比例.()3.大米的量必定,吃掉的和剩下的成反比率.()4.的半径和周成正比率.()5.分数的分子必定,分数和分母成反比率.()6.地面必定,方的和所需数成反比率.()7.地面必定,方面和所需数成反比率.()8.除数必定,被除数和商成正比率.()二、.1.把一堆化肥装入麻袋,麻袋的数目和每袋化肥的重量.()A.成正比率B.成反比率C.不可比率2.和必定,加数和另一个加数.()A.成正比率 B.成反比率C.不可比率3.在汽每次运吨数,运次数和运的吨数三种量中,成正比率关系是(),成反比率关系是().A.汽每次运吨数必定,运次数和运吨数.B.汽运次数必定,每次运的吨数和运吨数.C.汽运吨数必定,每次运的吨数和运的次数.正比率反比率(一)一、判断:1、的面和的半径成正比率。
()2、的面和的半径的平方成正比率。
()3、的面和的周的平方成正比率。
()4、正方形的面和成正比率。
()5、正方形的周和成正比率。
()6、方形的面必定,和成反比率。
()7、方形的周必定,和成反比率。
()8、三角形的面必定,底和高成反比率。
()9、梯形的面必定,上底和下底的和与高成反比率。
()10、的周和的半径成正比率。
()二.(1)依据表格判断数目的比率关系。
(小23578⋯⋯)行程(千100150250350400⋯⋯米)与行程 ()。
A.成正比率B.成反比率C.不可比率(2)柱体底面与高 ( )。
A.成正比率B.成反比率C.不可比率柱体底面 300 200 150 120 100 ⋯⋯(平方分米)柱体高23456⋯⋯(分米)(3)年与身高 ( )。
A.成正例 B.成反比率 C.不可比率年23456⋯⋯()身高(厘94110119125131⋯⋯米)三.看表填空(1)依据律判断比率关系,并填空。
X23510⋯⋯Y12⋯⋯X 与 Y( )。
六年级数学下册正反比例试卷附答案
![六年级数学下册正反比例试卷附答案](https://img.taocdn.com/s3/m/7be573a501f69e31423294b2.png)
六年级(下) 数学第四、五单元检测试题班级________学号_______姓名____________成绩___________一、填空1、下图是某市文化生活区方位图 (度量图上距离时,都取整厘米数)。
(1) 少年宫在电影院( )偏( )( )O方向( )米处。
(2) 影视城在电影院( )偏( )( )O方向( )米处。
2、下图是某市3号公交车行车线路图,请根据线路图填空。
(1)3号公交车从起点站出发,向()行驶到达青水公园,再向()偏()( )O的方向行()千米到达抗战纪念碑。
(2)由绿博园向()偏()( )O的方向行()千米到达购物中心;从购物中心再向()偏()( )O的方向行()千米到达人民公园。
3、实际距离一定,图上距离与比例尺( )比例。
4、圆锥的高一定,它的体积与底面积( )比例。
5、发芽率一定,发芽的种子数与实验种子数( )比例。
6、一个三角形的底是5厘米,它的面积和高()比例。
7、正方形的周长和边长成()比例,正方形的面积和边长()比例。
8、若8x=10y,那么x、y成()比例关系,x是y的()。
9、甲乙两个互相咬合的齿轮,它们的齿数和转过的转数( )比例。
10、小林骑自行车从家到学校,他骑车的速度和所需时间( )比例。
11、在比例里,两个外项的积一定,两个内项()比例。
12、长度一定的铁丝,平均分成若干段,每段的长度和截的段数()比例。
13、如果Y=X4,X和Y成()比例,Y=4X,X和Y成()比例。
14、ab= c (c≠0),当c一定时,a和b成()比例;当a一定时,b和c成()比例。
少年宫图书馆电影院文化馆N0 400 800米影视城二、判断1、 两种相关联的量,不成正比例就成反比例。
………………………………( )2、 X 和Y 表示两种相关联的量,同时5X-7Y=0,X 和Y 不成比例。
…………( )3、减数一定,被减数和差成正比例。
……………………………………………( )4、长方形的周长是48米,它的长和宽成反比例。
六年级正反比例题100道
![六年级正反比例题100道](https://img.taocdn.com/s3/m/6f3938e1ed3a87c24028915f804d2b160b4e86c8.png)
六年级正反比例题100道正比例题:1. 如果一个苹果的价格是2元,那么5个苹果的价格是多少元。
2. 5本书的价格是20元,那么每本书的价格是多少元。
3. 一个足球的价格是50元,购买3个足球需要多少钱。
4. 如果一辆车每小时行驶60公里,行驶2小时后能行驶多少公里。
5. 4个橙子的总价是16元,1个橙子多少钱。
6. 一条绳子长6米,3条绳子总长多少米。
7. 如果每辆车能载5人,10辆车能载多少人。
8. 一盒巧克力有10块,3盒巧克力有多少块。
9. 每个学生要交100元的学费,10个学生总共交多少钱。
10. 一台电脑的价格是4000元,4台电脑的总价是多少元。
11. 如果1升油的价格是8元,5升油的价格是多少元。
12. 一辆自行车的价格是300元,7辆自行车总共需要多少钱。
13. 1本书的页数是200页,5本书的总页数是多少页。
14. 如果每个学生需要2支铅笔,20个学生需要多少支铅笔。
15. 一棵树的高度是3米,5棵树的总高度是多少米。
16. 1块蛋糕的价格是15元,3块蛋糕总共多少钱。
17. 如果每本杂志售价10元,9本杂志总共多少钱。
18. 一辆车每小时行驶80公里,4小时能行驶多少公里。
19. 如果1公斤米的价格是5元,2公斤米总共多少钱。
20. 每个孩子要喝250毫升的牛奶,8个孩子需要多少牛奶。
21. 一支笔的价格是3元,12支笔总共多少钱。
22. 如果一个篮球的价格是120元,3个篮球的价格是多少元。
23. 一根铅笔的长度是20厘米,4根铅笔的总长度是多少厘米。
24. 如果一个人的工资是3000元,5个人的总工资是多少元。
25. 每条鱼的重量是200克,10条鱼的总重量是多少克。
26. 如果1个西瓜的价格是30元,4个西瓜的价格是多少元。
27. 一辆车的油耗是每公里8升,行驶100公里需要多少升油。
28. 每个学生要用5张纸,25个学生需要多少张纸。
29. 如果一个房间的面积是50平方米,5个这样的房间总面积是多少平方米。
(完整)六年级正反比例练习题
![(完整)六年级正反比例练习题](https://img.taocdn.com/s3/m/64fadd7804a1b0717fd5dd98.png)
一、判断。
1、一个因数不变,积与另一个因数成正比例。
()2、长方形的长一定,宽和面积成正比例。
()3、圆的半径和周长成正比例。
()4、铺地面积一定,方砖的边长和所需块数成反比例。
()5、铺地面积一定,方砖面积和所需块数成反比例。
()6、圆的面积和圆的半径成正比例。
()7、圆的面积和圆的半径的平方成正比例。
()8、圆的面积和圆的周长的平方成正比例。
()9、正方形的面积和边长成正比例。
()10、正方形的周长和边长成正比例。
()11、长方形的面积一定时,长和宽城反比例。
()12、长方形的周长一定时,长和宽城反比例。
()13、梯形的面积一定时,上底和下底的和与高成反比例。
()下列各题中的两个量是不是成比例?如果成比例,成什么比例?简单说明理由。
1.路程一定,速度和时间。
()2.车轮的直径一定,所行是的路程和车轮的转数。
()3.图上距离一定,实际距离和比例尺。
()4.数A与它的倒数。
()5.收入一定,支出和结余。
()6.除数一定,被除数和商。
()7.5A=3B,A和B。
()8.总价一定,观看同一场电影的票价和人数。
()9.三角形的面积和它的高。
()10.长方形的周长一定,它的长和宽。
()11、年龄和身高。
()12、比例尺一定,图上距离和实际距离。
()13、比的前项一定,比的后项与比值。
()二、应用题。
1、工厂制作一种零件,现在每个零件所用的时间由革新前的8分钟减少到3分钟,原来制造60个的时间现在能生产多少个?(用比例的方法解答)2、一个晒盐场用500千克海水可以晒15千克盐,照这样计算,用100吨海水可以晒多少千克盐?(用比例方法解答)3、印刷厂装订一批图书,原计划每天装订500本,30天完成;实际上只用了25天就完成了任务,实际每天装订多少本?(用比例方法解答)4、修路队修一条长120千米的公路,前4天修了20千米,照这样的速度,修完全路共需要多少天?(用比例方法解答)三、解比例25:7=X:35 X:15=13:56 2.8:0.8=0.7:X四、汽车的速度是火车速度的四分之三,两车从A底同时向B地开出,火车6小时到达,当火车到达B地时,汽车还需要再行多少小时到达?。
六年级下册数学试题- 正比例和反比例 苏教版(含答案)
![六年级下册数学试题- 正比例和反比例 苏教版(含答案)](https://img.taocdn.com/s3/m/0cbedc1625c52cc58ad6be46.png)
《第6章正比例和反比例》单元测试卷一.填空题(共18小题)1.如果a与b成正比例关系,则x=,如果a与b成反比例关系,则x=.a3 1.2b5x2.根据3A=4B,那么A:B=,成比例.3.有x、y、z三个相关联的量,并有xy=z.当z一定时,x与y成比例,当x一定时,z与y成比例.4.一列火车匀速行驶时,路程与时间成比例关系.5.=c(a,b,c不为0),当a一定时,b和c成比例;当c一定时,a和b成比例.6.如果a=4c(a、c均为非0自然数),a和c的最大公因数是,a和c成比例.7.圆的周长和直径成比例;小芳上学的平均速度与所花时间成比例.8.已知=b(a、b为非零自然数),a和b成比例;a和b的最大公因数;a一定是(填“奇数”或“偶数”).9.x4?y1224表中,如果x和y成正比例,那么“?”处填;如果x和y成反比例,那么“?”处填.10.如果8x=y,那么x和y成比例,若8:x=y,则x与y成比例.11.认真观察下表:每天生产的吨数和需要生产的天数成关系.每天生产的吨数100200300400500…需要生产的天数6030201512…12.=C(B≠0)中,C一定,A和B成比例.A一定,B和C成比例.13.因为=(x≠0,y≠0),所以x和y成比例.14.三角形的面积一定,它的底和高成比例.圆的周长和半径成比例.15.若=(a×b≠0),则a,b成比例关系,且a和b的最大公因数是.16.a是b的时,a和b成关系.17.如果ab=6,则a和b成比例;如果=(m、n均不为0),则m和n成比例.18.如果=,那么:x和y成比例;如果=,那么x和y成比例.二.解答题(共7小题)19.观察下表中所给相关联的量完成后面问题.x230y5500.2(1)根据表中所给出的x和y是两个相关联的量,把表格填写完整.(2)表中x和y是成正比例还是反比例关系?为什么?20.一辆汽车所行的时间与路程的关系,可以用如图来表示,请你根据图上信息填一填、算一算下列问题.(1)从图上可以看出这辆车所行的路程与时间,这两个量成比例.(2)如果这辆汽车以这样的速度从甲地行到乙地用了5小时,问甲、乙两地之间的路程是多少千米?21.下表中x和y成反比例的两个量,请把表格填完整x10403060y5252022.某运输队在为灾区抢运120吨救灾物资.如果要一次把所有救灾物资全部运出,车辆的载重量与所需车辆的数量如下表,请把表格填写完整.载重量/吨 2.54510数量/辆4830(1)车辆的载重量和所需车辆的数量成什么比例?为什么?(2)如果用载重量6吨的卡车来运,一共需要多少辆?23.判断下面每题中两种量成何比例或不成比例,并说明理由.(1)订阅《人民日报》的份数和钱数.(2)李叔叔从家到工厂,骑自行车的速度和所需的时间.(3)正方体的棱长总和与棱长.(4)铺地的面积一定,砖块的面积和用砖的转数.(5)小明做10道数学题,做完的题和没做的题.(6)车轮的直径一定,所行驶的路程和车轮转数.(7)把一根木头平均锯成五段,所锯的段数和每段的长度.(8)圆锥的底面半径一定,它的体积和高.(9)全校人数一定,出勤人数和缺勤人数.(10)全校人数一定,出勤人数和出勤率.24.根据下面各题的条件,先列关系式,在根据关系式判断成什么比例①圆的直径和它的周长.②比的前项一定,比的后项和它的比值.③圆柱的高一定,它的底面积和体积.25.填表(1)已知下表中的y和x成正比例关系,请把表格补充完整.y8.433.642 x 1.22 3.6(2)下表中的m和n成反比例,请把表格补充完整.m0.3 2.4 1.2n50.68《第6章正比例和反比例》2019年单元测试卷参考答案与试题解析一.填空题(共18小题)1.【解答】解:(1)如果x和y成正比例,那么3:5=1.2:x3x=5×1.23x÷3=6÷3x=2;(2)如果x和y成反比例,那么:1.2x=3×51.2x÷1.2=15÷1.2x=12.5;故答案为:2,12.5.【点评】解决此题关键是根据比值一定或乘积一定,先列出比例,进而根据比例的性质先把比例式转化为乘积式来解比例得解;注意等号要对齐.2.【解答】解:因为3A=4B,则B:A=3:4;如果3A=4B,A:B=4:3,即A:B=,是A和B的比值一定,所以A和B成正比例.故答案为:3:4;正.【点评】此题考查比例性质的逆运用,以及辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.3.【解答】解:有x、y、z三个相关联的量,并有xy=z.当z一定时,是乘积一定,所以x 与y成反比例,当x一定时,即z:y=x,是比值一定,所以z与y成正比例.故答案为:反,正.【点评】此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.4.【解答】解:因为:路程÷时间=速度(一定),是商一定,则路程与时间成正比例关系;故答案为:正.【点评】此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.5.【解答】解:由=c,得b×c=a(一定),是乘积一定,所以成反比例;=c(一定),是比值一定,所以a和b成正比例;故答案为:反,正.【点评】本题考查成正、反比例的知识,判断时,就看两种量是对应的比值一定,还是对应的乘积一定,再做出解答.6.【解答】解:(1)因为a=4c,可知a和c是倍数关系,其中c是较小数,所以a和c最大公因数是c;(2)由a=4c,可知a:c=4,即a和c的比值一定,根据正比例的意义,a和c成正比例;故答案为:c,正.【点评】本题关键根据倍数关系,倍数关系的最大公因数是较小数;再得出a、c的比值一定还是乘积一定,从而判断成何比例.7.【解答】解:因为“圆的周长÷圆的直径=圆周率(一定),是对应的比值一定,所以圆的周长和直径成正比例;因为“时间×速度=路程(一定),是对应的乘积一定,所以路程(家到学校的距离)一定,小芳上学的平均速度与所花时间成反比例;故答案为:正,反.【点评】此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.8.【解答】解:已知=b(a、b为非零自然数),即a:b=4,是比值一定,则a和b成正比例;已知=b,即a=4b,说明a和b成倍数关系,则b是a和b的最大公因数,a一定是偶数;故答案为:正,b,偶数.【点评】此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.9.【解答】解:(1)4:12=x:2412x=4×2412x=96x=8(2)24x=4×1224x=48x=2故答案为:8、2.【点评】此题属于根据正、反比例的意义解题,如果两种相关联的量成正比例,则对应的比值一定;如果两种相关联的量成反比例,则对应的乘积一定;再根据比值或乘积一定列出比例,求得未知数的数值即可.10.【解答】解:(1)因为8x=y,则y:x=8(一定),是比值一定,所以x和y成正比例;(2)如果8:x=y,则xy=8(一定),是积一定,所以x和y成反比例;故答案为:正,反.【点评】此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.11.【解答】解:因为:100×60=200×30=300×20=400×15=500×12,即每天生产的吨数×需要的天数=这批货物的总吨数(一定),是乘积一定,所以每天生产的吨数和需要生产的天数成反比例关系.故答案为:反比例.【点评】此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.12.【解答】解:=C(B≠0)中,C一定,是A和B的比值一定,所以A和B成正比例;因为=C(B≠0),所以BC=A(一定),是B和C的乘积一定,所以B和C成反比例;故答案为:正,反.【点评】此题是辨识两种量是否成正、反比例,要看这两种量是对应的比值一定,还是对应的乘积一定.13.【解答】解:因为=(x≠0,y≠0),则y:x=6:7=(一定);所以x和y成正比例.故答案为:正.【点评】此题属于辨识成正反比例的量,就看这两种量是否是对应的乘积一定,还是比值一定,再做出判断.14.【解答】解:因为三角形的底×高=面积×2(一定),符合反比例的意义,所以三角形的面积一定,底和高成反比例;因为圆的周长÷半径=2π(一定),符合正比例的意义,所以圆的周长和半径成正比例;故答案为:反,正.【点评】此题属于根据正、反比例的意义,辨识两种相关联的量成不成比例,成什么比例,就看这两种量是对应的比值一定,还是对应的乘积一定,还是对应的其它量一定,再做出判断.15.【解答】解:=(a×b≠0),则=(一定),所以a和b成正比例;因为自然数b是自然数a的2倍,所以a、b的最大公因数是a;故答案为:正,a.【点评】本题主要是灵活利用比例的基本性质解决问题,求两个数的最大公约数的方法进行解答.16.【解答】解:因为a是b的即a÷b=(一定)是比值一定,所以a和b成正比例.故答案为:正比例.【点评】此题属于根据正、反比例的意义,辨识两种相关联的量是否成正比例,就看这两种量是否是对应的比值一定,再做出判断.17.【解答】解:(1)因为ab=6(一定),所以a和b成反比例;(2)因为=(m、n均不为0),所以m:n=(一定)所以m和n成正比例.故答案为:反,正.【点评】此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.18.【解答】解:如果=,则xy=5×6=30(一定),那么x和y成反比例;如果=,则:y:x=5:6=(一定),那么x和y成正比例.故答案为:反,正.【点评】此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.二.解答题(共7小题)19.【解答】解:(1)因为:2×5=10,=10,所以:10÷0.2=50,10÷30=,10=12,观察下表中所给相关联的量完成后面问题.x250 3012y5500.2(2)因为2×5=×50,即x×y=k(一定),所以,表中x和y是成反比例关系,答:表中x和y是成反比例关系,因为x×y=k(一定).故答案为:50、、12.【点评】此题考查的目的是理解掌握反比例的意义及应用.20.【解答】解:(1)表示时间和路程关系的图象是一条直线,是正比例图象,所以这两个量成正比例;(2)180÷2×5=450(千米);答:甲、乙两地之间的路程是450千米.故答案为:正.【点评】解答此题的关键是:(1)看两种相关联量是比值一定还是乘积一定,如乘积一定,则两种量成反比例;如比值一定,则两种量成正比例;(2)根据路程、时间和速度三者之间的关系,进行解答.21.【解答】解:10×5=50则:50÷40=1.2550÷25=250÷30=50÷20=2.550÷60=x1040230 2.560y5 1.252520【点评】此题考查反比例意义的应用,利用意义解决问题.22.【解答】解:4×30÷5=120÷5=24(辆)4×30÷10=120÷10=12(辆)载重量/吨 2.54510数量/辆48302412(1)因为2.5×48=120(吨)4×30=120(吨)因为车辆的载重量与所需车辆的数量的乘积一定,所以车辆的载重量与所需车辆的数量成反比例.(2)4×30÷6=120÷6=20(辆)答:用载重量6吨的卡车来运,一共需要20辆.【点评】本题考查了学生正反比例的判断情况,能运用统计表提供的信息解决问题.同时考查了学生理解分析问题的能力.23.【解答】解:(1)订阅《人民日报》的份数和钱数,成正比例,因为订阅《人民日报》的钱数÷份数=单价(一定).(2)李叔叔从家到工厂,骑自行车的速度和所需的时间,成反比例,因为,骑自行车的速度×所需的时间=李叔叔从家到工厂的距离(一定).(3)正方体的棱长总和与棱长,成正比例,因为正方体的棱长总和÷棱长=12(一定).(4)铺地的面积一定,砖块的面积和用砖的转数,成反比例,因为砖块的面积×用砖的转数=铺地的面积(一定).(5)小明做10道数学题,做完的题和没做的题,不成比例,因为小明做10道数学题=做完的题+没做的题,是和一定.(6)车轮的直径一定,所行驶的路程和车轮转数,成正比例,因为车轮的直径一定,则车轮的周长就一定,所行驶的路程÷车轮转数=车轮的周长(一定).(7)把一根木头平均锯成五段,所锯的段数和每段的长度,成反比例,因为所锯的段数×每段的长度=一根木头的长度(一定).(8)圆锥的底面半径一定,它的体积和高,成正比例,因为底面半径一定则底面积就一定,圆锥的体积÷高=底面积(一定).(9)全校人数一定,出勤人数和缺勤人数,不成比例,因为出勤人数+缺勤人数=全校人数(一定),是和一定.(10)全校人数一定,出勤人数和出勤率,成正比例,因为出勤人数÷出勤率=全校人数(一定).故答案为:正比例,反比例,正比例,反比例,不成比例,正比例,反比例,正比例,不成比例,正比例.【点评】此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.24.【解答】解:A、圆的周长÷直径=π(一定),是比值一定,圆的直径和周长成正比例;B、比的后项×比值=比的前项(一定),是乘积一定,所以比的后项与比值成反比例;C、圆柱的体积÷底面积=圆柱的高(一定),所以它的底面积和体积成正比例;故答案为:圆的周长÷直径=π(一定),成正比例;比的后项×比值=比的前项(一定),成反比例;圆柱的体积÷底面积=圆柱的高(一定),成正比例.【点评】此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.25.【解答】解:(1)y8.41425.233.642x 1.22 3.6 4.86(2)m0.3 2.420 1.2 1.5n4050.6108故答案为:14,25.2,4.8,6;40,20,10,1.5.【点评】此题考查了正、反比例的运用,就看这两个量是对应的比值一定,还是对应的乘积一定.。
六年级数学正比例和反比例试题答案及解析
![六年级数学正比例和反比例试题答案及解析](https://img.taocdn.com/s3/m/5f4c071da9114431b90d6c85ec3a87c240288a19.png)
六年级数学正比例和反比例试题答案及解析1.把一根木料锯成4段要用12分钟,照这样,如果要锯成6段,一共需要______分钟。
【答案】20【解析】解:设一共需要x分钟,则有12:(4-1)=x:(6-1),3x=12×5,3x=60,x=20;答:一共需要20分钟。
2.把一根木料锯成4段要6分钟,锯成7段要______分钟。
【答案】12【解析】6÷(4-1)×(7-1),=6÷3×6,=2×6,=12(分钟)答:锯成7段要12分钟。
3.学校买来161米塑料绳子,剪下21米,做12根跳绳,照这样计算,剩下的塑料绳还可以剪______根跳绳。
【答案】80【解析】解:设剩下的塑料绳还可以剪x根跳绳,21:12=(161-21):x,21:12=140:x,x=804.正午时小丽量得自己的影子有40cm,同时它量得身旁一棵树的影长是1m,已知小丽的身高是160cm,那么这棵树高______m。
【答案】4【解析】解:设这棵数高xm,160:40=x;1,40x=160×1,x=160÷40,x=4;答:这棵数高4米。
5.张师傅5小时生产了300个零件.照这样计算,生产480个零件需要多少小时?因题中______一定,所以这道题用______解答。
设_________________为X,列式为__________。
【答案】工作效率;正比例;生产480个零件需要的时间;300:5=480:x.【解析】因为题中的工作效率一定,所以这道题用正比例解答,设生产480个零件需要x小时,300:5=480:x,300x=480×5,x=x=86.正午时小丽量得自己的影子有30cm,同时它量得身旁一棵树的影长是1m,已知小强的身高是180cm,那么这棵树高______m。
【答案】6【解析】解:设这棵数高xm,180:30=x;1,30x=180×1,x=180÷30,x=6答:这棵数高6米。
比例(含正比例和反比例)(试题)-小学数学六年级下册北师大版
![比例(含正比例和反比例)(试题)-小学数学六年级下册北师大版](https://img.taocdn.com/s3/m/751ade15182e453610661ed9ad51f01dc2815725.png)
比例(含正比例和反比例)(试题)-小学数学六年级下册北师大版(1)计算船费与对应人数的比值,说一说哪个量没有变化?(2)乘船船费与人数有什么关系?6.小明和小芳两人压岁钱的比是4∶3,开学时交学费用去钱的比是18∶13,这时小明和小芳各剩下36元、48元,求原来两人各有多少元压岁钱?7.A、B两种商品的价格之比为7∶2,如果它们的价格分别上涨60元后,价格之比为5∶2,这两种商品原来的价格各是多少?8.大宝和小宝一起吃饺子,本来大宝碗里的和小宝碗里的个数之比为2∶3,后来大宝想要减肥,又夹了10个饺子到小宝碗里,此时大小宝碗里饺子之比为3∶7,求两人一共有多少个饺子?3∶2,这块地的实际面积是多少?17.用边长为60cm的方砖给客厅铺地,需要80块。
如果改用边长为80cm的方砖铺地,需要多少块?(用比例解决问题)18.育才小学为美化校园环境,购买了一些杜鹃花,要栽在一个长方形花园里。
如果每行栽24棵,正好可以栽48行;如果每行多栽12棵,现在可以栽多少行?(用比例解答)19.周末早晨,小明从家骑自行车到紫云湖广场去健身,前4分钟行了600米,照这样的速度,从家到紫云湖广场一共用了16分钟。
小明家到紫云湖广场相距多少米?(用比例解)20.按要求画图。
(每个小方格表示1平方厘米)(1)长方形A点用数对表示是多少。
把图中的长方形绕A点逆时针旋转90°,画出旋转后的图形。
旋转后,B点的位置用数对表示是多少。
(2)图中三角形的面积是多少平方厘米。
按1∶2的比画出三角形缩小后的图形。
缩小后的三角形的面积是原来的多少。
(3)在方格纸上画出一个和圆有关的轴对称图形,这个图形的对称轴只有两条。
参考答案:0.2×300=0.5x0.5x=60x=120答:需要120块地砖。
本题考查用比例解决问题,明确房子的面积不变是解题的关键。
3.(1)正比例;(2)反比例;(3)既不成正比例,也不成反比例。
【分析】判断两种相关联的量之间成什么比例,就看这两个量是对应的比值(商)一定,还是对应的乘积一定;如果是比值(商)一定,这两种相关联的量成正比例;如果是乘积一定,这两种相关联的量成反比例;如果既不是比值一定,也不是乘积一定,则这两种相关联的量不成比例。
六年级数学正反比例应用题
![六年级数学正反比例应用题](https://img.taocdn.com/s3/m/c474999fb0717fd5360cdccc.png)
(1)一台机床5小时加工40个零件,照这样计算, 8小时加工64个。
40 5
=
64 8
(2)一列火车从甲地到乙地,每小时行90千米, 要行4小时;每小时行80千米,要行X小时。
80X=90×4
例1 一台抽水机5小时抽水40立方米,照 这样计算,9小时可抽水多少立方米?
寻求与判断:
A、题中涉及哪三种量?其中哪两种是相关联的量? (工作时间、工作总量和工作效率) (工作时间和工作总量是相关联的量)
• 一般方法和步骤:
• 1、判断题目中两种相关联的量是成正 比例还是反比例;
• 2、设未知量为x,注意写明计量单位; • 3、列出比例式,并解比例式; • 4、检查后写出答案; • 5、特别注意所得答案是否符合实际
; 成都新华医院: ;
据史载 赤眉军斩杀廉丹及其部下校尉20余人 新朝灭亡 除了外交活动外 恰在此时 加上所调援军不过一两万人 导致士大夫不满 铁钉、铁锅、铁刀、铁剪、铁灯等的大量出土 学术气氛浓厚 益州、凉州各领十二 当时 新疆新和县、鄯善县境内 西南得以扩充至大盈江一带 汉武帝与匈奴战 争示意图 下传授道 因此西域各国皆遣子入侍 其中最大一支称为铜马军 双手发抖 皇帝命人修建房屋供其居住 约有30余 以后汉武帝的使者还到达奄蔡(黑海以北)、条支(叙利亚)等国 付亭 新朝皇帝王莽的大 邑的体制与侯国相当 创作翻车和渴乌 语 间 进攻祝阿 [46] 而西羌的部 分 劝降西南夷 王田不得任意买卖 中西经济文化的交流 在河南郑州巩义市的冶铁遗址中曾发现混杂了泥土、草茎制成的煤饼 [62] 慈平 谥号为“建兴皇帝” 在西汉时于孔壁发现古经书 在狱中自杀 据《尧典》分成十二州 征集大军四十多万 不久改封为长沙王 西域 强项令董宣 ; 窦固 等分兵四路 忤恨者诛灭” [147] 更始元年末冀州王
六年级下册数学试题-小升初复习讲练:正反比例应用题(含答案)sc
![六年级下册数学试题-小升初复习讲练:正反比例应用题(含答案)sc](https://img.taocdn.com/s3/m/0997f539443610661ed9ad51f01dc281e53a569d.png)
正反比例应用题典题探究例1.有大小两个互相咬合的齿轮,大齿轮有90个齿,小齿轮有18个齿,如果大齿轮每分转100转,小齿轮5分钟转多少转?(用比例知识解答)例2.学校会议室用方砖铺地.用8平方分米的方砖铺需要500块;如果改用10平方分米的方砖铺,需要多少块?例3.修路队每天修路3.2米,15天可以修完,实际每天修4米,几天可以修完?例4.从“六一”儿童节那天开始,小明前4天看了80页书,照这样计算,这个月小明一共可以看多少页书?(用比例知识解)演练方阵A档(巩固专练)选择题(共9小题)1.一个制服厂生产一批童装,每天生产350件,8天可完成任务;如果每天生产400件,多少天可以完成?设X天可以完成.正确列式是()A.400X=350x8B-8400350=xC.350:8=400:X2.(•广州模拟)生产一批零件,前3天生产124个,照这样计算,需再用12天完成全部任务.这批零件共有多少个?如果设这批零件共x个.正确的算式是()A.124x3=12B.124=x飞-=3+12C.12x=124x33.每100千克小麦可出X千克面粉,Y千克小麦可出面粉的千克数为()A.100yB.100xy c.100 D._^yToo4.一个会议室用方砖铺地.用边长3cm的方砖铺,需要350块,如果改用lOcn?的方砖铺,需要()块.A.280B.187C.390D.3155.小明在操场上插几根长短不同的竹竿,在同一时间测量竹竿长和相应的影长,情况如表:这时,小明身边的主强测量出了旗杆的影长是6米,可推算出旗杆的实际高度是()米. |影长(米)0.50.70.80.9 1.1 1.5竹竿长(米)1 1.4 1.6 1.8 2.23A.12米B.3米C.9米D.6米6.用正方形的地砖铺地,铺地的面积和需要地砖的块数()A.正比例B.反比例C.不成比例7.学校会议室用方砖铺地.用8平方分米的方砖铺,需要350块;如果改用10平方分米的方砖铺,需要()块.A.300B.280C.260D.2408.一辆拖拉机的后轮半径是前轮半径的1.2倍,后轮转动6周,前轮转动()A.7.2圈B.5圈C.8圈9.(•长沙)从甲地开往乙地,客车要10小时,货车要15小时,客车与货车的速度比是()A.2:3B.3:2C.2:5填空题(共3小题)060120180km10.在一幅比例尺是____11—的地图上量得A、B两城之间的距离是3cm,A、B两城之间的实际距离是.11.(•当涂县)用3千克绿豆可以做出21千克绿豆芽•照这样计算,18千克绿豆可以做出多少千克绿豆芽?(1)"照这样计算"就是说是一定的.(2)和成比例.(3)所求结果用x表示,写出比例式:.12.一间教室,如果用面积6平方分米的方砖铺,要用96块,如果改用面积是9平方分米的方砖铺,要用多少块?三.解答题(共8小题)13.甲、乙两国的国土面积相等,但甲国人数是乙国人口数的16倍,若乙国的人均国土面积为296000平方米,那么甲国的人均国土面积是多少?14.生产了一批零件,每天生产200个,15天完成,实际每天生产了250个,实际多少天可以完成?(用比例方式列式)15.小伟家用面积是18平方分米的地砖需48块,如果改用面积是9平方分米的地砖,需多少块?16.一间教室用边长8分米的方块来铺,刚好要125块,如果改用边长1米的方砖来铺,需要多少块?比计划多用多少块?(用方程解答)17.学校电脑室计划用面积为9平方分米的瓷砖铺地,需480块,现改用边长为4分米的瓷砖铺地,需要多少块?(用比例解)18.用边长15厘米的方砖铺一块地,需要2000块,如果改用边长为20厘米的方砖铺地,需要多少块?(用比例解)19.一间房子要用方砖铺地.用面积是9平方分米的方砖需要96块.如果改用边长为2分米的方砖,需要多少块?(用比例解)20.丽丽家客厅,用边长0.3m的方砖铺地,需要560块,如果改用边长0.4m的方砖铺地,需要多少块?(用比例解)B档(提升精练)选择题(共10小题)1.比例尺是1:5000000表示地图上1厘米的距离相当于地面上实际距离是()A.50千米B.500千米C.5千米2.下列正确的有()A,因为12=2x2x3,所以*能化成有限小数;12B.自行车行驶的路程一定,车轮转数和直径成反比例;C.正方形边长一定,面积和边长成正比例;D.任何一个三角形至多有两个锐角3.当一个物体两部分之间的比大致符合5:3时,会给人以美的感觉,这个比被称为“黄金比”.亮亮要为自己设计一个“乐学牌”书桌,如果书桌的长度是80厘米,书桌的宽度大约定为(),会给人以最美的感觉.A.80厘米B.40厘米C.48厘米4.一个长方形(如图),被两条直线分成四个长方形,其中三个的而积分别是45平方米, 15平方米和30平方米.图中阴影部分的面积是()平方米.451530A.60B.75C.80D.905.(•龙岗区)李老师准备给健身房铺正方形地砖,如果选择边长为3dm的地砖要400块.那么选择边长为2dm的地砖要()块.2d m3d mA.600B.900C.1200D.18006.甲、乙两辆自行车的车轮直径相同,以同样的速度蹬自行车,()跑得快.(下面是甲、乙两辆自行车的前后齿轮情况)40齿48齿7.半径为1厘米的小圆在半径为4厘米的固定大圆外滚动一周,则小圆滚动了()周.8.如图,在皮带传动中,大轮的直径是28cm,小轮的直径是12cm,如果传动中没有打滑现象,那么大轮转了12圈,小轮转了()圈.D.289.(•灵石县模拟)两个齿轮,其中一个齿轮的直径是6cm,当另一个齿轮转动一周时,它需转动3周,则另一个齿轮的直径是.()C.1810.一个批发兼零售的文具店规定:凡一次购买铅笔300枝以上(不包括300枝),可以按批发价付款;购买300枝以下(包含300枝)只能按零售价付款.小明来该商店买铅笔,如果给学校六年级同学每人买1枝,那么只能按零售价付款,需要120元;如果多买60枝,那么可以按批发价付款,同样需要120元.若按批发价购买6枝与按零售价买5枝的款相同,那么这个学校六年级的学生有()人.A.240人B.260人C.280人D.300人二.填空题(共10小题)11.(•安次区模拟)张阿姨用计算机打字的个数和所用时间如下表.时间/分2468101214数量/个100200300400500600"Too张阿姨打750个字需要分钟.12.(•广州模拟)玩具厂按1:100的比例生产了一种飞机模型,若该模型的长度为12厘米,则飞机的实际长度约12米..13.(•吴江市)一列动车在高速铁路上行驶的时间和路程如图.看图填写下表:时间/小时2_____________路程/千米_____________800这列动车行驶的时间和路程成比例.14.(•海珠区)(1)如图是表示某种规格钢筋的质量与长度成比例关系的图象.(2)不计算,根据图象判断,6m的钢筋重____________kg.28642O46789长度为15.(•阜阳模拟)喜喜和欢欢一起照相,喜喜身局1.6米,在照片上她的局是5cm.欢欢在照片上高4cm,欢欢的身高是米.16.(•德宏州模拟)画一张长10cm、宽6cm的图,如果长缩小为2.5cm,按照这个比例,宽应缩小为cm.17.(•延庆县)2010年3月30日中午11:30,六(1)班同学们在学校国旗杆旁边垂直于地面立了一根20厘米长的木棒,测得它的阴影长度是12.5厘米.同时测得国旗杆的阴影长度是16.5米.国旗杆高米.18.(•海安县)当人的下肢长与身高的比值约为0.6时,身材显得最美.刘老师的身高是160厘米,下肢长94厘米,她穿的高跟鞋最佳高度为_____________厘米.19.(•涟源市模拟)用边长为15厘米的方砖铺地,需要2000块.如果改用边长30厘米的方砖铺地,需要块,20.(•江苏)生活中我们一般用摄氏度(°C)来描述温度,但也有一些国家用华氏度(°F)来描述.水的冰点是0°C,沸点是100°C,用华氏度描述水的冰点是32°F,沸点是212T,那么我们人体正常体温36©,用华氏度描述是°F.三.解答题(共8小题)21.(•海安县模拟)如图,求阴影部分的面积(单位:平方厘米).22.(•广州模拟)张老师准备在书房的地面上铺每块面积是900平方厘米的地砖,刚好用了200块.如果全部改铺每块面积是600平方厘米的地砖,需要多少块?23.(•临川区模拟)修一条路,计划每天修50米,40天完成,实际5天修了300米,照这样计算,多少天完成任务?(用正、反比例两种方法解答)24.(•临川区模拟)运一堆52吨重的钢材,3小时运了15.6吨,照这样计算,还要几小时才能运完?(用比例方法解)25.(•临川区模拟)某服装厂加工一批服装,计划每天加工250件,18天可以完成.实际每天比原计划多加工』,实际多少天可以完工?(用比例解)526.(•临川区模拟)学校操场上有棵大树,数学兴趣小组的同学们要测量树的高度,他们想了一个办法,在上午9时,由小王站在太阳下.已知小王身高1.40米,同时测得小王的影长和大树的影长分别是1.12米和8米,你知道树高多少米吗?27.(•永定区模拟)张阿姨家上个月用电65度,电费39元,王大爷家上个月的电费是27元,他家上个月用电多少度?(用比例解)28.(•雨花区)在比例尺是1:3500000的地图上,量得甲、乙两地之间的距离是2.4厘米,求甲、乙两地实际距离是多少千米?正反比例应用题答案W典题探究例1.有大小两个互相咬合的齿轮,大齿轮有90个齿,小齿轮有18个齿,如果大齿轮每分转100转,小齿轮5分钟转多少转?(用比例知识解答)考点:正、反比例应用题.专题:比和比例应用题.分析:因为两个齿轮是相互交合的,即转动齿数相等,所以转动的周数和每周齿数成反比,由此列出比例解决问题.解答:解:设小齿轮每分钟转x转,18x=90xl0018x=9000x=500500x5=2500(转)答:小齿轮5分钟转2500转.点评:解答此题的关键是,根据题意,先判断哪两种相关联的量成何比例,即两个量的乘积一定则成反比例,两个量的比值一定则成正比例.例2.学校会议室用方砖铺地.用8平方分米的方砖铺需要500块;如果改用10平方分米的方砖铺,需要多少块?考点:正、反比例应用题.专题:比和比例应用题.分析:根据学校会议室面积一定,每块砖的面积和所需要的块数成反比例关系,列比例解答即可.解答:解:改用10平方分米的方砖需x块.10xx=8x50010x=4000x=400;答:改用10平方分米的方砖需400块.点评:此题应先判断每块砖的面积和所需要的块数成什么比例关系,列比例解答即可.例3.修路队每天修路3.2米,15天可以修完,实际每天修4米,几天可以修完?考点:正、反比例应用题.专题:简单应用题和一般复合应用题;比和比例应用题.分析:根据题意知道,总工作量一定,工作时间和工作效率成反比例,由此列式解答即可.解答:解:设x天可以修完,4x=3.2xl54x=48x=12答:12天可以修完.点评:解答此题的关键是,弄清题意,根据工作效率,工作时间和工作量三者的关系,判断哪两种量成何比例,然后找出对应量,列式解答即可.例4.从"六一〃儿童节那天开始,小明前4天看了80页书,照这样计算,这个月小明一共可以看多少页书?(用比例知识解)考点:正、反比例应用题.专题:比和比例应用题.分析:抓住“照这样计算”是解题的关键,"照这样计算”意思是小明平均每天看的页数是一定的,即看的页数与看的时间的比的比值是一定的;看书的页数与看的时间成正比例关系,由此解答即可.解答:解:设小明一个月(30天)可以x页书,x:30=80:44x=80x30x=600.答:这个月小明一共可以看600页书.点评:此题属于正比例应用题,解题的关键是理解"照这样计算"这句话的意思,判断出两种相关联的量成正比例还是成反比列;如果是比值一定,那么这两种相关联的量就成正比例,如果是积一定,那么这两种相关联的量就成反比列;由此设未知数为x,用比例解答即可.常演练方阵七A档(巩固专练)选择题(共9小题)一.1.一个制服厂生产一批童装,每天生产350件,8天可完成任务;如果每天生产400件,多少天可以完成设X天可以完成.正确列式是()A.400X=350x8B.8400C.350:8=400:X350=x考点:正、反比例应用题.专题:比和比例应用题.分析:由题意可知:这批童装的数量是一定的,即每天生产的件数与需要的天数成反比例,据此即可列比例求解.解答:解:设x天可以完成,由题意可得:400x=350x8,400x=2800,x=7;答:7天可以完成.故选:A.点评:解答此题的关键是:弄清楚哪两种量成何比例,于是列比例即可求解.2.(•广州模拟)生产一批零件,前3天生产124个,照这样计算,需再用12天完成全部任务.这批零件共有多少个?如果设这批零件共x个.正确的算式是()A.124_xB.124_xC.12x=124x3"T^12~3~=3+12考点:正、反比例应用题.分析:照这样计算,说明每一天生产的零件数是一定的,生产的零件总数和相对应生产的天数的比值一定,即两种量成正比例,由此列比例解答问题.解答:解:设这批零件共X个,由题意得,124二x.3=3+12’故选B.点评:此题主要考查对正比例的意义的运用:两种相关联的量,一种量变化,另一种量也随着变化,但两种量的相对应的比值一定,这两种量成正比例.3.每100千克小麦可出X千克面粉,Y千克小麦可出面粉的千克数为()A.100yB.100xC.100D.xyx y xy100考点:正、反比例应用题.专题:比和比例应用题.分析:根据每100千克小麦可出X千克面粉,得出小麦的出粉率一定,所以面粉的千克数和小麦的千克数成正比例,由此设出未知数,列比例解答即可.解答:解:Y千克小麦可出面粉Z千克,x_z100~y,100z=xy,7一xy100答:Y千克小麦可出面粉淄L千克.100故选:D.点评:此题首先判定两种量成正比例,再设出未知数,列出比例式进行解答即可.4.一个会议室用方砖铺地.用边长3cm的方砖铺,需要350块,如果改用lOcn?的方砖铺,需要()块.A.280B.187C.390D.315考点:正、反比例应用题.专题:比和比例应用题.分析:会议室的面积是不变的,每一块方砖的面积与所需块数的乘积是一定的,即两种量成反比例,由此设出未知数,列出比例式解答即可.解答:解:设需要x块砖,由题意得,10x=3x3x35010x=3150x=315;答:需要这样的方砖315块.故选:D.点评:此题首先利用正反比例的意义判定两种量的关系,若两个相关联量的乘积一定,则这两个量成反比例,从而可以列比例求解;解答时关键不要把边长当做面积进行计算.5.小明在操场上插几根长短不同的竹竿,在同一时间测量竹竿长和相应的影长,情况如表:这时,小明身边的王强测量出了旗杆的影长是6米,可推算出旗杆的实际高度是()米.影长(米)0.50.70.80.9 1.1 1.5竹竿长(米)1 1.4 1.6 1.8 2.23A.12米B.3米C.9米D.6米考点:正、反比例应用题;正比例和反比例的意义.专题:比和比例应用题.分析:由题意可知:同样条件下,竹竿的长度与它的影长的比是一定的,则旗杆的实际高度与其影长的比也是一定的,据此即可求解.且这两个比是相等的,据此即可列比例求解.解答:解:设旗杆的实际高度是x米,则有1:0.5=x:6,0.5x=6,x=12;答:旗杆的实际高度是12米.故选:A.点评:解答此题的关键是明白:同样条件下,物体的长度与它的影子的长度比是一定的.6.用正方形的地砖铺地,铺地的面积和需要地砖的块数()A.正比例B.反比例C.不成比例考点:正、反比例应用题.专题:比和比例应用题.分析:因为方砖的面积x所需方砖的块数=要铺的地面的面积,而要铺的地面的面积是一定的,进而根据反比例的意义进行选择.解答:解:铺地的面积x砖的块数=要铺的地面的面积(一定)是两个量对应的乘积一定,符合反比例的意义,所以铺地的面积和需要地砖的块数成反比例.故选:B.点评:解答此题的主要依据是如果两个量对应的乘积一定,则这两个量成反比例.7.学校会议室用方砖铺地.用8平方分米的方砖铺,需要350块;如果改用10平方分米的方砖铺,需要()块.A.300B.280C.260D.240考点:正、反比例应用题.专题:比和比例应用题.分析:此题根据面积一定,每块砖的面积和所需要的块数成反比例关系,列比例解答即可.解答:解:改用面积,10平方分米的方砖需X块.10xx=8x350,10x=2800,x=280;答:改用面积为10平方分米的方砖需280块.故选:B.点评:此题应先判断每块砖的面积和所需要的块数成什么比例关系,列比例解答即可.8.一辆拖拉机的后轮半径是前轮半径的1.2倍,后轮转动6周,前轮转动()A.7.2圈B.5圈C.8圈考点:正、反比例应用题.专题:比和比例应用题.分析:根据题意,可设前轮半径为r,那么后轮半径为1.2r,根据圆的周长公式可计算出前轮滚动一圈的周长和后轮滚动一圈的周长,又因前轮和后轮转动的路程是一定的,也就是说前轮的周长乘圈数,与后轮的周长乘圈数的乘积是一定的,据此即可列比例求解.解答:解:设前轮半径为r,那么后轮半径为1.2r,前轮转动的圈数是x圈,贝lj nx2xrxx=nx2x1.2rx62nrx=14.4nrx=7.2答:前轮转动7.2圈.故选:A.点评:解答此题的关键是明白:前轮和后轮转动的路程是一定的,也就是说前轮的周长乘圈数,与后轮的周长乘圈数的乘积是一定的,从而列比例求解.9.(•长沙)从甲地开往乙地,客车要10小时,货车要15小时,客车与货车的速度比是()A.2:3B.3:2C.2:5考点:正、反比例应用题.分析:两地之间的距离一定,速度和时间成反比例.解答:解:15:10=3:2故选:B.点评:此题首先判定两种量成反比例,列出比例式进行解答即可.填空题(共3小题)二.060120180km10.在一幅比例尺是—;1—的地图上量得A、B两城之间的距离是3cm,A、B两城之间的实际距离是180千米.考点:正、反比例应用题.专题:比和比例应用题.分析:由线段比例尺可知:图上1厘米代表实际距离60千米,则图上3厘米的距离代表实际距离,即求3个60千米是多少,用乘法解答即可.解答:解:60x3=180(千米)答:图上3厘米的距离表示的实际距离是180千米.故答案为:180千米.点评:解答此题的关键是:先理解该线段比例尺的含义,进而根据求几个相同加数的和是多少,用乘法解答.11.(•当涂县)用3千克绿豆可以做出21千克绿豆芽.照这样计算,18千克绿豆可以做出多少千克绿豆芽?(1)"照这样计算"就是说每千克绿豆做出的绿豆芽的量是一定的,(2)绿豆的重量和绿豆芽的重量成正比例.(3)所求结果用x表示,写出比例式:3:21=18:x.考点:正、反比例应用题.专题:比和比例应用题.分析:由题意可知:每千克绿豆做出的绿豆芽的重量是一定的,则绿豆的重量和做出的绿豆芽的重量的比值是一定的,则绿豆的重量和做出的绿豆芽的重量成正比例,据此即可列比例求解.解答:解:设18千克绿豆可以做出x千克绿豆芽,3:21=18:x,3x=21xl8,3x=378,x=126;答:18千克绿豆可以做出126千克绿豆芽.故答案为:每千克绿豆做出的绿豆芽的量;绿豆的重量、绿豆芽的重量、正;3:21=18:X.点评:解答此题的主要依据是:正比例的意义,即若两个相关联量的比值一定,则这两个量成正比例,于是可以列比例求解.12.一间教室,如果用面积6平方分米的方砖铺,要用96块,如果改用面积是9平方分米的方砖铺,要用多少块?考点:正、反比例应用题.专题:比和比例应用题.分析:由题意可知,教室的地板面积一定,即一块方砖的面积x方砖的块数=教室的地板面积(一定),由此得出一块方砖的面积与方砖的块数成反比例,设出未知数列出比例解答即可.解答:解:设需要x块,9x=6x96,x=6x96+9,x=64;点评:解答此题的关键是,根据题意,先判断哪两种相关联的量成何比例,即两个量的乘积一定则成反比例,两个量的比值一定则成正比例;再列出比例解答即可.解答题(共8小题)三.13.甲、乙两国的国土面积相等,但甲国人数是乙国人口数的16倍,若乙国的人均国土面积为296000平方米,那么甲国的人均国土面积是多少?考点:正、反比例应用题.专题:比和比例应用题.分析:根据:人均国土面积x人数=国土面积(一定),国土面积一定,人均国土面积x人数成反比例,由此设出未知数,列出比例式解答即可.解答:解:设甲国的人均国土面积是x平方米,x:196000=1:1616x=196000x=12250答:甲国的人均国土面积是12250平方米.点评:本题主要考查比例在日常生活中的应用,要正确判断哪两种量成反比例.14.生产了一批零件,每天生产200个,15天完成,实际每天生产了250个,实际多少天可以完成?(用比例方式列式)考点:正、反比例应用题.分析:这道题里的这批零件的总数不变.每天生产零件的个数和生产的天数成反比例关系.所以实际和计划每天生产的个数和生产的天数的乘积是相等的.设实际x夭可以 完成,列出方程解方程即可.解答:解:设实际x天可以完成.250x=200xl5x=3000+250x=12;答:实际12天可以完成.点评:此题考查反比例的应用.15.小伟家用面积是18平方分米的地砖需48块,如果改用面积是9平方分米的地砖,需多少块?考点:正、反比例应用题.分析:小伟家铺地的总面积是一定的,每一块地砖的面积和所需的块数成反比例,由此设出未知数,列比例解答即可.解答:解:设需地砖X块,根据题意列比例得,9x=18x48,y_18X489x=96;点评:此题首先判定两种量成反比例,再设出未知数,列出比例式进行解答即可.16.一间教室用边长8分米的方块来铺,刚好要125块,如果改用边长1米的方砖来铺,需要多少块?比计划多用多少块?(用方程解答)考点:正、反比例应用题.专题:比和比例应用题.分析:根据题意知道,一间教室的地面的面积一定,一块方砖的面积x方砖的块数=一间教室的面积(一定),由此判断一块方砖的面积与方砖的块数成反比例,设出未知数,列比例解答即可.解答:解:1米=10分米设需要x块,10xl0x=8x8xl25100x=64xl25y_64X125100x=8O125-80=45(块)答:需要80块,比计划少用45块.点评:关键是判断出一块方砖的面积与方砖的块数成反比例,注意8分米与1米是方砖的边长,不是方砖的面积.17.学校电脑室计划用面积为9平方分米的瓷砖铺地,需480块,现改用边长为4分米的瓷砖铺地,需要多少块?(用比例解)考点:正、反比例应用题.专题:比和比例应用题.分析:由题意可知,地板面积一定,即一块瓷砖的面积x瓷砖的块数=地板面积(一定),由此得出一块瓷砖的面积与瓷砖的块数成反比例,设出未知数列出比例解答即可.解答:解:设需要x块,4x=9x480*_9X4804x=1080答:需要1080块.点评:解答此题的关键是,根据题意,先判断哪两种相关联的量成何比例,即两个量的乘积一定则成反比例,两个量的比值一定则成正比例;再列出比例解答即可.18.用边长15厘米的方砖铺一块地,需要2000块,如果改用边长为20厘米的方砖铺地,需要多少块?(用比例解)考点:正、反比例应用题.专题:比和比例应用题.分析:根据题意知道铺地的面积一定,一块方砖的面积X方砖的块数=铺地的面积(一定),所以一块方砖的面积与方砖的块数成反比例,由此列出比例解答即可.解答:解:设需要X块,20x20xx=15xl5x2000400x=225x2000400x=450000x=1125;答:需要1125块.点评:解答此题关键是判断出一块方砖的面积与方砖的块数成反比例,注意15厘米与30厘米是方砖的边长,不是方砖的面积.19.一间房子要用方砖铺地.用面积是9平方分米的方砖需要96块.如果改用边长为2分米的方砖,需要多少块?(用比例解)考点:正、反比例应用题.专题:比和比例应用题.分析:设用边长为2分米的方砖铺地要用x块,根据房子的面积一定,可以列出比例(2x2)xx=96x9,解比例即可求解.解答:解:设用边长为2分米的方砖铺地要用x块,贝上(2x2)xx=96x94x=864x=864-?4x=216.答:要用216块.点评:考查了反比例的应用,本题注意是每块方砖的面积x方砖的块数的乘积一定.20.丽丽家客厅,用边长0.3m的方砖铺地,需要560块,如果改用边长0.4m的方砖铺地,需要多少块?(用比例解)考点:正、反比例应用题.专题:比和比例应用题.分析:根据题意知道,客厅的面积一定,方砖的面积和方砖的块数成反比例,由此列式解答即可.解答:解:需要x块方砖,0.3x0.3x560=0.4x0.4xx0.16x=50.4x=315答:需要315块.点评:解答此题的关键是,根据题意,正确判断出两种相关联的量成什么比例,找出对应量,列式解答即可.B档(提升精练)。
六年级判断正反比例练习题
![六年级判断正反比例练习题](https://img.taocdn.com/s3/m/75c31d510722192e4436f64e.png)
六年级判断正反比例练习题圆的面积和半径的平方()(16)圆的周长与直径。
()圆的周长与半径()(17)。
(18)圆的直径一定,它的周长和圆周率。
()圆的半径一定,它的周长和圆周率(19)路程一定,车轮的直径和转数。
()路程一定,车轮的周长和转数(20)正方形的边长和周长。
()(21)正方形的边长和面积。
()正方形的边长的平方和面积()(22)长方形的周长一定,它的长和宽。
()(23)长方形的面积一定,它的长和宽。
()(24)长方形的长一定,它的面积和宽。
()(25)三角形面积一定,它的底和高。
()(26)直角三角形面积一定,它的两条直角边的长度。
()(27)平行四边形的高一定,它的面积和底。
()(28)长方体的体积一定,底面积和高。
()(29) 被除数一定,除数和商。
( )(30)比的前项一定,比的后项和比值。
()(31) 比值一定,比的前项和后项。
( )(32)比例尺一定,图上距离和实际距离。
()(33) 实际距离一定,图上距离的比例尺。
( )(34)分母一定,分子和分数值。
()(35)如果3x=y(x和y都不等于0),x与y。
()(36)如果xy=1,x与y。
()(37)如果5A=B,A与B。
()(38)如果x+y=6,x与y。
()(39)如果x与y互为倒数,x与y。
()(40)如果3:x=y:16,x与y。
()(41)如果20:x=12:y,x与y。
()(42)如果ab=k+2(k一定),那么a和b成反比例。
()正反比例的练习题一、判断下面每题中的两种量是否成比例,成什么比例,并说明理由1、《小学生作文》的单价一定,总价和订阅的数量。
2、小新跳高的高度和他的身高。
3、学校全班的人数一定,每组的人数和级数。
4、圆柱体积一定,圆柱的底面积和高。
5、书的总册数一定,每包的册数和包数。
6、在一块菜地上种的黄瓜和西红柿的面积。
7、小麦每公顷产量一定,小麦的公顷数和总产量。
8、书的总页数一定,已经看的页数和未看的页数。
六年级数学正反比例专题测试
![六年级数学正反比例专题测试](https://img.taocdn.com/s3/m/01232c2cc5da50e2524d7fa2.png)
六 年 级 数 学 基 础 知 识 练 习 (六)(练习内容:正比例和反比例)姓名 学号 成绩 一、填空。
(每空2分,合计58分) 1表中的总价总是随着 变化而变化的, 是一定的,总价和数量成 比例。
2、根据“速度×时间=路程”。
如果路程一定,那么 和 成 比例。
3、在下面的横线上填“正”、“反”或“不成”⑴在一幅中国地图上,图上距离和实际距离成 比例。
⑵圆的周长和半径成 比例⑶正方体的表面积和底面积成 比例,正方形的周长与边长成 比例。
⑷人的身高和年龄 比例;⑸长方形的面积一定,长方形的长和宽成 比例。
长方形的周长一定,长方形的长和宽 比例。
⑹三角形的面积一定时,底和高成 比例;三角形底一定时,面积和高成 比例。
⑺圆锥的体积一定时,底面积和高成 比例;圆锥的高一定时,体积和底面积成 比例; ⑻总价一定时,数量和单价成 比例;数量一定时,单价和总价成 比例;⑼在没有余数的除法里,被除数一定,除数和商成 比例;如果除数一定,被除数和商成 比例。
⑽一个小数,小数点向左移动的位数与该小数扩大的杯数 比例。
4、如果 = ,那么x 和y 是成 比例;如果14x=y ,那么x 和y 成 比例。
5、a ×b=m ,当a 一定时,b 和m 成 比例;当b 一定时,a 和m 成 比例;当m 一定时,a 和b 成 比例。
6、根据条件,将下列表格填写完整。
⑴x 和y 成正比例关系 ⑵x 和y 成反比例关系二、选择题。
(每题2分,合计20分) 1、如果6÷x=y ,那么x 和y① 成正比例 ② 成反比例 ③ 不成比例2、加工一批校服,每天加工的套数和所用的天数 ① 成正比例 ② 成反比例 ③ 不成比例5x y53、m ∶n=6∶5,则m 和n① 成正比例 ② 成反比例 ③ 不成比例 4、在统一时间、同一地点,物体的高度和它的影长 ① 成正比例 ② 成反比例 ③ 不成比例 5、在下列图中,能表示出两个数量成正比例关系的图是① ② ③6、一条路的长度一定,已经修好的部分和剩下的部分 ① 成正比例 ② 成反比例 ③ 不成比例7、在含盐率为30%的盐水中,加入6克盐和14克水,这时盐水的含盐率是 ① 等于30% ② 大于30% ③ 小于30% 8、已知A × ÷2=B ,那么A 和B① 成正比例 ② 成反比例 ③ 不成比例9、买同样的一本书,张华用去了所带钱的 ,李剑用去了所带钱的 ,两人所带的钱① 张华多 ② 李剑多 ③ 无法判断 10、如果A=B ∶4,那么A 和B① 成正比例 ② 成反比例 ③ 不成比例 三、实践与应用。
六年级数学下册试题 -《第4章 比例 第2课时 正比例和反比例》同步测试题 人教版(含解析)
![六年级数学下册试题 -《第4章 比例 第2课时 正比例和反比例》同步测试题 人教版(含解析)](https://img.taocdn.com/s3/m/49ac5a38f8c75fbfc67db283.png)
人教版六年级数学下册《第4章比例第2课时正比例和反比例》同步测试题一.选择题(共6小题)1.下列等式中,a与b(a、b均不为0)成反比例的是()A.2a=5b B.a×7=C.a×=12.下列两种量的关系成正比例关系的是()A.圆的半径和圆的面积B.写字总数一定,写一个字所用时间和写字总时间C.写字总数一定,每分钟写字个数和写字总时间D.两个互相咬合的齿轮,齿轮的齿数和转数3.圆的周长和直径()A.成正比例B.成反比例C.不成比例4.a和b成反比例关系的式子是()A.5a=4b B.=C.5a=D.5a=b+45.如果ab=3,那么a与b()A.不成比例B.成反比例C.成正比例6.总价一定,单价和数量()A.成正比例B.成反比例C.不成比例D.以上都不对二.填空题(共6小题)7.A、B、C三量的关系时A×B=C中,当C一定时,A和B成关系.8.表格中,如果A和B成正比例,x=,如果A和B成反比例,x=.A28B0.5x9.少先队员每人做好事的件数一定,做好事的总件数与做好事的少先队员人数成正比例..10.表中如果x和y成正比例,那么空格里应填;如果x和y成反比例,那么空格里应填.x26y2411.一种练习本销售的数量与总价的关系如表.数量/本12345总价/元 5.51116.52227.5(1)表中有和两种相关联的量,总价随着的变化而变化,且总价与相应数量的比值都是,实际就是练习本的.(2)像这样,两种的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的一定,这两种量就叫做的量,它们的关系叫做关系.上表中,总价和数量是成的量,总价与数量成关系.12.在比例中,两个外项的积一定,两个两内项成比例.三.判断题(共5小题)13.工作总量一定,工作效率和工作时间成正比例.(判断对错)14.在一定的距离内,车轮周长和它转动的圈数成反比例..(判断对错)15.小明应完成的作业量一定,他已完成的作业量和未完成的作业量成反比例.(判断对错)16.式子=k(一定)表示的是正比例关系..(判断对错)17.如果a和b成正比例,b和c成反比例,那么a和c一定成反比例..(判断对错)四.应用题(共3小题)18.淘淘家在装修房屋时,买了同样大小的地板砖,铺地面积与所需块数的关系如图.他家的客厅面积是36m2,需要铺多少块这样的地板砖?(用比例解决问题)19.下面的图象表示小强从甲地到乙地不同的速度和所对应的时间.(1)在这个过程中,哪种量没有变?(2)速度和所对应的时间成什么比例关系?(3)不计算,观察图象,如果每小时行40km,那么从甲地到乙地大约需要多少小时?20.食堂有一批大米.如表记录的是每天的用量和所用的天数.每天的用量/kg40255所用的天数8102080(1)把上表填写完整.(2)每天的用量和所用的天数成反比例吗?为什么?(3)如果每天用8kg,那么可以用多少天?(4)如果计划用100天,那么每天应该用多少千克?五.操作题(共2小题)21.甲、乙两台机器的工作时间和耗电量如表.时间/时123456甲机器耗电量/千瓦时306090120150180乙机器耗电量/千瓦时3065100130160200根据表中的数据,在下图中描出每一组工作时间与耗电量所对应的点,再把它们按顺序连接起来.(1)根据画出的图象,机器的工作时间和耗电量成正比例.(2)根据画出的图象,工作2.5小时,甲机器的耗电量大约是千瓦时,乙机器的耗电量大约是千瓦时.22.文具店有一种电动橡皮擦,销售的数量与总价的关系如下表:数量/个246总价/元163248(1)把橡皮擦的数量与总价所对应的点在图中描出来,并连线;(2)利用图象估计7个这样的橡皮擦总价是元.六.解答题(共2小题)23.一辆汽车所行的时间与路程的关系,可以用如图来表示,请你根据图上信息填一填、算一算下列问题.(1)从图上可以看出这辆车所行的路程与时间,这两个量成比例.(2)如果这辆汽车以这样的速度从甲地行到乙地用了5小时,问甲、乙两地之间的路程是多少千米?24.一种岩石的体积与质量的关系如下表.体积/cm326101213质量/g618303639(1)在如图中描出各点,并顺次连起来.(2)这种岩石的体积与质量成比例吗?成什么比例?(3)如果一块岩石的体积是8cm2,那么这块岩石的质量是多少克?参考答案与试题解析一.选择题(共6小题)1.【分析】判断两个相关联的量成什么比例,就看这两种量是对应的比值一定,还是对应的乘积一定,如果是比值一定,就成正比例,如果是乘积一定,就成反比例,由此逐一分析即可解答.【解答】解:A,因为2a=5b,所以=(一定),所以a、b成正比例;B,因为a×7=,所以=14(一定),所以a、b成正比例;C,因为a×=1,所以ab=3(一定),所以a、b成反比例;故选:C.【点评】此题属于辨识成正、反比例的量,就看这两种量是对应的比值一定,还是对应的乘积一定,再做出判断.2.【分析】判断两种相关联的量之间是否成正比例,就看这两种量是否是对应的比值一定,如果是比值一定,就成正比例,如果不是比值一定或比值不一定,就不成正比例.【解答】解:A.圆的面积=π×圆的半径2,不符合正比例的意义,所以圆的半径和圆的面积不成正比例关系;B.因为写字总时间=写字总数×写一个字所用时间,所以写字总时间÷写一个字所用时间=写字总数(一定)符合正比例的意义,写字总数一定,写一个字所用时间和写字总时间成正比例关系;C.因为每分钟写字个数×写字总时间=写字总数(一定),符合反比例的意义,不符合正比例的意义,所以写字总数一定,每分钟写字个数和写字总时间不成正比例关系;D.两个互相咬合的齿轮,齿轮的齿数是一定的与转数没关系,不符合正比例的意义,所以两个互相咬合的齿轮,齿轮的齿数和转数不成正比例关系,故选:B。
六年级下册数学练习题正反比例综合提高练习人教版
![六年级下册数学练习题正反比例综合提高练习人教版](https://img.taocdn.com/s3/m/b29202935ef7ba0d4a733b7b.png)
比例之正、反比例综合提高练习题1、判断下列语句中的两个量是否有比例关系,如果有,是成正比例还是成反比例.(1)艾迪跳高的高度和他的身高.(2)飞机飞行的距离和耗油量.(3)100元零花钱买同一种零食,零食的数量和单价.(4)看一本故事书,已看完的页数和没看的页数.(5)向一个长方体水杯里倒水,水面的高度和水的体积.(6)正方形的边长和面积.(7)汽车的重量和耗油量;(8)同一时间和地点,人的身高和影子的长度;(9)一款外套,它卖出的件数和获得的总钱数;(10)完成同一个工程,工作效率和工作时间;(11)一个正方体,它的棱长和体积;(12)底面是正方形的长方体水杯,倒入固定量的水,水面高度和底面边长2、表示x、y成正比例的式子是()A x-y=5B xy=20C y=3x D y+x=2043、下列各题中,两种量成反比例关系的是().A. 工作效率一定,工作时间和工作总量B. 长方形面积一定,它的长和宽C. 一段路程一定,已走路程和剩下的路程D. 三角形的高一定,这个三角形的面积和底4、把一个3°的角扩大5倍,它就成为15°的角,用5倍的放大镜看这个的角,它的度数是().5、解比例方程:6、7、(1)对于2:7,前项扩大为原来的5倍,要使比值大小不变,后项应变为;(2)对于56:64,后项除以4,要使比值大小不变,前项应变为8、甲、乙进行60米赛跑,甲到终点时,乙距终点还有10米.甲乙两人的速度比是9、甲、乙两人同时从A地出发到B地,经过3小时,甲先到B地,乙还需要1小时到达B地,此时甲、乙共行了35千米.求A,B两地间的距离为千米.10、(1)A、B两地距离140千米,甲、乙两车分别从A、B两地同时出发相向而行.若甲车的速度是15千米/时,乙车的速度是20千米/时.甲车与乙车的速度比,相遇时距A地千米.(2)甲、乙两人分别从A、B两地同时出发,相向而行.甲走到全程的6的地方与乙相17.A、B之间的路程为千米.遇.已知甲每小时走3千米,乙每小时走全程的11011、(1)A、B两人同时出发,两人速度之比为7:9,则两人在相同的时间内走的路程之比为.若A走6300米,则B走米.(2) 大毛到学校50分钟,再以一样的速度从学校到图书馆用时40分钟,大毛家到学校的距离与学校到图书馆的距离之比为.若大毛家到学校的距离为6000米,则从学校到图书馆的距离为米.(3)小毛上学时从家走到学校用的时间为45分钟,放学从学校跑回家,用时25分钟,则上学走路与放学跑步的速度之比为.12、13、14、15、16、上坡的路程和下坡的路程相等,一辆汽车上坡速度与下坡速度的速度比是5:6,这辆汽车上坡与下坡用的时间比应是17、艾迪和薇儿拥有的积分卡张数之比为2:3,薇儿和大宽拥有的积分卡张数之比为4:3,已知三人一共拥有58张积分卡,那么艾迪有张,薇儿有张,大宽有张.18、如图,BD长1厘米,DC长3厘米,B、C、D和在同一条直线上.(1)求三角形ADC的面积是三角形ABD面积的倍.(2)求三角形ABC的面积是三角形ABD面积的倍.19、一个比例式的前两项互为倒数,比值为4,内项积为4,这个比例式的两个外项之和是.20、有一个长方体,长与宽的比是2:1,宽与高的比是3:2.已知这个长方体的全部棱长之和是220厘米,这个长方体的体积是立方厘米.21、A、B两地相距270千米,甲车的速度是50千米/时,乙车的速度是40千米/时.各自走完全程,两车行驶的时间之比是: .22、从甲地到乙地,A用2.5小时,B用2小时,两人速度比为23、甲、乙两个车间原有人数比是4:3,甲车间调48人到乙车间后,甲、乙两个车间的人数比变为2:3,那么,甲、乙车间原来各有多少人?24、如图所示,三角形ABE的面积是30,三角形ACE的面积是25,三角形CDE的面积是25,三角形BDE的面积是.26、甲乙两人同时出发,两人速度之比为3:7则两人在相同的时间内走的路程之比为.若甲走210米,则乙走米.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正反比例的应用二
例1、一个水池中水的深度与注水时间的关系如右下图。
(1)水的深度与注水时间是否成比例?
(2)从图中看,注水前,水池中的水深多少米?
(3)每分钟向水池中注入的水深多少米?
例2、这个铁球浸没在长方体水槽中,当他把这个铁球拿出水面时,槽里的水面下降了0.5厘米,他又将一块棱长是3厘米的正方体铁块浸没在水槽中,槽里的水面上升了0.3厘米,算一下铁球的体积?
例3、蜡烛燃烧的长度和燃烧的时间成正比例。
一根蜡烛燃烧8分钟后,蜡烛的长度是12厘米,18分钟后的长度是7厘米。
蜡烛最初的长度是多少厘米?
例4、甲、乙两人分别从A、B两地同时出发,相向而行,出发时他们的速度之比是3:2,他们第一次相遇后,甲的速度提高了20%,乙的速度提高了30%,这样,当甲到达B地时,乙离A地还有14千米,那么AB两地的距离是多少千米?
看看你会做吗?
1、用不同的杯子装水,水的高度与杯子的底面积的关系
如右图。
(1)从图中看,水的高度与杯子的底面积是否成比例?成什么比例?为什么?
(2)从图中估算,当杯子的底面积是
50平方厘米时,水深多少厘米?当水深25厘米时,杯子的底面积
是多少平方厘米?2、将一个圆柱体完全浸没在一个装满水的水槽中,拿出后水面下降了
9厘米。
然后放入一个底面积和圆柱体一样,高是圆柱体21
的圆锥,这时水面会上升多少厘米?
3、蜡烛燃烧的长度和燃烧的时间成正比例。
一根蜡烛燃烧
12分钟后,蜡烛的长度是17厘米,18分钟后
的长度是9厘米。
蜡烛最初的长度是多少厘米?4、甲、乙两人分别从
A 、
B 两地同时出发,相向而行,出发时他们的速度之比是4:3,他们第一次相遇后,甲的速度提高了20%,乙的速度提高了40%,当甲到达目的地后,乙还有44千米到达目的地,那么AB 两地的距离是多少千米?。