05神经网络原理及应用

合集下载

简述卷积神经网络(CNN)和循环神经网络(RNN)的原理及应用场景

简述卷积神经网络(CNN)和循环神经网络(RNN)的原理及应用场景

简述卷积神经网络(CNN)和循环神经网络(RNN)的原理及应用场景卷积神经网络(CNN)和循环神经网络(RNN)是当前深度学习领域最为重要和广泛应用的两种神经网络模型。

它们分别在计算机视觉和自然语言处理等领域取得了巨大的成功。

本文将从原理和应用场景两个方面进行详细介绍。

一、卷积神经网络(CNN)的原理及应用场景卷积神经网络(CNN)是一种专门用于处理具有网格结构数据的深度学习模型。

它最初是为了解决计算机视觉中的图像分类问题而提出的,但现在已经广泛应用于图像识别、目标检测、语义分割等多个领域。

1.1 原理卷积神经网络(CNN)主要由卷积层、池化层和全连接层组成。

其中,卷积层是CNN最重要的组成部分,它通过一系列滤波器对输入数据进行特征提取。

滤波器通过与输入数据进行点乘操作,得到特征图(feature map),从而捕捉到输入数据中的局部特征。

池化层用于减小特征图的尺寸,并保留重要特征。

常见的池化操作有最大池化和平均池化。

最大池化选择每个区域中的最大值作为输出,平均池化则选择每个区域的平均值作为输出。

这样可以减小特征图的尺寸,减少参数数量,从而降低计算复杂度。

全连接层将特征图转换为一维向量,并通过一系列全连接层进行分类或回归等任务。

全连接层中的每个神经元都与上一层中所有神经元相连,这样可以充分利用上一层提取到的特征进行分类。

1.2 应用场景卷积神经网络(CNN)在计算机视觉领域有着广泛应用。

其中最典型的应用场景是图像分类和目标检测。

在图像分类任务中,CNN可以通过学习到的特征提取器将输入图像分为不同类别。

例如,在ImageNet数据集上进行分类任务时,CNN可以实现对1000个不同类别进行准确分类。

在目标检测任务中,CNN可以识别并定位输入图像中存在的多个目标。

通过在卷积网络之后加入额外的回归和分类层,可以实现对目标位置和类别进行同时预测。

此外,在语义分割、人脸识别、图像生成等领域,CNN也有着广泛的应用。

hopfield神经网络及其应用教学课件PPT

hopfield神经网络及其应用教学课件PPT

02
Hopfield神经网络的数学基础
向量运算和矩阵运算
向量加法
对应元素相加,得到一个新的向量。
向量数乘
一个标量与一个向量相乘,得到一个新的向量。
向量点乘
两个向量的对应元素相乘后求和,得到一个标量。
向量运算和矩阵运算
01
020304 Nhomakorabea向量叉乘
两个向量按照顺序相乘,得到 一个新的向量。
矩阵加法
对应位置的元素相加,得到一 个新的矩阵。
适用场景
旅行商问题、背包问题、图着色问题等组合优化问题,以 及各种工程优化问题。
05
Hopfield神经网络的未来发展
Hopfield神经网络与其他神经网络的结合
与卷积神经网络结合
利用Hopfield神经网络的记忆特性,与卷积神经网络共同处理图 像识别等任务,提高识别精度和稳定性。
与循环神经网络结合
训练方法
通过特定的训练算法,对 Hopfield神经网络进行训练,使 其能够记忆和识别特定的模式或 状态。
优化算法
采用优化算法(如梯度下降法、 遗传算法等),对Hopfield神经 网络的参数进行调整和优化,以 提高其性能和稳定性。
性能评估
通过测试和评估,对训练和优化 后的Hopfield神经网络进行性能 评估,包括准确率、稳定性、实 时性等方面的评估。
Hopfield神经网络及其应用教 学课件

CONTENCT

• Hopfield神经网络简介 • Hopfield神经网络的数学基础 • Hopfield神经网络的实现 • Hopfield神经网络的应用案例 • Hopfield神经网络的未来发展
01
Hopfield神经网络简介

神经网络控制基础人工神经网络课件ppt课件

神经网络控制基础人工神经网络课件ppt课件

其他工业领域应用案例
电力系统
神经网络控制可以应用于电力系统的负荷预测、故障诊断和稳定性 分析等方面,提高电力系统的运行效率和安全性。
化工过程控制
神经网络控制可以对化工过程中的各种参数进行实时监测和调整, 确保生产过程的稳定性和产品质量。
航空航天
神经网络控制在航空航天领域的应用包括飞行器的姿态控制、导航控 制和故障诊断等,提高飞行器的安全性和性能。
05 神经网络控制性能评估与优化
性能评估指标及方法
均方误差(MSE)
衡量神经网络输出与真实值之间的误差,值越小表示性能越好。
准确率(Accuracy)
分类问题中正确分类的样本占总样本的比例,值越高表示性能越好。
交叉验证(Cross-Validation)
将数据集分成多份,轮流作为测试集和训练集来评估模型性能。
强化学习在神经网络控制中应用
强化学习原理
通过与环境进行交互并根据反馈信号进行学习的方法,使神经网络能够自主学习 到最优控制策略。
强化学习算法
包括Q-learning、策略梯度等算法,用于求解神经网络控制中的优化问题,实现 自适应控制。
04 神经网络控制系统设计与实现
系统需求分析
功能性需求
明确系统需要实现的功能,如 数据输入、处理、输出等。
非监督学习
无需已知输出数据,通过挖掘输入数 据中的内在结构和特征进行学习,常 用于聚类、降维等任务。
深度学习在神经网络控制中应用
深度学习模型
通过构建深层神经网络模型,实现对复杂非线性系统的建模与控制,提高控制 精度和性能。
深度学习优化算法
采用梯度下降等优化算法对深度学习模型进行训练,提高训练效率和模型泛化 能力。

2024年《人工智能》详细教学大纲

2024年《人工智能》详细教学大纲
语音情感分析
结合语音识别和自然语言处理技术,对语音中的情感进行 分析和识别,是实现智能语音交互的重要研究方向。
18
05 计算机视觉技术与应用
2024/2/29
19
图像处理和计算机视觉基础概念
1 2
图像处理基础
像素、分辨率、色彩空间、图像变换等基本概念 。
计算机视觉概述
视觉感知、视觉计算模型、视觉任务分类等。
能力目标
能够运用所学知识分析和 解决人工智能领域的实际 问题,具备一定的实践能 力和创新能力。
素质目标
培养学生的创新思维、团 队协作和终身学习能力, 提高学生的综合素质和职 业素养。
5
课程安排与时间表
课程安排
本课程共分为理论授课、实验操作和课程设计三个环节,其中理论授课主要讲解 人工智能的基本原理和方法,实验操作帮助学生掌握相关技术和工具的使用,课 程设计则要求学生综合运用所学知识完成一个实际项目。
分割(如FCN、U-Net)等。
2024/2/29
03
实例分割与语义分割
Mask R-CNN、PANet等实例分割方法;DeepLab、PSPNet等语义分
割方法。
21
三维重建、视频理解等前沿技术介绍
三维重建技术
基于多视图的三维重建、基于深度学习的三维重建(如体素网格 、点云处理)等。
视频理解技术
马尔科夫决策过程在强化学习中的应用
03
将强化学习问题建模为马尔科夫决策过程,利用求解方法求解
最优策略。
25
智能推荐系统、游戏AI等应用场景分析
智能推荐系统
利用强化学习技术,根据用户历史行为和环境反馈,学习推荐策略,实现个性化推荐。例 如,电商平台的商品推荐、音乐平台的歌曲推荐等。

神经网络预测的原理及应用

神经网络预测的原理及应用

神经网络预测的原理及应用神经网络预测的原理神经网络是一种模仿人类大脑神经元之间连接方式和工作原理的数学模型。

神经网络通过多层的神经元之间相互连接来模拟输入与输出之间的关系,并通过训练过程来调整连接权重,从而实现数据的预测。

神经网络预测的原理包括以下几个关键步骤:1. 数据准备首先,需要准备好用于训练神经网络的数据集。

数据集应包含输入数据和对应的标签或输出数据。

对于监督学习问题,输入数据和输出数据要有明确的对应关系。

2. 网络结构设计设计适当的神经网络结构是预测的重要步骤。

神经网络由多个层次组成,包括输入层、隐藏层和输出层。

输入层接收原始数据,隐藏层进行中间处理,输出层产生预测结果。

3. 前向传播在前向传播阶段,输入数据从输入层开始,通过隐藏层逐渐传递到输出层。

在每个神经元中,输入数据经过加权和激活函数的处理,并传递给下一层的神经元。

4. 损失函数计算预测的结果需要和实际标签进行比较,以计算预测误差。

常用的损失函数包括均方误差、交叉熵等。

5. 反向传播通过反向传播算法,神经网络根据损失函数的结果,逐层计算各个神经元的梯度,并利用梯度下降法来更新网络中的权重和偏置,使得预测结果逐渐接近实际标签。

6. 优化算法选择选择合适的优化算法对神经网络进行训练可以加快收敛速度和提高预测准确率。

常见的优化算法有梯度下降、Adam、RMSprop等。

7. 模型评估在训练完成后,需要对模型进行评估,以验证其在未知数据上的预测能力。

常用的评估指标包括准确率、召回率、F1值等。

神经网络预测的应用神经网络预测在各个领域都有广泛的应用,以下列举几个常见的应用场景:1. 图像识别神经网络在图像识别方面有着广泛应用。

通过对大量的图像数据进行训练,神经网络可以学习到图像的特征,实现对图像中物体的自动识别和分类。

2. 自然语言处理神经网络在自然语言处理方面的应用也十分重要。

通过处理文本数据,神经网络可以实现语义分析、情感分析、机器翻译等任务,为人们提供更智能的语言交互体验。

神经网络的应用及原理

神经网络的应用及原理

神经网络的应用及原理1. 神经网络简介神经网络是一种模拟生物神经网络的人工智能技术,通过模拟大脑神经元之间的连接来实现信息处理和学习。

神经网络由多个节点(神经元)组成,每个节点通过带权重的连接与其他节点相连,并通过激活函数对输入信号进行处理。

神经网络的学习过程主要包括前向传播和反向传播两个阶段。

2. 神经网络的应用领域神经网络在各个领域都有广泛的应用,以下列举了其中的几个主要应用领域:•图像识别:神经网络可以通过训练学习图像的特征,用于图像识别、人脸识别、目标检测等任务。

•自然语言处理:神经网络可以用于机器翻译、语音识别、情感分析等自然语言处理任务。

•推荐系统:神经网络可以通过分析用户的行为数据,进行个性化推荐,提高用户体验。

•金融市场预测:神经网络可以分析历史数据,预测股票市场、汇率变动等金融市场的趋势。

•医疗诊断:神经网络可以辅助医生进行疾病诊断、影像分析等医疗任务。

3. 神经网络的原理神经网络的原理主要包括节点之间的连接方式、激活函数以及学习算法。

3.1 节点之间的连接方式神经网络的节点之间通过带权重的连接进行信息传递。

连接可以是前向的也可以是反向的,前向连接将信息从输入层传递到输出层,反向连接用于误差的反向传播。

连接的权重表示了节点之间信息传递的强弱关系。

3.2 激活函数神经网络的节点通过激活函数对输入信号进行处理,通常采用非线性的激活函数,常见的激活函数包括Sigmoid函数、ReLU函数等。

激活函数的作用是引入非线性因素,使得神经网络可以拟合非线性的复杂函数关系。

3.3 学习算法神经网络的学习主要通过训练数据进行,通常采用反向传播算法进行参数的更新。

反向传播算法通过计算误差梯度,将误差从输出层传递到输入层,然后根据梯度更新各个参数的值,以使得神经网络输出的结果与实际结果更接近。

4. 神经网络的优缺点神经网络有一些优点和缺点,下面是对其优缺点的详细阐述。

4.1 优点•适应性强:神经网络可以自动提取特征,适应不同任务和数据的特点。

BP神经网络原理与应用实习论文

BP神经网络原理与应用实习论文

学年论文(本科)学院数学与信息科学学院专业信息与计算科学专业年级10级4班姓名徐玉琳于正平马孝慧李运凤郭双双任培培论文题目BP神经网络原理与应用指导教师冯志敏成绩2013年 9月 24日BP神经网络的原理与应用1.BP神经网络的原理1.1 BP神经网络的结构BP神经网络模型是一个三层网络,它的拓扑结构可被划分为:输入层(InputLayer )、输出层(Outp ut Layer ) ,隐含层(Hide Layer ).其中,输入层与输出层具有更重要的意义,因此也可以为两层网络结构(把隐含层划入输入层,或者把隐含层去掉)每层都有许多简单的能够执行并行运算的神经元组成,这些神经元与生物系统中的那些神经元非常类似,但其并行性并没有生物神经元的并行性高.BP神经网络的特点:1)网络由多层构成,层与层之间全连接,同一层之间的神经元无连接.2)BP网络的传递函数必须可微.因此,感知器的传递函数-——二值函数在这里没有用武之地.BP网络一般使用Sigmoid函数或线性函数作为传递函数.3)采用误差反向传播算法(Back-Propagation Algorithm)进行学习.在BP 网络中,数据从输入层隐含层逐层向后传播,训练网络权值时,则沿着减少误差的方向,从输出层经过中间各层逐层向前修正网络的连接权值.随着学习的不断进行,最终的误差越来越来小.BP神经网络的学习过程BP神经网络的学习算法实际上就是对误差函数求极小值的算法,它采用的算法是最速下降法,使它对多个样本进行反复的学习训练并通过误差的反向传播来修改连接权系数,它是沿着输出误差函数的负梯度方向对其进行改变的,并且到最后使误差函数收敛于该函数的最小点.1.3 BP网络的学习算法BP网络的学习属于有监督学习,需要一组已知目标输出的学习样本集.训练时先使用随机值作为权值,修改权值有不同的规则.标准的BP神经网络沿着误差性能函数梯度的反向修改权值,原理与LMS算法比较类似,属于最速下降法.拟牛顿算法牛顿法是一种基于二阶泰勒级数的快速优化算法.其基本方法是1(1)()()()x k x k A k g k -+=-式中 ()A k ----误差性能函数在当前权值和阀值下的Hessian 矩阵(二阶导数),即2()()()x x k A k F x ==∇牛顿法通常比较梯度法的收敛速度快,但对于前向型神经网络计算Hessian 矩阵是很复杂的,付出的代价也很大.有一类基于牛顿法的算法不需要二阶导数,此类方法称为拟牛顿法(或正切法),在算法中的Hessian 矩阵用其近似值进行修正,修正值被看成梯度的函数. 1)BFGS 算法在公开发表的研究成果中,你牛顿法应用最为成功得有Boryden,Fletcher,Goldfard 和Shanno 修正算法,合称为BFG 算法. 该算法虽然收敛所需的步长通常较少,但在每次迭代过程所需要的计算量和存储空间比变梯度算法都要大,对近似Hessian 矩阵必须进行存储,其大小为n n ⨯,这里n 网络的链接权和阀值的数量.所以对于规模很大的网络用RPROP 算法或任何一种梯度算法可能好些;而对于规模较小的网络则用BFGS 算法可能更有效. 2)OSS 算法 由于BFGS 算法在每次迭代时比变梯度算法需要更多的存储空间和计算量,所以对于正切近似法减少其存储量和计算量是必要的.OSS 算法试图解决变梯度法和拟牛顿(正切)法之间的矛盾,该算法不必存储全部Hessian 矩阵,它假设每一次迭代时与前一次迭代的Hessian 矩阵具有一致性,这样做的一个有点是,在新的搜索方向进行计算时不必计算矩阵的逆.该算法每次迭代所需要的存储量和计算量介于梯度算法和完全拟牛顿算法之间. 最速下降BP 法最速下降BP 算法的BP 神经网络,设k 为迭代次数,则每一层权值和阀值的修正按下式进行(1)()()x k x k g k α+=-式中()x k —第k 次迭代各层之间的连接权向量或阀值向量;()g k =()()E k x k ∂∂—第k 次迭代的神经网络输出误差对各权值或阀值的梯度向量.负号表示梯度的反方向,即梯度的最速下降方向;α—学习效率,在训练时是一常数.在MATLAB 神经网络工具箱中,,可以通过改变训练参数进行设置;()E K —第k 次迭代的网络输出的总误差性能函数,在MATLAB 神经网络工具箱中BP 网络误差性能函数默认值为均方误差MSE,以二层BP 网络为例,只有一个输入样本时,有2()()E K E e k ⎡⎤=⎣⎦21S≈22221()S i i i t a k =⎡⎤-⎣⎦∑ 222212,1()()()()s ii j i i j a k f w k a k b k =⎧⎫⎪⎪⎡⎤=-⎨⎬⎣⎦⎪⎪⎩⎭∑21221112,,11()(()())()s s i j i j i i i j j f w k f iw k p ib k b k ==⎧⎫⎡⎤⎛⎫⎪⎪=++⎢⎥ ⎪⎨⎬⎢⎥⎝⎭⎪⎪⎣⎦⎩⎭∑∑若有n 个输入样本2()()E K E e k ⎡⎤=⎣⎦21nS ≈22221()S ii i ta k =⎡⎤-⎣⎦∑根据公式和各层的传输函数,可以求出第k 次迭代总误差曲面的梯度()g k =()()E k x k ∂∂,分别代入式子便可以逐次修正其权值和阀值,并是总的误差向减小的方向变化,直到达到所需要的误差性能为止. 1.4 BP 算法的改进BP 算法理论具有依据可靠、推导过程严谨、精度较高、通用性较好等优点,但标准BP 算法存在以下缺点:收敛速度缓慢;容易陷入局部极小值;难以确定隐层数和隐层节点个数.在实际应用中,BP 算法很难胜任,因此出现了很多改进算.利用动量法改进BP 算法标准BP 算法实质上是一种简单的最速下降静态寻优方法,在修正W(K)时,只按照第K 步的负梯度方向进行修正,而没有考虑到以前积累的经验,即以前时刻的梯度方向,从而常常使学习过程发生振荡,收敛缓慢.动量法权值调整算法的具体做法是:将上一次权值调整量的一部分迭加到按本次误差计算所得的权值调整量上,作为本次的实际权值调整量,即:其中:α为动量系数,通常0<α<0.9;η—学习率,范围在0.001~10之间.这种方法所加的动量因子实际上相当于阻尼项,它减小了学习过程中的振荡趋势,从而改善了收敛性.动量法降低了网络对于误差曲面局部细节的敏感性,有效的抑制了网络陷入局部极小.自适应调整学习速率标准BP算法收敛速度缓慢的一个重要原因是学习率选择不当,学习率选得太小,收敛太慢;学习率选得太大,则有可能修正过头,导致振荡甚至发散.可采用图所示的自适应方法调整学习率.调整的基本指导思想是:在学习收敛的情况下,增大η,以缩短学习时间;当η偏大致使不能收敛时,要及时减小η,直到收敛为止.动量-自适应学习速率调整算法采用动量法时,BP算法可以找到更优的解;采用自适应学习速率法时,BP算法可以缩短训练时间.将以上两种方法结合起来,就得到动量-自适应学习速率调整算法.1. L-M学习规则L-M(Levenberg-Marquardt)算法比前述几种使用梯度下降法的BP算法要快得多,但对于复杂问题,这种方法需要相当大的存储空间L-M(Levenberg-Marquardt)优化方法的权值调整率选为:其中:e —误差向量;J —网络误差对权值导数的雅可比(Jacobian )矩阵;μ—标量,当μ很大时上式接近于梯度法,当μ很小时上式变成了Gauss-Newton 法,在这种方法中,μ也是自适应调整的. 1.5 BP 神经网络的设计 网络的层数输入层节点数取决于输入向量的维数.应用神经网络解决实际问题时,首先应从问题中提炼出一个抽象模型,形成输入空间和输出空间.因此,数据的表达方式会影响输入向量的维数大小.例如,如果输入的是64*64的图像,则输入的向量应为图像中所有的像素形成的4096维向量.如果待解决的问题是二元函数拟合,则输入向量应为二维向量.理论上已证明:具有偏差和至少一个S 型隐含层加上一个线性输出层的网络,能够逼近任何有理数.增加层数可以更进一步的降低误差,提高精度,但同时也使网络复杂化,从而增加了网络权值的训练时间.而误差精度的提高实际上也可以通过增加神经元数目来获得,其训练效果也比增加层数更容易观察和调整.所以一般情况下,应优先考虑增加隐含层中的神经元数. 隐含层的神经元数网络训练精度的提高,可以通过采用一个隐含层,而增加神经元数了的方法来获得.这在结构实现上,要比增加隐含层数要简单得多.那么究竟选取多少隐含层节点才合适?这在理论上并没有一个明确的规定.在具体设计时,比较实际的做法是通过对不同神经元数进行训练对比,然后适当地加上一点余量.1)0niMi C k =>∑,k 为样本数,M 为隐含层神经元个数,n 为输入层神经元个数.如i>M,规定C i M =0.2)和n 分别是输出层和输入层的神经元数,a 是[0.10]之间的常量.3)M=2log n ,n 为输入层神经元个数.初始权值的选取由于系统是非线性的,初始值对于学习是否达到局部最小、是否能够收敛及训练时间的长短关系很大.如果初始值太大,使得加权后的输入和n落在了S型激活函数的饱和区,从而导致其导数f (n)非常小,从而使得调节过程几乎停顿下来.所以一般总是希望经过初始加权后的每个神经元的输出值都接近于零,这样可以保证每个神经元的权值都能够在它们的S型激活函数变化最大之处进行调节.所以,一般取初始权值在(-1,1)之间的随机数.学习速率学习速率决定每一次循环训练中所产生的权值变化量.大的学习速率可能导致系统的不稳定;但小的学习速率导致较长的训练时间,可能收敛很慢,不过能保证网络的误差值不跳出误差表面的低谷而最终趋于最小误差值.所以在一般情况下,倾向于选取较小的学习速率以保证系统的稳定性.学习速率的选取范围在0.01-0.8之间.1.6BP神经网络局限性需要参数多且参数选择没有有效的方法对于一些复杂问题 ,BP 算法可能要进行几小时甚至更长的时间训练,这主要是由于学习速率太小所造成的.标准BP 网络学习过程缓慢,易出现平台,这与学习参数率l r的选取有很大关系.当l r较时,权值修改量大,学习速率也快,但可能产生振荡;当l r较小时,虽然学习比较平稳,但速度十分缓慢.容易陷入局部最优BP网络易陷入局部最小, 使 BP网络不能以高精度逼近实际系统.目前对于这一问题的解决有加入动量项以及其它一些方法.BP 算法本质上是以误差平方和为目标函数 , 用梯度法求其最小值的算法.于是除非误差平方和函数是正定的, 否则必然产生局部极小点, 当局部极小点产生时 , BP算法所求的就不是解.1.6.3 样本依赖性这主要表现在网络出现的麻痹现象上.在网络的训练过程中,如其权值调的过大,可能使得所有的或大部分神经元的加权值偏大,这使得激活函数的输入工作在S型转移函数的饱和区,从而导致其导函数非常小,使得对网络权值的调节过程几乎停顿下来.通常为避免这种现象的发生,一是选取较小的初始权值,二是采用较小的学习速率,但又要增加时间训练.初始权敏感对于一些复杂的问题,BP算法可能要进行几个小时甚至更长时间的训练.这主要是由于学习速率太小造成的.可采用变化的学习速率或自适应的学习速率来加以改进.2.BP神经网络应用2.1 手算实现二值逻辑—异或这个例子中,采用手算实现基于BP网络的异或逻辑.训练时采用批量训练的方法,训练算法使用带动量因子的最速下降法.在MATLAB中新建脚本文件main_xor.m,输入代码如下:%脚本%批量训练方式.BP网络实现异或逻辑%%清理clear allclcrand('seed',2)eb = 0.01; %误差容限eta = 0.6; %学习率mc = 0.8; %动量因子maxiter = 1000; %最大迭代次数%% 初始化网络nSampNum = 4;nSampDim = 2;nHidden = 3;nOut = 1;w = 2*(rand(nHidden,nSampDim)-1/2);b = 2*(rand(nHidden,1)-1/2);wex = [w,b];W = 2*(rand(nOut,nHidden)-1/2);B = 2*(rand(nOut,1)-1/2);WEX = [W,B];%%数据SampIn=[0,0,1,1;...0,1,0,1;…1,1,1,1];expected = [0,1,1,0];%%训练iteration = 0;errRec = [];outRec =[];for i = 1:maxiter% 工作信号正向传播hp = wex*SampIn;tau = logsig(hp);tauex = [tau',1*ones(nSampNum,1)]';HM = WEX*tauex;out = logsig(HM);outRec = [outRec,out'];err = expected - out;sse = sumsqr(err);errRec = [errRec,sse];fprintf('第%d 次迭代,误差:%f \n',i,sse);% 判断是否收敛iteration = iteration + 1;if sse <= ebbreak;end% 误差信号反向传播% DELTA 和delta 为局部梯度DELTA = err.*dlogsig(HM,out);delta = W' * DELTA.*dlogsig(hp,tau);dWEX = DELTA*tauex';dwex = delta*SampIn';% 更新权值if i == 1WEX = WEX + eta*dWEX;wex = wex + eta*dwex;elseWEX = WEX + (1-mc)*eta*dWEX + mc*dWEXold;wex = wex + (1-mc)*eta*dwex+mc*dwexold;enddWEXold = dWEX;dwexold = dwex;W = WEX(:,1:nHidden);end%%显示figure(1)grid[nRow,nCol]=size(errRec);semilogy(1:nCol,errRec,'LineWidth',1.5);title('误差曲线');xlabel('迭代次数');x=-0.2:.05:1.2;[xx,yy] = meshgrid(x);for i=1:length(xx)for j=1:length(yy)xi=[xx(i,j),yy(i,j),1];hp = wex*xi';tau = logsig(hp);tauex = [tau',1]';HM = WEX*tauex;out = logsig(HM);z (i,j) =out;endendfigure(2)mesh(x,x,z);figure(3)plot([0,1],[0,1],'*','LineWidth',2);hold onplot([0,1],[1,0],'O','LineWidth',2);[c,h]=contour(x,x,z,0.5,'b');clabel(c,h);legend('0','1','分类面');title('分类面')2.2 误差下降曲线如下图所示:Finger 1010*******400500600700800900100010-210-110误差曲线迭代次数网格上的点在BP 网络映射下的输出如下图:Finger 2异或本质上是一个分类问题,,分类面如图:Finger 3分类面-0.200.20.40.60.81 1.2本文介绍了神经网络的研究背景和现状,分析了目前神经网络研究中存在的问题.然后描述了BP神经网络算法的实现以及BP神经网络的工作原理,给出了BP网络的局限性.本文虽然总结分析了BP神经网络算法的实现,给出了实例分析,但是还有很多的不足.所总结的BP神经网络和目前研究的现状都还不够全面,经过程序调试的图形有可能都还存在很多细节上的问题,而图形曲线所实现效果都还不够好,以及结果分析不够全面、正确、缺乏科学性等,这些都还是需加强提高的.近几年的不断发展,神经网络更是取得了非常广泛的应用,和令人瞩目的发展.在很多方面都发挥了其独特的作用,特别是在人工智能、自动控制、计算机科学、信息处理、机器人、模式识别等众多方面的应用实例,给人们带来了很多应用上到思考,和解决方法的研究.但是神经网络的研究最近几年还没有达到非常热门的阶段,这还需有很多热爱神经网络和研究神经网络人员的不断研究和创新,在科技高度发达的现在,我们有理由期待,也有理由相信.我想在不久的将来神经网络会应用到更多更广的方面,人们的生活会更加便捷.学年论文成绩评定表。

脉冲神经网络原理及应用

脉冲神经网络原理及应用

脉冲神经网络原理及应用脉冲神经网络(pulse neural network,简称PNN)是一种特殊的时域信号处理方法,它可以自动承载并正确地结合不断改变的系统噪声。

(一)PNN的原理脉冲神经网络的原理是使用特定的特征和关联信息捕获时变特征,以控制系统噪声。

它是一类非常有用的时域技术,它可以从噪声信号中抽取准确的特征,无论变化有多大。

脉冲神经网络的实现基本上是一种概率过程,可以在变化的噪声环境中对信号进行处理和分析,从而更加有效的利用数据。

(二)PNN的优势脉冲神经网络有几个重要优势,它们能够有效运用噪声信号中的特征并准备更多的可用信息。

这里最重要的优势有:(1)不受时间变化影响:脉冲神经网络可以处理变化的噪声,并且不受它们的时间变化影响;(2)对不同输入变量相对独立:脉冲神经网络可以在变量数量随时间变化时保持稳定性,这样就可以避免模型准确性的困惑;(3)可以处理复杂系统:由于脉冲神经网络可以同时处理多个变量,因此可以用于处理复杂系统,如复杂结构、空间变化以及复杂的传感器系统。

(三)PNN的应用脉冲神经网络由于具有强大的抗噪能力和高精度的特征抽取能力,得到了广泛的应用。

主要的应用领域有:(1)基于脉冲的信号检测和提取:它可以从噪声中检测出指定的脉冲,并提取出有效信息;(2)图像识别:它可以对图像中指示性特征进行检测,有助于对不同场景的图像进行识别和分类;(3)基于网络的模式识别:它用于进行模式识别,比如系统状态的预测和控制;(4)智能控制系统:它可以检测实时环境状态,从而用于智能控制系统,如智能交通系统和机器人控制系统。

(四)总结从上列内容可以看出,脉冲神经网络作为一种特殊的时域信号处理技术,具有免受时间变化影响,可以处理不同输入变量,并且能够处理各种复杂信号环境的特点,在不同的应用领域中有着重要的应用价值。

这种高精度的时域技术可以有效滤波和抽取有用的信息,更加有效的处理复杂的传感器信号,从而使系统能够准确地反应环境的变化。

竞争性神经网络的原理及应用

竞争性神经网络的原理及应用

竞争性神经网络的原理及应用竞争性神经网络是一类典型的无监督学习算法,它在人类的神经系统中有着广泛的应用。

竞争性神经网络作为一种较新的技术,其目标在于模拟人类神经系统的行为,实现自主学习和不断变化的能力。

本文将介绍竞争性神经网络的原理及其应用。

一、竞争性神经网络的原理竞争性神经网络是通过模拟人类神经系统的行为来进行学习的。

它的基本原理是,将一组数据输入系统中,每个神经元之间相互竞争,最终经过竞争得出“优胜者”。

竞争性神经网络中最常用的模型是Kohonen自组织映射网络。

在Kohonen自组织映射网络中,每个神经元都与一个向量相关联,称为权重向量。

每次输入向量并给出一个胜出神经元,胜出神经元的权重向量通过调整来接近输入向量,而其他神经元的权重向量则保持不变。

Kohonen自组织映射网络的工作过程如下:(1)初始化每个神经元的权重向量;(2)给定输入向量;(3)计算每个神经元与输入向量的距离;(4)选择距离最近的神经元作为胜出神经元;(5)调整胜出神经元及其周围神经元的权重向量。

上述过程重复多次,神经元的位置会不断调整,最终形成一个由许多神经元构成的二维网格。

这个过程中,神经元的权重向量会不断调整,使得相似的输入向量聚集在相邻的神经元上。

二、竞争性神经网络的应用竞争性神经网络的应用十分广泛,在模式分类、数据挖掘、机器人控制、图像处理等领域中都有着重要的应用。

1. 模式分类竞争性神经网络可以通过自组织学习的方式进行模式分类。

在输入向量空间中聚集在一起的向量归为同一类别,从而对其它向量进行分类。

例如,通过对由红色和蓝色像素组成的图像进行训练,可以将红色像素和蓝色像素分别归类,并将其它颜色的像素归类到与其最接近的类别中。

2. 数据挖掘竞争性神经网络可以在数据挖掘领域中用来确定数据的特征。

这种网络可以在输入向量空间中分离出各种特征,并将其归为不同的类别。

例如,在一个由客户购买历史、性别、年龄等组成的数据集中使用竞争性神经网络,将各种特征分离出来,并将客户划分为不同的类别。

人工神经网络的原理和应用

人工神经网络的原理和应用

人工神经网络的原理和应用简介人工神经网络(Artificial Neural Network,简称ANN)是一种基于生物神经网络结构和功能的计算模型,它通过模拟神经元之间的相互连接和信息传递来实现智能化的任务处理。

本文将介绍人工神经网络的原理,包括神经元、权重及激活函数的概念,并探讨其在各领域中的应用。

人工神经网络的原理人工神经网络由神经元(Neuron)、权重(Weight)和激活函数(Activation Function)三个核心组件构成。

神经元神经元是人工神经网络的基本单元,它模拟生物神经元的结构和功能。

神经元接受输入信号,通过加权求和和激活函数的运算,产生输出信号。

一个神经网络通常包含多个神经元组成的输入层、隐藏层和输出层。

权重权重表示神经元之间连接的强度,它决定了输入信号对输出信号的影响程度。

在训练过程中,神经网络通过调整权重来逐步优化模型的性能。

权重调整的方法有很多,常见的方法包括梯度下降法、反向传播算法等。

激活函数激活函数对神经元输出信号进行非线性变换,帮助神经网络学习和处理更复杂的数据。

常用的激活函数有sigmoid函数、ReLU函数等,它们可以将输入信号映射到一定的范围内,保证输出结果在合理的区间内。

人工神经网络的应用人工神经网络在各个领域中都有广泛的应用。

图像识别人工神经网络在图像识别领域中发挥重要作用。

通过训练神经网络模型,可以实现图像分类、目标检测、人脸识别等任务。

著名的卷积神经网络(Convolutional Neural Network,简称CNN)就是应用于图像识别领域的一种特殊类型的神经网络。

自然语言处理人工神经网络在自然语言处理领域也得到了广泛应用。

通过训练神经网络模型,可以实现文本分类、情感分析、机器翻译等任务。

循环神经网络(Recurrent Neural Network,简称RNN)和长短期记忆网络(Long Short-Term Memory,简称LSTM)是应用于自然语言处理的常见神经网络模型。

人工神经网络原理及其应用-人工智能导论

人工神经网络原理及其应用-人工智能导论

人工神经网络原理及其应用1.人工神经网络的概念:人工神经网络是对人脑或生物神经网络若干基本特性的抽象和模拟。

2.生物神经网络:由中枢神经系统(脑和脊髓)及周围神经系统(感觉神经、运动神经等)所构成的错综复杂的神经网络,其中最主要的是脑神经系统。

3.人工神经网络原理:因为人工神经网络是模拟人和动物的神经网络的某种结构和功能的模拟,所以要了解神经网络的工作原理,所以我们首先要了解生物神经元。

生物神经元它包括,细胞体:由细胞核、细胞质与细胞膜组成,轴突是从细胞体向外伸出的细长部分,也就是神经纤维。

轴突是神经细胞的输出端,通过它向外传出神经冲动;树突是细胞体向外伸出的许多较短的树枝状分支。

它们是细胞的输入端,接受来自其它神经元的冲动。

突触是神经元之间相互连接的地方,既是神经末梢与树突相接触的交界面。

对于从同一树突先后传入的神经冲动,以及同一时间从不同树突输入的神经冲动,神经细胞均可加以综合处理,处理的结果可使细胞膜电位升高,对于从同一树突先后传入的神经冲动,以及同一时间从不同树突输入的神经冲动,神经细胞均可加以综合处理,处理的结果可使细胞膜电位升高。

当输入的冲动减小,综合处理的结果使膜电位下降,当下降到阀值时。

细胞进入抑制状态,此时无神经冲动输出。

“兴奋”和“抑制”,神经细胞必呈其一。

人工神经网络的工作原理与生物神经网络原理类似,但却又不相同,其主要是通过建立一些数学模型,去模拟生物神经网络。

4.神经网络的结构:(1)前馈型:本层每个神经元只作用于下一层神经元的输入,不能直接作用于下下一层的神经元,且本层神经元之前不能互相租用。

(2)反馈型:即在前馈型的基础上,输出信号直接或间接地作用于输入信号。

5.神经网络的工作方式:(1)同步(并行)方式:任一时刻神经网络中所有神经元同时调整状态。

(2)异步(串行)方式:任一时刻只有一个神经元调整状态,而其它神经元的状态保持不变。

6.人工神经网络的应用:经过几十年的发展,神经网络理论在模式识别、自动控制、信号处理、辅助决策、人工智能等众多研究领域取得了广泛的成功。

物理学与神经网络

物理学与神经网络
神经网络与物理学的结合:将神经网络应用于物理学问题的解决
突破:在物理问题的解决上取得重要进展,如量子力学、凝聚态物理等
未来展望:神经网络在物理学领域的广泛应用,推动物理学的发展
神经网络物理实现技术的发展趋势
硬件加速:利用专用硬件加速神经网络计算,提高计算效率和速度
量子计算:利用量子计算技术实现神经网络计算,提高计算速度和处理能力
网络结构:模拟生物神经网络的结构,如全连接网络、卷积神经网络等
突触:神经元之间的连接,模拟生物神经元之间的连接方式
学习规则:模拟生物神经网络的学习过程,如梯度下降法、反向传播算法等
神经网络的物理实现方式
应用领域:包括图像识别、语音识别、自然语言处理等
物理实现:通过硬件设备实现神经网络的计算和运行
网络结构:模拟生物神经网络的结构和连接方式
制造业:质量控制、生产优化、设备维护
交通领域:自动驾驶、交通管理、物流优化
娱乐产业:游戏开发、虚拟现实、增强现实
神经网络对未来科技发展的影响
深度学习:推动人工智能的发展,提高机器识别和预测能力
自然语言处理:提高机器理解和生成自然语言的能力,促进人机交互的发展
计算机视觉:提高机器识别和分类图像的能力,推动无人驾驶、智能监控等领域的发展
神经元连接:通过突触进行连接,形成神经网络
神经网络模型
神经元:神经网络的基本单元,接收输入信号并产生输出信号
连接权重:神经元之间的连接强度,通过调整权重可以改变神经网络的行为
激活函数:将神经元的输出信号转换为新的输入信号,常用的激活函数有Sigmoid、ReLU等
损失函数:衡量神经网络预测结果与真实结果之间的差异,常用的损失函数有MSE、Cross-Entropy等

神经网络技术的原理及应用

神经网络技术的原理及应用

神经网络技术的原理及应用神经网络是一种基于人工智能思想的广泛应用方法,它基于大量的数据和算法,以模拟人类大脑的思维方式来解决复杂的问题。

目前,神经网络技术已成为计算机科学和工程学中最重要的研究方向之一,被广泛应用于语音识别、图像识别、智能控制等领域。

神经网络技术的原理基于人工智能诞生之时的一些重要观点。

这些观点是在20世纪50年代中期提出的,并且在之后的几十年里得到了广泛的研究和应用。

其中最基础的观点是:我们人类的大脑可以被视为一个递归神经网络,这个神经网络能够通过学习来适应新的环境和任务。

因此,研究人员提出了通过模拟人脑的神经网络来实现人工智能的思想。

在神经网络中,基本的计算单元被称为“神经元”。

神经元有多个输入和输出连接点,每个连接点都有一个权重。

模拟每个神经元的输出值就需要根据连接点的权重和输入信号的相对强度计算得到。

为了模拟人脑的神经网络,多个神经元会被互相链接在一起,形成一个复杂的计算网络。

神经网络的应用非常广泛,其中最常见的是图像识别。

这种技术使用神经网络来训练计算机识别图像中的特定对象。

例如,一个人工智能系统可以通过观察数百万张猫的图片来学习如何正确识别猫的形状和特征。

对于该系统的更新和优化,还需要确定神经网络中的权重。

另外,神经网络技术也可以被用于机器人和自动驾驶车辆的控制。

在这些应用中,神经网络被设计用来学习环境中的规律和避免障碍物。

较新的应用领域是语音识别,这种技术可以帮助计算机分辨我们的语言。

通过运用深度学习模型,神经网络根据输入语音数据预测最可能的听到的单词,从而实现较高的语音识别准确率。

总体而言,神经网络技术在当今信息技术发展中起着重要的作用。

其在图像识别、智能控制、语音识别等领域内的应用,将继续为人类带来更多的便利。

这需要计算机科学家、数据分析师和工程师们不断改进和优化神经网络技术,确保它能够更好地适应新的应用场景和环境。

人工神经网络的基本原理及其应用

人工神经网络的基本原理及其应用

人工神经网络的基本原理及其应用人工神经网络(Artificial Neural Network,ANN),是一种模仿生物神经网络的人工智能技术。

它由大量的节点(也被称为神经元)和连接线组成,能够模拟人脑的信息处理方式,具有学习、记忆、推理等功能,已广泛应用于图像识别、语音识别、自然语言处理、自动化控制等领域。

1. 基本原理人工神经网络的基本结构由输入层、隐藏层和输出层组成。

其中,输入层接收外部输入,隐藏层进行信息处理,输出层输出结果。

每个节点接受来自其他节点的输入,并对总输入进行加权处理,然后运用激活函数进行非线性变换,最终输出给后继节点。

加权系数和阈值是神经网络中的重要参数,它们的调整会影响神经元的输出。

神经网络的学习过程主要包括前向传播和反向传播。

前向传播是指输入数据从输入层传递到输出层的过程;反向传播是指根据输出误差对参数进行调整的过程。

通过不断迭代,神经网络的性能可以不断提高,实现更加准确的任务。

2. 应用领域2.1 图像识别图像识别是人工神经网络的常见应用之一。

通常,将图像中的每个像素作为输入,神经网络通过卷积层和池化层从原始图像中提取特征,然后通过全连接层进行分类。

例如,Google 在 2015 年发布的 ImageNet 大规模视觉识别竞赛(ImageNet Large Scale Visual Recognition Challenge,ILSVRC)中,使用了多层卷积神经网络(Convolutional Neural Network,CNN)架构,成功识别出一张图像中的物体,使得图像识别的准确率得到了显著提高。

2.2 语音识别自然语言处理业界对神经网络的应用也不断增多。

语音识别是其中的一个热点方向。

利用神经网络,可以将人类语言转化为计算机理解的信息。

语音识别的模型一般采用长短时记忆网络(Long Short-Term Memory,LSTM)结构。

LSTM 可以有效解决序列数据中存在的长距离依赖问题,提高语音的识别率。

神经网络基础PPT课件

神经网络基础PPT课件

AlexNet
VGGNet
ResNet
DenseNet
由Yann LeCun等人提出 ,是最早的卷积神经网 络之一,用于手写数字 识别。
由Alex Krizhevsky等人 提出,获得了2012年 ImageNet图像分类竞 赛的冠军,引入了ReLU 激活函数和数据增强等 技巧。
由牛津大学Visual Geometry Group提出 ,通过反复堆叠3x3的小 型卷积核和2x2的最大池 化层,构建了深度较深 的网络结构。
内部表示。
隐藏层
通过循环连接实现信息 的持久化,捕捉序列中
的动态信息。
输出层
将隐藏层的状态转化为 具体的输出。
循环连接
将隐藏层的状态反馈到 输入层或隐藏层自身, 实现信息的循环传递。
序列建模与长短时记忆网络(LSTM)
序列建模
01
RNN通过循环连接实现对序列数据的建模,能够处理任意长度
的序列输入。
久化。
Jordan网络
与Elman网络类似,但将输出 层的状态反馈到隐藏层。
LSTM网络
长短时记忆网络,通过引入门 控机制实现对长期依赖信息的
有效处理。
GRU网络
门控循环单元网络,一种简化 的LSTM结构,具有较少的参
数和较快的训练速度。
06 深度学习框架 TensorFlow使用指南
TensorFlow安装与配置教程
非线性可分问题
不存在一条直线(或超平面)能够将两类样本完全分开的 问题。对于这类问题,需要使用非线性分类器或者核方法 等技巧进行处理。
处理非线性可分问题的方法
包括使用多项式核、高斯核等核函数将数据映射到高维空 间使其线性可分;或者使用神经网络等非线性模型对数据 进行建模和分类。

人工神经网络的发展及应用

人工神经网络的发展及应用
人工神经网络的发展及应用
01 历史回顾
03 应用领域 05 总结
目录
02 技术特点 04 未来展望 06 参考内容
ห้องสมุดไป่ตู้
随着科技的快速发展,已经成为当今社会最为热门的话题之一。作为的重要组 成部分,人工神经网络也受到了广泛的。本次演示将简要介绍人工神经网络的 发展历程、技术特点、应用领域以及未来展望,探讨其重要性和应用前景。
应用场景
人工神经网络在各个领域都有广泛的应用,如商业、工业、医学等。在商业方 面,人工神经网络可用于客户关系管理、市场预测等;在工业方面,人工神经 网络可用于生产过程控制、质量检测等;在医学方面,人工神经网络可用于疾 病诊断、医学图像处理等。然而,尽管人工神经网络在很多领域取得了显著的 成果,但也有一些问题的解决尚处在不断探索和完善的过程中。
2、前馈神经网络(Feedforward Neural Network):前馈神经网络是一种 多层感知器,由输入层、隐藏层和输出层组成。它通过在隐藏层和输出层之间 添加多个非线性函数,增强了模型的表示能力,可以解决更复杂的分类和回归 问题。
3、反馈神经网络(Feedback Neural Network):反馈神经网络是一种具有 环状结构的人工神经网络模型,其中的隐藏层节点可以接受来自外部环境的反 馈信息。它具有记忆能力,可以用于时间序列预测、优化等问题。
本次演示对人工神经网络模型的发展历程、应用领域以及未来发展趋势进行了 全面综述。文章首先介绍了人工神经网络模型的定义、特点和作用,并简要阐 述了其在各个领域的应用情况。随后,详细叙述了人工神经网络模型从理论到 实践的发展历程,
包括感知器、前馈神经网络、反馈神经网络、循环神经网络等不同类型的人工 神经网络模型。接着,文章介绍了人工神经网络模型在计算机视觉、自然语言 处理、医疗诊断、金融预测等多个领域的应用案例,并分析了这些领域的研究 现状、发展趋势和不足之处。最后,总结了人工神经网络模型的发展历程、应 用领域和未来发展趋势,指出了人工神经网络模型面临的挑战和亟待解决的问 题,并提出了一些发展建议。

人工神经网络的原理及应用

人工神经网络的原理及应用

人工神经网络的原理及应用1. 介绍人工神经网络(Artificial Neural Network,ANN)是一种受到生物神经系统启发的计算模型,通过模拟神经元之间的相互连接和信息传递,实现了一种基于权重的非线性数据处理方法。

近年来,随着计算能力的提高和数据量的增加,人工神经网络在各个领域的应用越来越广泛,取得了很多重大的突破。

2. 原理人工神经网络由多个神经元组成,每个神经元通过输入和输出连接在一起,形成一个网络结构。

神经元之间的连接权重决定了信息传递的强度和方向,使得神经网络能够学习和记忆输入数据的特征。

2.1 神经元模型神经元是人工神经网络的基本组成单位,模拟了生物神经元的功能。

每个神经元接收来自其他神经元的输入,并将这些输入进行加权求和,然后通过一个激活函数进行非线性变换,最后输出给下一个神经元。

2.2 网络结构人工神经网络的网络结构通常包括输入层、隐藏层和输出层。

输入层接收外部输入的数据,隐藏层负责进行中间特征的抽取和数据处理,输出层将最终的结果输出给用户或其他系统。

不同的网络结构可以应用于不同的问题,如前馈神经网络、循环神经网络和卷积神经网络等。

2.3 权重更新神经网络的学习过程是通过不断调整连接权重来实现的。

常用的方法是通过反向传播算法进行训练,即根据网络的输出和真实值之间的差距来更新权重。

反向传播算法使用梯度下降的思想,寻找使得损失函数最小化的权重值。

3. 应用人工神经网络在各个领域都有着广泛的应用,可以解决许多复杂的问题。

3.1 图像识别卷积神经网络是图像识别领域最常用的神经网络模型之一。

它可以通过学习大量的图像数据,自动提取图像中的特征,实现图像分类、目标检测和人脸识别等任务。

3.2 自然语言处理循环神经网络在自然语言处理领域有着广泛的应用。

通过对大量的文本数据进行学习,循环神经网络可以实现语言模型的建立、机器翻译和情感分析等任务。

3.3 金融预测人工神经网络在金融领域的应用也很广泛。

简述卷积神经网络(CNN)和循环神经网络(RNN)的原理及应用场景

简述卷积神经网络(CNN)和循环神经网络(RNN)的原理及应用场景

简述卷积神经网络(CNN)和循环神经网络(RNN)的原理及应用场景卷积神经网络(CNN)和循环神经网络(RNN)是当前深度学习领域中最热门的两个神经网络架构。

本论文将从两个方面分别介绍CNN和RNN的原理及应用场景。

一、卷积神经网络(CNN)1. 原理卷积神经网络是一种使用卷积操作的深度神经网络,其网络结构主要由卷积层、池化层和全连接层构成。

其中,卷积层和池化层主要用于提取图像的特征信息,而全连接层则用于进行分类或回归等任务。

具体而言,卷积层利用卷积核对输入数据进行卷积计算,以提取输入数据中的关键信息。

池化层则用于缩小特征图的空间大小,减少模型参数数量,提高模型的泛化能力。

全连接层将卷积层和池化层的输出进行flatten操作后,再进行全连接计算,以得出最终的分类或回归结果。

2. 应用场景卷积神经网络在图像识别、目标检测、人脸识别、自然语言处理等领域有着广泛的应用。

其中,图像识别是其主要应用场景之一。

例如,利用卷积神经网络可以对图像进行分类、分割、检测等任务。

此外,卷积神经网络还可以用于文本特征提取、语音识别等任务。

二、循环神经网络(RNN)1. 原理循环神经网络是一种具有记忆功能的神经网络,其主要特点是能够处理序列数据。

循环神经网络通过循环连接将上一时刻的输出作为本时刻的输入,以便学习上下文信息。

其网络结构主要由输入层、隐藏层和输出层构成。

其中,隐藏层包含循环单元,用于存储前面输入的信息。

具体而言,循环神经网络通过隐藏层单元的记忆功能,能够将上下文信息融合到当前的计算中,从而在序列数据的预测和生成任务上取得优异的效果。

2. 应用场景循环神经网络主要应用于序列任务,如文本生成、语音识别、机器翻译、时间序列预测等。

例如,在机器翻译中,可以将源语言序列作为输入序列,目标语言序列作为输出序列,利用循环神经网络进行学习和预测,从而实现机器翻译的自动化。

结论本论文从原理和应用场景两个方面介绍了卷积神经网络和循环神经网络。

神经网络的原理及应用实例

神经网络的原理及应用实例

神经网络的原理及应用实例神经网络的原理神经网络是一种模仿人脑神经系统运作的计算模型,它由多个节点组成,这些节点被称为神经元。

神经元之间通过连接以及权重进行信息传递。

神经网络的训练与学习是通过调整这些连接权重来实现的。

神经网络的基本组成包括输入层、隐藏层和输出层。

输入层接收外部输入数据,并将其传递给隐藏层。

隐藏层对输入数据进行进一步处理,并将结果传递给输出层。

输出层产生最终的结果。

每个神经元在接收到输入后,根据其输入与权重的组合来计算输出,并将其传递给下一层。

神经网络的训练过程是通过反向传播算法来实现的。

该算法通过比较神经网络的预测输出与实际输出之间的差距,来调整连接权重,以最小化误差。

神经网络的应用实例1. 图像识别神经网络在图像识别领域应用广泛。

通过训练神经网络,可以利用其学习能力来识别图像中的对象或特征。

例如,可以使用神经网络识别人脸、车辆、动物等。

•提供大量图像数据用于训练神经网络•调整网络结构和连接权重来提高识别准确度•使用预训练的神经网络模型来加速图像识别任务2. 自然语言处理神经网络在自然语言处理领域也有着重要的应用。

通过训练神经网络,可以实现文本分类、情感分析、机器翻译等任务。

•使用词向量表示将文本转化为数值•构建适当的神经网络架构来处理文本数据•利用循环神经网络(RNN)或长短时记忆(LSTM)等模型来处理序列数据3. 预测和回归神经网络还可以应用于预测和回归问题。

通过训练神经网络,可以根据已知的数据模式来预测未知数据的结果。

例如,可以使用神经网络预测股票价格、销售量等。

•收集和整理历史数据作为训练集•设计合适的神经网络架构,包括隐藏层的数量和节点数•利用梯度下降等优化算法来训练神经网络4. 强化学习神经网络在强化学习中也有广泛应用。

通过与环境进行交互,神经网络可以通过试错的方式来学习最佳策略。

例如,可以使用神经网络来训练机器人在不同环境中执行特定任务。

•设计适当的奖励函数来指导神经网络的学习•采用深度强化学习方法,如深度Q网络(DQN)•利用经验回放等技术来提高神经网络的学习效果5. 人工智能辅助医疗诊断神经网络在医疗领域的应用也呈上升趋势。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.1 概述
5.1.2 人工神经网络的发展
• 第二次高潮期—Hopfield网络模型的出现和人 工神经网络的复苏
– 1984年,Hopfield设计研制了后来被人们称为 Hopfield网的电路,较好地解决了TCP问题,找到了 最佳解的近似解,引起了较大轰动。 – 1985年,Hinton、Sejnowsky、Rumelhart等研究者 在Hopfield网络中引入随机机制,提出了所谓的 Bolziman机。 – 1986年,Rumelhart等研究者独立地提出多层网络的 学习算法—BP算法,较好地解决了多层网络的学习问 题。 – 1990年12月,国内首届神经网络大会在北京举行。
• 训练时,把要教给神经网络的信息(外部输入)作为网 络的输入和要求的输出,使网络按某种规则(称为训练 算法)调节各处理单元间的连接权值,直至加上给定输 入,网络就能产生给定输出为止。 • 这时,各连接权已调接好,网络的训练就完成了。
– 正常操作(回忆操作)
• 对训练好的网络输入一个信号,它就可以正确回忆出相 应输出,得到识别结果。
5.1 概述
5.1.2 人工神经网络的发展
• 反思期—神经网络的低潮
– 1969年,Marvin Minsky和Seymour Papert合著了一本 书“Perception”,分析了当时的简单感知器,指出它 有非常严重的局限性,甚至不能解决简单的“异或”问 题,为Rosenblatt的感知器判了“死刑”。 – 此时,批评的声音高涨,导致了停止对人工神经网络研 究所需的大量投资。 – 不少研究人员把注意力转向了人工智能,导致对人工神 经网络的研究陷入低潮。
5.1.3 人工神经网络的特点
• 人工神经网络的局限性
– 正确的训练数据的收集
• 大量有代表性样本的采集 • 正确的预处理
• 总之,人工神经网络是基于人类大脑的结构和功 能建立起来的学科,尽管它只是大脑的低级近似 ,但它的许多特点和人类的智能特点类似,有着 较强的识别能力和广泛的应用前景。
5.2 人工神经网络基础
– 神经元就是神经细胞,它是动物的重要特征之一,在人 体内从大脑到全身存在大约1010个神经元。 – 神经元的组成
• 细胞体:它是神经元的本体,内有细胞核和细胞质,完成普通 细胞的生存功能。 • 树突:它有大量的分枝,多达103数量级,长度较短(通常不超 过1毫米),用以接收来自其它神经元的信号。 • 轴突:它用以输出信号,有些较长(可达1米以上),轴突的远 端也有分枝,可与多个神经元相连。 • 突触:它是一个神经元与另一个神经元相联系的特殊部位,通 常是一个神经元轴突的端部靠化学接触或电接触将信号传递给 下一个神经元的树突或细胞体。
5.1.3 人工神经网络的特点
• 自适应性
– 人类有很强的适应外部的学习能力
• 小孩在周围环境的熏陶下可以学会很多事情,如通 过学习可以认字、说话、走路、思考、判断等。
5.1.3 人工神经网络的特点
• 自适应性
– 人工神经网络也具有学习能力
• 有指导的训练:将输入样本加到网络输入并给出相应 的输出,通过多次训练迭代获得连接权值。
5.1 概述
5.1.1 什么是人工神经网络
• 粗略地讲,大脑是由大量神经细胞或神经元组成的ห้องสมุดไป่ตู้ • 每个神经元可看作是一个小的处理单元,这些神经元按 某种方式连接起来,形成大脑内部的生理神经元网络。 • 这种神经元网络中各神经元之间联结的强弱,按外部的 激励信号做自适应变化,而每个神经元又随着所接收到 的多个接收信号的综合大小而呈现兴奋或抑制状态。 • 现已明确大脑的学习过程就是神经元之间连接强度随外 部激励信息做自适应变化的过程,而大脑处理信息的结 果则由神经元的状态表现出来。
5.1.3 人工神经网络的特点
• 自适应性
– 人工神经网络也具有学习能力
• 综合推理的能力:网络具有正确响应和分辨从 未见过的输入样本的能力。
– 进行数字图形的识别时,对于不完善的数字图形或 失真的数字图形仍能正确辨认。
5.1.3 人工神经网络的特点
• 人工神经网络的局限性
– 人工神经网络不适于高精度的计算
5.1 概述
5.1.1 什么是人工神经网络 • 由于我们建立的信息处理系统实际上是模仿生 理神经网络,因此称它为人工神经网络。 • 需要指出,尽管人工神经网络是对大脑结构的 模仿,但这种模仿目前还处于极低的水平。
5.1 概述
5.1.1 什么是人工神经网络
• 人工神经网络的两种操作过程
– 训练学习
– 一个神经元有两种状态——兴奋和抑制 – 平时处于抑制状态的神经元,当接收到其它神经元经 由突触传来的冲击信号时,多个输入在神经元中以代 数和的方式叠加。
• 目前出现的各种各样的人工神经网络模 型,尽管在性能和结构上各有特点,但 它们存在很多共同之处。
– 人工神经网络的基本术语 – 常用表示符号 – 描述人工神经网络的基本数学概念
5.2 人工神经网络基础
5.2.1 人工神经网络的生物原型—大脑 • 简单的神经元
5.2 人工神经网络基础
5.2.1 人工神经网络的生物原型—大脑 • 简单的神经元
5.1 概述
5.1.2 人工神经网络的发展
• 第二次高潮期—Hopfield网络模型的出现和人工 神经网络的复苏
– 1982年,John Hopfield向美国科学院递交了有关神 经网络的报告,主要内容就是建议收集和重视以前对 神经网络的工作,其中特别强调了每种模型的实用性。 – 根据对神经网络的数学分析和深入理解, Hopfield 揭示了以往的网络是如何工作的,可以做些什么,并 提出了他自己的模型,能从失真的或不完善的数据图 像中获得完整的数据图像,引起了美国军方的兴趣。 – 当时,人工智能对自动制导车的研究失败,而利用神 经网络有可能解决这个问题,从而使人们的注意力重 新投向人工神经网络,导致了人工神经网络的第二次 高潮。
5.1 概述
5.1.2 人工神经网络的发展
• 再认识与应用研究期
– 主要研究内容 • 开发现有模型的应用,并在应用中根据实际运行 情况对模型、算法加以改造,以提高网络的训练 速度和运行的准确度。 • 充分发挥每种技术各自的优势,寻找更有效的解 决方法。 • 希望在理论上寻找新的突破,建立新的专用或通 用模型和算法。 • 进一步对生物神经系统进行研究,不断丰富对人 脑的认识。
5.1 概述
5.1.3 人工神经网络的特点
• 容错性
– 人类大脑具有很强的容错能力,这正是由于大脑中知 识是存储在很多处理单元和它们的连接上的。
• 每天大脑的一些细胞都可能会自动死亡,但这并没有影响人 们的记忆和思考能力。
– 人工神经网络可以从不完善的数据和图形进行学习和 做出决定
• 由于知识存在整个系统中,而不是在一个存储单元内,因此 一定比例的结点不参与运算,对整个系统的性能不会产生重 大影响。 • 神经网络中承受硬件损坏的能力比一般计算机要强得多。
5.1 概述
5.1.2 人工神经网络的发展
• 第一次高潮期——感知器模型和人工神经网络
– 1957年,计算机专家Frank Rosenblatt开始从事感知器 的研究,并制成硬件,通常被认为是最早的神经网络模 型。 – 1959年,两位电机工程师Bernard Widrow和Marcian Haff开发出一种叫作自适应线性单元(ADALINE)的网 络模型,并在他们的论文“Adaptive Switching Circuits”中描述了该模型和它的学习算法( WidrowHaff算法)。 – 该网络通过训练,可以成功用于抵消通信中的回波和噪 声,也可用于天气预报,成为第一个用于实际问题的神 经网络。
5.1 概述
5.1.2 人工神经网络的发展 • 反思期 —— 神经网络的低潮
– 虽然如此,二十世纪70年代到80年代早期,仍有一些 坚信神经网络的人坚持他们的工作,为人工神经网络 的复苏做准备。 • 神经生理学家James Anderson开发的盒中脑模型 (Brain-State-in-a-Box,BSB)。 • 日本学者Kunihik Fukushima开发的用于视觉图形 识别的认知器模型(Neocognitron)。 • 电气工程师Teuvo Kohonen开发的与BSB类似的网络 模型。 • Grossberg, Rumelhart, McClelland, Marr, Amari和Cooper等人的工作。
第5章 人工神经网络 原理及应用
人工神经网络概述 人工神经网络基础 前馈人工神经网络
5.1 概述
5.1.1 什么是人工神经网络
• 所谓人工神经网络就是基于模仿生物大脑的结构和功能 而构成的一种信息处理系统(计算机)。 • 人是地球上具有最高智慧的动物,而人的指挥均来自大 脑,人类靠大脑进行思考、联想、记忆和推理判断等, 这些功能是任何被称为“电脑”的一般计算机所无法取 代的。 • 长期以来,许多科学家一直致力于人脑内部结构和功能 的探讨和研究,并试图建立模仿人类大脑的计算机,虽 然到目前对大脑的内部工作机理还不甚完全清楚,但对 其结构已有所了解。
– 好像告诉网络:“当你看到这个图形(比如5)时,请给我 指示5”。
• 无指导的训练:网络通过训练自行调节连接加权,从 而对输入样本分类。
– 在网络训练时,有时只能给出大量的输入图形,没有指定它 们的输出,网络就自行按输入图形的特征对它们进行分类。 – 如小孩通过大量观察可以分辨出哪是狗、哪是猫一样。
• 正像很多人不善于直接计算类似资金的问题一样,人工神 经网络不用于计算资金方面的问题。
– 人工神经网络的学习和训练往往是一个艰难的过程
• 网络的设计没有严格确定的方法(一般凭经验),所以选 择训练方法和所需网络结构没有统一标准。 • 脱机训练往往需要很长时间,为了获得最佳效果,常常要 重复试验多次。 • 网络收敛性的问题。
5.1 概述
相关文档
最新文档