物理化学-相平衡

合集下载

物理化学-相平衡

物理化学-相平衡
(2) 温度平衡: T相1 = T相2 = … = T相P 仅需1个温度表示,即应扣 (P – 1) 个
= = =
p1 T1 m1 p2 T2 m2
(3) 相平衡:任一物质B各相化学势相等
m相1(B)=m相2(B) = ···=m相P(B) (P–1)等式
S 种物质存在 S(P-1) 关系,应扣 S(P-1)
恒 p 时,知 pA*(T) 和 pB*(T),可算 xB, yB
相平衡
典型相图 与p-x(y)图相比,形状相当于上下倒转
点: 单相区:如点a ,
相点与系统点一致
两相区:如点b,相
点与系统点不一致
线:气相线称露点线 液相线称泡点线
区域: 单相: P=1,F=2 两相: P=2,F=1
t/℃
110 C 100 90
形成固溶体时与液相类似。
注意: 某相存在的量很少可忽略时,则可不算。 如:凝聚系统不考虑气相。
相平衡
5. 相律F=C-P+2中的 2 表示系统T , p 可变
若T 或 p 之一不变时,只有1个强度量 可变,相律式变为
F = C-P + 1
二组分系统相图分析或凝聚系统 压力影响小可略时,常用此式。
相平衡
相平衡
本章要点
掌握:相律,单组分、双组分系统的典型 相图,杠杆规则的应用
相图:会分析,能画(稍难)
应用:多组分系统的分离、提纯 均匀性(多相性) 控制产品的质量
相平衡
5.1 相 律
问题:封闭 系统中影响相态的因素有哪些? 例如:盐与水系统达相平衡时存在多少相?
什么时候出现固相(盐析出)?为什么?

t
l+g 泡
点 线

物理化学 第六章 相 平 衡 课件

物理化学 第六章 相 平 衡 课件

第六章相平衡§6-1 相律1.基本概念(1)相和相数相:系统中物理性质和化学性质完全相同的均匀部分称为相,系统中相数目为相数。

相数用“P”表示。

相的确定:气体:无论有多少种物质都为一相液体:根据相互的溶解性可为一相、二相、三相固体:由固体的种类及晶型决定(固熔体除外)(2)自由度和自由度数自由度:能够维系系统原有相数,而可以独立改变的变量叫自由度,这种变量的数目叫做自由度数,用“F”表示。

说明:a)在一定范围内,任意改变F不会使相数改变。

b)自由度数和系统内的物种数和相数有关。

2.相律物种数:系统中所含独立物质的数目,用“S”表示。

依据:自由度数=总变量数-非独立变量数=总变量数-方程式数相律表达式:F = C – P + 2式中C = S –R- R’称组分数R 独立反应的方程式数R’独立限制条件3.几点说明(1) 每一相中均含有S种物质的假设,不论是否符合实际,都不影响相律的形式。

(2) 相律中的2表示整体温度、压强都相同。

(3) F = C – P + 2是通常的形式。

(4) 凝聚相系统的相律是F = C – P + 1§6.2单组分系统相图相图:表示相平衡系统的组成与温度、压力之间的图形。

单组分系统一相:P=1 则F=1-1+2=2(T,P)双变量系统二相:P=2 则F=1-2+2=1(T或P)单变量系统三相:P=3 则F=1-3+2=0 无变量系统1.水的相平衡实验数据由数据可得:(1)水与水蒸气平衡,蒸气压随温度的升高而增大;(2)冰与水蒸气平衡,蒸气压随温度的升高而增大;(3)冰与水平衡,压力增大,冰的熔点降低;(4)在0.01℃和610Pa下,冰、水和水蒸气共存,三相平衡。

2. 水的相图单相区:液态水,水蒸气,冰双相线:OA —液固共存线,冰的熔点曲线OB —气固共存线,冰的饱和蒸气压曲线OC —气液共存线,水的饱和蒸气压曲线三相点:冰、水和水蒸气共存相图的说明(1) 冰在熔化过程中体积缩小,故水的相图中熔点曲线的斜率为负,但大多数物质熔点曲线的斜率为正。

物理化学课件第六章节相平衡

物理化学课件第六章节相平衡
通过测量不同温度下的蒸气压, 确定相平衡状态。
热力学性质测定
利用热力学仪器测量物质的热容、 熵、焓等热力学性质,推算相平衡 常数。
相分离实验
观察不同条件下物质是否发生相分 离,确定相平衡状态。
计算方法
热力学模型法
利用热力学模型计算相平衡常数, 如van der Waals方程、 Redlich-Kister方程等。
表达式
ΔU = Q + W
应用
计算封闭系统中能量的变化,以及热量和功之间的转换关系。
热力学第二定律
热力学第二定律定义
自然发生的反应总是向着熵增加的方向进行,即系统总是向着更 加混乱无序的状态发展。
表达式
ΔS ≥ 0
应用
判断反应自发进行的方向,以及热量传递和转换的方向。
热力学第三定律
热力学第三定律定义
液液相平衡的应用
液液相平衡是指两种不同物质液体之 间达到平衡状态的过程。
液液相平衡在工业上有广泛应用,如 石油工业中的油水分离、化学工业中 的萃取过程等。
液液相平衡的原理
当两种液体混合达到平衡时,各组分 的浓度不再发生变化,系统达到动态 平衡状态。
05 相平衡的实验测定与计算 方法
实验测定方法
蒸气压测定
分子模拟法
利用计算机模拟分子运动,计算 分子间的相互作用力和相平衡常
数。
统计力学法
利用统计力学原理计算相平衡常 数,如Maxwell
分子动力学模拟
模拟分子在相平衡状态下的运动轨迹,分析分子 间的相互作用和排列方式。
Monte Carlo模拟
通过随机抽样方法模拟分子在相平衡状态下的分 布和排列,计算相平衡常数。
界面张力
相界面上的物质传递是相平衡的重要特征之一,界面张力的大小对于物 质在相界面上的吸附、溶解和传递等过程具有重要影响。研究界面张力 有助于深入理解相平衡的机制和规律。

物理化学 第五章 相平衡

物理化学    第五章 相平衡
第五章 相平衡
一、基本概念和公式 (一)几个基本概念 1. 相和相数 (1)相 (phase) 系统内部物理和化学性质完全均匀的部分称为相。 特点 相与相之间在指定条件下有明显的界面, 在界面上宏观性质的改变是飞跃式的。 (2)相数 (number of phase) 系统中相的总数称为相数,用 表示。 气体:
(三)二组分系统的相图及应用
(3) 同时具有最高、最低会溶温度 (4) 不具有会溶温度
(三)二组分系统的相图及应用
4. 不互溶双液系 (1) 特点 如果A,B 两种液体彼此互溶程度极小,以致可忽略 不计。则A与B共存时,各组分的蒸气压与单独存在时一 样,液面上的总蒸气压等于两纯组分饱和蒸气压之和。 * * 即: p pA pB 当两种液体共存时,不管其相对数量如何,其 总蒸气压恒大于任一组分的蒸气压,而沸点则恒低 于任一组分的沸点。 (2) 水蒸气蒸馏
CaF2 ( A)
0 .6
0 .8
1 .0 CaCl2 ( B)
(三)二组分系统的相图及应用
(3) 相合熔点 A和B形成的化合物有确定的熔点,完全熔化时不 分解,在熔点时液相和固相的组成相同,所以稳定化 合物的熔点称为相合熔点。 (4) 不相合熔点 因为C没有自己的熔点,将C加热,到O点温 度时分解成 CaF2 (s) 和组成为B的熔液,所以将O点 的温度称为转熔温度(peritectic temperature)也 叫异成分熔点或不相合熔点。
(四)三组分系统的相图及其应用
(d) 如果代表两个三个组分 系统的D点和E点,混合成新 系统的物系点O必定落在DE 连线上。哪个物系含量多, O点就靠近哪个物系点。 O点的位置可用 杠杆规则求算。
mD OD mE OE

物理化学:相平衡

物理化学:相平衡
第五章 相平衡
相平衡是热力学在化学领域中的重要应用之一。研究 多相体系的平衡在化学、化工的科研和生产中有重要的 意义,例如:溶化、蒸馏、重结晶、萃取、提纯及金相 分析等方面都要用到相平衡的知识。
一、基本概念
第一节 相律
1、 相(phase) 体系内部物理和化学性质完全均匀的 部分称为相。相与相之间在指定条件下有明显的界面, 在界面上宏观性质的改变是飞跃式的。体系中相的总数 称为相数,用Φ表示。
三、自由度数(f)
自由度: 确定平衡体系的状态所必须的独立强度变量的
数目称为自由度,用字母 f 表示。这些强度变量通常是
压力、温度和浓度等。
以水为例〔注意是商量平衡态〕∶ a. 当φ=1时,例如液态水的T、p可在肯定范围内改变, φ不变 ∴ f=2 b. 当φ=2时,例如气-液平衡,指定p外,则Tb确定; 而指定T,则水有确定的平衡蒸气压p,∴ f=1 c. 当φ=3时,即气-液-固三相平衡共存时〔三相点〕,T、 p是确定的〔273.16K、6.1×102Pa、由水的性质所决定〕, ∴ f=0,如果变化T或p,则不可能三相共存〔即φ≠3〕。
一、水的相图 水的相图是依据实验绘制的。图上有:
水 的 相 图
(1) 气、液、固单相区∶f=1-1+2=2
(2) 两相平衡线∶
f=1-2+2=1
OC线∶气-液平衡
T与液态水的饱和蒸气压p蒸气的关系
或沸点Tb与p外的关系
OA线∶液-固平衡 凝固点Tf与p外的关系
OB线∶气-固平衡
T与冰的饱和蒸气压p蒸气的关系
dp/dT=ΔHm / T·ΔVm 此方程适合于任何纯物质的两相平衡
2、对于气-液或气-固两相平衡体系 近似处理∶a. 假设蒸气遵守理想气体状态方程

物理化学课件6相平衡

物理化学课件6相平衡

在能源开发中的应用
石油开采
在石油工业中,6相平衡理论用于指导石油的开采和加工过程。通过模拟油、水 、气等不同相之间的平衡状态,优化采油工艺和技术,提高石油采收率和资源利 用率。
可再生能源利用
在可再生能源领域,如太阳能、风能等,6相平衡理论也有所应用。通过研究不 同相之间的转换和平衡关系,优化能源的收集、转换和储存技术,提高可再生能 源的利用效率和稳定性。
6相平衡的实际应用
在工业生产中的应用
分离和提纯
6相平衡理论在工业生产中广泛应用于分离和提纯过程,如蒸馏、萃取、结晶 等。通过控制温度、压力和浓度等条件,实现不同相之间的平衡,从而有效地 分离和提纯物质。
化学反应优化
利用6相平衡理论,可以优化工业生产中的化学反应条件,提高产物的收率和纯 度。例如,通过控制反应温度、压力和物料配比等参数,实现反应的最佳效果 。
力计、各相物质等。
设定实验条件
根据实验目的,设定相应的实 验条件,如温度、压力等。
实验操作步骤
按照实验操作步骤进行实验, 记录实验数据和现象。
数据处理与பைடு நூலகம்析
对实验数据进行处理和分析, 探究各相之间的相互影响和变
化。
实验结果与讨论
实验结果展示
将实验结果以图表或数据的形式展示 出来,便于分析和讨论。
结果分析与讨论
物理化学课件6相平衡
CONTENTS 目录
• 相平衡的基本概念 • 6相平衡的原理 • 6相平衡的实验研究 • 6相平衡的实际应用 • 6相平衡的未来发展
CHAPTER 01
相平衡的基本概念
定义与特性
定义
相平衡是指在一定的温度和压力 下,系统中各相之间达到相对稳 定的状态,各相之间不发生显著 的相变或化学反应。

物理化学课件-相平衡

物理化学课件-相平衡

水的相图
E p B 冰 水
A C D T 气
水的相图
dp/dT=∆fusHm/∆fusVm ∆ ∆ E p
-20oC, 2.×108Pa × 临界点 374oC, × B 2.23×107Pa


A C D T1 0.0098oC T 气
水的相图
AB 是气 液两相平衡线,即水的蒸气压曲线。它不能任意 是气-液两相平衡线 即水的蒸气压曲线。 液两相平衡线, 延长,终止于临界点 临界点p=2.2×107Pa,T=647K,这时 临界点。 延长,终止于临界点。临界点 × , , 液界面消失。 气-液界面消失。高于临界温度,不能用加压的方法使气体 液界面消失 高于临界温度, 液化。 液化。
f=K-Φ +2
相律是由吉布斯(Gibbs)1876年得到 1876年得到 相律是由吉布斯 1876 是自然界的普遍规律之一. 的,是自然界的普遍规律之一
相律推导
个组分, 个相.每个相中每种物质都存在 并没有化学反应. 每个相中每种物质都存在,并没有化学反应 设平衡系统中有K个组分 Φ 个相 每个相中每种物质都存在 并没有化学反应
µB(β) =µB θ(β)+ห้องสมุดไป่ตู้Tlna B(β) β β β
f=Φ(K-1)+2-K(Φ-1) 1 = KΦ-Φ+2-KΦ+K=K-Φ+2 Φ Φ
相律
如果指定了温度或压力: 如果指定了温度或压力 f*=K- Φ +1 1 f*称为条件自由度 如果考虑到 个因素的影响 则相 称为条件自由度,如果考虑到 个因素的影响,则相 如果考虑到n个因素的影响 律应写为: 律应写为 f*=K- Φ +n 在上述推导中假设每个组分在每个相中都有分配,如 在上述推导中假设每个组分在每个相中都有分配 如 中不含B 总变量中应减去一个变量,相 果某一相( 中不含 物质,总变量中应减去一个变量 果某一相 α)中不含B物质 总变量中应减去一个变量 相 应的化学势相等的等式中也减少一个,因此 因此,不影响相律的 应的化学势相等的等式中也减少一个 因此 不影响相律的 表达式. 表达式

物理化学-第五章 相平衡

物理化学-第五章  相平衡
•理想液态混合物的蒸气压介于两纯组分蒸气压之间
* p* p p A B
1. 压力-组成图—p-x(y)
(3) 气相线的制作 气相线:液相蒸气总压与蒸气组成关系线。
* pB pB xB yB p p
* * p p* ( p p A B A ) xB
* pB xB yB * * p A +( pB p* A ) xB
讨论组分数(C)与物 种数(S)的关系: 例1:液态水 S=1=C 例2:任意量的PCl5(g)、PCl3(g)和 Cl2(g)构成的平衡系统。 1指的是系统存在一个化学平衡方程式 S=3 C=3-1
PCl5(g)= PCl3(g)+ Cl2(g)
0 vB B
5.1 相律
3.独立组分数(number of independent component) 在平衡系统所处的条件下,能够确保各相组 成所需的最少独立物种数称为独立组分数,用 字母C表示。
在平衡系统所处的条件下,能够确保各相组 成所需的最少独立物种数称为独立组分数,用 字母C表示。
讨论组分数(C)与物 种数(S)的关系: 例1:液态水 S=1 = C
5.1
相律
3.独立组分数(number of independent component) 在平衡系统所处的条件下,能够确保各相组 成所需的最少独立物种数称为独立组分数,用 字母C表示。
5.1
自由度(f)= 系统总变量 -关联方程式数
热力学 平衡系统 S种物种
ф个相
假设S种物种都可 溶于ф个相中
2通常指T, P两个变量
1)系统总变量
1
2
3 … … S系统总变量= NhomakorabeaS-1)ф +2

物理化学 第三章 相平衡

物理化学 第三章 相平衡

T2 398K 125℃
固-液平衡:
根据克拉贝龙方程
fus H m dT dp fusVm T
T2 p 2 p1 ln fusVm T1 fus H m
例题3 溜冰鞋下面的冰刀与冰接触的地方,长度为 7.62×10-2 m, 宽度为2.45 ×10-5 m。 (1)若某人的体重为60 kg,试问施加于冰的压力? (2)在该压力下冰的熔点?(已知冰的熔化热为 6.01 kJ· -1,Tf*=273.16 K,冰的密度为920 kg.m-3, mol 水的密度为1000 kg· -3)。 m
8 5 1
fus H m
3.2.2 水的相图 (由实验测得)
——描述水的状态如何随系统的T,p而变化的图 3个单相区、3条两相线、1个三相点 各相区的位置 水 冰 汽

p

线 区
临界点

常压加热干燥
610.6 Pa


273.16 K
升华 真空冷冻干燥
(可保持生物活性)


T
水的冰点 273.15K、 101325Pa 0 ℃
第三章 相平衡
相平衡是热力学在化学领域中的重要应用之一。 研究多相体系的平衡在化学、化工的科研和生产中
有重要的意义。
例如:溶解、蒸馏、重结晶、萃取、提纯及金
相分析等方面都要用到相平衡的知识。
3.1
3.1.1 基本概念
相律
1.相与相数(P)
相:体系中物理、化学性质完全均匀(一致)
的部分。
相与相:明显界面;物理方法可分开;
2.组分和组分数
组分(Component),也称独立组分
描述体系中各相组成所需最少的、能独立存在 的物质(讨论问题方便)。 组分数: 体系中组分的个数,简称组分,记为C。

物理化学之相平衡

物理化学之相平衡

通过升华从冻结的样品中除去水份的方法。
E
f=2
B


f=2 A
C

D
f=2
s+g, f=1,冷冻干燥
T
一、单组分系统的相图
f f=K- +2 水的相图
E
B


p
610.6Pa
A:三相点
C
A

f=0
D
T
0.0098℃
一、单组分系统的相图
f=K-f+2 水的三相点:水的气、液、固三相平衡点。 f=0,T=273.16K ( 0.01℃),p=610.6Pa 水的凝固点(冰点):水的液、固二相平衡点。

l+g, f=1
l+g, f=1 TB
l, f=2
T
A
xB →
B
T
二、杠杆规则
TA

f f=K- +2 g, f=2
l+g, f=1 TB
l, f=2
A
xB →
B
T
二、杠杆规则
TA

f f=K- +2 g, f=2
l+g, f=1 TB
l, f=2
A
xB →
B
T
二、杠杆规则
TA

f=K-f+2 g, f=2
单位与相图一致
A
x1 x0
y1
B
二、杠杆规则
f=K-f+2 系统温度变化时,相如何变化?
n1L1= n2L2
TA
L1
L2

T0时,L1=0,得 n2=0

物理化学 第六章 相平衡

物理化学 第六章 相平衡
NaCl(s) = Na++ Cl- 和 H2O = H+ + OH-
S = 6, R =2, R′= 2 C = S – R - R’ = 6 –2 -2 = 2 若 NaCl 溶解完,则只存在一个化学平衡 H2O = H+ + OH S = 5, R =1, R′= 2
C =S –R -R’ = 5 –1 -2 = 2
一、理想液态混合物的气—液平衡相图
1)蒸气压-组成图 因是理想液态混合物,任一组分都服从拉乌尔定律,即
p = pA*xA + pB*xB p = pA* ( 1- xB ) + pB*xB =pA* + ( pB* - pA* ) xB
即系统总压与液相组成xB 成线性关系,在p - x图中是一直线, 这是理想双液系相图的一个特点。
解:
(1) C = S - R - R´= 3 - 1 - 1=1
F=C-P +2= 1-2+2=1 (2) C = S - R - R´= 3 - 1 - 0 =2
F =C-P+2= 2-2+2=2
例2 (1) 仅由CaCO3(s)部分分解,建立如下反应平衡: CaCO3 (s) = CaO(s) + CO2(g) (2) 由任意量的 CaCO3 (s), CaO (s), CO2 (g)建立如下反应平衡:
2 相律(Phase rule)的推导
①系统中的变量总数 设系统中有 S 个物种,分布在 P 个相中,在温度T、压力p下 达到平衡。 在α 相中的变量为:T,p,xα 1,xα 2,…, xα S-1 在β 相中的变量为:T,p,xβ 1,xβ 2,…, xβ S-1 ………… 在P 相中的变量为:T,p,xP1,xP2,…, xPS-1

物理化学之 相平衡

物理化学之 相平衡

§6-2 单组分系统相图
单组分系统不涉及组成,要描述其状态只需T、p两个变量 单组分系统的相图p-T图
1. 相律分析
P 1 F 2 双变量系统 面 F C P 2 P 2 F 1 单变量系统 线 3 P P 3 F 0 无变量系统 点(三相点)
求此系统的自由度数 解:系统三个平衡反应中,只有两个是独立的,故 R = 2 四种气体的分压力间存在如下定量关系 pNH3 pHI 2 pH2 R 2 pH2 pI2
F C P 2 (S R R) P 2 (5 2 2) 2 2 1
例. 在一个密闭抽空的容器中有过量的NH4I(s),同时存在
下列平衡: NH 4 I(s) NH3 (g) HI(g)
2HI(g) H 2 (g) I2 (g)
2NH 4 I(s) 2NH3 (g) H2 (g) I2 (g)
在p–x图(或T–x图)中的最高点或最低点上, yB=xB
2.温度—组成图
甲醇(A)—氯仿(B)系统 最 大 正 偏 差 最 大 T–x图上最低点( yB=xB ) 负 偏 最低恒沸点→恒沸混合物 差
氯仿(A)—丙酮(B)系统
p–x图上最高点
p–x图上最低高点
T–x图上最高点( yB=xB ) 最高恒沸点→恒沸混合物
——均成直线关系 液相线:气相总压p与液相组成xB之间的关系曲线
气相线:总压p与气相组成yB之间的关系曲线
甲苯(A)—苯(B)系统:
* * pA p pB
对易挥发组分苯B: yB xB ——易挥发组分在气相中的组成 大于它在液相中的组成
甲苯(A)—苯(B)系统

物理化学-相平衡

物理化学-相平衡
其他固定不变的浓度关系。
3
组分数:定义为 K= S – R – R’
例如:金属Zn的冶炼
4
例如:金属Zn的冶炼 ZnS(矿石)
灼烧
ZnO(s)
用C还原 ~1200℃
Zn
Zn(g)+CO(g)+CO2(g)
ZnO
(s) C (s)
Φ=3
S=5
5
反应① ZnO+C → CO+Zn 反应② 2ZnO+C → CO2+2Zn ③=2①-②
p V (g) 等T下: T m


p
pv↑
23

pV p
T
值很小,表明pV对p 不敏感
结论:液体蒸汽压pV与p有关,但影响很 小;但pV对T敏感。 如:蒸馏易加压操作。 凝聚系统对压强变化不敏感。
24
6-4 纯物质的相图 (Phase diagram for pure substance )
液相线:直线,p~xB(sln) 气相线:曲线,p-yB(g) 相区: 物系点和相点:定义;在 单相区,物系点与相点重 合;在两相区,物系点与 两个相点在同一条水平线 上。
38
pA*
xB→
B
二、 T-x -y图(沸点-组成图) (Boiling point-composition diagram)
Clausius - Clapeyron Equation (克-克方
19
2、s-g平衡
d ln{p} gs H m dT RT 2
克-克方程
描述固体蒸气压与温度的关系 3、s-l平衡
dp ls H m l dT TsVm

物理化学 第六章 相平衡

物理化学 第六章  相平衡

l +β(s)
β(s) α(s)+β(s)
不断析 出α相
α、β
同时析出
开始析 出β相
液相消失 固相降温
xB
B
α相:B溶于A中的固态溶液。 β相:A溶于B中的固态溶液。
S1LS2线: l 加冷热却(s) (s) ,F=2-3+1=0,温度不变。
2. 系统有一转变温度
T
基本概念 相律的推导 几点说明
一、基本概念
1. 相:体系中物理性质和化学性质完全相同的部分。
相与相之间有明显的界面,其物理性质、化学性质发生突 变。
(1)气相:因任何气体均可以无限地均匀混合,则无 论体系内有多少种气体,只能有一相。
(2)液相: 不同种类的液体相互间的溶解不同,因此 体系中可出现一个液相,也可以出现多个液相。
子、原子或离子大小相互
均匀混合的一种固相,则
此固相为固溶体。
A
xB
B
Tb
L2
P
a
l
Q
L1
S1
l+s
液相降温 开始析出固相
S2
s
液相消失
固相降温
A
xB
B
PL1L2Q线:液相线或凝固点曲线。表示液态混合物的凝固点 与其组成的关系。
PS1S2Q线:固相线或熔点曲线。表示固态混合物的熔点与其 组成的关系。
若有R个独立的化学平衡反应存在(每个反应不一定和 这S种物质全有关系)。
对化学平衡,有 vBB 0 B
共有R个方程式
(3)独立限制条件
若有 R/ 个浓度限制条件。
例:若反应
N2
(
g
)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上一内容 下一内容 回主目录
返回
2020/7/6
三相点与冰点的区别
上一内容 下一内容 回主目录
返回
2020/7/6
三相点与冰点的区别
冰点温度比三相点温度低 0.01 K 是由两种因素造成的:
(1)因外压增加,使凝固点下降 0.00748 K ;
(2)因水中溶有空气,使凝固点下降 0.00241 K 。
特鲁顿规则 例
上一内容 下一内容 回主目录
返回
2020/7/6
固-气平衡
d ln p dT
Sub H m RT 2
ln p2 sub Hm ( 1 1 )
p1
R T1 T2
sub Hm 为摩尔升华热
上一内容 下一内容 回主目录
返回
2020/7/6
固-液平衡
dp fus H m dT T fusV
单组分系统最多只能有三个相平衡共存,自 由度最多为2( p , T),双变量系统(p-T)的 相图可用平面图表示。
上一内容 下一内容 回主目录
返回
2020/7/6
水的相图
水的相图是根据实验绘制的。图上有:
三个单相区 在气、液、固三个 单相区内,F 1, f 2 ,温度和 压力独立地有限度地变化不会引起 相的改变。
三条两相平衡线 F 2, f 1 ,压力与温度只能改变
一个,指定了压力,则温度由系统自定。
上一内容 下一内容 回主目录
返回
2020/7/6
水的相图
上一内容 下一内容 回主目录
返回
2020/7/6
水的相图
OA 是气-液两相平衡线,即水的蒸气压曲线。它 不能任意延长,终止于临界点。临界点T 647 K , p 2.2107 Pa ,这时气-液界面消失。高于临界温 度,不能用加压的方法使气体液化。
上一内容 下一内容 回主目录
返回
2020/7/6
基本概念
相(phase):系统内部物理和化学性质完全均匀 的部分称为相。相与相之间在指定条件下有明显 的界面,在界面上宏观性质的改变是飞跃式的。 系统中相的总数称为相数,用 表示。
气体:不论有多少种气体混合,只有一个气相。
液体:按其互溶程度可以组成一相、两相或三 相共存。 固体:一般有一种固体便有一个相。两种固体粉 末无论混合得多么均匀,仍是两个相(固体溶液 除外,它是单相)。
Sub Hm 0 斜率为正。
OC线 dp H fus m
dT T V fus
fus H 0, fusV 0
斜率为负。
上一内容 下3 完全互溶双液系统
•理想的完全互溶双液系统 •杠杆规则 •非理想的完全互溶双液系统 •蒸馏与精馏
上一内容 下一内容 回主目录
相律是相平衡系统中揭示相数 ,独立组分数K和
自由度 f 之间关系的规律,可用上式表示。式中2
通常指T,p两个变量。相律最早由Gibbs提出,所以
又称为Gibbs相律。如果我们指定了温度或压力,则2
改为1,即: f K 1 f 为条件自由度。
除T,p外,还受其它力场影响,则2改用n表示,即:
f K n
在单相区,物系点与相点重合;在两相区中, 只有物系点,它对应的两个相的组成由对应的相点 表示。
上一内容 下一内容 回主目录
返回
2020/7/6
一、单组分系统的相图
单组分系统的相数与自由度
K 1
f 12 3
当 1
2
单相 两相平衡
f 2 双变量系统 f 1 单变量系统
3 三相共存
f 0 无变量系统
yA
pA p
yB 1 yA
p
pA
pB
p* A
xA
p* B
xB
pB* xB p*A (1 xB )
p*A ( pB* p*A )xB
已知
p* A
,pB*
,xA

xB
,就可把各液相组成对应的气
相组成求出,画在 p-x 图上就得 p-x-y 图。
上一内容 下一内容 回主目录
返回
2020/7/6
例如:指定了压力,
f * f 1
指定了压力和温度, f ** f 2
上一内容 下一内容 回主目录
返回
2020/7/6
独立组分数(number of independent component)
定义: K=S-R-R’
在平衡系统所处的条件下,能够确保各相组成所 需的最少独立物种数称为独立组分数。它的数值等于 系统中所有物种数 S 减去系统中独立的化学平衡数R, 再减去各物种间独立的浓度限制条件R’。
dG( α)=dG( β )
dG= -SdT+Vdp
- S (α ) dT + V (α )dp = - S ( β ) dT + V ( β )dp
dp S( ) S( ) Sm Hm dT V ( ) V ( ) Vm T Vm
在等温,等压且无非体积功的可逆相变过程中,
Sm
H m T
上一内容 下一内容 回主目录
O点 是三相点(triple point),气-液-固三相
共存,F 3, f 0 。三
相点的温度和压力皆由
系统自定。
H2O的三相点温度为273.16 K,压力为610.62 Pa。
上一内容 下一内容 回主目录
返回
2020/7/6
三相点与冰点的区别
三相点是物质自身的特性,不能加以改变, 如H2O的三相点 T 273.16 K , p 610.62 Pa . 冰点是在大气压力下,水、冰、气三相共存。当大 气压力为105 Pa时,冰点温度为273.15 K,改变外压, 冰点也随之改变。
相平衡
相平衡是热力学在化学领域中的重要应用之一。 研究多相系统的平衡在化学、化工的科研和生产中 有重要的意义,例如:溶解、蒸馏、重结晶、萃取、 提纯及金相分析等方面都要用到相平衡的知识。
相图(phase diagram)表达多相系统的状态如何随 温度、压力、组成等强度性质变化而变化的图形, 称为相图。
在气相线之下,系统压力 低于任一混合物的饱和蒸气压, 液相无法存在,是气相区。
在液相线和气相线之间的 梭形区内,是气-液两相平衡。
上一内容 下一内容 回主目录
返回
2020/7/6
理想的完全互溶双液系
(3) T-x图
亦称为沸点-组成图。外压为大气压力,当溶 液的蒸气压等于外压时,溶液沸腾,这时的温度 称为沸点。某组成的蒸气压越高,其沸点越低, 反之亦然。
返回
2020/7/6
p-x图 和 T-x图
对于二组分系统,K=2, f=2-+2=4- , 因为至少为1,则 f 最多为3。这三个变量通常是T,p 和组成 x。所以要表
示二组分系统状态图,需用三个坐标的立体图表示。
保持一个变量为常量,从立体图上得到平面截面图。
(1) 保持温度不变,得 p-x 图 (2) 保持压力不变,得 T-x 图 (3) 保持组成不变,得 T-p 图
上一内容 下一内容 回主目录
物理化学多媒体讲稿—第三章
相平衡
上一内容 下一内容 回主目录
返回
2020/7/6
第四章 相平衡
3.1 相律 3.2 单组分系统 3.3 完全互溶双液系统 3.4 部分互溶和完全不互溶的双液系统 3.5 二组分固-液系统平衡相图 3.6 三组分系统的相平衡
上一内容 下一内容 回主目录
返回
2020/7/6
上一内容 下一内容 回主目录
返回
2020/7/6
基本概念
自由度(degrees of freedom)确定平衡系统的状态 所必须的独立强度变量的数目称为自由度,用字母 f 表示。这些强度变量通常是压力、温度和浓度等。
如果已指定某个强度变量,除该变量以外的其它强
度变量数称为条件自由度,用 f* 表示。
T T T
(2)力平衡:达到平衡时各相的压力相等
p p p
上一内容 下一内容 回主目录
返回
2020/7/6
(3) 相平衡: 任一物质B在各相中的化学势相 等,相变达到平衡
B B B
(4) 化学平衡:化学变化达到平衡
BB 0
B
上一内容 下一内容 回主目录
返回
2020/7/6
相律
相律(phase rule) f K 2
上一内容 下一内容 回主目录
返回
2020/7/6
水的三相图的应用 升华在制药工艺上的应用——冷冻干燥制粉针注射剂
上一内容 下一内容 回主目录
返回
2020/7/6
二、克劳修斯—克拉珀龙方程
研究单组分两相平衡
T,
p,
相(α) 相(β)
dG( α)
dG( β )
T+dT, p+dp ,
相(α )相( β )
且系统的自由度随独立组分数的增加而增加,随相 数的增加而减少。 例3
上一内容 下一内容 回主目录
返回
2020/7/6
3.2 单组分系统的相图
相点 表示某个相状态(如相态、组成、温度 等)的点称为相点。
物系点 相图中表示系统总状态(温度、压力和总 组成)的点称为物系点。在T-x图上,物系点可以沿 着与温度坐标平行的垂线上、下移动;在水盐系统 图上,随着含水量的变化,物系点可沿着与组成坐 标平行的直线左右移动。
OB 是气-固两相平衡线,即冰 的饱和蒸气压曲线(升华线), 理论上可延长至0 K附近。
OC 是液-固两相平衡线,当C点延长至压力大于 2108 Pa 时,相图变得复杂,有不同结构的冰生成。
上一内容 下一内容 回主目录
返回
2020/7/6
水的相图
相关文档
最新文档