三极管的发展与应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三极管的发展与应用
摘要
三极管至从出现以来,以简单的构造,广泛的运用,为集成电路的高速发展做出
了卓越的贡献。并为计算机的诞生铺平了道路。真空三极管的发明,不仅成为真
空电子学的开端,也是电子学历史的开端,推动了人类文明的进程。
关键词:三极管,集成电路,计算机技术。
Thetriodetosincehasappeared,takethesimplestructure,thewidespreadutiliza tion,makesasintegratedcircuit'shighspeeddevelopmenttheremarkablecontrib ution,andpavedthewayforcomputer'sbirth.Vacuumtriode'sinvention,notonlybecomes thevacuumelectronicsthebeginning,butalsoelectronicshistorybeginning,pro motedthehumancultureadvancement.
Keyword:triode,integratedcircuit,computertechnology
目录:
诸论
第一章,三极管的历史
第二章,三极管的概念及主要分类
第三章,三极管的工作原理
1.工作原理:
2.三极管的特性曲线:
a.输入特性b、输出特性
3.工作特性及参数:
4.判断基极和三极管的类型
第四章,三极管的应用及发展
1,三极管的应用
2,三极管的发展趋势
结论
正文
诸论:
三极管发明于20世纪初期,它的出现产生了第三次工业革命的契机,至从它广泛运用于社会生活以来,在计算机发明问世以来,短短半个世纪,人类文明迅速又电气时代走向自动化时代,三极管在计算机技术力的广泛运用,才又了集成技术的空前发展,计算机迅速走向社会大众,为人民的生活飞速发展产生了不可磨灭的贡献,而三极管的特性使其仍然具有广泛的发展前景,因此研究三极管的发展与应用不仅有极为重要的学术意义还有广泛的社会意义,本文将从三极管的历史以及其工作原理及应用上详细系统的论证其广阔的前景以及重要的发展意义。
第一页
第一章:
三极管的发明历史
1906年10月25日,美国科学家德·福雷斯特申请了真空三极管放大器的专利,第二天又向美国电气工程师协会提交了关于三级管放大器的论文。他的专利于1907年1月15日被批准。
福雷斯特的真空三级管建立在前人发明的真空二极管的技术基础之上。1904年,英国伦敦大学的弗莱明发明了真空二极管(VacuumDiodeTube)。真空二极管只能单向导电,
可以对交流电流进行整流,或者对信号进行检波,但是它不能对信号进行放大。没有能够放大信号的器件,电子技术就无法继续发展。
为了提高真空二极管检波灵敏度,福雷斯特在玻璃管内添加了一种栅栏式的金属网,形成电子管的第三个极。他惊讶地看到,这个“栅极”仿佛就像百叶窗,能控制阴极与屏极之间的电子流;只要栅极有微弱电流通过,就可在屏极上获得较大的电流,而且波形与栅极电流完全一致。也就是说,在弗莱明的真空二极管中增加了一个电极,就成了能够起放大作用的新器件,他把这个新器件命名为三极管(Triode)。
图1-1
真空三极管除了可以处于“放大”状态外,还可分别处于“饱和”与“截止”状态。“饱和”即从阴极(或者叫发射极,emitter)到屏极(evelope)的电流完全导通,相当于开关开启;“截止”即从阴极到屏极没有电流流过,相当于开关关闭。两种状态可以通过调整栅极上的电压进行控制。因此真空三极管可以充当开关器件,其速度要比继电器快成千上万倍。
第二章:
三极管概念及主要分类。
概念:
半导体三极管也称双极型晶体管,晶体三极管,简称三极管,是一种电流控制电
流的半导体器件.
作用:
把微弱信号放大成辐值较大的电信号,也用作无触点开关.
第二页
分类:
a.按材质分:硅管、锗管
b.按结构分:NPN、PNP
c.按功能分:开关管、功率管、达林顿管、光敏管等.
第三章:
三极管的工作原理及主要参数
1.工作原理:
晶体三极管(以下简称三极管)按材料分有两种:锗管和硅管。而每一种又有NPN和PNP 两种结构形式,但使用最多的是硅NPN和PNP两种三极管,两者除了电源极性不同外,其工作原理都是相同的,下面仅介绍NPN硅管的电流放大原理。
对于NPN管,它是由2块N型半导体中间夹着一块P型半导体所组成,发射区与基区之间形成的PN结称为发射结,而集电区与基区形成的PN结称为集电结,三条引线分别称为发射极e、基极b和集电极。当b点电位高于e点电位零点几伏时,发射结处于正偏状态,而C点电位高于b点电位几伏时,集电结处于反偏状态,集电极电源Ec要高于基极电源Ebo。在制造三极管时,有意识地使发射区的多数载流子浓度大于基区的,同时基区做得很薄,而且,要严格控制杂质含量,这样,一旦接通电源后,由于发射结正确,发射区的多数载流子(电子)极基区的多数载流子(控穴)很容易地截越过发射结构互相向反方各扩散,但因前者的浓度基大于后者,所以通过发射结的电流基本上是电子流,这股电子流称为发射极电流Ie。
由于基区很薄,加上集电结的反偏,注入基区的电子大部分越过集电结进入集电区而形成集电集电流Ic,只剩下很少(1-10%)的电子在基区的空穴进行复合,被复合掉的基区空穴由基极电源Eb重新补纪念给,从而形成了基极电流Ibo根据电流连续性原理得:
Ie=Ib+Ic
第三页
这就是说,在基极补充一个很小的Ib,就可以在集电极上得到一个较大的
Ic,这就是所谓电流放大作用,Ic与Ib是维持一定的比例关系,即:
β1=Ic/Ib
式中:β--称为直流放大倍数,集电极电流的变化量△Ic与基极电流的变化量△Ib之比为:
β=△Ic/△Ib
式中β--称为交流电流放大倍数,由于低频时β1和β的数值相差不大,所以有时为了方便起见,对两者不作严格区分,β值约为几十至一百多。
三极管是一种电流放大器件,但在实际使用中常常利用三极管的电流放大作用,通过电阻转变为电压放大作用。
图一是NPN管的结构图,它是由2块N型半导体中间夹着一块P型半导体所组成,从
图可见发射区与基区之间形成的PN结称为发射结,而集电区与基区形成的PN结称为集电结,三条引线分别称为发射极e、基极b和集电极。
当b点电位高于e点电位零点几伏时,发射结处于正偏状态,而C点电位高于b点电
位几伏时,集电结处于反偏状态,集电极电源Ec要高于基极电源Ebo。
在制造三极管时,有意识地使发射区的多数载流子浓度大于基区的,同时基区做得很薄,而且,要严格控制杂质含量,这样,一旦接通电源后,由于发射结正确,发射区的多数载流子(电子)极基区的多数载流子(控穴)很容易地截越过发射结构互相向反方各扩散,但因前者的浓度基大于后者,所以通过发射结的电流基本上是电子流,这股电子流称