双管正激变换器
第2章 并-串并联双管正激组合变换器
第2章并-串/并型双管正激组合变换器2.1概述双管正激变换器具有开关管电压应力低、内在抗桥臂直通的能力、可靠性高、电路拓扑简单等优点,是目前国内外工业界在输出中等功率应用场合中首选的电路拓扑之一。
但双管正激变换器受变压器磁芯复位的限制,最大输出占空比只能达到0.5,要获得较高的输出电压,必须靠提高变压器的变比,增加了副边二极管电压应力,限制了在输出高压场合的应用。
为了保留双管正激变换器的优点,同时克服其缺点,提高等效占空比和输入输出电压增益,减小开关管电流应力和副边二极管电压应力,本章主要研究了三种双管正激组合变换器:一种采用耦合电感的并-串型双管正激组合变换器,一种采用耦合电感的并-并型双管正激组合变换器,和一种并-并/串型双管正激组合变换器。
2.2并-串型双管正激组合变换器(a)独立电感输出电容端串联(b)副边续流二极管串联(c)耦合电感输出电容端串联图2.1 三种并-串型双管正激组合变换器两组双管正激变换器的开关管导通相位互差180O,在输入端并联、输出端串联方第2章 并-串/并型双管正激组合变换器式构成的并-串型双管正激组合变换器有三种,如图 2.1(a )~2.1(c)所示:分别为采用独立电感在输出电容端串联、副边续流二极管串联和采用耦合电感在输出电容端串联。
其中图 2.1(a)所示并-串型组合变换器中的两组双管正激变换器,在工作上相当于两个独立的变换器,每个变换器输出一半的电压;图 2.1(b )所示续流管串联型组合变换器,文献【24】已做讨论。
本节主要研究采用耦合电感在输出电容端串联的并-串型双管正激组合变换器,并对三种并-串型组合变换器的特性作一比较。
2.2.1采用耦合电感的并-串型双管正激组合变换器为了便于分析图 2.1(c )所示的并-串型双管正激组合变换器,作如下假定:组合变换器已经达到稳态,耦合电感中两线圈电流工作在连续模式,开关管和二极管均为理想器件,忽略变压器漏感,两耦合线圈自感相等(12L L L ==),两输出滤波容电压相等、均为输出电压的一半。
一种基于SG3525控制的双管正激变换器
一种基于SG3525控制的双管正激变换器
引言
双管正激变换器由于具有开关电压应力低,内在抗桥臂直通能力强,可靠性高等优点,被广泛应用于高输入电压的中、大功率等级的电源产品中。
在开关电源系统中脉宽调制器的设计是一个关键问题,本文所述系统采用的脉宽调制器是美国硅通用公司的第二代产品SG3525,这是一种性能优良,功能齐全,通用性强的单片集成PWM控制器。
由于它简单、可靠且使用方便灵活,大大简化了脉宽调制器的设计及调试。
1、双管正激变换器的特点
双管正激变换器的拓扑结构如图1所示。
其基本工作原理为:S1与S2同时导通,同时关断。
S1与S2导通时电源经变压器向负载输出功率并使C充电。
S1及S2关断时,输出电流经D4续流,同时变压器绕组的励磁电流经D1-VIN-D2向电源返回磁能。
由于D1和D2的导通使开关管S1和S2承受的电压仅为电源电压。
这种双管单端正激电路虽然多用了一个开关管,但其电压较单管的低了一半,同时变压器少了一个磁通复位绕组,所以适用于具有较高输入电压的场合。
图1 双管正激电路拓扑图。
双管正激同步整流变换器的研究
关键词:开关电源
双管正激
电流型控制
同步整流
I
Abstract
The operation of two- Transistor forward converter toponology and current control mode are discussed in this paper.The advantage and the drawback of the toponology are introduced. Using state-space averaging method this paper deduces the TTFC’ s small signal mode.Based on it the voltage control mode and current control mode are analyzed and compared. With the development of power electronical converters’ s application in telecom system ,converters with low output voltage and large output current become more and more important. R ectifying stage with diode or sckotty diode can’ t meet the needs of higher efficiency and lower size because forward drop of rectifier is great and rectifying dissipation is great in power converter.New generation of Power MOSFET has became the rectifying component due to the advantage of its low conduction resistance.The operation of synchronous rectification,the methods of driving the rectifying MOSFET and the application of synchronous rectification in kinds of toponologies are also
一种新颖的ZVZCS双管正激变换器
一种新颖的ZVZCS双管正激变换器零电流零电压开关双管正激有源钳位1背景介绍在中小功率应用场合,正激功率变换器因其具有结构简单等特性而具有较大的优势。
为了减少主开关管上面的电压应力,提出了双管正激变换器。
但是,传统的双管正激变换器的占空比不能超过50%,从而阻碍了该变换器更进一步的应用。
文献[1-10]提出了主动钳位、谐振复位等方法来解决占空比限制的问题,然而上述文献中并没有实现双管正激变换器的全软开关。
随着电力电子技术的不断提高,IGBT在大功率高电压功率变换器中的应用越来越多,因此,零电流开关也越来越重要。
本文提出的变换器既解决了传统双管正激变换器占空比50%的局限问题,又使得主开关管以及变压器副边二极管实现了电压、电流软开关。
图1 ZVZCS双管正激变换器图2 变换器工作波形2工作原理图1是本文提出的开关双管正激变换器原理图。
该电路中双管正激部分用来给负载传递能量,变压器原边的有源钳位电路用来实现主开关管S1和S2的零电压开关以及变压器的复位,副边的谐振电路用来实现主开关管和副边二极管的零电流开关。
图2给出了各个开关管的开关信号和电压、电流波形。
从图2中可以看出,该电路每个工作周期可以分成9个阶段,每个阶段的等效电路由图3给出。
为了简化说明,该电路各个阶段的过渡过程所用时间均适当的放大。
9个工作阶段的工作描述如下:图3 各阶段等效电路图图4 输出滤波电感上两端电压(1)零电流关断阶段(t1~t5):在t1时刻S4开通,由此引发了Lr和Cr的谐振开始,电流ir流过Lr、Cr、S4,并从零开始增加。
在电流iLr到达最高值之后开始下降,最终反向流过Da、Cr、Lr。
在该阶段中,主开关管S1和S2上面的电流与iLr保持同步,既先上升然后下降。
t3时刻,反向的谐振电流iLr供给负载能量,而谐振电容Cr上面的电压大于Vm/n的电压,因此整流二极管Dr反向阻断,变压器原边不给副边提供能量,输入电流基本为零。
高效率双管正激变换器的研究
华中科技大学硕士学位论文高效率双管正激变换器的研究姓名:吴琼申请学位级别:硕士专业:电力电子与电力传动指导教师:熊蕊20070210摘要高功率密度、高可靠性和高稳定性是现代电力电子功率变换器不断追求的目标。
双管正激变换器作为一种主要的电力电子功率变换器,由于其开关电压应力低,具有内在抗桥臂直通的能力可靠性高等优点,使得它在通信电源、焊接电源、计算机电源等很多领域都得到了广泛的应用。
本文旨在不增加原主电路和控制电路复杂性的基础上,从变压器原边主开关管驱动方式和副边整流电路两个方面,对传统双管正激电路做出改进,提高电路的效率。
文章对改进后电路的工作过程及具体应用时遇到的问题做出了分析,给出了解决方案。
与传统电路相比,改进后的电路控制电路得到了简化,两个主开关管中的一个能够工作在零电流开通和零电流关断状态,同步整流电路克服了死区和轻载环路电流的影响,电路的整体性能得到了提高。
实验过程中利用峰值电流型PWM控制芯片UC2845,制作了一台15V/300W的样机,实验证明样机工作稳定,各种保护功能完备,改进后的双管正激电路较传统电路效率提高3~4个百分点,整机满载效率最高可达88%。
关键字:双管正激电压自驱动同步整流门极电荷保持环路电流AbstractHigh power density as well as high reliability has always been the goal to pursue in the field of modern electric power converters. As one kind of the modern electric power converters, two transistor forward converter has many attractive characteristics, such as low switch voltage stress, inherent anti-break-through capability, and high reliability. It becomes one of the most widely used topology in the industrial application, especially in the telecommunication energy systems, welding machines and computer power supply.Based on driven approach of main power switch in the primary side of the transformer and rectifier circuit, this paper aims at not increasing the complexity of the main circuit and control circuit of origin, to improve the traditional two transistor forward converter and enhance the efficiency of circuit. The paper made analysis of the process of improved circuit and the specific problems encountered by the application and gave the solutions of the pared with the traditional circuit, the control circuit of the improved converter has been modified to streamline, one of the two main switches can work in a ZCS state, synchronous rectifier circuit can overcome the dead zone and light load loop current, and the circuit's overall performance has been enhanced.Using the current mode PWM controller, a 15V/300W power system was developed during the experiment by the author. The experiment proved stable jobs of the system and simplifying control circuit (similar with the Forward circuit).The circuit improved 3-4 percentage points more efficient than traditional circuit, with the maximum efficiency of 88% of full load.Keywords: t wo transistor forward converter self voltage drivensynchronous rectification gate charge retentioncirculating current独创性声明本人声明所呈交的学位论文是我个人在导师指导下进行的研究工作及取得的研究成果。
双管正激变换器
双管正激变换器
作者:时间:2007-12-11 来源:电子元器件网浏览评论推荐给好友我有问题个性化定制关键词:正激变换器电源
图1为双管正激变换器主电路,其变压器二次侧电路和单管正激变换器一样,但一次绕组与S1、S2(两个开关晶体管)串联,S1、S2在PWM脉冲作用下同时导通或关断,在每个晶体开关管和一次绕组之间,各并联一个续流二极管VD1、VD2,使得S1、S2关断时,变压器储能有一个释放通路,经过VD1、VD2回馈到直流输入电源。
因此双管正激变换器无需另加磁复位措施。
VD1、VD2还起钳位作用,将S1、S2承受的电压钳位于输入电压V i。
图1双管正激变换器
有的文献称这种电路为混合桥式(Hybrid bridge)电路,其中S1、VD2组成一个桥臂,VD1、S2组成另一个桥臂。
双管正激变换器可应用于较高电压输入(例如V i=800V或1000V)、较大功率输出场合(例如10KW)。
每个开关管承受的最大电压为V i。
和单管正激变换器相比,开关管承受的电压应力降低一半。
交错并联式双管正激变换器和控制电路论文
交错并联式双管正激变换器及其控制电路摘要本文主要研究了交错并联式双管正激变换器及其控制电路。
相比于其他隔离式DC/DC变换器,交错并联结构的双管正激变换器有自动实现励磁能量的回馈,结构简洁等优点。
同时,其主功率管只需承受电源电压,从而选择面更广。
此外,其并联结构缩小了输出滤波电感的体积,降低了器件的应力,从而进一步减小了损耗。
在控制电路的设计方面,考虑到电源输出电压围的可控性,本文采用电压反馈控制方式,选用UC3825型脉宽调制器。
本文列举了DC/DC变换的各种拓扑,比较了四种PWM控制模式,分析了交错并联式双管正激变换器的工作原理及其工作过程,详细推导并建立了带有电压反馈控制的双管正激变换电路的小信号模型,设计了补偿网络,给出了主电路和控制电路的工程计算。
最后,对系统进行频域、时域仿真,并给出相关分析。
关键词:双管正激变换器、电压反馈控制、小信号模型、补偿网络、仿真AbstractThis paper studies the parallel dual interleaved forward converter and its control circuit. Different to other isolated DC/DC converters, the parallel dual interleaved forward converter can feedback excitation energy automatically, also, simple structure is the one of the system’s advantages. Meanwhile, the power switches only need to work just under the main power voltage, which makes the designers have a wider range of choosing the power switches. In addition, the parallel structure reduces the volume of the output filter inductance, reducing the stress of the device, thereby, further reducing the loss. In the control circuit design, taking into account of the controllability of the range of the output voltage, we use voltage feedback control method, and chose the UC3825 voltage pulse width modulator. This article lists the DC/DC conversion of the various topologies, makes a comparison of the four PWM control modes, analyzes the parallel dual interleaved forward converter’s operating principle and working process, derives in detail and establish the small signal model, designs the compensation network, and carries out the main circuit’s and control circuit’s engineering calculation. Finally, this paper makes the system frequency and time domain simulation, and make some correlation analysis.Key words:dual forward converter, voltage feedback control, small signal model, compensation network, simulation目录摘要 (I)Abstract (I)目录.............................................................. I I 第1章绪论 (1)1.1开关电源概述 (1)1.2本课题研究意义 (1)1.3隔离式DC/DC变换拓扑列举 (2)1.4反馈控制模式分类 (4)1.5本课题方案研究 (7)1.5.1功率电路选择 (7)1.5.2控制电路的选择 (8)1.6本文研究的主要容 (8)1.7本章小结 (8)第2章功率电路状态分析及其参数设置 (9)2.1功率电路结构及其工作原理分析 (9)2.1.2电路结构分析 (9)2.1.2功率电路工作原理分析 (9)2.2主电路参数设计 (14)2.2.1技术指标 (14)2.2.2功率电路变压器设计 (15)2.3.3主功率开关管的选择 (19)2.3.4二极管的选择 (19)2.3.5输出滤波电感的选择 (20)2.3.6输出滤波电容的选择 (21)2.4本章小结 (21)第3章系统建模与控制电路的设计 (22)3.1功率电路建模 (22)3.1.1小信号模型的建立 (22)3.1.2标准型等效电路的建立 (25)3.2电压控制脉宽调制器建模与系统稳态传递函数的建立 (28)3.2.1电压控制型开关调节电路原理介绍 (28)3.2.2脉宽调制器的数学模型 (28)3.2.3电压控制系统原始回路稳态传递函数的建立 (29)3.2.4补偿网络的设计 (31)3.3控制电路结构 (34)3.3.1 UC3825外围电路 (34)3.3.2主功率管驱动电路 (36)3.3.3过流保护电路 (37)3.4本章小结 (38)第4章电路仿真 (39)4.1仿真软件简介 (39)4.2系统时域仿真 (40)4.2.1时域仿真电路及其波形 (40)4.2.2时域仿真分析 (44)4.3本章小结 (45)结论 (46)参考文献 (47)致 (50)附录 (1)第1章绪论1.1 开关电源概述随着电力电子技术的飞速发展,固态化静止型功率变换电源已经发展成为电力电子技术的三大应用领域之一(另两个是“运动控制”和“电力品质控制”)。
100W双管正激变换器设计
1绪论跟着计算机、电子技术的高速发展,电子技术的应用领域愈来愈宽泛,电子设施的种类也愈来愈多,电子设施与人们的工作、生活的关系日趋亲密。
任何电子设施都离不开靠谱的电源,他们对电源的要求也愈来愈高。
电子设施的小型化和低成本化,使电源以轻、薄、小和高效率为发展方向。
1.1 开关电源的发展开关电源被誉为高效节能电源,代表着稳压电源的发展方向,现已成为稳压电源的主流产品。
开关电源分为 DC/DC和 AC/DC两大类。
前者输出质量较高的直流电,后者输出质量较高的沟通电。
开关电源的中心是电力电子变换器。
按变换电能的种类,可分为直流- 直流变换器( DC/DC变换器),是将一种直流电能变换成另一种或多种直流电能的变换器[1];逆变器,是将直流电能变换成另一种或多种直流电能的变换器;整流器是将沟通电变换成直流电的电能变换器和交交变频器[18]四种。
传统的晶体管串连调整稳压电源是连续控制的线性稳压电源。
这种传统稳压电源技术比较成熟,并且已有大批集成化的线性稳压电源模块,拥有稳固性能好、输出纹波电压小、使用靠谱等长处。
但往常需要体积大并且粗笨的工频变压器与体积和重量都很大的滤波器。
由于调整管工作在线性放大状态,为了保证输出电压稳固,其集电极与发射极之间一定蒙受较大的电压差,致使调整管功耗较大,电源效率很低,一般只有百分之四十五左右[16]。
此外,由于调整管上耗费较大的功率,所以需要采纳大功率调整管并装有体积很大的散热器,很难知足现代电子设施发展的要求。
20 世纪 50年月,美国宇航局以小型化、重量轻为目标,为搭载火箭开发了开关电源。
在近半个多世纪的发展过程中,开关电源因拥有体积小、重量轻、效率高、发热量低、性能稳定等长处而渐渐代替传统技术制作的连续工作电源,并宽泛应用于电子整机与设施中。
到了 20 世纪 90 年月,开关电源在电子、电气设施、家电领域获取了宽泛的应用,开关电源技术进入快速发展期间。
开关型稳压电源采纳功率半导体器件作为开关,经过控制开关的占空比调整输出电压。
双管正激同步整流变换器
本科毕业设计(论文)双管正激同步整流变换器***燕山大学2012年6月本科毕业设计(论文)双管正激同步整流变换器学院(系):里仁学院专业:08应电2班学生姓名:***学号:***指导教师:***答辩日期:2012/6/17燕山大学毕业设计(论文)任务书Abstract摘要随着电力电子变换器在通讯系统的广泛应用,低压大电流功率变换器成为一个重要的研究方向。
文章详细介绍了双管正激变换器的拓扑结构及工作原理,阐述了其拓扑结构的特点。
利用状态空间平均法推导出该变换器的小信号模型,以此为基础设计出电压控制模式的闭环设计思想,并指出了如何进行反馈补偿器的设计。
本文采用电压型控制,对该控制方案做了详细的分析和设计。
对于高频整流环节,由于传统的二极管整流电路正向压降大而导致损耗大,极大地影响整个变换器的工作效率,而无法满足低电压大电流开关电源高效率、小体积的需要。
新一代的功率MOSFET由于具有导通电阻极低的特点而成为低电压大限流功率变换器的首选整流器件。
本文介绍了利用功率MOSFET构成同步整流电路的工作原理、驱动方式,并对整流MOSFET的双向导电特性进行了说明。
关键词双管正激;电压型控制;同步整流II摘要With the power electronic converters in communication systems widely used, low-voltage high-current power converters to become an important research direction. The article describes in detail a two-transistor forward converter topology structure and working principle, the characteristics of its topology. State space averaging method to derive the small-signal model of the converter, as the basis for the closed-loop voltage control mode design ideas, and pointed out how the design of feedback compensators. In this paper, voltage control, the control program to do a detailed analysis and design.The link for the high-frequency rectifier, the forward voltage drop of the diode rectifier circuit big lead to loss, which greatly affect the efficiency of the converter, unable to meet the needs of low-voltage high-current switching power supply high efficiency, small volume. A new generation of power MOSFET with low-resistance characteristics to become the preferred deadline flow of low-voltage power converter rectifiers. This article describes the use of power MOSFET synchronous rectifier circuit works, drive way, two-way electrical properties and rectifier MOSFET are described.Keywords tow-transistor forward converter;V oltage mode controlSynchronous rectificationI目录摘要 (VII)Abstract ............................................................................................................. V III 第1章绪论.. (11)1.1开关电源的发展 (11)1.2低电压、大电流的开关电源的开发 (11)1.3本章小结 (13)第2章双管正激的拓扑结构及原理分析 (14)2.1主电路构成 (14)2.2工作原理 (14)2.3电容C的作用 (15)2.4正激变换器的小信号模型的推导与分析 (15)2.5电压型控制 (21)2.6开关电源的频域建模 (22)2.6.1 电气系统建模 (22)2.6.2 系统的稳定性和稳定裕度 (23)2.6.3电压型控制正激变换器 (24)2.6.4 普通误差放大补偿器的设计 (26)2.6.5 极点——零点补偿器 (26)2.7本章小结 (29)第3章同步整流管双向导电特性及整流损耗分析 (30)3.1同步整流技术介绍 (30)3.2肖特基整流管的损耗分析 (30)3.3同步整流的工作原理和特性 (31)3.3.1 同步整流的基本工作原理 (31)3.3.2同步整流管的主要参数 (33)3.4同步整流的驱动方式 (34)3.4.1 外驱动与自驱动同步整流 (34)3.4.2电压型自驱动同步整流 (35)3.4.3 电流型自驱动同步整流 (38)3.5SR的控制时序与同步整流电路 (39)3.6本章小结 (41)第4章主电路及控制电路参数的设计 (42)4.1主电路参数设计 (42)4.2控制电路参数设计 (44)4.3补偿网络(误差放大器) (48)4.4本章小结 (49)第5章实验结果及分析 (50)结论 (53)参考文献 (54)致谢 (55)附录1 (56)附录2 (59)附录3 (62)附录4 (69)附录5 (85)第1章绪论1.1 开关电源的发展按电力电子的习惯称谓,AC-AC称为整流,DC-DC称为逆变,AC-AC 称为交流-交流直接变频,DC-DC称为直流-直流变换器。
双管正激变化器的工作原理
双管正激变化器的工作原理双管正激变化器(Push-Pull Converter)是一种常见的电力电子变换器,可以将直流电能转换为交流电能,通常用于电源供应、驱动电机等场合。
它采用两个互补的开关管对输入电压进行切换,通过周期性的切换来实现直流至交流的转换。
双管正激变化器的工作原理如下:首先,输入电压通过输入电感和滤波电容进行滤波,得到平滑的直流电压。
然后,这个直流电压被输入到双管正激变化器的控制电路中。
控制电路会根据输出负载的需求,控制两个开关管的导通和关断。
当控制电路将一个开关管导通时,另一个开关管则关断。
这样,交替地切换两个开关管,就可以实现正激变化器的工作。
在正激变化器的一个工作周期内,有两个状态:导通状态和关断状态。
在导通状态下,一个开关管导通,另一个开关管关断,此时输入电压通过导通的开关管流入负载。
在关断状态下,两个开关管都关断,此时负载的电流通过输出电感和输出电容维持。
这样,双管正激变化器通过周期性的切换,在输出端产生了一个类似交流电的电压。
双管正激变化器的工作原理可以用以下步骤详细描述:1. 导通状态:当一个开关管导通时,它的导通电阻很小,电流可以流经它。
同时,另一个开关管关断,其导通电阻很大,电流无法流经它。
因此,输入电压通过导通的开关管流入负载。
2. 关断状态:当两个开关管都关断时,它们的导通电阻都很大,电流无法流经它们。
此时,负载的电流会通过输出电感和输出电容维持。
输出电感会储存能量,而输出电容则起到滤波作用,使输出电压更加稳定。
3. 切换过渡:当一个开关管由导通状态切换到关断状态时,由于其导通电阻的变化,会产生一个反向电压。
为了保护开关管,通常会在开关管上串联一个反向二极管,用于接收这个反向电压。
这个二极管被称为“自由轮”二极管,它的作用是提供一个回路,使反向电压能够顺利流回输入电源。
双管正激变化器的工作原理可以简化为以下几个关键步骤:输入电压滤波、开关管导通、开关管关断、自由轮二极管工作。
零电流零电压开关交错并联双管正激变换器的研究
零电流零电压开关交错并联双管正激变换器的研究
1 引言
双管正激变换器具有开关管电压应力低,不存在桥臂直通危险,可靠性高
的优点。
但是,它的一个突出缺点是工作占空比要小于0.5,导致整流输出的
电压和电流脉动较大,使得滤波器的体积较大。
为了克服这一缺点,可以采用
交错并联结构,对于输出端,有两种并联方式:一是在输出滤波电容侧并联,
二是在续流二极管侧并联。
后者要优于前者,因为,在输出电流脉动相同时,
在续流二极管侧并联的滤波电感量是在输出滤波电容侧并联的滤波电感量的
1/2。
本文研究的电路拓扑如图1 所示。
采用交错控制可以提高等效输出占空比,提高变换器的等效频率,减小输出电流脉动,进而减小滤波器的体积[1]。
图1 交错并联双管正激变换器原理图
为了抑制开关管上在关断时由于变压器漏感所产生的电压尖峰,所以,在
图1 的电路拓扑中采用了LCD 无损吸收网络[2]。
2 工作过程分析
两个变换器的变压器的两个副边交错并联后,在输出滤波电容处再串联。
为了简化分析,在图2 开关模态等效电路中只画了每个变压器的一个副边。
并
假设所有开关和二极管均为理想器件,考虑变压器输出端的续流二极管和整流
二极管的换流过程,MOSFET 的漏源之间的结电容大小均为
Cs;C1=C2,L1=L2;变压器变比n=N1/N2,两变压器的漏感大小均为Llk;滤波电感足够大,这样滤波电感和滤波电容及负载电阻可以看成一个电流为Io 的恒流源。
双管正激变化器的工作原理
双管正激变化器的工作原理双管正激变化器是一种电力电子变换器,常用于直流电源的交流输出。
它的工作原理可以分为两个部分:正激过程和反激过程。
在正激过程中,输入直流电压经过隔离变压器的升压作用,得到一个高电压的脉冲信号。
这个高电压信号经过一对功率开关管,根据控制信号的变化,可以通过开关管将电压信号转换成一串脉冲信号。
这些脉冲信号经过输出滤波电感和电容,得到一个平滑的直流电压输出。
在反激过程中,输入直流电压通过一个变压器,降低电压并隔离输入输出。
然后,这个降压的信号经过功率开关管,通过开关管的控制信号变化,将电压信号转换成一串脉冲信号。
这些脉冲信号通过输出滤波电感和电容,得到一个平滑的直流电压输出。
双管正激变化器的工作原理是基于开关管的导通和关断特性。
当开关管导通时,输入电压会通过变压器升压,同时也会通过输出滤波电感和电容,形成一个平滑的输出电压。
而当开关管关断时,输入电压会被隔离,并且输出电压会被维持在一个较低的水平。
通过控制开关管的导通和关断时间,可以控制输出电压的大小和波形。
双管正激变化器具有以下几个优点。
首先,它可以实现高效率的能量转换,因为开关管的导通和关断可以减少能量损耗。
其次,它具有较高的可靠性和稳定性,因为开关管是通过控制信号进行操作,并且没有机械部件。
此外,双管正激变化器还可以实现电压和频率的调节,使其适用于不同的应用场景。
然而,双管正激变化器也存在一些缺点。
首先,由于开关管的导通和关断会产生较大的开关噪声和电磁干扰。
其次,双管正激变化器的控制电路较为复杂,需要精确的控制信号和反馈回路。
此外,双管正激变化器的设计和制造成本较高,使得其在某些应用场景下不太适用。
双管正激变化器是一种常用的电力电子变换器,通过控制开关管的导通和关断,实现直流电源的交流输出。
它具有高效率、可靠性和调节性等优点,但也存在开关噪声、复杂控制和高成本等缺点。
在实际应用中,需要根据具体需求和应用场景选择合适的变化器类型,以满足电能转换的要求。
基于有源功率因数校正的双管正激变换器的开题报告
基于有源功率因数校正的双管正激变换器的开题报告一、选题背景在工业现场中,使用许多电气设备,如电动机、照明灯具、加热器、换热器等等,功率因数普遍较低,这会导致很多问题,如能耗、线路过载、电费增加等等。
此外,电力设备还带有大量谐波,进一步影响了电网的稳定性。
因此,功率因数校正和谐波抑制成为提高工业用电效率和电网稳定性的重要手段。
双管正激变换器是一种用于DC / AC转换器的常用拓扑结构,功率因数校正是其中一个关键问题。
如果能够实现有源功率因数校正,即在输出端不仅消除谐波,还能将功率因数提高到接近1,那么这种变换器具有更高的效率和更好的电网兼容性。
二、研究目的本文的主要研究目的是开发一种基于有源功率因数校正的双管正激变换器。
在保持双管正激变换器简单、稳定、可靠的特点下,进一步提高其效率和电网兼容性,让其在实际工程应用中具有更高的实用价值。
三、研究内容1. 双管正激变换器原理2. 有源功率因数校正的原理3. 基于有源功率因数校正的双管正激变换器设计与实现4. 系统验证与电路优化四、研究方案和方法1. 研究并掌握双管正激变换器、有源功率因数校正的理论知识2. 设计并实现基于有源功率因数校正的双管正激变换器电路3. 对电路进行系统验证,并对电路进行优化4. 分析实验结果并进行总结,撰写论文五、预期成果1. 实现基于有源功率因数校正的双管正激变换器电路2. 在不改变双管正激变换器原理下,提高其功率因数和电网兼容性3. 实验验证系统的效果,进行电路优化4. 发表一篇相关论文六、可行性分析双管正激变换器是一种常用的DC / AC转换器拓扑结构,其电路结构和控制方法都较为简单,容易掌握和实现。
有源功率因数校正已经成为一种被广泛应用的技术,应用起来具有实际的参考价值。
因此,本文的预期成果是可行的。
双管正激变换器电路解说
双管正激变换器電路解說
1、电路拓扑图
2、电路原理
其变压器T1起隔离和变压的作用,在输出端要加一个电感器Lo(续流电感)起能量的储存及传递作用,变压器初级无需再有复位绕组,因为D1、D2的导通限制了两个调整管关断时所承受的电压。
输出回路需有一个整流二极管D3和一个续流二极管D4(其中D3、D4均最好选用恢复时间快的整流管)。
输出滤波电容Co应选择低ESR(等效电阻)大容量,有利于降低纹波电压(当然这对于其它拓扑结构的也是这样要求)。
3、工作特点
a、在任何工作条件下,为使两个调整管所承受的电压不会超过Vs+Vd (Vs:输入电压;
Vd:D1、D2的正向压降,),D1、D2必须是快恢复管(当然用恢复时间越短越好,我在实际设计和调试中多使用MUR460)。
b、在与单端正激变换器相比,无需复位电路,有利于简化电路和变压器设计;功率器件
可选择较低的耐压值;功率等级也会很大,据我所知现在很多大功率等级的通信电源及电力操作电源都选用了这种电路。
c、两个调整管工作状态一致,同时处通态或断态。
我个人建议在大功率等级电源中选用
此种电路,主要是调整管好选,比如IRFP460、IRFP460A等调整管即可。
4、变压器计算
在实际设计和调试中,与单管正激变换器变换器中变压器设计方法相同,不过省去了复位绕组。
5、输出电感计算
单端正激、双管正激、半桥、推挽、全桥、BUCK等电路设计方法相同。
我实际设计和调试中一般仅以公式计算值作参考,适当的可以调整匝数以达到最佳状态(我个人认为)。
双管正激变换器21变换器电路的结构及其工作原理在工作中
第二章双管正激变换器2.1 变换器电路的结构及其工作原理在工作中,当变换器电路中只有一个开关管时,则其承受的电压较高,容易被击穿,为了解决这个问题,可以采用两个晶体管串联起来当作一个管子用,从而能够提高电路承受电压的能力。
这在能够承受高耐压晶体管较少的时期不失为一种常用的方法。
如果,再加上D1、D2两个二极管( 如图1 所示) ,组成了双管正激变换电路拓扑。
由于目前工艺水平,MOSFET 管的工作电压不能太高,400V 左右的管子价格较相对低廉,应用在图 1 双管正激电路比较适合; 图中二极管D1、D2导通时限制了FET1、FET2关断时所受的反压,开关MOS 管承受电压为Vs + VD,由于DC/DC 变换器输入的直流电压是通过220V 市电整流获得( 约为310V 左右) 的,所以,Vs均在400V 以下。
因此,图1 所示双管正激电路具有可靠性高、造价低的优点,在煤矿井下通讯、交通及航天等领域得到广泛的应用。
FET1、FET2同时导通或同时关断。
在导通时,电源电压Vs加到变压器T 的原边绕组上。
在稳态下,由于上一周期工作时,电感线圈L1已建立的电流,通过D4导通,构成了负载I0的续流电路。
新周期开始,副边绕组由于原边绕组FET1、FET2的导通有了感应电动势。
副边绕组、二极管D3很快建立电流,其速度受制于变压器和副边电路的漏电感。
因为在导通瞬间L1上流过的电流IL保持不变,所以,由于D3的电流建立,二极管D4的电流必随之等同地快速减小。
当D3中的正向电流增加到原先流过D4的电流值时,D4则转为关断。
而且L1的输入端( A 点) 电压将增加到副边线圈电压V's( 减去VD3) 。
与此同时开始了正激能量传递状态。
前面的动作只占整个传递期间非常小的部分,其大小依漏感而定。
一般电流在1μs 内就建立。
但是,在低电压大电流传递时,漏感影响电流的建立非常明显,甚至大到占了全导通期间的相当比例,这时,就影响了能量的传递。
1200W双管正激变换器计算公式
1200W双管正激变换器计算公式
要计算一个1200W双管正激变换器的相关参数,我们需要使用以下公式:
1.交流输入电流(Ii)=输出功率(Po)/交流输入电压(Vi)
2.直流输出电流(Io)=输出功率(Po)/直流输出电压(Vo)
3.效率(η)=输出功率(Po)/交流输入功率(Pi)*100%
4. 线性负载调整范围(LLR)= 最大输出功率(Po_max)- 最小输出功率(Po_min)/ 最大输出功率(Po_max)* 100%
5.输出纹波(Vr)=输出电压纹波峰峰值(ΔV)/2
6. 开关频率(fs)= 工作周期(Ts)的倒数
7. 工作周期(Ts)= 1 / 开关频率(fs)
8. 开关频率(fs)= 输出功率(Po)/ (Vi * (1-η))
9. 输入电感(Li)= (Vi * (1-η)) / (2 * fs * ΔIi)
10. 输出电感(Lo)= (Vo * (1-η)) / (2 * fs * ΔIo)
11. 输入电容(Ci)= 输入电流纹波峰值(ΔIi)/ (fs * ΔVi)
12. 输出电容(Co)= 输出电流纹波峰值(ΔIo)/ (fs * ΔVo)
其中,Vi为交流输入电压,Vo为直流输出电压,Po为输出功率,η为效率,ΔV为输出电压纹波峰峰值,fs为开关频率,Ts为工作周期,ΔIi为输入电流纹波峰峰值,Li为输入电感,Lo为输出电感,Ci为输入电容,Co为输出电容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
双管正激变换器
·中国绿网·
1、电路拓扑图
2、电路原理
其变压器T1起隔离和变压的作用,在输出端要加一个电感器Lo(续流电感)起能量的储存及传递作用,变压器初级无需再有复位绕组,因为D1、D2的导通限制了两个调整管关断时所承受的电压。
输出回路需有一个整流二极管D3和一个续流二极管D4(其中D3、D4均最好选用恢复时间快的整流管)。
输出滤波电容Co应选择低ESR(等效电阻)大容量,有利于降低纹波电压(当然这对于其它拓扑结构的也是这样要求)。
3、工作特点
a、在任何工作条件下,为使两个调整管所承受的电压不会超过Vs+Vd (Vs:输入电压;Vd:D1、D2的正向压降,),D1、D2必须是快恢复管(当然用恢复时间越短越好,我在实际设计和调试中多使用MUR460)。
b、在与单端正激变换器相比,无需复位电路,有利于简化电路和变压器设计;功率器件可选择较低的耐压值;功率等级也会很大,据我所知现在很多大功率等级的通信电源及电力操作电源都选用了这种电路。
c、两个调整管工作状态一致,同时处通态或断态。
我个人建议在大功率等级电源中选用此种电路,主要是调整管好选,比如IRFP460、IRFP460A等调整管即可。
4、变压器计算
在实际设计和调试中,与单管正激变换器变换器中变压器设计方法相同,不过省去了复位绕组。
5、输出电感计算
单端正激、双管正激、半桥、推挽、全桥、BUCK等电路设计方法相同。
我实际设计和调试中一般仅以公式计算值作参考,适当的可以调整匝数以达到最佳状态。