弹性力学基础及有限元法-7

合集下载

弹性力学基础知识

弹性力学基础知识

06
弹性力学的有限元法
有限元法的基本概念
有限元法是一种数值分析方法,通过将复杂的 物理系统离散化为有限个简单元(或称为元素) 的组合,来近似求解复杂的物理问题。
这些简单元在节点处相互连接,形成一个离散 的系统,其行为可以通过物理定律和数学模型 进行描述。
有限元法的核心思想是将连续的求解域离散化, 将复杂的边界条件和应力状态转化为有限个单 元的组合。
弹性力学基础知识
• 弹性力学概述 • 弹性力学的基本假设 • 弹性力学的基本方程 • 弹性力学的基本问题 • 弹性力学的能量原理与变分原理 • 弹性力学的有限元法
01
弹性力学概述
定义与特点
定义
弹性力学是一门研究弹性物体在外力 作用下变形和内力的科学。
特点
弹性力学主要关注物体在受力后发生 的变形,以及这种变形如何影响物体 的内力和应力分布。
在声学领域,有限元法可以用于分析声音的传播、噪音的来源 等。
THANKS
感谢观看
有限元法的求解步骤
单元分析
对每个单元进行受力分析,建 立单元的刚度方程。
求解方程
使用数值方法(如直接法、迭 代法等)求解整体刚度方程, 得到节点的位移和应力。
分析模型建立
首先需要建立待分析系统的数 学模型,包括对系统进行离散 化、定义节点、建立方程等。
系统组装
将所有单元的刚度方程组装成 整体的刚度方程,同时引入边 界条件和载荷。
弹性力学的能量原理与变分原理
弹性力学的能量原理
总结词
弹性力学的能量原理是描述物体在外力 作用下能量变化的重要理论,它为解决 弹性力学问题提供了基础框架。
VS
详细描述
弹性力学的能量原理指出,一个弹性系统 在外力作用下,其能量变化等于外力所做 的功与物体形变所吸收的功之和。这个原 理在解决弹性力学问题时非常有用,因为 它可以将复杂的物理现象转化为数学上的 能量平衡问题。

弹性力学边值问题及有限元法(PPT)

弹性力学边值问题及有限元法(PPT)

0
Ni y Ni x
N j x 0
N j y
0
N j y N j x
N m x 0
N m y
0
N m y N m x
ui
vi
u v
j j
um vm
1 2A
b0i ci
0 ci bi
bj 0 cj
0 cj bj
B Bi B j
ui
bm 0 cm
0 cm bm
a
u
v
N
ae
INi
I
1 0
0 1
IN j INm ae
位移模式需满足以下三个条件: 1、位移模式必须反映单元的刚体位移 2、位移模式必须反映单元的常量应变 3、位移模式应尽可能反映位移的连续性
单元应变函数
u
x y
xy
x u
y
u y
v x
Ni
x
0
Ni
y
) xy
x
E
1 2
( x
y)
y
E
1 2
(
x
y)
xy
2(1 E
)
xy
E
1 2
1
2
xy
x y
xy
E
1 2
1
0
1 0
1
0
0
xxyy
2
D DBae
D
E
1 2
1
0
1 0
0
0
1
2
在数学上,要将某个微分方程的定解问题 转化为一个变分问题求解,必须针对已给的定 解问题构造一个相应的泛函,并证明定解问题 的解与泛函极值问题的解等价。

弹性力学及有限元法 ANSYS实例演示课件

弹性力学及有限元法 ANSYS实例演示课件
有限元法是一种数值分析方法,通过 将连续的物理系统离散化为有限数量 的单元,利用这些单元的组合来逼近 真实系统的行为。
它广泛应用于工程领域,用于解决各 种复杂的力学、热学、电磁学等问题 。
有限元法的实现过程
01
离散化
将连续的物理系统划分为有限数量 的离散单元。
整体分析
将所有单元的数学模型组合起来, 形成整个系统的数学模型。
使用ANSYS的几何建模 功能,创建一个矩形薄 板模型。
选择适当的单位制,如 国际单位制(SI)。
为薄板指定弹性模量、 泊松比和密度等材料属 性。
通过与已知解进行比较 ,验证模型的正确性和 准确性。
材料属性设置与网格划分
01
02
03
材料属性
根据问题描述,为薄板设 置弹性模量、泊松比和密 度等材料属性。
局限性
ANSYS软件的学习曲线较陡峭,需要用户具备一定的专业背景和经验;同时,对于某些特殊问题,可 能需要结合其他软件或方法进行求解。
未来研究与发展的方向
多物理场耦合
进一步发展多物理场耦合的有限元分析方法 ,以模拟更复杂的工程问题。
智能化与自动化
研究有限元分析的智能化和自动化技术,提 高分析效率和精度。
网格划分
对薄板进行网格划分,选 择合适的网格密度以提高 求解精度。
网格质量检查
检查网格质量,确保网格 划分满足求解精度要求。
边界条件与载荷设置
边界条件
载荷与边界条件验证
根据实际情况,为薄板的边界设置约 束条件,如固定约束或简支约束。
通过有限元分析理论,验证所设置的 载荷和边界条件的正确性。
载荷设置
结构分析
有限元法能够模拟复杂结构的力学行为,为工程设计 和优化提供依据。

第三章弹性力学有限元法

第三章弹性力学有限元法

3.3 单元分析
2.单元分析
K
11 rp

b a
rp(1
13r p
)
1
2
a b
r
p
(
1

1 3

r
p
)
其中:
K
12 rp

r p

1
2

r
p
K
22 rp

b a
r
p
(
1

1 3
r
p
)
1
2
a b
r p(1
1 3
r
p
)
K
21 rp

r p

a5 xy a11 xy

a6 y2 a12 y 2
i
j
l
3.3 单元分析
1. 单元的插值函数(各种多项式)
四节点矩形单元 的插值多项式
ue
v
e

a1 a7

a2 x a8 x

a3 a9
y y

a4 xy a11xy

N
i

1 (1 4
x a
)(1
y b
z
三角形环单元
O
y
x
3.2 连续体离散化
5.轴对称单元
四边形环单元
回转圆锥薄壳单元
z
O
y
x z
O
y
x
3.3 单元分析
1. 单元的插值函数(各种多项式)
m
u e
v
e

a1 a4

第2章_弹性力学基础及有限元法的基本原理1

第2章_弹性力学基础及有限元法的基本原理1

W U
当外力的形式是多样的时,外力的虚功等于:
W f Pc f Pv dV f Ps dS
T T T v s
• 1.4 平面问题定义
严格地讲,任何结构都是空间的。对于某些特殊情 况,空间问题可以转化为平面问题。
(1)平面应力问题 满足条件: 1)几何条件 厚度尺寸远远小于截面尺寸; 2)载荷条件 载荷平行于板平面且沿厚度方向均匀 分布,而板平面不受任何外力作用。
1)位移函数 分片插值→ 假设一种函数来表示单元位移分布 一般选取多项式(简单而且易求导)
可用于离散的单元: • 三角形单元; • 矩形单元; • 不规则四边形单元。 DOF 节点的自由度:节点所具有的位移分量的数量。 一个单元所有节点的自由度总和称为单元自由度。 (1)单元参数只能通过节点传递到相邻单元 (2)单元和节点必须统一编号
2.2 单元分析(位移、应力、应变) 任务:形成单元刚度矩阵,建立单元特性方程 因此必须建立坐标系,如下图:
1D问题的弹性模量
E杨氏弹性模量
泊松比是指材料在单向受拉或受压时,横向正应变与轴向 正应变的绝对值的比值,也叫横向变形系数,它是反映材 料横向变形的弹性常数。 若在弹性范围内加载,横向应变εx与纵向应变εy之间存 在下列关系: εx=- νεy 式中ν为材料的一个弹性常数,称为泊松比。泊松比是 量纲为一的量。 可以这样记忆:空气的泊松比为0,45#钢0.3,水的泊松 比为0.5,中间的可以推出。
• 未知数 应力 6个+应变 6个+位移 3个=15个 • 方程个数 平衡方程 3个+几何方程6个+物理方程6个=15个 原则上可以根据15个方程求出15个未知物理量 但实际求解时先求出一部分再通过方程求解剩下的。 目前有限元法主要采用的是位移法,以三个位移 分量为基本未知量。位移-应变-应力,应力和外力平衡

弹性力学基础

弹性力学基础
• (1)判断键盘中有无键按下 • 将全部行线置低电平,列线置高电平,然后检测列线的状态,只要有
一列的电平为低,则说明有键按下,如列线全部为高电平,则说明没 有键被按下。
上一页 下一页 返回
[任务5.1]键盘接口设计
• (1)判断键盘中有无键按下 • (2)去除键的机械抖动 • (3)如有键被按下,则寻找闭合键所在位置,求出其键代码 • (4)程序清单
• 1.并行输出 • 如图5-8所示,这是一个由单片机的P1口驱动1位LE D显示器的电路。 • 2.串行偷出 • 电路如图5-9所示,采用串行输出可以大大节省单片机的I/O口资源。
上一页 下一页 返回
[任务5.2]LED数码显示器接口设讨
• 5. 2. 3静态显示电路的软件结构
• 图5-8所示的并行输出的1位共阴LE D静态显示电路比较简单,程序 也不复杂。
• 5. 2. 4动态显示电路的结构及原理
• 动态显示就是逐位轮流点亮各位LE D显示器(即扫描)。动态显示电 路是单片机中应用最为广泛的显示方式之一。适用于LE D显示器较 多的场合。电路如图5-10所示。
上一页 下一页 返回
[任务5.2]LED数码显示器接口设讨
2.1 弹性力学概述
• 本章主要介绍弹性力学的基本概念,用解析法求解简单弹性力学问题 的基础知识,其中主要包括弹性力学基本方程以及边界条件表达式等。 掌握这些弹性力学的基础知识对后续有限单元法的学习非常重要。此 外,为了更好地理解机械结构有限元分析的基本原理以及将来能对分 析结果更好地进行评价和理解,本章还介绍了应变能、虚位移、虚功 及最小势能原理。
• 弹性力学的研究方法决定了它是一门基础理论课程,因此,直接把解 的困难性。由于经典的解析方法很难用于工程构件分析,因此探讨近 似解法是弹性力学发展的特色。近似求解方法,如差分法和变分法等, 特别是随着计算机的广泛应用而发展起来的有限单元法为弹性力学的 发展和解决工程实际问题带来了广阔的前景。

弹性力学与有限元分析

弹性力学与有限元分析

m α 式中: = ∑i , α1,α2 ,⋯ 2m 为待定系数。把位移函
i=1
n+1
数的这种描述形式称为广义坐标形式。 在确定二维多项式的项数时,需参照二维帕斯卡三 角形,即在二维多项式中,若包含帕斯卡三角形对称轴 一侧的任意一项,则必须同时包含它在对称轴另一侧的 对应项。
1 x x2 x3 x4 y xy y2 y3
1、结构的离散化——单元划分 2、假设单元的位移插值函数和形函数 3、计算单元刚度矩阵 4、载荷移置——把非节点载荷等效地移置 到节点上 5、计算结构刚度矩阵,形成结构刚度方程 6、引入位移边界条件,求解方程 7、计算应力与应变
三、两种平面问题
平面问题分为平面应力问题和平面应变问题两大类。 体力——指分布于物体体积内的外力,它作用于 物体内部的各个质点上,如重力、磁力 和运动时的惯性力等。 面力——指均布于物体表面上的外力,它作用于 物体表面的各个质点上,如物体间的接 触力和气体压力等。
f (x, y),把位移函数的这种描述形式称为插值函数形
式。 形函数具有以下两个性质: 1、形函数 Ni在节点 处的值为0。 2、在单元中任意一点,3个形函数之和为1,即:
i处的值为1,而在其余两个节点
Ni (x, y) + N j (x, y) + Nm (x, y) = 1
六、计算单元刚度矩阵
U(x, y) Ni f (x, y) = = V(x, y) 0
0 Ni
Nj 0
0 Nj
Nm 0
Ui V i 0 U j Nm Vj Um Vm
其中 Ni , N j , Nm 称为单元位移的形状函数,简称形函 数,其值为:
1、用单元节点位移表示单元中任一点的应变,得

弹性力学有限元法详解

弹性力学有限元法详解

x
4
i1 4
Ni ( ,)xi
y
i1
Ni ( ,) yi
总体坐标系适用于整体结构,局部坐标系只适用于具体某个 单元。
常用的对于平面问题还有八节点等参元,空间问题有八节 点空间等参元,二十节点等参元等 。
第18页,共40页。
3.2 连续体离散化
5.轴对称单元
对于回转结构,如果约束条件和载荷都对称于回转轴,其 应力、应变和位移也都对称于回转轴线,这类应力应变问题称 为轴对称问题 ,通常用柱坐标来描述应力、应变和位移,单元 为实心圆环体,仅截面不同
1
2
ai
(1
0
)
ai (1 0 ) ai (1 0 )
1
2
ai
(1
0
)
(i, j,l,m)
对于平面应变问题:
E
E 1 2
1
第29页,共40页。
3.3 单元分析
2. 单元分析
由虚功原理得:
Fe
K e BT DBdxdyt A
BT DBdxdyt δe
A
Fe Keδe
单元刚度矩阵可分块表示为:
第10页,共40页。
3.2 连续体离散化
3. 薄板弯曲单元和薄板单元
A. 薄板弯曲单元
l
θxi
i
θyi
wi
m
j
四边形弯 曲单元
四边形单元有四个节点,每个节点有三个自由度,主要承 受横向载荷和绕水平轴的弯矩。
第11页,共40页。
3.2 连续体离散化
3.薄板弯曲单元和薄板单元
A. 薄板弯曲单元
m
θxi
对于平面应变问题:
E
E 1 2

有限元分析的力学基础

有限元分析的力学基础
SSS
.
33
作用在任意平面上该点的应力分量可以由下式表示为:
xxl yx m px xyl y m py
其中
l c o sN ,x,m c o sN ,y
.
34
2.5空间问题的基本力学方程
平衡方程:外力和内力之间的平衡关系 几何方程:描述的是位移和应变之间关系 物理方程:应力和应变之间的关系 边界条件:
按照边界情况,弹性力学问题一般分为三类:
✓ 位移边界问题:在边界面上全部给定位移,即全部是 Su 边界
✓ 应力边界问题:在边界面上全部给定表面力,即全部是应力 边界S。 这时,外力(包括体力和面力)应是平衡力系。
S
✓ 混合边界问题:既有Su 边界,又有应力边界。二者可以分 别在边界表面不同的区域上,或同一区域不同的方向上。
2 u v
xy
yxΒιβλιοθήκη 2 xy xy象发生。
.
29
物理方程
x
E 1 2
x y
x
E 1 2
y x
xy
E
2 1
xy
写成矩阵形式为
D
E称为杨氏模量反映材料对于拉伸或压缩 变形的抵抗能力。
是泊松系数,描写材料横向收缩或膨胀
的特性。
.
30
线应变(相对伸长或压缩)
绝对伸长(或压缩)与原长之比称为相对伸长(或压
.
12
2.3弹性力学基本变量
内力:应力 --外力(或温度)的作用 内力
设作用于 A上的内力为 ,则Q
内力的平均集度,即平均应力, 为 / Q A
lim Q S
A0 A
这个极限矢量S,就是物体在截面
mn上、P点的应力。

《弹性力学与有限元》第1章弹性力学的基础知识

《弹性力学与有限元》第1章弹性力学的基础知识

(五)小应变位移假设 物体在外加因素作用下,物体变形产生的位移与物体尺寸相比极其微小,因 而应变分量和转角均远小于 1。这样,在建立物体变形后的平衡方程时,可以不 考虑由于变形引起的物体尺寸和位置的变化;在建立几何方程和物理方程时,可 以略去应变、转角的二次幂或二次乘积以上的项,使得到的基本方程是线性偏微 分方程组。这个假设又称为几何线性的假设。
物体的弹性性质是客观存在的,人类很早就可以利用物体的弹性性质了,比 如在树枝上荡漾,古代的弓箭等等。
了解掌握弹性物体的客观规律,并形成弹性力学这样一门学科,则经过了三 个发展时期:
弹性力学的发展初期。17 世纪开始,主要是通过实践,尤其是通过实验来 探索弹性力学的基本规律。英国的胡克和法国的马略特于 1680 年分别独立地提 出了弹性体的变形和所受外力成正比的定律,后被称为胡克定律。牛顿于 1687 年确立了力学三定律,奠定了力学的发展基础。
《弹性力学与有限元》
第 1 章 弹性力学的基础知识
第 1 章 弹性力学的基础知识
弹性力学(Elastic Mechanics)是固体力学的重要分支,它研究弹性物体在外力 和其它外界因素作用下产生的变形和内力,也称为弹性理论。它是材料力学、结 构力学、塑性力学和某些交叉学科的基础,广泛应用于建筑、机械、化工、航天 等工程领域。
材料力学的研究对象主要是杆状构件(一维弹性杆件),而且常采用一些关 于变形的近似假设,如“平面截面”的假设等等,使得计算简化。
而弹性力学的分析方法在一开始并不考虑平面截面的假设,而是从变形连续 性的观念出发列出几何方程,所谓变形连续性是指在变形前的连续物体在变形后 仍保持连续,物体的任一部分及单元体均保持连续。在保持变形连续的情况下, 平面界面变形以后可能不再保持平面,

弹性力学平面问题的有限元法

弹性力学平面问题的有限元法
形状函数
用于描述四节点四边形单元内任意一点的位移和 应力状态。
刚度矩阵
由四节点四边形单元的形状函数和弹性力学基本 公式构建,用于描述单元的刚度特性。
平面六面体八节点单元
六面体八节点单元
是一种三维有限元单元, 具有六个面和八个节点。
形状函数
用于描述六面体八节点 单元内任意一点的位移 和应力状态。
刚度矩阵
对复杂问题的处理能力有限
对于一些高度非线性或耦合问题,有限元法可能难以获得准确解,需要采用其他数值方法 或实验手段。
对高维问题的处理难度较大
随着问题维度的增加,有限元法的计算量和内存消耗会急剧增加,限制了其在高维问题中 的应用。
未来发展方向与挑战
高效算法设计
研究更高效的有限元算法,提高计算速度和精度,降低计算成本。
载荷向量的确定
根据边界条件和外力分布,确定每个节点的载荷 向量。
3
系统刚度矩阵与总载荷向量
将各个单元的刚度矩阵和载荷向量组合起来,形 成系统刚度矩阵和总载荷向量。
求解线性方程组
线性方程组的求解
利用数值方法(如Gauss消去法、迭代法等)求解由 系统刚度矩阵和总载荷向量构成的线性方程组。
解的收敛性与稳定性
02 弹性力学基本方程
应力和应变的关系
01
02
03
胡克定律
在弹性范围内,应力与应 变之间存在线性关系,即 应力与应变成正比。
应变分量
描述物体变形的量,包括 线应变和角应变。
应力分量
描述物体内部受力情况的 量,包括正应力和剪切应 力。
平衡方程
静力平衡
物体在无外力作用下保持静止状态, 即合力为零。
弹性力学平面问题的有限元法

弹性力学及有限元法chapter7精品PPT课件

弹性力学及有限元法chapter7精品PPT课件

e
i
j
m
v
j
w j
u
m
i
m
p
vm
wm
j y
u
p
x
vp
w p
第七章 空间问题和空间轴对称问题
7-2-1 位移函数
单元内任一点的位移 {f}假定为座标的线性函数
u
f
v
N
e
w
u 1 2x3y 4z v 5 6x7 y 8z w9 10x 11y 12z
节点i, j, m及 p的坐标分别为(xi,yi,zi),(xj,yj,zj),(xm,ym,zm) 及 (xp,yp,zp),把它们代入上式的第一式,得出各节点在x方 向的位移
第七章 空间问题和空间轴对称问题
ui 1 2 xi 3 yi 4 zi u j 1 2x j 3 y j 4z j um 1 2 xm 3 ym 4 zm up 1 2xp 3 yp 4zp
解方程组,求得 1,2,3,4,代入第一式,整理后得到
u N iu i N ju j N m u m N p u p
其中
Ni 61 Vaibixciydiz
N j 6 1 Vajbjxcjydjz
Nm61 Vambmxcmydmz
Np61 Vapbpxcpydpz
称为形函数,其系数是
第七章 空间问题和空间轴对称问题
xj yj zj ai xm ym zm
xp yp zp
1 xj zj ci 1 xm zm
同样,可以得到
vNivi Njvj NmvmNpvp wNiwi Njwj NmwmNpwp
单元内任一点的位移可以写成如下形式:
f N 0 i N 0 i 0 0

弹性力学平面问题有限元法

弹性力学平面问题有限元法

度之间相关的是应力在其作用截面的法线方向和
z
C
τ zx +
∂τ zx dz ∂z ∂τ yz σx ∂τ xz dy τ yz + τ xz + dx ∂y ∂x fz τxy τyx ∂σ y fy fx σy + dy ∂τ xy τxz σy ∂y τ xy + dx ∂τ yx ∂x ∂σ x τ yx + dy σx + dx ∂y ∂x τ B
yz
σz +
∂σz dz ∂z ∂τ zy dz τ zy + ∂z
P
τzy
τzx
A
σz
o
y
x
正六面单元体的取法
经过物体内任一点如P 经过物体内任一点如P点取出一个微小的正六面 体,它的棱边分别平行于三个坐标轴而长度分别 为: PA = ∆x, PB = ∆y, PC = ∆z。将每个面上的应力分 解为一个正应力和两个切应力。 解为一个正应力和两个切应力。正应力用 σ 表 表示。 示,切应力用 τ 表示。 应力下标的含意: 应力下标的含意:
物理方程的表达形式
以应力表示应变
以应变表示应力
τxy 1 εx = σx −v(σy +σz ) γ xy = E G τ yz 1 ε y = σy − v(σx +σz γ yz = E G τxz 1 εz = σz −v(σx +σy ) γ xz = E G
σx =λθ +2Gεx τxy =Gγxy σy =λθ +2Gεy τyz =Gγ yz σz =λθ +2Gεz τxz =Gγxz
θ = εx + ε y + εz

弹性力学与有限元法分析及实例讲解

弹性力学与有限元法分析及实例讲解

弹性力学与有限元法分析弹性力学是固体力学的一个重要分支,是研究弹性固体在受外力作用、温度改变、边界约束或其他外界因素作用下而发生的应力、形变和位移状态的科学。

有限单元法是力学、数学、物理学、计算方法、计算机技术等多种学科综合发展和结合的产物,是随着计算机技术的广泛应用而迅速发展起来的一种数值分析方法。

有限元法的基本思想就是化整为零,分散分析,再集零为整。

即用结构力学方法求解弹性力学问题,实质是将复杂的连续体划分为有限多个简单的单元体,单元体之间仅仅通过结点相连,实现化无限自由度问题为有限稀有度问题,将连续场函数的(偏)微分方程的求解问题转化为有限个参数的代数方程组的求解问题。

有限元方法经过近半个世纪的发展,目前已经成为各种工程问题特别是结构分析问题的标准分析方法,而有限元软件也已成为现代结构设计中不可缺少的工具。

有限元软件是有限元理论通向实际工程应用的桥梁,它的应用极大地提高了力学学科解决自然科学和工程实际问题的能力,进一步促进了有限元方法的发展。

ANSYS 软件是融结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件,广泛用于机械制造、石油化工、航空航天、汽车交通、土木工程、造船、水利等一般工业及科学研究。

ANSYS 软件的组成:(一)前处理模块该模块为用户提供了一个强大的实体建模及网格划分工具,可以方便的构造有限元模型,软件提高了100种以上的单元类型,用来模拟工程中的各种结构和材料。

包括:1.实体建模:参数化建模,布尔运算及体素库,拖拉、旋转、拷贝、蒙皮、倒角等。

2.自动网格划分,自动进行单元形态、求解精度检查及修正。

3.在集合模型上加载:点加载、分布载荷、体载荷、函数载荷。

4.可扩展的标准梁截面形状库。

(二)分析计算模块该模块包括结构分析(可进行线性分析、非线性分析和高度非线性分析)、流体动力学分析、电磁场分析、声场分析、压电分析以及多物理场的耦合分析,可模拟多种物理介质的相互作用,具有灵敏度分析及优化分析能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

I t d ti of Introduction f ANSYS

3. Features of ANSYS(特点)

The individual physical field analysis such as structural, thermal, etc. and the coupled field analysis are both possible. possible Unified Database Powerful non-linear analysis Friendly interface and easy to use A strong function of the secondary development A variety of automatic meshing tools
O tli Outline 概要
1 R 1. Review i 回顾 2. ANSYS简介 3.静力学分析实例—平面桁架



Review 回顾

Finite Element Method FEM (有限元法)

1. Model and concept 模型和概念 1 2. FEM basic idea 有限元法的基本思想 3. 基本步骤 本步


Finite element method (FEM)

FEM procedure The Th body b d i is di divided id d i into some fi finite i elements. l to get the stiffness matrix of every element in th single the i l element l t analysis l i . The whole stiffness matrix is integrated from all element matrixes. matrixes To solve the equation and to obtain displacements of the nodes. nodes To draw the unknown values from the values of the nodes.

3. Pressures (PRES)


4. Temperatures (TEMP)
Solve the Analysis
1. Save a backup copy of the database to a named file.
Command(s): SAVE GUI: Utility Menu> File> Save as
2 St 2. Start t solution l ti calculations. l l ti
Command(s): SOLVE GUI: Main Menu> Solution> Solve> Current LS
R i Review th the R Results s lts

Results from a static analysis are written to the structural t t l results lt fil file, J Jobname.RST. b RST Th They consist of the following data: 1 Primary data: 1.

These are DOF constraints usually specified at model boundaries to define rigid support points. They can also indicate symmetry t b boundary d conditions diti and d points i t of fk known motion. ti These are concentrated loads usually specified on the model exterior. exterior These are surface loads, also usually applied on the model exterior Positive values of pressure act towards the element exterior. face (resulting in a compressive effect).
弹性力学基础及有限元法-7 Elasticity & Finite Element Method (FEM)
ANSYS简介,静态分析(1)
FEM & ANSYS-7
内蒙古科技大学 机械工程学院 刘学杰 2011-11 2011 11
/UploadFile/Elasticity-FEM/Elasticity-FEM.htm
B ild the Build h M Model d l

Building a finite element model requires more of your time than any other part of the anfy a jobname and analysis title First title. Then, you use the PREP7 preprocessor to f define the element types, element real constants, material properties, and the model geometry.
An l sis procedure Analysis p d

1. Preference: static analysis 2 D 2. Define fi th the element l t types t 3. Define the real constants 4 Define material properties 4. 5. Build the model
The p procedure for a static analysis y in ANSYS
The procedure for a static analysis consists of these tasks: B ild th Build the M Model d l Apply the Loads Solve the Analysis Review the Results Analyze the Results and improve the design. design
Introduction of ANSYS

2. The function of ANSYS (功能)


Contact analysis (接触分析) Thermal analysis(热分析) Electromagnetic field analysis(电磁场分析) Fluid analysis (流体分析):① Computational fluid dynamics (CFD), ② Acoustics analysis Couple field analysis (耦合场分析)


Introduction of ANSYS

2. The function of ANSYS (功能 )

Structural (结构分析) Static analysis (静力学分析) Dynamics y m analysis y (动力学分析 动力学分析): ①modal analysis, ② harmonic response analysis, ③transient analysis l Buckling analysis(失稳分析)
A l th Apply the L Loads ds

Load Types: in a static analysis. 1. Displacements (UX, UY, UZ, ROTX, ROTY, ROTZ)



2. Forces (FX, FY, FZ) and Moments (MX, MY, MZ)
Review the Results with Postprocessors
You can review these results using POST1, the h general l postprocessor, and d POST26, PO T26 the time-history processor. POST1 is used to review results over the entire model at specific p substeps p (timepoints). POST26 6 is used u in n nonlinear n n n ar static a ana analyses y to track specific result items over the applied pp load history. y.


Case No. 5: A static analysis y of f the truss structuresPlane truss (杆系结构的静力学分析实例—平面桁架 )
图 5-1 平面桁架

如图所示为一平面桁架,长度L=0.1 m,各杆横截面面积均 为A=1×10-4 m2,力P=2000 N,计算各杆的轴向力Fa、轴向 应力σa。 a

1. Graphical User Interface (GUI) 图形用 户界面

1) Utility Menu(通用菜单):File; Select; List; Plot; ; WorkPlane; ; PlotCtrls; 2) Main Menu(主菜单):Preferences; PREP7; Solution; POST1; POST26; 3) Graphical window (图形窗口) 4) ) Input p window (输入窗口) 输 窗 5) Output window (输出窗口) 6) Tool bar (工具条)
相关文档
最新文档