平行线的性质与判定练习题

合集下载

(完整版)平行线及其判定与性质练习题

(完整版)平行线及其判定与性质练习题

平行线及其判定1、基础知识(1)在同一平面内,______的两条直线叫做平行线.若直线a与直线b 平行,则记作______.(2)在同一平面内,两条直线的位置关系只有______、______.(3)平行公理是:.(4)平行公理的推论是如果两条直线都与______,那么这两条直线也______.即三条直线a、b、c,若a∥b,b∥c,则______.(5)两条直线平行的条件(除平行线定义和平行公理推论外):①两条直线被第三条直线所截,如果______,那么这两条直线平行,这个判定方法1可简述为:______,两直线平行.②两条直线被第三条直线所截,如果__ _,那么,这个判定方法2可简述为: ______,______.③两条直线被第三条直线所截,如果_ _____那么______,这个判定方法3可简述为:2、已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.(1)如果∠2=∠3,那么_____.(_______,_______)(2)如果∠2=∠5,那么________。

(______,________)(3)如果∠2+∠1=180°,那么_____。

(________,______)(4)如果∠5=∠3,那么_______。

(_______,________)(5)如果∠4+∠6=180°,那么______.(_______,_____)(6)如果∠6=∠3,那么________。

(________,_________)3、已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)∵∠B=∠3(已知),∴______∥______。

(______,______)(2)∵∠1=∠D(已知),∴______∥______.(______,______)(3)∵∠2=∠A(已知),∴______∥______.(______,______)(4)∵∠B+∠BCE=180°(已知),∴______∥______。

专题02 平行线的判定与性质(原卷版)

专题02 平行线的判定与性质(原卷版)

专题02 平行线的判定与性质1.(2022秋•项城市期末)如图,已知∠B=∠ADE,∠EDC=∠GFB,GF⊥AB,求证:CD⊥AB.把以下证明过程补充完整,并在括号内填写理由或数学式.证明:∵∠B=∠ADE(已知)∴ ∥ ( )∴∠EDC=∠DCB( )又∠EDC=∠GFB(已知)∴∠DCB= (等量代换)∴ ∥ ( )2.(2023秋•道里区校级期中)将下面的解答过程补充完整:如图,已知DE∥BC,EF平分∠CED,∠A=∠CFE,那么EF与AB平行吗?为什么?解:因为DE∥BC(已知),所以∠DEF=∠CFE( ①),因为EF平分∠CED(已知),所以∠DEF= ②(角平分线的定义),所以∠CFE=∠CEF( ③),因为∠A=∠CFE(已知),所以∠A= ④(等量代换),所以EF∥AB( ⑤).3.(2022秋•尤溪县期末)如图,∠1+∠2=180°,∠B=∠3.(1)求证:DE∥BC;(2)若∠C=76°,∠AED=2∠3,求∠CEF的度数.4.(2023秋•怀宁县期中)如图,已知EF∥CD,数学课上,老师请同学们根据图形特征添加一个关于角的条件,使得∠BEF=∠CDG,并给出证明过程.小明添加的条件:∠B=∠ADG.请你帮小明将下面的证明过程补充完整.证明:∵EF∥CD( )∴∠BEF= ( )∵∠B=∠ADG(添加条件)∴BC∥ ( )∴∠CDG= ( )∴∠BEF=∠CDG( ).5.(2022秋•长春期末)请把以下证明过程补充完整,并在下面的括号内填上推理理由:已知:如图,∠1=∠2,∠A=∠D.求证:∠B=∠C证明:∵∠1=∠2,(已知)又:∵∠1=∠3, ∴∠2= ,(等量代换)∴AE∥FD ∴∠A=∠BFD ∵∠A=∠D(已知)∴∠D= (等量代换)∴ ∥CD ∴∠B=∠C .6.(2022秋•闽清县期末)如图,AB∥CD,E是BC的延长线上的一点,AE交CD于点F,∠1=∠2,∠3=∠4.求证:(1)∠B=∠D;(2)AD∥BE.7.(2023春•石城县期末)如图,已知∠ABC=180°﹣∠A,BD⊥CD于D,EF⊥CD于E.(1)求证:AD∥BC;(2)若∠ADB=36°,求∠EFC的度数.8.(2022秋•淇县期末)如图,已知AD∥FE,∠1=∠2.(1)试说明DG∥AC;(2)若∠BAC=70°,求∠AGD的度数.9.(2022秋•禅城区期末)已知:如图,点D,E,F分别是三角形ABC的边BC,CA,AB上的点,DF∥CA,∠FDE=∠A;(1)求证:DE∥BA.(2)若∠BFD=∠BDF=2∠EDC,求∠B的度数.30.(2023春•驿城区校级期末)如图,AB∥DG,∠1+∠2=180°.(1)试说明:AD∥EF;(2)若DG是∠ADC的平分线,∠2=142°,求∠B的度数.11.(2023秋•香坊区校级期中)完成下面推理过程,并在括号里填写推理依据:如图,已知:AB∥EF,EP⊥EQ,∠EQC+∠APE=90°,求证:AB∥CD.证明:∵AB∥EF(已知),∴∠APE= ,∵EP⊥EQ(已知),∴∠PEQ=90°),即∠QEF+∠PEF=90°,∴∠QEF+∠APE=90°,∵∠EQC+∠APE=90°(已知),∴∠EQC= ( ),∴EF∥ ( ),又∵AB∥EF,∴AB∥CD( ).12.(2022秋•邓州市期末)如图,点M在CD上,已知∠BAM+∠AMD=180°,AE平分∠BAM,MF平分∠AMC,请说明AE∥MF的理由.解:因为∠BAM+∠AMD=180°( ),∠AMC+∠AMD=180°( ),所以∠BAM=∠AMC( ).因为AE平分∠BAM,所以 ( ).因为MF平分∠AMC,所以 ,得 ( ),所以 ( ).13.(2022秋•桐柏县期末)完成下面推理过程.如图:已知,∠A=112°,∠ABC=68°,BD⊥DC于点D,EF⊥DC于点F,求证:∠1=∠2.证明:∵∠A=112°,∠ABC=68°(已知)∴∠A+∠ABC=180°∴AD∥BC( )∴∠1= ( )∵BD⊥DC,EF⊥DC(已知)∴∠BDF=90°,∠EFC=90°( )∴∠BDF=∠EFC=90°∴BD∥EF( )∴∠2= ( )∴∠1=∠2( )14.(2023秋•天山区校级期中)已知,GP平分∠BGH,HP平分∠GHD,∠GPH=90°.(1)求证:AB∥CD;(2)若∠AGE=60°,求∠4的度数.15.(2023春•覃塘区期末)如图:已知,∠HCO=∠EBC,∠BHC+∠BEF=180°.(1)求证:EF∥BH;(2)若BH平分∠EBO,EF⊥AO于F,∠HCO=64°,求∠CHO的度数.16.(2023春•新化县期末)如图,点E,F分别在AB,CD上,AF⊥CE,垂足为点O.已知∠1=∠B,∠A+∠2=90°.(1)求证:AB∥CD;(2)若AF=12,BF=5,AB=13,求点F到直线AB的距离.17.(2023春•温州月考)如图,已知∠1=∠3,∠2=∠B.(1)试判断DE与BC的位置关系,并说明理由;(2)若DE平分∠ADC,∠1=3∠B,求∠EFC的度数.18.(2023春•仙居县期末)如图是一个汉字“互”字,其中,AB∥CD,HF∥GE,∠HGE=∠HFE,M、H、G三点在同一直线上,N、E、F三点在同一直线上.求证:(1)GH∥EF;(2)∠CMH=∠BNE.19.(2022秋•东阳市期末)如图,长方形纸片ABCD中,G、H分别是AB、CD边上的动点,连GH,将长方形纸片ABCD沿着GH翻折,使得点B,C分别落在点E,F位置.(1)若∠BGH=110°,求∠AGE的度数.(2)若∠FHD=20°,求∠CHG的度数.(3)已知∠BGH和∠CHG始终互补,若∠BGH=α,请直接写出∠FHC的度数(含α的代数式).20.(2023春•金牛区校级期中)如图1,直线GH与直线l1,l2分别交于B,A两点,点C在直线l2上,射线AD平分∠BAC交直线l1于点E,∠GBE=2∠BAE.(1)求证:直线l1∥l2;(2)如图2,点Q在直线l1上(B点左侧),AM平分∠BAQ交l1于点M,过点M作MN⊥AD交AD于点N,请猜想∠BQA与∠AMN的关系;并证明你的结论;(3)若点P是线段AB上一点,射线EP交直线l2于点F,∠GBE=130°.点N在射线AD上,且满足∠EBN=∠EFC连接BN,请补全图形,探究∠BNA与∠FEA满足的等量关系,并证明.21.(2023春•义乌市校级期中)今年除夕夜长江两岸的灯光秀璀璨夺目,照亮山城的山水桥梁城市楼阁,人民欢欣鼓舞.观看表演的小语同学发现两岸的灯光运动是有规律的,如图1所示,灯A射出的光线从AQ开始顺时针旋转至AP便立即回转,灯B射出的光线从BM开始顺时针旋转至BN便立即回转,两灯不停旋转.假设长江两岸是平行的,即PQ∥MN,点A在PQ上,B、C、D在MN上,连接AB、AC、AD,已知AC平分∠BAP,AD平分∠CAP.(1)如图1,若∠ABD=40°,则∠CAQ= ;(2)如图2,在PQ上另有一点E,连接CE交AD于点F,点G在MN上,连接AG,若∠CAG=∠CAE,∠EFD+∠DAG=180°,试证明:EC∥AB.(3)如图3,已知灯A射出的光线旋转的速度是每秒10°,灯B射出的光线旋转的速度是每秒30°,若灯B射出的光线从BM出发先转动2秒,灯A射出的光线才从AQ出发开始转动,设灯A转动的时间为t秒,在转动过程中,当0≤t≤12时,请直接写出灯A射出的光线与灯B射出的光线相交且互相垂直时的时间t的值.22.(2022秋•萍乡期末)已知点A在射线CE上,∠C=∠ADB.(1)如图1,若AD∥BC,求证:AC∥BD;(2)如图2,若BD⊥BC,垂足为B,BD交CE于点G,请探究∠DAE与∠C的数量关系,写出你的探究结论,并说明理由;(3)如图3,在(2)的条件下,过点D作DF∥BC交射线CE于点F,当∠BAC=∠BAD,∠DFE=8∠DAE时,求∠BAD的度数.23.(2022秋•鲤城区校级期末)如图①,已知AB∥CD,一条直线分别交AB、CD于点E、F,∠EFB=∠B,FH⊥FB,点Q在BF上,连接QH.(1)已知∠EFD=70°,求∠B的度数;(2)求证:FH平分∠GFD.(3)在(1)的条件下,若∠FQH=30°,将△FHQ绕着点F顺时针旋转,如图②,若当边FH转至线段EF上时停止转动,记旋转角为α,请求出当α为多少度时,QH与△EBF某一边平行?(4)在(3)的条件下,直接写出∠DFQ与∠GFH之间的关系.24.(2023秋•香坊区校级期中)如图1,直线MN与直线AB、CD分别交于点E、F,∠1+∠2=180°.(1)求证:AB∥CD;(2)如图2,∠BEF与∠EFD的角平分线交于点P,延长EP交CD于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;(3)如图3,在(2)的条件下,连接PH,∠HPQ=45°,K是GH上一点,连接PK,作PQ平分∠EPK,若∠PHG=15°,求∠QPK的度数.25.(2023秋•吉林期中)如图①,直角三角形DEF与直角三角形ABC的斜边在同一直线上,∠ACB=∠E=90°,∠EDF=36°,∠ABC=40°,CD平分∠ACB,将△DEF绕点D按逆时针方向旋转,如图②,记∠ADF为α(0°<α<180°),在旋转的过程中:(1)当∠α= °时,DE∥BC,当∠α= °时,DE⊥BC;(2)如图③,当顶点C在△DEF的内部时,边DF、DE分别交BC、AC的延长线于点M、N.①求出此时∠α的度数范围;②∠1与∠2的度数和是否变化?若不变,请直接写出∠1与∠2的度数和;若变化,请说明理由.。

平行线的判定及性质 例题及练习

平行线的判定及性质 例题及练习

平行线的判定及性质一、【基础知识精讲】1、平行线的判定(1)平行公理:经过直线外一点,有且只有一条直线与已知直线平行. (2)平行公理的推论:平行于同一条直线的两条直线. (3)在同一平面内,垂直于同一条直线的两条直线. (4)同位角相等,两直线平行. (5)内错角相等,两直线平行.(6)同旁内角互补,两直线平行.3、平行线的性质(1)两直线平行,同位角相等. (2)两直线平行,内错角相等.(3)两直线平行,同旁内角互补.二、【例题精讲】专题一:余角、补角、对顶角与三线八角例题1:∠A的余角与∠A的补角互为补角,那么2∠A是()A.直角 B.锐角 C.钝角 D.以上三种都有可能【活学活用1】如图2-79中,下列判断正确的是()A.4对同位角,2对内错角,4对同旁内角B.4对同位角,2对内错角,2对同旁内角C.6对同位角,4对内错角,4对同旁内角D.6对同位角,4对内错角,2对同旁内角【活学活用2】如图2-82,下列说法中错误的是( )A.∠3和∠5是同位角B.∠4和∠5是同旁内角C.∠2和∠4是对顶角D.∠1和∠2是同位角【活学活用3】如图,直线AB与CD交于点O,OE⊥AB于O,图中∠1与∠2的关系是()A.对顶角B.互余C.互补D相等例题2:如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角分别是_______.【活学活用4】如图,∠AOC +∠DOE +∠BOF = .专题二:平行线的判定例题3:如图,已知∠EFB+∠ADC=180°,且∠1=∠2,试说明DG ∥AB.1 2A BCDF E G【活学活用】1、长方体的每一对棱相互平行,那么这样的平行棱共有 ( )A .9对B .16对 C.18对 D .以上答案都不对2、已知:如图2-96,DE ⊥AO 于E,BO ⊥AO,FC ⊥AB 于C ,∠1=∠2,求证:DO ⊥AB.3、如图2-97,已知:∠1=∠2=,∠3=∠4,∠5=∠6.求证:AD ∥BC.4、如图2—101,若要能使AB ∥ED ,∠B 、∠C 、∠D 应满足什么条件?ABCDOE F5、同一平面内有四条直线a 、b 、c 、d ,若a ∥b ,a ⊥c ,b ⊥d ,则c 、d 的位置关系为( ) A.互相垂直 B .互相平行 C.相交 D .没有确定关系专题三:平行线的性质1、如图,110,ABC ACB BO ∠+∠=、CO 分别平分ABC ∠和,ACB EF ∠过点O 与BC 平行,则BOC ∠= . 2、如图,AB //CD ,BC //DE ,则∠B+∠D = .3、如图,直线AB 与CD 相交于点O ,OB 平分∠DOE .若60DOE ∠=,则∠AOC 的度数是 .4、 如图,175,2120,375∠=∠=∠=,则4∠= .13 425、如图,//AB CD ,直线EF 分别交AB 、CD 于E 、F ,ED 平分BEF ∠,若172∠=,则2∠= .【例题讲解】例1:如图,已知:AD ∥BC, ∠AEF=∠B,求证:AD ∥EF 。

平行线的判定与性质(习题课)讲解学习

平行线的判定与性质(习题课)讲解学习
D
探究2、如图甲:已知AB∥DE,那么∠1+∠2+∠3等于多少度?试加以说明。 当已知条件不变,而图形变为如图乙时,结论改变了吗?图丙中的 ∠1+∠2+∠3+∠4是多少度呢?如果如丁图所示,∠1+∠2+∠3+…+∠n的和又为 多• 少度?你找到了什么规律吗?
1
2 3
1 2
3
1
2
3 4
1 2
3 4
n
求证: CD∥EF.
• 课堂练习6、 已知:如图∠1=∠2, ∠3=∠4,∠5=∠6,求证:EC∥FB
• 问题5、如图,AB∥CD,∠1=∠2,∠E=37°,求: ∠F。
A
B 问题探究 已知:AB∥CD,
1
E
2
C A
1
求证:∠A+ ∠ C+ ∠ AEC=
360°
F
证明:过E点作EF ∥ AB,则∠A+ ∠ 1= 180°
Z 形模式
next
应用模式
如图,若AB∥DF,∠2=∠A,试确定DE与AC的位置关系,并说明理由.
A
E
F
2
B
D
C
引入
建模
应用
小结
next
应用模式
如图,图中包含哪些基本模式?
A E D
B F O C
引入
建模
应用
小结
next
应用模式
已知,如图AB∥EF∥CD,AC∥BD,BC平分∠ABC,则图中 与∠EOD相等的角有( )个.
图形
同a 位 角b
1 2 c
内 错
a3
角b
2
c

平行线的性质与判定经典题型

平行线的性质与判定经典题型

平行线的性质与判定经典题型1.在三角形ABC中,角B等于角ACB,CD平分角ACB 并交AB于点D,AE与DC平行并交BC延长线于点E。

已知角E等于36度,求角B的度数。

2.在图中,如果AB平行于CD,则角α、β、γ之间的关系是什么?3.在图中,AB平行于CD且CD平行于PN,角ABC等于50度,角CPN等于150度。

求角BCP的度数。

4.在图中,直线AB和CD被直线EF所截。

如果角BMN 等于角DNF且角1等于角2,那么MQ平行于NP。

为什么?5.在图中,将一个长方形纸片沿EF折叠后,点D和C分别落在D'和C'的位置。

如果角EFB等于65度,则角AED'等于多少度?6.在图中,如果角1等于角2且角C等于角D,则角A等于角F。

为什么?7.在图中,已知角1加角2等于180度,角3等于角B。

试判断角AED和角ACB的大小关系,并说明理由。

8.已知AB平行于CD,分别探讨下列四个图形中角APC和角PAB、角PCD的关系。

从所得四个关系中任选一个并说明理由。

9.在图中,已知角1等于角2,角3等于角4,角5等于角6.证明AD平行于BC。

10.在图中,已知CD垂直于AB于点D,EF垂直于AB于点F,角DGC等于105度,角BCG等于75度。

求角1加角2的度数。

11.在图中,AD垂直于BC于点D,EF垂直于BC于点F,EF交AB于点G,交CA的延长线于点E,且角1等于角2.AD是否平分角BAC?说明理由。

12.在图中,如果AB平行于CD且角1等于角2,则角E等于角F。

为什么?13.在图中,DB平行于FG平行于EC,角ABD等于60度,角ACE等于36度,AP平分角BAC。

求角PAG的度数。

14.在图中,AB平行于CD,角1等于115度,角2等于140度。

求角3的度数。

15.已知:AC平行于DE,DC平行于EF,CD平分角BCD。

证明:EF平分角BED。

16.已知:AB平行于CD,角1等于角B,角2等于角D。

平行线的性质判定专项练习40题

平行线的性质判定专项练习40题

平行线的性质判定专项练习40题1.已知BE平分∠ABC,且∠1=∠2,要证明BC∥DE。

2.在图中,AB⊥BC,BC⊥CD,BF和CE是两条射线,且∠1=∠2,需要说明XXX。

3.在图中,AB⊥BC,且∠1+∠2=90°,∠2=∠3,要证明BE∥DF。

4.在图中,OP平分∠MON,A、B分别在OP、OM上,且∠BOA=∠BAO,需要判断AB是否平行于ON。

若平行,需要给出证明过程;若不平行,需要说明理由。

5.已知在图中,B、D、A在一直线上,且∠D=∠E,∠XXX∠D+∠E,BC是∠ABE的平分线,要证明DE∥BC。

6.在图中,直线AB、CD与直线EF相交于E、F,已知∠1=105°,∠2=75°,需要证明AB∥CD。

7.已知∠D=∠A,∠B=∠FCB,需要证明ED∥CF。

8.已知∠1的度数是它补角的3倍,∠2等于45°,需要判断AB是否平行于CD。

理由需要说明。

9.在图中,已知AC∥ED,且EB平分∠AED,∠1=∠2,需要证明AE∥BD。

10.在图中,AC⊥AE,BD⊥BF,且∠1=35°,∠2=35°,需要证明AE∥BF。

11.在△ABC中,点D在AB上,且∠XXX∠A,∠BDC的平分线交BC于点E。

需要证明DE∥AC。

12.已知∠XXX∠A+∠C,需要说明AB∥CD。

13.在图中,已知BE是∠B的平分线,交AC于E,且∠1=∠2,需要判断DE是否平行于BC。

理由需要说明。

14.已知∠C=∠D,且DB∥EC。

需要判断AC是否平行于DF。

理由需要说明。

15.直线AB、CD被EF所截,且∠3=∠4,∠1=∠2,XXX。

需要证明AB∥CD。

16.已知AB∥CD,且∠1=∠2,需要证明BE∥CF。

17.已知∠BAD=∠DCB,且∠1=∠3,需要证明AD∥BC。

18.在图中,AD是三角形ABC的角平分线,DE∥CA,并且交AB于点E,且∠1=∠2.需要判断DF是否平行于AB。

平行线的判定与性质练习题

平行线的判定与性质练习题

平行线的判定与性质练习题平行线的判定与性质练习题平行线是几何学中的基本概念之一,它在我们的日常生活中无处不在。

从道路上的交叉口到建筑物的设计,平行线都扮演着重要的角色。

在几何学中,我们需要学会判定平行线,并掌握它们的性质。

下面,我将给大家提供一些平行线的判定与性质练习题,希望能帮助大家更好地理解和应用平行线的知识。

练习题一:判定平行线1. 在下图中,判断线段AB和线段CD是否平行。

A-----B| |C-----D2. 在下图中,判断线段AB和线段EF是否平行。

A-----B| || |E-----F3. 在下图中,判断线段AB和线段CD是否平行。

A-----B\ /\ /C-----D练习题二:平行线的性质1. 若两条平行线被一条横线所截,那么对应的内角互补。

2. 若两条平行线被一条横线所截,那么对应的外角相等。

3. 若两条直线分别与一条平行线相交,那么对应的内角相等。

4. 若两条直线分别与一条平行线相交,那么同旁内角互补。

练习题三:平行线的应用1. 若两条平行线被一条横线所截,且已知其中一个内角的度数为60°,求对应的内角和外角的度数。

2. 若两条平行线被一条横线所截,且已知其中一个外角的度数为120°,求对应的内角和另一个外角的度数。

3. 若两条直线分别与一条平行线相交,且已知其中一个内角的度数为70°,求对应的内角和同旁内角的度数。

4. 若两条直线分别与一条平行线相交,且已知其中一个同旁内角的度数为45°,求对应的内角和另一个同旁内角的度数。

通过以上练习题,我们可以加深对平行线的判定与性质的理解。

判定平行线需要观察线段的走向,若两条线段的走向相同,即不相交且不重合,则可以判定它们为平行线。

而平行线的性质则是通过观察线段之间的关系得出的。

掌握这些性质可以帮助我们解决更复杂的几何问题。

在应用平行线的过程中,我们可以根据已知条件利用平行线的性质进行推导。

平行线的性质与判定测试习题

平行线的性质与判定测试习题

迎平行线的判定和性质检测题姓名: _________________班: __________________一.〔共8 小,每小 3 分,分 24 分〕1.以下正确的选项是〔〕A .不相交的两条直叫做平行B.两条直被第三条直所截,同位角相等C.垂直于同一直的两条直互相平行D.平行于同一直的两条直互相平行2.如所示,点P 到直 l 的距离是〔〕A .段 PA 的度 B.段 PB 的度C.段 PC 的度D.段 PD 的度第 2第3第43.如所示,以下中正确的选项是〔〕A .∠ 1 和∠ 2 是同位角B.∠ 2 和∠ 3 是同旁内角C.∠ 1 和∠ 4 是内角D.∠ 3 和∠ 4 是角4.如,假设∠ A+∠ ABC=180°,以下正确的选项是〔〕A .∠ 1=∠2B.∠ 2=∠3C.∠ 1=∠ 3D.∠ 2=∠ 45.如,直 AB ,CD 被直 EF 所截,∠ 1=55°,以下条件中能判定AB ∥CD 的是〔〕A .∠ 2=35°B.∠ 2=45°C.∠ 2=55°D.∠ 2=125°第 5第6第76.如,将一含有 30°角的直角三角板的两个点放在方形直尺的一上,如果∠ 1=30°,那么∠ 2 的度数〔〕A .30°B.40°C.50°D.60°7.如: AB ∥DE,∠ B=30°,∠ C=110°,∠ D 的度数〔〕A.115 °B.120 °C.100 °D.80 °8. 平面内三条直的交点个数可能有〔〕A .1 个或 3 个B.2 个或 3 个C.1 个或 2 个或 3 个D.0 个或 1 个或 2 个或 3 个二.填空〔共8 小,每小 3 分,分 24 分〕9.把命“ 角相等〞改写成“如果⋯那么⋯〞的形式:.10.直 L 同有 A ,B,C 三点,假设 A ,B 的直 L1和 B,C 的直 L 2都与 L 平行, A ,-B, C 三点 ________,理论根据是.11. 如图,当剪子口∠ AOB 增大 15°时,∠ COD 增大 ________度,其根据是 ______________.12. 如图,直线 AB 、CD、EF 交于点 O,那么∠ 1+∠2+∠ 3=.13.如图, AB ∥ CD,点 E 在 AB 上,点 F 在 CD 上,如果∠ CFE:∠ EFB=3:4,∠ ABF=40°,那么∠ BEF 的度数为.第 11 题第12题第13题第14题14.如图, a∥ b,PA⊥PB,∠ 1=35°,那么∠ 2 的度数是.15.以下四个命题:①过一点有且只有一条直线与直线平行;②在同一平面内,两条不相交的线段是平行线段;③相等的角是对顶角;④在同一平面内,假设直线AB ∥CD,直线 AB 与 EF 相交,那么 CD 与 EF 相交.其中,假命题的是〔填序号〕.16.观察图形,并阅读下面的相关文字.像这样的十条直线相交最多的交点个数有.三.解答题〔共8 小题,总分值 72 分〕17.〔 6 分〕如图,∠ 1=∠ 2,∠ 3+∠ 4= 180°.求证: AB ∥ EF.18.〔 6 分〕如图,直线 AB,CD 相交于 O,OE 是∠ AOD 的平分线,∠ AOC= 28°,求∠ AOE 的度数.19.〔 8 分〕如图,现有以下 3 个论断:① AB∥CD;②∠ B=∠ C;③∠ E=∠ F.请以其中 2 个论断为条件,另一个论断为结论,构造一个真命题,并加以证明.(1〕条件: __________,结论: ________.(2〕证明:20.〔 8 分〕如图, EF∥AD ,∠ 1=∠2,∠ BAC=68°.求∠ AGD 的度数.解:因为 EF∥ AD ,所以∠ 1=.〔〕又因为∠ 1=∠2,所以∠ 2=.〔等量代换〕所以 AB ∥.〔〕所以∠ BAC+=180°.〔〕因为∠ BAC=68°,所以∠ AGD=.〔等式的性质〕21.〔 10 分〕如图,∠ AGF= ∠ABC ,∠ 1+∠2=180°.〔 1〕判断 BF 与 DE 的位置关系,并说明理由;〔2〕假设 BF⊥ AC ,∠ 2=150°,求∠ AFG 的度数.22.〔 10 分〕如图,∠ BAP+∠ APD=180°,∠ 1 =∠2.求证 :∠ E =∠ F.23.〔 12 分〕如图,直线 AB ,CD 相交于点 O,OA 平分∠ EOC.〔 1〕假设∠ EOC=70°,求∠ BOD 的度数;(2〕假设∠ EOC:∠ EOD=2:3,求∠ BOD 的度数.24.〔 12 分〕如图, AB ∥CD,C 在 D 的右侧, BE 平分∠ ABC ,DE 平分∠ ADC ,BE 、 DE 所在直线交于点 E.∠ADC =70°.(1〕求∠ EDC 的度数;(2〕假设∠ ABC =n°,求∠ BED 的度数〔用含 n 的代数式表示〕;。

平行线的性质与判定综合训练(含答案)

平行线的性质与判定综合训练(含答案)

平行线的性质与判定综合训练(含答案)1.如图,要判定AB∥CD,需要哪些条件?根据是什么?2.填写推理理由:如图,CD∥EF,∠1=∠2.求证:∠3=∠ACB.解:∵CD∥EF,∴∠DCB=∠2(____________________).∵∠1=∠2,∴∠DCB=∠1(____________________).∴GD∥CB(____________________).∴∠3=∠ACB(____________________).3.如图,已知AD∥BE,∠A=∠E,求证:∠1=∠2.4.已知:如图,AD∥EF,∠1=∠2.求证:AB∥DG.5.已知:如图,直线EF分别交AB,CD于点E,F,且∠AEF=66°,∠BEF的平分线与∠DFE的平分线相交于点P.(1)求∠PEF的度数;(2)若已知直线AB∥CD,求∠P的度数.6.如图,∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∠DBF=∠F.求证:EC∥DF.7.如图,把一张长方形ABCD的纸片,沿EF折叠后,ED与BC的交点为G,点D,C分别落在D′,C′的位置上,若∠EFG=55°,求∠1,∠2的度数.8.如图,CE平分∠BCD,∠1=∠2=70°,∠3=40°,AB和CD是否平行?为什么?9.如图,已知AB∥CD,∠1∶∠2∶∠3=1∶2∶3,那么BA是否平分∠EBF,试说明理由.10.如图所示,已知∠ABC=80°,∠BCD=40°,∠CDE=140°,试确定AB与DE的位置关系,并说明理由.11.如图,直线l1、l2均被直线l3、l4所截,且l3与l4相交,给定以下三个条件:①l1⊥l3;②∠1=∠2;③∠2+∠3=90°.请从这三个条件中选择两个作为条件,另一个作为结论组成一个真命题,并进行证明.12.如图1,CE∥AB,所以∠ACE=∠A,∠DCE=∠B,所以∠ACD=∠ACE+∠DCE=∠A+∠B.这是一个有用的结论,借用这个结论,在图2所示的四边形ABCD内,引一条和边平行的直线,求∠A+∠B+∠C+∠D的度数.参考答案1.略2.两直线平行,同位角相等等量代换内错角相等,两直线平行两直线平行,同位角相等3.证明:∵AD∥BE,∴∠A=∠3.∵∠A=∠E,∴∠3=∠E.∴DE∥AB.∴∠1=∠2.4.证明:∵AD∥EF,∴∠1=∠BAD.∵∠1=∠2,∴∠BAD=∠2.∴AB∥DG.5.(1)∵∠AEF=66°,∴∠BEF=180°-∠AEF=114°.又PE平分∠BEF,∴∠PEB=12∠BEF=57°.(2)∵AB∥CD,∴∠EFD=∠AEF=66°. ∵PF平分∠EFD,∴∠PFD=12∠EFD=33°.过点P作PQ∥AB,∵∠EPQ=∠PEB=57°,又AB∥CD,∴PQ∥CD.∴∠FPQ=∠PFD=33°.∴∠EPF=∠EPQ+∠FPQ=57°+33°=90°.6.证明:∵BD平分∠ABC,CE平分∠ACB,∴∠DBF=12∠ABC,∠ECB=12∠ACB.∵∠ABC=∠ACB,∴∠DBF=∠ECB.∵∠DBF=∠F,∴∠ECB=∠F.∴EC∥DF.7.∵AD∥BC,∠EFG=55°,∴∠2=∠GED,∠DEF=∠EFG=55°.由折叠知∠GEF=∠DEF=55°.∴∠GED=110°.∴∠1=180°-∠GED=70°.∴∠2=110°.8.平行.理由:∵CE平分∠BCD,∴∠1=∠4.∵∠1=∠2=70°,∴∠1=∠2=∠4=70°.∴AD∥BC.∴∠D=180°-∠BCD=180°-∠1-∠4=40°.∵∠3=40°,∴∠D=∠3.∴AB∥CD.9.BA平分∠EBF.理由如下:∵AB∥CD,∴∠2+∠3=180°.∵∠2∶∠3=2∶3,∴∠2=180°×25=72°.∵∠1∶∠2=1∶2,∴∠1=36°.∴∠EBA=72°=∠2,即BA平分∠EBF.10.AB∥DE.理由:图略,过点C作FG∥AB,∴∠BCG=∠ABC=80°.又∠BCD=40°,∴∠DCG=∠BCG-∠BCD=40°.∵∠CDE=140°,∴∠CDE+∠DCG=180°.∴DE∥FG.∴AB∥DE.11.已知:l1⊥l3,∠1=∠2.求证:∠2+∠3=90°.证明:∵∠1=∠2,∴l1∥l2.∵l1⊥l3,∴l2⊥l3.∴∠3+∠4=90°.∵∠4=∠2,∴∠2+∠3=90°.12.过D作DE∥AB.则由阅读得到的结论,有∠BED=∠C+∠CDE.又∠ABE+∠BED=180°,∠A+∠ADE=180°(两直线平行,同旁内角互补).两式相加,得∠ABE+∠BED+∠A+∠ADE=360°,即∠A+∠B+∠C+∠ADC=360°.。

完整版)平行线的判定和性质经典题

完整版)平行线的判定和性质经典题

完整版)平行线的判定和性质经典题平行线的判定和性质经典题一、选择题(共18小题)1.同位角共有()。

A。

6对B。

8对C。

1对D。

12对2.将一张长方形纸对折三次,则产生的折痕与折痕间的位置关系是()。

A。

平行B。

垂直C。

平行或垂直D。

无法确定3.下列说法中正确的个数为()。

①不相交的两条直线叫做平行线②平面内,过一点有且只有一条直线与已知直线垂直③平行于同一条直线的两条直线互相平行④在同一平面内,两条直线不是平行就是相交A。

1个B。

2个C。

3个D。

4个4.在同一平面内,有8条互不重合的直线,l1,l2,l3 (8)若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类推,则l1和l8的位置关系是()。

A。

平行B。

垂直C。

平行或垂直D。

无法确定5.若两个角的两边分别平行,且这两个角的差为40°,则这两角的度数分别是()。

A。

150°和110°B。

140°和100°C。

110°和70°D。

7°和30°6.XXX所示,AC⊥BC,DE⊥BC,CD⊥AB,∠ACD=40°,则∠XXX等于()。

A。

4°B。

5°C。

6°D。

不能确定7.如图,AB∥CD,且∠BAP=60°-α,∠APC=45°+α,∠PCD=30°-α,则α=()。

A。

1°B。

2°C。

3°D。

15°8.下列所示的四个图形中,∠1和∠2是同位角的是()。

①②③④A。

②③B。

①②C。

①④D。

②④9.已知∠AOB=40°,∠XXX的边CD⊥OA于点C,边DE∥OB,那么∠CDE等于()。

A。

5°B。

130°C。

5°或130°D。

100°10.如图,AB∥CD∥EF,AF∥CG,则图中与∠A(不包括∠A)相等的角有()。

平行线性质练习题30题

平行线性质练习题30题

平行线性质练习题1. 已知直线AB和CD平行,若BE平分∠ABC,求证:BE也平分∠ECD。

2. 在平行线l1和l2之间,有一条横穿它们的直线l3,形成了八个角。

求证:同旁内角互补。

3. 若直线a ∥ b,直线b ∥ c,求证:直线a ∥ c。

4. 已知直线AB ∥ CD,点E在AB上,点F在CD上,且∠BEF = 120°,求∠EFD的度数。

5. 在平行线l1和l2上分别取点A、B、C、D,若AB = CD,BC = DA,求证:四边形ABCD是平行四边形。

6. 已知直线l1 ∥ l2,点P在l1上,点Q在l2上,若PQ垂直于l1,求证:PQ也垂直于l2。

7. 在平行线l1和l2之间,有一条横穿它们的直线l3,形成了八个角。

求证:内错角相等。

8. 若直线a ∥ b,直线c与a、b都相交,且∠1 = ∠2,求证:直线c ∥ b。

9. 已知直线AB ∥ CD,点E在AB上,点F在CD上,且∠AEF = 30°,求∠CFD的度数。

10. 在平行线l1和l2上分别取点A、B、C、D,若AB = CD,AD = BC,求证:四边形ABCD是矩形。

11. 已知直线l1 ∥ l2,点P在l1上,点Q在l2上,若PQ = QR,PR = QR,求证:∠PQR = 90°。

12. 在平行线l1和l2之间,有一条横穿它们的直线l3,形成了八个角。

求证:同位角相等。

13. 若直线a ∥ b,直线c与a、b都相交,且∠1 + ∠2 = 180°,求证:直线c ∥ a。

14. 已知直线AB ∥ CD,点E在AB上,点F在CD上,且∠BEF = 135°,求∠EFD的度数。

15. 在平行线l1和l2上分别取点A、B、C、D,若AB = CD,AC= BD,求证:四边形ABCD是菱形。

16. 已知直线l1 ∥ l2,点P在l1上,点Q在l2上,若PQ垂直于l1,且PQ = QR,求证:PR垂直于l2。

平行线的性质与判定综合大题专练

平行线的性质与判定综合大题专练

2022-2023学年七年级数学下学期复习备考高分秘籍【苏科版】专题2.1平行线的性质与判定综合大题专练(分层培优30题)A卷基础过关卷(限时50分钟,每题10分,满分100分)1.(2022春•江都区月考)如图,点G在CD上,已知∠BAG+∠AGD=180°,EA平分∠BAG,FG平分∠AGC,请说明AE∥GF的理由.解:因为∠BAG+∠AGD=180°( ),∠AGC+∠AGD=180°( ),所以∠BAG=∠AGC( ).因为EA平分∠BAG,所以∠1= ( ).因为FG平分∠AGC,所以∠2= ,得∠1=∠2( ),所以AE∥GF( ).2.(2022春•溧阳市期末)填写下列空格:已知:如图,点E在AB上,且CE平分∠ACD,∠1=∠2.求证:AB∥CD.证明:∵CE平分∠ACD(已知),∴ ( ).∵∠1=∠2(已知),∴∠1= ( ).∴AB∥CD( ).3.(2022春•泗洪县期中)如图,已知AB⊥BC,∠1+∠2=90°,∠2=∠3.求证:BE∥DF.证明:∵AB⊥BC,∴∠ABC= °,即∠3+∠4= °.∵∠1+∠2=90°,且∠2=∠3,∴∠1+∠ =90°.∴∠1=∠ ,∴BE∥DF.理由是: .4.(2022春•泰州月考)如图,∠EAD=130°,∠B=50°,试说明EF∥BC.5.(2022春•泰州月考)如图,在△ABC中,∠B=∠C,点D、E分别在AB、AC上,且∠ADE=∠AED.DE与BC平行吗?为什么?6.(2022春•江阴市校级月考)如图,E.F分别是直线BA,DC上的点,∠E=∠F,∠B=∠D.求证:AD∥BC.7.(2019春•邗江区期中)如图,已知AD⊥BC,EF⊥BC,∠1=∠2.求证:DG∥BA.8.(2021春•东台市月考)如图,∠CDA=∠CBA,DE平分∠CDA,BF平分∠CBA,且∠1=∠2,试说明DE∥FB.9.(2022春•宿豫区期中)如图,点B、C在直线AD上,∠DCG=70°,BF平分∠DBE,CG∥BF,求∠ABE的度数.10.(2022春•宿豫区期中)如图,AD既是△ABC的高也是它的角平分线,点G在线段BD上,过点G作EG⊥BC,交CA的延长线于点E,∠E与∠AFE相等吗?为什么?B卷能力提升卷(限时60分钟,每题10分,满分100分)11.(2022春•金湖县期末)已知:如图,EF∥AC,∠C+∠F=180°.求证:GF∥CD.12.(2022春•梁溪区校级期中)已知:如图,点D、E、F、G都在△ABC的边上,EF∥AC,且∠1+∠2=180°.(1)求证:AE∥DG;(2)若EF平分∠AEB,∠C=40°,求∠BDG的度数.13.(2022春•崇川区期末)如图,直线AB∥CD,点E,G在直线AB上,点F,H在直线CD上,∠1+∠2=180°.(1)如图1,求证EF∥GH;(2)如图2,若∠1=120°,GM平分∠BGH,FM平分∠EFH,设FM与GH相交于点O.求∠FOH 的度数.14.(2022春•宿城区期末)如图,GF∥CD,∠1=∠2.求证:∠CED+∠ACB=180°.15.(2021春•惠山区期中)如图,∠1=50°,∠2=130°,∠C=∠D.(1)试说明:BD∥CE.(2)探索∠A与∠F的数量关系,并说明理由.16.(2021春•江都区期中)如图,已知∠2=∠4,∠3=∠B.(1)试判断∠AED与∠C的关系,并说明理由;(2)若∠1=130°,∠5=65°,求∠DGB的度数.17.(2022春•江都区校级月考)如图,在四边形ABCD中,∠A=∠C=90°,点E、F分别在DC、AB上,且BE、DF分别平分∠ABC、∠ADC.判断BE、DF是否平行,并说明理由.18.(2021春•金坛区期末)已知:如图,∠1=∠C,∠2+∠3=180°.求证:AD∥EF.19.(2022秋•金湖县期中)如图,在△ABC中,DE∥AB,交AC,BC分别于点D、E,已知∠1=∠2.(1)求证:AE平分∠BAC;(2)当AC=BC时,请判断DE与BE的大小关系,并说明理由.20.(2022春•宝应县期末)下面是某同学的一次作业,请仔细阅读并完成后面的问题:如图,AB∥CD,∠A=∠D.求证:AF∥ED.证明:①∵AB∥CD(已知),∴∠A=∠AFC,∠D=∠BED( ).②∵∠A=∠D(已知),∴∠AFC=∠BED(等量代换).③∴AF∥ED(内错角相等,两直线平行).(1)请将推理①的数学理论依据补充完整, ;(2)该同学的推理过程有没有错误?如有错误,请指出是推理几,并写出完整的证明过程.C卷培优压轴卷(限时70分钟,每题10分,满分100分)21.(2022春•惠山区校级期中)如图1,已知∠MON=72°,OE平分∠MON,点A,B,C分别是射线OM,OE,ON上异于点O的动点.(1)在图1中连接AB,若AB∥OC,则∠ABE的度数为 °;(2)如图2,连接AC,若射线AB平分∠MAC,则∠ABO与∠ACO的数量关系式是 ;(3)如图3,连接AC交射线OE于点D(不与点B重合),当AB⊥OM且△ADB中有两个角相等时,求∠OAC的度数.则称∠N为∠M的k系补周角.若∠M=90°,∠N=45°,则∠N为∠M的6系补周角.(1)若∠H=80°,则∠H的4系补周角的度数为 °.(2)在平面内AB∥CD,点E是平面内一点,连接BE、DE.①如图1,∠D=60°,若∠B是∠E的3系补周角,求∠B的度数.②如图2,∠ABE和∠CDE均为钝角,点F在点E的右侧,且满足∠ABF=n∠ABE,∠CDF=n∠CDE(其中n为常数且n>1),点P是∠ABE角平分线BG上的一个动点,在P点运动过程中,请你确定一个点P的位置,使得∠BPD是∠F的k系补周角,写出你的解题思路并求出此时的k值(用含n的式子表示).23.(2022春•吴江区校级期中)如图,直线AB∥CD,MN⊥AB分别交AB,CD于点M、N,射线MP、MQ分别从MA、MN同时开始绕点M顺时针旋转,分别与直线CD交于点E、F,射线MP每秒转10°,射线MQ每秒转5°,ER,FR分别平分∠PED,∠QFC,设旋转时间为t秒(0<t<18).(1)①用含t的代数式表示:∠AMP= °,∠QMB= °;②当t=4时,∠REF= °.(2)当∠MEN+∠MFN=130°时,求出t的值;(3)试探索∠EFR与∠ERF之间的数量关系,并说明理由;(4)若∠PMN的角平分线与直线ER交于点K,∠EKM的度数是 .24.(2022春•如皋市期中)已知,直线AB∥CD,AD与BC交于点E.(1)如图1,∠AEC=100°,则∠ABC+∠ADC= °;(2)如图2,∠ABC,∠ADC的平分线交于点F,则∠F与∠AEC有怎样的数量关系,请说明理由;(3)如图3,∠AEC=α,∠ABC=β(α>3β),在∠ADC的平分线上任取一点P,连接PB,当∠ABP=∠PBC时,请直接写出∠BPD的度数(用含有α、β的式子表示).25.(2022春•海安市期末)如图,AB∥CD,∠A=40°,点P是射线AB上的一个动点(不与A点重合),CM平分∠ACP.(1)若∠MCD=115°,求证:CP⊥AB;(2)若CN⊥CM,∠AMC=∠ACN,求∠DCN的度数.26.(2020春•高港区期中)问题情境:如图1,AB∥CD,∠PAB=135°,∠PCD=125°.求∠APC度数.小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可求得∠APC的度数.请写出具体求解过程.问题迁移:(1)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP =∠β.∠CPD、∠α、∠β之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系.27.(2022春•兴化市月考)如图,直线AB∥CD,MN⊥AB分别交AB,CD于M,N两点,射线MP,MQ 分别从MA,MN同时开始绕点M顺时针旋转,分别与直线CD交于E,F两点,射线MP每秒转10°,射线MQ每秒转5°,ER,FR分别平分∠PED,∠QFC,设旋转的时间为t秒(O<t<18)(I)①∠AMP= °,∠QMB= °(用含t的代数式表示),②当=4时,∠REF= ;(2)当∠MEN+∠MFN=120°时,求t的值;(3)试探索∠EFR与∠ERF之间的数量关系,并说明理由;(4)∠PMN的平分线与直线ER交于点K,求∠EKM的度数.28.(2022春•沭阳县月考)已知AB∥CD,点E是平面内一点,∠CDE的角平分线与∠ABE的角平分线交于点F.(1)若点E的位置如图1所示.①若∠ABE=58°,∠CDE=82°,则∠F= °;②探究∠F与∠BED的数量关系,并说明理由;(2)若点E的位置如图2所示,∠F与∠BED满足的数量关系式是 .为 .29.(2022春•江都区月考)已知:AB∥CD,点E为射线FG上一点.(1)如图1,写出∠A、∠AED、∠D之间的数量关系并说明理由;(2)如图2,写出∠A、∠AED、∠D之间的数量关系并说明理由;(3)如图3,AH平分∠BAE,DH交AH于点H,交AE于点K,且∠EDH:∠CDH=2:1,∠AED=20°,∠H=30°,求∠EKD的度数.30.(2022春•崇川区期中)已知AB∥CD,连接A,C两点.(1)如图1,∠CAB与∠ACD的平分线交于点E,则∠AEC等于 度;(2)如图2,点M在射线AB反向延长线上,点N在射线CD上.∠AMN与∠ACN的平分线交于点E.若∠AMN=45°,∠ACN=70°,求∠MEC的度数;(3)如图3,图4,M,N分别为射线AB,射线CD上的点,∠AMN与∠ACN的平分线交于点E.设∠AMN=α,∠ACN=β(α≠β),请直接写出图中∠MEC的度数(用含α,β的式子表示).。

(完整word版)平行线的判定定理和性质定理练习题

(完整word版)平行线的判定定理和性质定理练习题

(完整word 版)平行线的判定定理和性质定理练习题平行线的判定定理和性质定理[一]、平行线的判定一、填空1.如图1,若∠A=∠3,则 ∥ ; 若∠2=∠E ,则 ∥ ;若∠ +∠ = 180°,则 ∥ .2.若a⊥c,b⊥c,则a b .3.如图2,写出一个能判定直线a ∥b 的条件: . 4.在四边形ABCD 中,∠A +∠B = 180°,则 ∥ ( ). 5.如图3,若∠1 +∠2 = 180°,则 ∥ 。

6.如图4,∠1、∠2、∠3、∠4、∠5中, 同位角有 ; 内错角有 ;同旁内角有 . 7.如图5,填空并在括号中填理由:(1)由∠ABD =∠CDB 得 ∥ ( ); (2)由∠CAD =∠ACB 得 ∥ ( );(3)由∠CBA +∠BAD = 180°得 ∥ ( )8.如图6,尽可能多地写出直线l 1∥l 2的条件: .9.如图7,尽可能地写出能判定AB∥CD 的条件来: . 10.如图8,推理填空:(1)∵∠A =∠ (已知), ∴AC∥ED( );(2)∵∠2 =∠ (已知), ∴AC∥ED( ); (3)∵∠A +∠ = 180°(已知), ∴AB∥FD( );(4)∵∠2 +∠ = 180°(已知), ∴AC∥ED( ); 二、解答下列各题11.如图9,∠D =∠A,∠B =∠FCB,求证:ED∥CF.∵∠D=∠A∴AB||DE(内错角相等,两直线平行)∵∠B=∠FCB ∴AB||CF(内错角相等,两直线平行) ACB41 23 5图4ab c d 123 图3A B C ED 1 2 3 图1 图243 2 1 5ab1 2 3A F C DB E图8EB AF D C 图9ADCBO图5图65 1 243 l 1 l 2图754 32 1 A DC B∴DE ||CF12.如图10,∠1∶∠2∶∠3 = 2∶3∶4, ∠AFE = 60°,∠BDE =120°,写出图中平行的直线,并说明理由.证明:∵∠1∶∠2∶∠3 = 2∶3∶4又∵,∠1+∠2+∠3 =180度 ∴∠1=40度,∠2=60度,∠3 = 80度 ∵∠AFE = 60°=∠2,所以AB 平行ED又∵∠BDE =120°,∠BDE =120°+∠2=120°+60°=180°∴FE ∥BD13.如图11,直线AB 、CD 被EF 所截,∠1 =∠2,∠CNF =∠BME。

平行线及其判定与性质练习题

平行线及其判定与性质练习题

平行线及其判定1、基础知识(1)在同一平面内,______的两条直线叫做平行线.若直线a与直线b平行,则记作______.(2)在同一平面内,两条直线的位置关系只有______、______.(3)平行公理是:。

(4)平行公理的推论是如果两条直线都与______,那么这两条直线也______.即三条直线a、b、c,若a∥b,b∥c,则______.(5)两条直线平行的条件(除平行线定义和平行公理推论外):①两条直线被第三条直线所截,如果______,那么这两条直线平行,这个判定方法1可简述为:______,两直线平行.②两条直线被第三条直线所截,如果__ _,那么,这个判定方法2可简述为: ______,______.③两条直线被第三条直线所截,如果_ _____那么______,这个判定方法3可简述为:2、已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.(1)如果∠2=∠3,那么____________.(____________,____________)(2)如果∠2=∠5,那么____________.(____________,____________)(3)如果∠2+∠1=180°,那么____________.(____________,____________)(4)如果∠5=∠3,那么____________.(____________,____________)(5)如果∠4+∠6=180°,那么____________.(____________,____________)(6)如果∠6=∠3,那么____________.(____________,____________)3、已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)∵∠B=∠3(已知),∴______∥______.(______,______)(2)∵∠1=∠D(已知),∴______∥______.(______,______)(3)∵∠2=∠A(已知),∴______∥______.(______,______)(4)∵∠B+∠BCE=180°(已知),∴______∥______.(______,______)4、作图:已知:三角形ABC及BC边的中点D,过D点作DF∥CA交AB于M,再过D点作DE∥AB交AC于N点.5、已知:如图,∠1=∠2,求证:AB∥CD.(尝试用三种方法)6、已知:如图,CD⊥DA,DA⊥AB,∠1=∠2,试确定射线DF与AE的位置关系,并说明你的理由.(1)问题的结论:DF______AE.(2)证明思路分析:欲证DF______AE,只要证∠3=______.(3)证明过程:证明:∵CD⊥DA,DA⊥AB,( )∴∠CDA=∠DAB=______°.(垂直定义)又∠1=∠2,( )从而∠CDA-∠1=______-______,(等式的性质)即∠3=______.∴DF______AE.(___________,___________)7、已知:如图,∠ABC=∠ADC,BF、DE分别平分∠ABC与∠ADC,且∠1=∠3.求证:AB∥DC.证明∵∠ABC=∠ADC,∴.2121ADCABC∠=∠( )又∵BF、DE分别平分∠ABC与∠ADC,∴.212,211ADCABC∠=∠∠=∠( )∵∠______=∠______.( )∵∠1=∠3,( )∴∠2=______.( )∴______∥______.( )8、已知:如图,∠1=∠2,∠3+∠4=180°,试确定直线a与直线c的位置关系,并说明你的理由.(1)问题的结论:a______c.(2)证明思路分析:欲证a______c,只要证______∥______.(3)证明过程:证明:∵∠1=∠2,( )∴a∥______,(_________,_________)①∵∠3+∠4=180°∴c∥______,(_________,_________)②由①、②,因为a∥______,c∥______,∴a______c.(_________,_________)9、将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°其中正确的个数是()(A)1 (B)2 (C)3 (D)410、下列说法中,正确的是( ).(A)不相交的两条直线是平行线.(B)过一点有且只有一条直线与已知直线平行.(C)从直线外一点作这条直线的垂线段叫做点到这条直线的距离.(D)在同一平面内,一条直线与两条平行线中的一条垂直,则与另一条也垂直.11、如图5,将一张长方形纸片的一角斜折过去,顶点A落在A′处,BC为折痕,再将BE翻折过去与BA′重合,BD为折痕,那么两条折痕的夹角∠CBD=度.图612、图(6)是由五个同样的三角形组成的图案,三角形的三个角分别为36°、72°、72°,则图中共有___对平行线。

平行线判定与性质习题经典

平行线判定与性质习题经典

∠D=
D
图2
180(已知)
C
∴___A_B__∥__C__D__( 同旁内角互补,两直线平行)
∴∠B+∠C=___1_8_0(0 两直线平行,同旁内角互)补
1.如图已知a∥b找出其中相等的角和互补的 角。
∠1=∠3(两直线平行,内
5
错角相等);
12
∠5=∠4(两直线平行,同
位角相等);
4
3
∠2+∠4=180°(两直线
则∠ DGO=———
B
O
A
C
G
D
B’ C’
如图:AD∥BC, ∠A=∠C.试 说明AB∥DC
证明:∵AD∥BC(已知)
AD
E
∴∠C=∠CDE(两直线平行,内错角相等) 又∵ ∠A=∠C(已知)
∴ ∠A=∠CDE(等量代换) F
B
C
∴AB∥DC(同位角相等,两直线平行)
4.如图10,DE∥BC,∠D∶∠DBC = 2∶1,∠1 =∠2,求∠DEB的度数.
即 ∠1+∠2=90°.
变式思考一: 已知AB∥CD,GM,HM平分
∠FGB, ∠EHD,试判断GM与HM是否垂
直?
E
A
G
B
CH
M D
F
变式思考:若已知GM,HM平分 ∠FGB,∠EHD,GM⊥HM,试判断AB与CD 是否平行?
E
A
G
B
CH
M D
F
拓展1:已知AB∥CD,GP,HQ平分 ∠EGB, ∠EHD,判断GP与HQ是否平行?
平行线判定定理
定理1 同位角相等 定理2 内错角相等
两直线平行 两直线平行

七年级数学下册平行线的性质与判定专项练习题

七年级数学下册平行线的性质与判定专项练习题

平行线的性质与判定专练1.如图,已知∠1=∠2,∠3=110°,求∠4的度数.2.如图,若∠1=∠2,∠3+∠4=180°,则直线a与c平行吗?为什么?3.如图,AD∥EF,若∠1+∠2=180°,则∠1与∠BAD相等吗?为什么?4.如图,在四边形ABCD中,延长AD至点E,已知AC平分∠DAB,∠DAB=70°,∠1=35°.试说明:AB∥CD.5.如图,已知∠A+∠ACD+∠D=360°.试说明:AB∥DE.6.如图,AB∥EF,∠A=105°,∠E=140°.求∠DCE的度数.7.如图,已知EF∥CD,∠1=∠2.求证:CD平分∠ACB.8.如图,点D,E在AC上,点F,G分别在BC,AB上,且DG∥BC,∠1=∠2.试说明:DB∥EF.9.如图,∠DEB=∠C,∠F=∠A,求证:∠ABC=∠G.完成下面的证明过程并注明推理依据.证明:∵∠DEB=∠C(已知),∴______ (_____________________________________).∴∠A=∠EDB(_________________________________________).又∵∠F=∠A(已知),∴∠F=∠EDB(等量代换).∴AB∥FG(_________________________________________),∴∠ABC=∠G(___________________________________________).10.已知:如图,点E在直线DF上,点B在直线AC上,∠1=∠2,∠3=∠4.求证:∠A=∠F.证明:∵∠1=∠2(已知),∠2=∠DGF(_________),∴∠1=∠DGF(________),∴__________∥__________(_____________________________),∴∠3+_________=180°(______________________________).又∵∠3=∠4(已知),∴∠4+∠C=180°(等量代换),∴AC∥DF(__________________________________________),∴∠A=∠F(_________________________________________).11.如图,在四边形ABCD中,AD∥BC,∠B=80°.(1)求∠BAD的度数;(2)AE平分∠BAD交BC于点E,∠BCD=50°.求证:AE∥DC.12.如图,已知直线AB∥DF,∠D+∠B=180°.(1)求证:DE∥BC;(2)如果∠AMD=75°,求∠AGC的度数.13.如图,点E在AB上,点F在CD上,∠1=∠2,∠B=∠C.试说明:AB∥CD.14.如图,∠1+∠2=180°,∠3=∠B,DE与BC平行吗?请说明理由.15.如图,点B,C在线段AD的两侧,点E,F分别是线段AB,CD上的点,已知∠1=∠2,∠3=∠C.(1)求证:AB∥CD;(2)若∠2+∠4=180°,求证:∠BFC+∠C=180°;(3)在(2)的条件下,若∠BFC-30°=2∠1,求∠B的度数.16.阅读并探究下列问题:(1)如图①,将长方形纸片剪两刀,其中AB∥CD,则∠2与∠1,∠3有何数量关系?为什么?(2)如图②,将长方形纸片剪四刀,其中AB∥CD,则∠2+∠4与∠1+∠3+∠5有何数量关系?为什么?(3)如图④,直线AB∥CD,∠EF A=30°,∠FGH=90°,∠HMN=30°,∠CNP=50°,则∠GHM=__________.11。

平行线的性质与判定》综合测试题及答案

平行线的性质与判定》综合测试题及答案

平行线的性质与判定》综合测试题及答案平行线的性质与判定》综合测试题一、选择题1.如图,已知直线a,b被直线c所截,a∥b,∠1=60°,则∠2的度数为()A。

30° B。

60° C。

120° D。

150°2.如图,直线l1、l2被直线l3、l4所截,下列条件中,不能判断直线l1∥l2的是()A。

∠1=∠3 B。

∠5=∠4 C。

∠5+∠3=180° D。

∠4+∠2=180°3.如图,已知AC∥BD,∠CAE=30°,∠DBE=45°,则∠AEB等于()A。

30° B。

45° C。

60° D。

75°4.如图,直线a,b被直线c所截,现给出下列四个条件:①∠1=∠5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.其中能说明a∥b的条件为()A。

①② B。

①③ C。

①④ D。

③④5.如图,∠1=72°,∠2=72°,∠3=70°,则∠4的度数为()A。

72° B。

70° C。

108° D。

110°6.如图,点B,C,D在同一条直线上,CE∥AB,∠ACB=90°,如果∠ECD=36°,那么∠A=__________。

7.已知:如图所示,AB∥CD,BC∥DE,那么∠B+∠D=__________度。

8.如图,直线a,b被直线c所截,若要a∥b,需增加条件____________________。

(填一个即可)9.如图,已知∠BCD=60°,∠ADB=30°,DC⊥BD,我们可以判定平行关系的是__________。

10.如图,若AD∥BE,且∠ACB=90°,∠CBE=30°,则∠CAD=__________。

11.如图所示,根据题意填空。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行线的性质与判定练习题
一、解答题(本大题共13小题,共104.0分)
1.(1)如图,已知直线EF与AB、CD都相交,AB∥CD.
求证:∠1=∠2.
证明:∵EF与AB相交(已知)
∴∠1= ______ (______ )
∵AB∥CD(已知)
∴∠2= ______ (______ )
∴∠1=∠2(______ )
2.探究:如图1,AB∥CD∥EF,点G、P、H分别在直线AB、CD、EF上,连接PG、PH,当点P在直线GH的左侧时.试说明∠AGP+∠EHP=∠GPH.下面给出了这道题的解题过程,请完成下面的解题过程,并填空(理由或数学式)
解:∵AB∥CD ______
∴∠AGP=∠GPD,
∵CD∥EF,
∴∠DPH=∠EHP ______
∵∠GPD+∠DPH=∠GPH
∴∠AGP+∠EHP=∠GPH ______ .
探究:当点P在直线GH的右侧时,其他条件不变,如图2,试探究∠AGP、∠EHP、∠GPH之间的关系,并说明理由.
应用:点P是直线CD上一动点,且不在直线GH上,其他条件不变,若∠GPH=70°,则∠AGP+∠EHP= ______ .
3.如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2
的度数,下面给出了这道题的解题过程,请完成下面的解
题过程,并填空(理由或数学式).
解:∵AB∥CD ______
∴ ______ =∠1=65°(______ )
∠ABD+∠BDC=180°(______ )
∵BC平分∠ABD,
∴∠ABD=2∠ABC=130°(______ )
∴∠BDC=180°-∠ABD=50°,
∴∠2=∠BDC= ______ (______ ).
4.如图,已知直线a∥b,∠3=131°,求∠1、∠2的度数(填理由或数学式)
解:∵∠3=131°(______ )
又∵∠3=∠1 (______ )
∴∠1= ______ (______ )
∵a∥b(______ )
∴∠1+∠2=180°(______ )
5.已知:如图,AB∥CD,∠B=35°,∠1=75°.求∠A的度数.解题思路分析:欲求∠A,只要求∠ACD的大小.
解:∵CD∥AB,∠B=35°(已知)
∴∠2=∠ ______ = ______ °.(______ )
而∠1=75°,
∴∠ACD=∠1+∠2= ______ °.
∵CD∥AB,(已知)
∴∠A+ ______ =180°.(______ )
∴∠A= ______ = ______ .
6.下面是某同学给出一种证法,请你将解答中缺少的条件、
结论或证明理由补充完整:
证明:∵CD与EF相交于点H(已知)
∴∠1=∠2(______ )
∵AB∥CD(已知)
∴∠2=∠EGB(______ )
∵GN是∠EGB的平分线,(已知)
∴∠4= ______ (角平分线定义)
∵∠1=∠2,∠2=∠EGB(已证)
∴∠1=∠EGB(______ )
∵ ______ (已证)
∠1(等量代换)
∴∠4=1
2
7.已知:如图,AB∥CD,∠B=∠D.求证:∠1=∠2.
8.如图,C为射线BM上一点,CF是∠ACM的平分线,
且CF∥AB,∠B=50°,求∠FCM、∠FCA、∠A的度
数.
9.如图:已知AB∥DE∥CF,若∠ABC=60°,∠CDE=140°,
求∠BCD的度数.
10.如图所示,已知DC平分∠ACB,∠B=70°,∠ACB=50°,
DE∥BC,求∠EDC与∠BDC的度数.
11.如图,已知AB∥CD,EF分别交AB、CD于点M、N,
∠EMB=40°,MG平分∠BMF,MG交CD于G,求∠MGC
的度数.
12.已知:如图AB∥CD,直线EF分别交AB、CD于点M、
N.
(1)画出一组同位角的角平分线MP、NQ,MP与NQ是怎样的位置关系?试说明理由.(2)如果MP与NQ是一组内错角的角平分线,会是怎样的位置关系?画出图形,直接说出结论.
(3)如果MP与NQ是一组同旁内角的角平分线,结论还一样吗?请画图并说明结论.
13.如图1,AB∥CD,EOF是直线AB、CD间的一条折线.
(1)试证明:∠O=∠BEO+∠DFO.
(2)如果将折一次改为折二次,如图2,则∠BEO、∠O、∠P、∠PFC之间会满足怎样的数量关系,证明你的结论.
(3)如果将折一次改为折三次,如图3,则∠BEO、∠O、∠P、∠Q、∠QFD之间会满足怎样的数量关系(直接写出结果不需证明)。

相关文档
最新文档