超临界流体
特殊流体Ⅰ-超临界流体
超临界流体的特性
高密度
超临界流体的密度接近液体,具有较 高的溶解能力,可以用于萃取和分离 等过程。
低粘度
超临界流体的粘度较低,具有较好的 流动性,有利于传热和传质。
高扩散系数
超临界流体的扩散系数接近气体,可 以快速传递物质,有利于混合和分散。
介电常数可调
超临界流体的介电常数可以通过温度 和压力的调节来改变,从而影响其溶 解能力和化学反应性能。
03
密度和粘度的变化会影响超临界流体的传热和传质特性,进 而影响其在工业应用中的性能。
相行为和相平衡
超临界流体在压力和温度变化时表现 出复杂的相行为。在某些条件下,超 临界流体可以与气体或液体共存,形 成多相混合物。
相平衡受到压力、温度和流体的种类 等因素的影响。了解相平衡有助于预 测和控制超临界流体在分离、反应和 萃取等过程中的应用。
物质分离
萃取分离
超临界流体可作为萃取剂, 用于分离和纯化混合物中 的目标组分。
吸附分离
超临界流体可以作为吸附 剂,用于吸附和分离气体 或液体混合物中的杂质。
精馏分离
超临界流体可以用于精馏 过程,降低能耗和提高分 离效率。
传热
强化传热
超临界流体具有较高的热传导性和热容量,可用 于强化传热过程,提高换热效率。
能量。
在某些应用中,如超临界流体萃 取和反应中,表面张力的大小会
影响到相分离和传质过程。
05
超临界流体的实验研究方法
实验设备
高压反应釜
用于模拟超临界流体的压力和温 度条件,是实验中必不可少的设
备。
热力学测量仪
用于测量超临界流体的热力学性质, 如密度、压力、温度等。
光学仪器
用于观察超临界流体在实验过程中 的光学性质变化。
超临界流体
超临界流体超临界二氧化碳纯净的物质随着温度和压力的变化,会呈现出气体、液体或固体不同的物理状态;当到达某个特定的温度和压力时,物质的气、液界面会消失,此时的温度称为临界温度T,而压力称为临界压力P超临界流体(SCF)就是温度和压力处于临界点以上的流体超临界流体是一种兼具气体和液体物理性质的独特流体。
它本质上仍是一种气态,但又不同于常规意义上的气体,而是一种稠密的气态。
超临界流体的密度与液体相似,粘度和扩散能力与气体相似,表面张力近似于零,有利于流体的传质和传热。
此外,超临界流体的介电常数对压力非常敏感,可以通过改变压力来调控超临界流体溶解不同极性的物质。
超临界流体还具有较强的可压缩性,略微地调节温度和压力就能改变超临界流体的物理性质超临界二氧化碳(scCO2)是应用最为广泛的一种。
因为scCO2除了拥有超临界流体本身所具有的渗透性能好、传质系数高等特点之外,还拥有以下优点:(1)CO2达到超临界状态的条件很温和,只需温度超过31.1 °C、压力超过7.38MPa,CO2就会转变为scCO2;(2)CO2来源广泛,价格低廉,并且无色、无毒、无臭、无害,具有优异的化学稳定性,不会发生燃烧和爆炸;(3)scCO2在聚合物熔体中具有较高的扩散性和溶解度,对聚合物熔体有较强的增塑作用,从而能显著降低熔体黏度,提高熔体的流动性;(4)scCO2能轻易从产物中脱除,完全省去了使用传统溶剂带来的复杂的后处理工序,并且还能实现对CO2的回收利用;(5)CO2分子成对称结构,极性较弱,它能溶解非极性或极性较弱的物质,可以作为反应介质或萃取剂;若要溶解无机盐类或极性较强的物质,需要在scCO2中加入一些极性共溶剂(如乙醇)来改善它的极性。
1.3 scCO2在聚合物发泡中的应用聚合物发泡材料是指以聚合物(塑料、橡胶、弹性体或天然高分子材料)为基体而内部含有无数气泡的多孔材料,也可以视为以气体为填料的复合材料。
超临界流体
超临界流体(SCF)是指处于临界温度(Tc)和临界压力(Pc)以上的流体,其具有如下特性:(1)粘度低,传质阻力小,扩散速度快,是化学反应的良好介质;(2)常温常压下不相溶的物质在超临界状态下具有较大的溶解度,可形成均相体系,减小了相间传质阻力,大大提高了反应速度;(3)温度或压力的微小变化可以使流体的性质(如密度等)发生很大的变化,从而使溶质在超临界流体中的溶解度发生很大的变化,这样有利于溶剂和溶质或催化剂分离。
超临界流体中的解聚反应,主要利用超临界流体优异的溶解能力和传质性能,分解或降解高分子废弃物,得到气体、液体和固体产物。
在日常生活中,有大量的塑料废弃物产生,在聚合物的生产过程及塑料加工中,也会产生一些废料、边角料等。
采用超临界解聚技术可使之转换为燃料油或各种化学原料,也可还原成化学单体循环使用,这样一方面消除了大量塑料废弃物对环境的严重污染,另一方面将塑料废弃物重新回收利用,防止了资源浪费。
水是自然界最重要的溶剂,它无毒、无害、与许多反应物无需分离,是重要的反应介质。
水的临界温度为374.3℃,临界压力为22.05 MPa。
超临界水具有常态下有机溶剂的性能,溶解有机物,而不溶解无机物,还具有氧化性。
它可以与空气、氮气、氧气、和二氧化碳等气体完全互溶,所以它可以作为氧化反应的介质,又可以直接进行氧化反应。
但对废旧塑料的分解,也有好多人用超临界甲醇、乙醇。
由于塑料的化学成分不一样,所以进行超临界水解时所采取的实验方案也不一样,要对各种废旧塑料进行分类处理。
我所选取的主要有三类废旧塑料类型分别是PET、PE、PS。
1、PETPET 是聚对苯二甲酸乙二醇酯的简称,广泛应用于合成纤维、薄膜、塑料。
其中PET 塑料瓶在世界范围内有逐步取代玻璃瓶成为市场上主要饮料容器的趋势。
因此,它的回收再利用技术受到人们的广泛重视。
以超临界水为溶剂,能够快速分解PET 和回收单体对苯二甲酸(PTA)。
用超临界水水解得到的单体产物正是各种聚合物的原材料,而且回收的对苯二甲酸纯度为99%。
超临界流体
超临界流体技术超临界流体(Supercritical Fluids, SCF), 是一种在温度和压力处于其临界点以上时兼具液体和气体双重物性的流体。
超临界流体技术就是利用超临界流体的这种特性发展起来的一门新兴技术, 因其清洁、安全、高质、高效等显著优势超越传统技术, 被誉为“超级绿色”技术。
1超临界流体中的化学反应1.1 超临界CO2聚合反应超临界CO2(SC-CO2)用于聚合反应,是基于其惰性不会引起链转移,通过减压即可实现反应-分离一体化。
目前在SC-CO2中进行的的聚合反应大多为非均相聚合,主要有悬浮聚合、乳液聚合、分散聚合和沉淀聚合,前3 种都需要合成能溶于SC-CO2的特殊表面活性剂,而且聚合物很难与这些表面活性剂分离纯化,所以研究在SC-CO2中的沉淀聚合反应更具有实用意义。
SC- CO2具有双极性, 其极性与烃类相近。
根据相似相溶原理, 其既可溶解非极性物质, 又可溶解极性物质, 还能溶解许多有机固体。
对气体如H2、O2等也具有很高的溶解性, 有利于诸如催化加氢、催化氧化等反应的进行。
在不对称的催化加氢反应、Diels-Alder反应、氢甲酰化反应、烯烯键易位反应、烯环化反应等方面都有应用研究。
如, Burk[1]小组以SC-CO2为溶剂极大地提高了烯烃衍生物不对称氢化的对映性选择(99.5%,ee), 这无疑是一个完美的绿色合成反应。
陈坚等[2]在超临界CO2中进行氯乙烯(VC)自由基聚合,对聚合过程和树脂颗粒特性进行了研究。
实验发现聚合存在诱导期和自动加速效应,聚合初期一次加入引发剂、提高聚合压力和搅拌都会使转化率降低。
压力提高使得凝胶效应减弱,导致聚合转化率降低;聚合过程中部分自由基和活性聚合物链被聚合物包埋、金属釜壁面对自由基和活性聚合物链的终止作用也导致聚合转化率降低。
聚合成粒过程有别于传统氯乙烯悬浮聚合,树脂由初级粒子聚集而成,且多孔疏松、无皮膜。
1.2超临界水氧化的应用超临界水氧化是一种对有机物废料处理的新技术[3,4],它的优点是被处理的有机物和氧在超临界水中可以完全混溶, 即反应过程中反应物成单一流体相; 并且在温度足够高( 400~ 600℃ ) 时, 氧化速度非常快, 可以在几分钟内将有机物完全转化为CO2和水。
超临界流体技术
超临界流体的性质
SCF传递特性与气体,液体的特征比较
物理特征 密度 (g/cm3) (0.6-2)*10-3 0.6-1.6 0.2-0.9 粘度 (g/cm/s) (1-4)*10-4 扩散系数 (cm2/s) 0.1-0.4
气体 液体 SCF
(0.2-3)*10-2 (0.2-2)*10-5 (1-9)*10-4 (0.2-0.7)*10-3
超临界流体的发展
• 1822年,Cagniard 首次报道物质的临界现象。 • 1879年,Hanny and Hogarth 发现了超临界流 体对固体有溶解能力,为超临界流体的应用提供 了依据。 • 1970年,Zosel采用sc-CO2萃取技术从咖啡豆提 取咖啡因,从此超临界流体的发展进入一个新阶 段。 • 1992年,Desimone 首先报道了sc-CO2为溶剂, 超临界聚合反应,得到分子量达27万的聚合物,开 创了超临界CO2高分子合成的先河。
3 溶剂没有污染,可以回收使用,简单方便,节省能源。
超临界流体在制备超细颗粒及薄膜中的应用
快 速 膨 胀 过 程
在超临界状态时,当含有难挥发组 分的SCF通过毛细管等作快速膨胀,在 极短时间内〈10-5 S,组分在SCF中过饱 和度高达106倍,形成大量晶核,因而 得到粒径分布很窄,粒度极细的超细颗粒。 主要用于陶瓷原料SiO2,CeO2等超细颗 粒的制备. 将含有某种溶质的溶液通过喷入 SCF,溶剂与SCF互溶后,使溶液稀释膨 胀,降低原溶剂对溶质的溶解度,在短时 间内形成较大的过饱和度而使溶质结晶 析出,得到纯度高,粒径分布均匀的超 细颗粒。该技术成功用于微球制备,多微 孔纤维和空心纤维的制备.
超临界流体技术
主要内容
• 超临界流体的概述 • 超临界流体的发展 • 超临界流体的性质及应用
超临界流体的制备和应用
超临界流体的制备和应用超临界流体是介于气体-液体两相之间的一种物质状态,具有一定的密度、粘度和溶解能力。
在高温高压条件下,超临界流体的物理和化学性质会发生巨大的变化,因此被广泛应用于化学、材料、环保等领域。
本文将就超临界流体的制备和应用做详细阐述。
一、超临界流体的制备1.常用制备方法超临界流体的制备主要有三种方法:压缩法、膨胀法和化学反应法。
压缩法是以高压为主要手段,通过升高温度和压力把物质压缩至临界状态,进而转化为超临界流体。
膨胀法则是通过突然减压使液体在恒压下变为超临界流体。
化学反应法是利用化学反应产生的反应热,让物质在特定温度、压力条件下形成超临界流体。
2.影响制备的因素超临界流体的制备还受到多种因素的影响,如温度、压力、溶剂、反应物浓度等。
温度和压力是制备超临界流体的关键参数,它们的选择会直接影响反应物的状态和产率。
不同的溶剂或反应物浓度也会对制备过程产生重要影响,不同的配料比例可能导致制备结果不同。
二、超临界流体的应用1.化学领域超临界流体在化学领域有多种应用,例如在化学反应和催化领域中,超临界流体既可以作为反应介质,也可以作为溶剂。
在超临界流体中,反应速率和收率往往比传统的反应更高。
此外,超临界CO2在芳香化合物的合成和分离、核磁共振(NMR)试样制备、高质量蛋白质像素制备等领域也得到了广泛应用。
2.材料领域超临界流体在材料领域有突出应用,尤其是在金属纳米材料的制备中。
由于超临界反应物的可控性和高分散能力,超临界流体可以用于制备纳米颗粒、纳米形貌粉体、高含量纳米抗菌材料等。
此外,超临界流体还广泛应用于制备二氧化硅和其他纳米材料的天然长晶体的制备过程中,可以实现高质量、高效率、低成本的纳米材料制备。
3.环保领域超临界流体在环保领域也有重要作用,主要体现在有机污染物的净化和绿色化学反应中。
超临界流体具有高渗透能力和高粘度,可以有效地替代传统有毒有机溶剂,达到绿色化学反应的目的。
同时,超临界流体通过溶解和分离技术可以实现高品质的固体废物的回收利用,有重要的环保价值。
超临界流体工作原理
超临界流体工作原理超临界流体是一种特殊的物质状态,具有独特的工作原理。
在超临界流体的应用领域,如化工、能源、环保等领域,了解其工作原理对于优化设计和提高效率具有重要意义。
本文将详细介绍超临界流体的工作原理,并探讨其在实际应用中的优势和挑战。
一、超临界流体的定义和特性超临界流体是介于气体和液体之间的状态,其温度和压力高于临界温度和临界压力。
在超临界状态下,物质的密度和溶解能力显著增强,同时具有气体和液体的特性。
超临界流体具有高扩散性、低粘度、可逆性等特点,这些特性使其在化工领域有广泛的应用前景。
二、超临界流体的工作原理超临界流体的工作原理主要涉及两个方面:物质状态的改变和传质动力学过程。
1. 物质状态的改变在超临界状态下,物质的密度和溶解能力显著增强,导致其物理性质发生了显著变化。
以超临界二氧化碳为例,当温度高于31.1摄氏度,压力高于7.38MPa时,二氧化碳由气体转变为超临界流体状态。
超临界流体的密度与压力关系不再遵循气体状态方程,而是受到物质的组成、温度和压力等因素的综合影响。
2. 传质动力学过程超临界流体以及超临界流体中的溶质在流动过程中表现出与传统流体不同的传质性能。
超临界流体具有较高的溶质扩散性能和渗透能力,能够渗透到固体颗粒内部,实现有效的质量传递和反应。
此外,超临界流体对于溶解、吸附等反应过程的控制也更加灵活,可通过调节温度、压力和溶质浓度等参数实现精确的控制。
三、超临界流体的应用超临界流体具有独特的物理性质和传质特性,因此在多个领域有着广泛的应用。
1. 化学合成与催化超临界流体在化学合成和催化反应中可作为优良的溶剂和反应介质。
超临界流体具有较好的传质性能,可提高反应速率、增加溶质溶解度,同时避免了传统有机溶剂的环境问题和废弃物处理难题。
2. 材料制备与加工超临界流体在新材料制备和加工领域有着广泛应用。
通过超临界流体的溶解和渗透能力,可以实现对纳米材料的制备、表面改性和组装。
此外,超临界流体还可用于材料的成膜、纳米颗粒的制备等过程。
超临界流体技术
固体溶质在超临界流体中的溶解度由操作温度和压力调节。溶解在高密度超临界流体中的溶质通过喷嘴快速 降压后,固体溶质能够以较细颗粒结晶析出并提供了一项超细颗粒的制造技术。该技术包含两种实现方式,既快 速膨胀法及抗溶剂法。研究者们在色素、药物的超细颗粒制造做了大量的工作,且制备了尺寸可控,性能优异的 超细颗粒。 以超临界流体为溶剂制备锂电池中正极材料LiCo-PO4,得到易于控制粒径分布的纳米棒和纳片,明 显改善了电池的循环和倍率等电化学性能。
超临界流体技术
化学术语
01 基本概念
0ቤተ መጻሕፍቲ ባይዱ 技术
目录
02 特点 04 技术优点及展望
部分物质随着温度和压力的变化,会相应的呈现出固态、液态、气态三种相态。三态之间相互转化的温度和 压力称为三相点,除三相点外,分子量不太大的稳定物质还存在一个临界点,临界点由临界温度、临界压力和临 界密度构成,当把处于气液平衡的物质升温升压时,热膨胀引起液体密度减少,压力升高使气液两相的界面消失, 成为均相体系,这一点成为临界点。
技术优点及展望
由于超临界流体的特殊物理化学性质,超临界流体技术的应用领域不断扩展,超临界流体除了应用于传质萃 取外,还可用于颗粒制造、环境治理、化学反应和节能方面。从超临界流体的基础数据、工艺流程到装置设备等 方面的研究也不断地深入和全面,但对超临界流体萃取本身的认识不够透彻,在化学反应、传质与传热过程的理 论未达成共识等问题仍需深入研究,且超临界流体操作压力较高,对设备要求高,使得一次性投资较大问题限制 其工业化规模的应用,有待进一步解决。随着国内外学者对超临界流体的更深入的研究,超临界流体技术的工业 化将具有更好的应用前景,给社会带来更大的经济效益和环保效益。
概述图引自。
基本概念
超临界流体
超临界流体定义纯净物质要根据温度和压力的不同,呈现出液体、气体、固体等状态变化,如果提高温度和压力,来观察状态的变化,那么会发现,如果达到特定的温度、压力,会出现液体与气体界面消失的现象该点被称为临界点,在临界点附近,会出现流体的密度、粘度、溶解度、热容量、介电常数等所有流体的物性发生急剧变化的现象温度及压力均处于临界点以上的液体叫超临界流体(supercritical fluid,简称SCF)。
例如:当水的温度和压强升高到临界点(t=374.3 ℃,p=22.05 MPa)以上时,就处于一种既不同于气态,也不同于液态和固态的新的流体态──超临界态,该状态的水即称之为超临界水。
超临界流体由于液体与气体分界消失,是即使提高压力也不液化的非凝聚性气体超临界流体的物性兼具液体性质与气体性质。
它基本上仍是一种气态,但又不同于一般气体,是一种稠密的气态。
其密度比一般气体要大两个数量级,与液体相近。
它的粘度比液体小,但扩散速度比液体快(约两个数量级),所以有较好的流动性和传递性能。
它的介电常数随压力而急剧变化(如介电常数增大有利于溶解一些极性大的物质)。
另外,根据压力和温度的不同,这种物性会发生变化。
物质在超临界流体中的溶解度,受压力和温度的影响很大.可以利用升温,降压手段(或两者兼用)将超临界流体中所溶解的物质分离析出,达到分离提纯的目的(它兼有精馏和萃取两种作用).例如在高压条件下,使超临界流体与物料接触,物料中的高效成分(即溶质)溶于超临界流体中(即萃取).分离后降低溶有溶质的超临界流体的压力,使溶质析出。
如果有效成分(溶质)不止一种,则采取逐级降压,可使多种溶质分步析出。
在分离过程中没有相变,能耗低。
如超临界流体萃取(supercrtical fluid extraction,简称SFE),超临界水氧化技术、超临界流体干燥、超临界流体染色、超临界流体制备超细微粒、超临界流体色谱(supercritical fluid chromatography)和超临界流体中的化学反应等,但以超临界流体萃取应用得最为广泛。
超临界流体
超临界流体
超临界流体(supercritical fluid)温度、压力高于其临界状态的流体。
温度与压力都在临界点之上的物质状态归之为超临界流体。
超临界流体具有许多独特的性质,如粘度小、密度、扩散系数、溶剂化能力等性质随温度和压力变化十分敏感:粘度和扩散系数接近气体,而密度和溶剂化能力接近液体。
超临界流体由于液体与气体分界消失,是即使提高压力也不液化的非凝聚性气体。
超临界流体的物性兼具液体性质与气体性质。
它基本上仍是一种气态,但又不同于一般气体,是一种稠密的气态。
其密度比一般气体要大两个数量级,与液体相近。
它的粘度比液体小,但扩散速度比液体快(约两个数量级),所以有较好的流动性和传递性能。
它的介电常数随压力而急剧变化(如介电常数增大有利于溶解一些极性大的物质)。
另外,根据压力和温度的不同,这种物性会发生变化。
(整理)超临界流体
超临界CO2流体的应用随着环境的温度和压力变化,任何一种物质都存在三种相态-气相,液相,固相,三相成平衡态共存的点叫三相点.液,气两相成平衡状态的点叫临界点.在临界点时的温度和压力称为临界温度和临界压力,不同的物质其临界点的压力和温度各不相同.超临界流体(Super Critical fluid,简称SCF)是指温度和压力均高于其临界点的流体,常用来制备成的超临界流体有二氧化碳,氨,乙烯,丙烷,丙烯,水等.物体处于超临界状态时,由于气液两相性质非常相近,以致无法清楚分别,所以称之为「超临界流体」。
超临界流体具有类似气体的扩散性及液体的溶解能力,同时兼具低黏度,低表面张力的特性,如表1所示,使得超临界流体能够迅速渗透进入微孔隙的物质.因此用于萃取时萃取速率比液体快速而有效,尤其是溶解能力可随温度,压力和极性而变化.超临界流体萃取分离过程是利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的.当物质处于超临界状态时,成为性质介于液体和气体之间的单一相态,具有和液体相近的密度,黏度虽高于气体但明显低于液体,扩散系数为液体的10~100倍,因此对物料有较好的渗透性和较强的溶解能力,能够将物料中某些成分提取出来.在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地依次把极性大小,沸点高低和分子量大小的成分萃取出来.同时超临界流体的密度,极性和介电常数随着密闭体系压力的增加而增加,利用预定程序的升压可将不同极性的成分进行分步提取.当然,对应各压力范围所得到的萃取物不可能是单一的,但可以通过控制条件得到最佳比例的混合成分,然后借助减压,升降温的方法使超临界流体变成普通气体或液体,被萃取物质则自动完全析出,从而达到分离提纯的目的,并将萃取与分离两过程合为一体,这就是超临界流体萃取分离的基本原理.关于CO2超临界体二氧化碳在温度高于临界温度Tc=31.26℃,压力高于临界压力Pc=72.9atm的状态下,性质会发生变化,其密度近于液体,粘度近于气体,扩散系数为液体的100倍,因而具有惊人的溶解能力.用它可溶解多种物质,然后提取其中的有效成分,具有广泛的应用前景.超临界二氧化碳是目前研究最广泛的流体之一,因为它具有以下几个特点:(1)CO2临界温度为31.26℃,临界压力为72.9atm,临界条件容易达到.(2)CO2化学性质不活泼,无色无味无毒,安全性好.(3)价格便宜,纯度高,容易获得.所谓的二氧化碳超临界萃取是将已经压温加压成超临界状态的二氧化碳作为溶剂,以其极高的溶解力萃取平时不易萃取的物质,以下有几项关于萃取的说明:(1)溶解作用在超临界状态下,CO2对不同溶质的溶解能力差别很大,这与溶质的极性,沸点和分子量密切相关,一般来说有以下规律:亲脂性,低沸点成分可在104KPa(约1大气压)以下萃取,如挥发油,烃,酯,醚,环氧化合物,以及天然植物和果实中的香气成分,如桉树脑,麝香草酚,酒花中的低沸点酯类等;化合物的极性基团( 如-OH,-COOH等)愈多,则愈难萃取.强极性物质如糖,氨基酸的萃取压力则要在4×104KPa 以上.另外化合物的分子量愈大,愈难萃取;分子量在200~400范围内的成分容易萃取,有些低分子量,易挥发成分甚至可直接用CO2液体提取;高分子量物质(如蛋白质,树胶和蜡等)则很难以二氧化碳萃取.(2)特点将超临界二氧化碳大量地拿来做萃取之用是因为它具有以下几个萃取技术上的特点A.超临界CO2流体常态下是无色无味无毒的气体,与萃取成分分离后,完分子临界温度临界压力临界密度分子临界温度临界压力临界密度H2 -239.9 12.8 0.032 CF3Cl 28.8 38.7 0.579N2 -147.0 33.5 0.314 NH3 132.3 111.3 0.235Xe 16.6 57.7 1.110 CH3OH 240.0 78.5 0.272CO2 31.26 72.9 0.468 CH3CN 274.7 47.7 0.237C2H6 32.3 48.2 0.203 H2O 374.2 218.3 0.315CF3H 25.9 47.8 0.526 ℃ atm g/cm3完全没有溶剂的残留,可以有效地避免传统溶剂萃取条件下溶剂毒性的残留.同时也防止了提取过程对人体的毒害和对环境的污染,是一种天然且环保的萃取技术.B. 萃取温度低,CO2的临界温度为31.265℃,临界压力为72.9atm,可以有效地防止热敏性成分的氧化,逸散和反应,完整保留生质物体的生物活性;同时也可以把高沸点,低挥发度,易热解的物质在其沸点温度以下萃取出来.C. 萃取和分离合二为一,当饱含溶解物的二氧化碳超临界流体流经分离器时,由于压力下降使得CO2与萃取物迅速回复成为分离的两相(气液分离)而立即分开,不存在物料的相变过程,不需回收溶剂,操作方便;不仅萃取效率高,而且能耗较少,节约成本,并且符合环保节能的潮流.D. 萃取操作容易,压力和温度都可以成为调节萃取过程的参数.在临界点附近,温度压力的微小变化,都会引起CO2密度显着变化,从而引起待萃物的溶解度发生变化,可通过控制温度或压力的方法达到萃取目的.压力固定,改变温度可将物质分离;反之温度固定,降低压力使萃取物分离;因此技术流程短,耗时少,占地小,同时对环境真正友善,萃取流体CO2可循环使用,并不会排放废二氧化碳导致温室效应!成为真正「绿色化」生产制程.E.超临界流体的极性可以改变,一定温度条件下,只要改变压力或加入适宜的夹带剂即可提取不同极性的物质,可选择范围广.影响超临界二氧化碳萃取的因素有下列几点-超临界二氧化碳的密度,夹带剂,粒度,体积等等影响萃取的因素A.密度溶剂强度与超临界流体的密度有关.温度一定时,密度(压力)增加,可使溶剂强度增加,溶质的溶解度增加.B.夹带剂适用于萃取的超临界流体的大多数溶剂是极性小的溶剂,这有利于选择性的提取,但限制了其对极性较大溶质的应用.因此可在这些流体中加入少量夹带剂,以改变溶剂的极性.最常用来萃取的超临界流体为二氧化碳,通过加入夹带剂可适用于极性较大的化合物.有人在10MPa压力下(约等于100大气压),用不同浓度的乙醇作夹带剂,研究了以藏药雪灵芝中萃取其中的3种成分.加一定夹带剂的超临界二氧化碳可以创造一般溶剂达不到的萃取条件,大幅度提高收率.这对于贵重药材成份的提取,工业化开发价值极高.常用的夹带剂有乙醇,尿素,丙酮,己烷以及水等等.C.粒度粒子的大小可影响萃取的收率.一般来说,粒度小有利于超临界二PDF created with pdfFactory Pro trial version 绿色溶剂-超临界二氧化碳氧化碳的萃取.D.流体体积提取物的分子结构与所需的超临界流体的体积有关.有科学家将加压加温到68.8MPa,40℃后提取50克叶子中的叶黄素和胡萝卜素.要得到叶黄素50%的回收率,需要2.1L超临界二氧化碳;如要得到95%的回收率,由此推算,则需要33.6L的超临界二氧化碳.而胡萝卜素在二氧化碳中的溶解度大,仅需要1.4L,即可达到95%的回收率。
超临界流体
超临界流体是温度和压力同时高于临界值的流体,亦即压缩到具有接近液体密度的气体。
超临界流体的密度和溶剂化能力接近液体,粘度和扩散系数接近气体,在临界点附近流体的物理化学性质随温度和压力的变化极其敏感,在不改变化学组成的条件下,即可通过压力调节流体的性质。
特性
总体而言,超临界流体的属性介于气体和液体之间。
在表1中,显示一些常用作超临界流体的化合物之临界性质。
在超临界流体中没有液体及气体之间的相界限,因此不存在表面张力,借由改变流体的压力和温度,可以微调超临界流体的特性,使其更类似液体或是气体。
物质在流体中的溶解度即为重要特性之一,在固定温度条件下,溶解度会随流体密度增加而增加。
由于密度也是随压力增加而增加,因此在压力增加时,溶解度也会增加。
溶解度和温度的关系比较复杂,在固定密度条件下,溶解度会随温度增加而增加,
但靠近临界点时,温度轻微的增加会造成密度的大幅下降。
因此靠近临界点时,随着温度上升,溶解度会先下降,然后再上升[2]。
二种以上的超临界流体,只要温度及压力超过其临界点,二者均可以混溶,形成单一相的混合物。
二元混合物的临界点可以用二超临界流体的临界温度及临界压力,再配合加权平均求得:
T c(mix) = (A的莫耳分率)x A的T c + (B的莫耳分率)x B的T c 若要有更高的准确度,临界点可以用像是彭-罗宾逊物态方程式之类的状态方程求得,或是用基团贡献(group contribution)法求得,像密度之类的其他性质,也可以用状态方程来计算[3]。
超临界流体萃取。
超临界流体的定义
超临界流体的定义温度及压力均处于临界点以上的液体叫超临界流体(superc ritic al fluid)。
超临界流体的性质它基本上仍是一种气态,但又不同于一般气体,是一种稠密的气态。
其密度比一般气体要大两个数量级,与液体相近。
它的粘度比液体小,但扩散速度比液体快(约两个数量级),所以有较好的流动性和传递性能。
它的介电常数随压力而急剧变化(如介电常数增大有利于溶解一些极性大的物质)。
超临界流体百科名片超临界流体超临界流体具有许多独特的性质,如粘度小、密度、扩散系数、溶剂化能力等性质随温度和压力变化十分敏感:粘度和扩散系数接近气体,而密度和溶剂化能力接近液体。
目录超临界流体的定义超临界流体的性质超临界流体的优点超临界流体的应用原理超临界流体的应用常见临界点超临界流体的发展史展开编辑本段超临界流体的定义纯净物质要根据温度和压力的不同,呈现出液体、气体、超临界气体萃取三种典型流程固体等状态变化,如果提高温度和压力,来观察状态的变化,那么会发现,如果达到特定的温度、压力,会出现液体与气体界面消失的现象该点被称为临界点,在临界点附近,会出现流体的密度、粘度、溶解度、热容量、介电常数等所有流体的物性发生急剧变化的现象温度及压力均处于临界点以上的液体叫超临界流体(superc ritic al fluid,简称SCF)。
例如:当水的温度和压强升高到临界点(t=374.3 ℃,p=22.05 MPa)以上时,就处于一种既不同于气态,也不同于液态和固态的新的流体态──超临界态,该状态的水即称之为超临界水。
编辑本段超临界流体的性质超临界流体由于液体与气体分界消失,是即使提高压力也不液化的超临界流体萃取中药非凝聚性气体。
超临界流体的物性兼具液体性质与气体性质。
超临界流体在化学中的应用研究
超临界流体在化学中的应用研究超临界流体是指在高于其临界温度和临界压力下的物质状态,具有介于气体和液体之间的特性。
由于其独特的物理性质,超临界流体在化学领域中得到了广泛的应用研究。
本文将从超临界流体的概念、性质和应用三个方面进行讨论。
一、超临界流体的概念和性质超临界流体的概念最早由荷兰科学家范德瓦尔斯于1873年提出。
超临界流体具有介于气体和液体之间的特性,既具有气体的高扩散性和低粘度,又具有液体的高密度和溶解能力。
此外,超临界流体的物理性质可以通过调节温度和压力来改变,使其适应不同的化学反应条件。
超临界流体的溶解能力是其在化学反应中的重要特性之一。
由于超临界流体的高密度和低粘度,溶质在其中的扩散速率较高,溶解度也较大。
这使得超临界流体成为一种优良的溶剂,可以用于溶解不易溶于常规溶剂的化合物,如多肽、天然产物等。
此外,超临界流体还可以调节其溶解度,通过调节温度和压力来控制溶质在超临界流体中的溶解度,实现对化学反应的控制。
二、超临界流体在化学合成中的应用超临界流体在化学合成中的应用主要包括超临界流体萃取、超临界流体催化和超临界流体反应等。
超临界流体萃取是一种利用超临界流体的溶解能力来提取化合物的方法。
由于超临界流体的高溶解度,可以高效地提取目标化合物,同时又可以避免传统有机溶剂对环境的污染。
例如,超临界二氧化碳被广泛应用于植物提取物的制备,可以高效地提取植物中的有效成分,如植物提取物中的天然产物、香料和药物等。
超临界流体催化是一种利用超临界流体的特性来促进化学反应的方法。
超临界流体具有高扩散性和低粘度,可以提供较好的反应条件,促进反应物之间的相互作用。
例如,超临界水在催化氧化反应中具有较好的催化活性,可以用于高效催化氧化反应,如有机废水的处理、有机废气的净化等。
超临界流体反应是一种利用超临界流体作为反应介质进行化学反应的方法。
由于超临界流体的独特性质,可以调节温度和压力来控制反应条件,实现对反应过程的控制。
超临界流体
超临界流体是温度和压力同时高于临界值的流体,亦即压缩到具有接近液体密度的气体。
超临界流体的密度和溶剂化能力接近液体,粘度和扩散系数接近气体,在临界点附近流体的物理化学性质随温度和压力的变化极其敏感,在不改变化学组成的条件下,即可通过压力调节流体的性质。
特性
总体而言,超临界流体的属性介于气体和液体之间。
在表1中,显示一些常用作超临界流体的化合物之临界性质。
在超临界流体中没有液体及气体之间的相界限,因此不存在表面张力,借由改变流体的压力和温度,可以微调超临界流体的特性,使其更类似液体或是气体。
物质在流体中的溶解度即为重要特性之一,在固定温度条件下,溶解度会随流体密度增加而增加。
由于密度也是随压力增加而增加,因此在压力增加时,溶解度也会增加。
溶解度和温度的关系比较复杂,在固定密度条件下,溶解度会随温度增加而增加,
但靠近临界点时,温度轻微的增加会造成密度的大幅下降。
因此靠近临界点时,随着温度上升,溶解度会先下降,然后再上升[2]。
二种以上的超临界流体,只要温度及压力超过其临界点,二者均可以混溶,形成单一相的混合物。
二元混合物的临界点可以用二超临界流体的临界温度及临界压力,再配合加权平均求得:
T c(mix) = (A的莫耳分率)x A的T c + (B的莫耳分率)x B的T c 若要有更高的准确度,临界点可以用像是彭-罗宾逊物态方程式之类的状态方程求得,或是用基团贡献(group contribution)法求得,像密度之类的其他性质,也可以用状态方程来计算[3]。
超临界流体萃取。
超临界流体简介
§1 超临界流体简介超临界流体(Supercritical Fluids,SCF)技术是近年来发展迅速之一项新型技术,应用范围广阔,早期主要用于萃取分离1方面,现则已深入到分析化学2-4、生化反应5-6及微粒制备7-11等各领域。
1、超临界流体的发展历程物质的超临界状态最早于1822年被Cagnigard de la Tour所发现并且加以描述。
1861年,Core描述了Naphthalene于二氧化碳中的溶解现象。
1869年, Andrews对二氧化碳和氮气,进行二元化物(binary mixtures)相行为深入研究,测得二氧化碳之临界点。
而有关超临界流体溶液沉淀析出最早的文献,是于1879年,由Hanny 及 Hogarth所提出。
发现在常压下碘化钾不溶于乙醇,但超临界状态下的乙醇则对碘化钾具相当的溶解力。
当压力增加时,碘化钾的溶解度增加;当压力下降时,则有雪花般的晶体析出。
是首先提出压力会影响溶质溶解度之观念者。
1906年,Buchner指出溶质于超临界流体中之溶解度,亦受溶质本身之蒸气压影响。
1939年,Horwarth申请的用超临界二氧化碳流体来浓缩果汁的第一份专利。
1954年,Francis搜集464个物质的相图,并描述261种有机化合物于液态二氧化碳的溶解度。
1955年,Todd及Elgin首先将超临界流体用于分离物质。
一个或一个以上的混合物质,于高压状态下可以溶于超临界流体,当压力降低物质可被回收。
1959年,Elgin及Weinstock 发表了超临界流体用于液体溶液的分离。
1963年,Zosel申请利用超临界二氧化碳萃取68种不同物质的专利。
1963~1972年苏联Krasnodar研究学会利用超临界流体萃取80余种不同植物。
1970年,能源危机与环保政策对传统有机溶剂的管制渐趋严格,使得超临界二氧化碳的研究与利用被大量开发。
1980年后,超临界流体萃取法,开始广泛应用于各种材料制备上。
超临界流体
超临界流体
在一定温度和压力下,可以把二氧化碳加热到极高的温度,它就会转变成无色、无味而且没有毒性的液态气体。
这种状况称为“超临界”。
所谓超临界是指其相对密度在2.96以上时才出现。
我们知道水的比重大于4,属于不同压力和密度范围内的超临界流体;从常温20 ℃加热至70 ℃,水分解生成氢和氧的混合物(俗称水煤气),也归入此类;再继续升温则进行两个循环——蒸发吸热与冷凝放热等反应后即达到100 ℃以上,此时由于出现超临界情形,故叫做超临界流体。
- 1 -。
超临界流体
知识创造未来
超临界流体
超临界流体是指在高温高压条件下,流体无法明确分为气体或液体,而呈现出介于气体和液体之间的状态。
在超临界状态下,流体的密
度和粘度等性质与传统的气体和液体有较大差异,并且具有较高的
溶解能力和扩散性。
超临界流体广泛应用于化学、环境、能源、材料和生物科学等领域。
例如,超临界流体可被用作溶剂,用于提取天然产物、合成化学品、废物处理等。
此外,超临界流体还可用于制备纳米材料、燃料电池
电解质、药物传递系统等。
由于超临界流体的特殊性质,它们在这
些应用中具有很多优势,如高效传质、可控反应条件、可回收性等。
超临界流体的一个典型例子是超临界二氧化碳,它在大约31摄氏
度和74个标准大气压的条件下成为超临界流体。
超临界二氧化碳
被广泛应用于食品加工、药物制备、金属表面清洗等领域,因为它
既具有良好的传质性能又具有较低的热伤害和环境影响。
1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
超临界流体是温度和压力同时高于临界值的流体,亦即压缩到具有接近液体密度的气体。
超临界流体的密度和溶剂化能力接近液体,粘度和扩散系数接近气体,在临界点附近流体的物理化学性质随温度和压力的变化极其敏感,
在不改变化学组成的条件下,即可通过压力调节流体的性质。
特性
总体而言,超临界流体的属性介于气体和液体之间。
在表1中,显示一些常用作超临界流体的化合物之临界性质。
乙烷(C2H6)30.07 305.3 4.87 (48.1) 0.203
丙烷(C3H8)44.09 369.8 4.25 (41.9) 0.217
乙烯(C2H4)28.05 282.4 5.04 (49.7) 0.215
丙烯(C3H6)42.08 364.9 4.60 (45.4) 0.232
甲醇(CH3OH)32.04 512.6 8.09 (79.8) 0.272
乙醇(C2H5OH)46.07 513.9 6.14 (60.6) 0.276
丙酮(C3H6O)58.08 508.1 4.70 (46.4) 0.278
在超临界流体中没有液体及气体之间的相界限,因此不存在表面张力,借由改变流体的压力和温度,可以微调超临界流体的特性,使其更类似液体或是气体。
物质在流体中的溶解度即为重要特性之一,在固定温度条件下,溶解度会随流体密度增加而增加。
由于密度也是随压力增加而增加,因此在压力增加时,溶解度也会增加。
溶解度和温度的关系比较复杂,在固定密度条件下,溶解度会随温度增加而增加,
但靠近临界点时,温度轻微的增加会造成密度的大幅下降。
因此靠近临界点时,随着温度上升,溶解度会先下降,然后再上升[2]。
二种以上的超临界流体,只要温度及压力超过其临界点,二者均可以混溶,形成单一相的混合物。
二元混合物的临界点可以用二超临界流体的临界温度及临界压力,再配合加权平均求得:
T c(mix) = (A的莫耳分率)x A的T c + (B的莫耳分率)x B的T c 若要有更高的准确度,临界点可以用像是彭-罗宾逊物态方程式之类的状态方程求得,或是用基团贡献(group contribution)法求得,像密度之类的其他性质,也可以用状态方程来计算[3]。
超临界流体萃取。