《数学分析》第一章 集合与函数
华东师大第五版数学分析第一章第一节
令 = − , 则为正数且 = + , 但这与假设 < + 相矛盾. 从而
必有 ≤ .
1.2 绝对值与不等式
,
≥ 0,
定义: = ቊ
−, < 0.
实数绝对值的性质:
➢ 正定性: = − ≥ 0; 当且仅当 = 0时有 = 0.
其中0 , 0 为非负整数, , ( = 1,2, ⋯ )为整数, 0 ≤ ≤ 9, 0 ≤
≤ 9, 若有
= ,
= 0,1,2, ⋯
则称与相等,记为 = ;若0 > 0 或存在非负整数,使得
= ( = 0,1,2, ⋯ ) 而+1 > +1 ,
• 实数具有阿基米德(Archimedes)性,即对任何, ∈ R, 若 > >
0, 则存在正整数, 使得 > .
• 实数集具有稠密性, 即任何两个不相等的实数之间必有另一个实
数, 且既有有理数,也有无理数.
• 实数集与数轴上的点有着一一对应关系.
例2 设, ∈ R. 证明:若对任何正数, 有 < + , 则 ≤ .
似分别规定为
= −0 . 1 2 ⋯ − 10− 与ҧ = −0 . 1 2 ⋯ .
注:
0 ≤ 1 ≤ 2 ≤ ⋯
ҧ0 ≥ ҧ1 ≥ ҧ2 ≥ ⋯
实数的不足近似与过剩近似是用有限小数研究无限小数的重要
工具.
命题
设 = 0 . 1 2 ⋯ 与 = 0 . 1 2 ⋯为两个实数,则 >
的等价条件是:存在非负整数,使得
数学分析教案_(华东师大版)上册全集_1-10章
第一章实数集与函数导言数学分析课程简介( 2 学时)一、数学分析(mathematical analysis)简介:1.背景: 从切线、面积、计算sin、实数定义等问题引入.322.极限( limit ) ——变量数学的基本运算:3.数学分析的基本内容:数学分析以极限为基本思想和基本运算研究变实值函数.主要研究微分(differential)和积分(integration)两种特殊的极限运算,利用这两种运算从微观和宏观两个方面研究函数, 并依据这些运算引进并研究一些非初等函数. 数学分析基本上是连续函数的微积分理论.微积运算是高等数学的基本运算.数学分析与微积分(calculus)的区别.二、数学分析的形成过程:1.孕育于古希腊时期:在我国,很早就有极限思想. 纪元前三世纪, Archimedes就有了积分思想.2.十七世纪以前是一个漫长的酝酿时期,是微积分思想的发展、成果的积累时期.3.十七世纪下半叶到十九世纪上半叶——微积分的创建时期.4.十九世纪上半叶到二十世纪上半叶——分析学理论的完善和重建时期:三、数学分析课的特点:逻辑性很强, 很细致, 很深刻; 先难后易, 是说开头四章有一定的难度, 倘能努力学懂前四章(或前四章的), 后面的学习就会容易一些; 只要在课堂上专心听讲, 一般是可以听得懂的, 但即便能听懂, 习题还是难以顺利完成. 这是因为数学分析技巧性很强, 只了解基本的理论和方法, 不辅以相应的技巧, 是很难顺利应用理论和方法的. 论证训练是数学分析课基本的,也是重要的内容之一, 也是最难的内容之一. 一般懂得了证明后, 能把证明准确、严密、简练地用数学的语言和符号书写出来,似乎是更难的一件事. 因此, 理解证明的思维方式, 学习基本的证明方法, 掌握叙述和书写证明的一般语言和格式, 是数学分析教学贯穿始终的一项任务.有鉴于此, 建议的学习方法是: 预习, 课堂上认真听讲, 必须记笔记, 但要注意以听为主, 力争在课堂上能听懂七、八成. 课后不要急于完成作业, 先认真整理笔记, 补充课堂讲授中太简或跳过的推导, 阅读教科书, 学习证明或推导的叙述和书写. 基本掌握了课堂教学内容后, 再去做作业. 在学习中, 要养成多想问题的习惯.四、课堂讲授方法:1.关于教材及参考书:这是大学与中学教学不同的地方, 本课程主要从以下教科书中取材:[1]华东师范大学数学系编,数学分析,高等教育出版社,2001;[2]刘玉琏傅沛仁编,数学分析讲义,高等教育出版社,1992;[3]谢惠民,恽自求等数学分析习题课讲义,高等教育出版社,2003;[4]马振民,数学分析的方法与技巧选讲,兰州大学出版社,1999;[5]林源渠,方企勤数学分析解题指南,北京大学出版社,2003.2.本课程按[1]的逻辑顺序并在其中取材.本课程为适应教学改革的要求,只介绍数学分析最基本的内容,并加强实践环节,注重学生的创新能力的培养。
《数学分析》第一章 实数集与函数
❖实数的性质
1.实数集R对加,减,乘,除(除数不为0)四则运算是 封闭的.即任意两个实数和,差,积,商(除数不为0) 仍然是实数. 2.实数集是有序的.即任意两个实数a, b必满足下 述三个关系之一: a < b, a = b, a > b .
由二项展开式
(1+ h)n 1+ nh + n(n 1) h2 + n(n 1)(n 2) h3 + + hn ,
2!
3!
有 (1+ h)n >上式右端任何一项.
今日作业 P4,3, 4, 6, 7
§1.2 数集·确界原理
一、区间与邻域 二、上确界、下确界
一、区间与邻域
1.集合: 具有某种特定性质的事物的总体.
❖实数的性质
3.实数集的大小关系具有传递性.即若a > b, b > c,则有
a>c. 4.实数具有阿基米德性 , 即对任何 a, b R, 若 b > a > 0
则存在正整数 n, 使得na > b.
5.实数集R具有稠密性.即任何两个不相等的实数之间必 有另一个实数,且既有有理数,也有无理数.
绝对值定义:
a, a0 | a | a , a < 0
从数轴上看的绝对值就是到原点的距离:
-a
a
0
绝对值的一些主要性质 1. | a | | a | 0 当且仅当 a 0 时 | a | 0 2 . -|a| a |a| 3. |a|< h -h < a < h ; | a | h h a h , h > 0 4. a b a b a + b 5. | ab || a | | b | 6. a | a | , b 0
数学分析讲义 - CH01(实数集与函数)
“集合”和“元素”是不定义的名词,“属于”也是不定义的关系。 2、集合的关系
解释下面记号: A B(B A) , A B (定义是 A B, B A )
3、映射
设V 和V 是任意两个非空集合,如果存在某个对应关系T ,使得对 V ,在V 中 有唯一的元素 与之对应,则称 T 是V 到V 的一个映射。记为
na b 。
(2)实数具有稠密性,即任何两个不相等的实数之间必有另一个实数,且既有有理数,
也有无理数。
2、绝对值
实数 a 的绝对值定义为
a
a, a 0 a, a 0
从数轴上看,数 a 的绝对值 a 就是点 a 到原点的距离.
实数的绝对值有如下一些性质:
1 o a a 0;当且仅当 a 0 时有 a 0
2
4
n i 1
xi2
n i 1
yi2
0
如果 xi kyi (i 1, 2,, n) ,则不等式显然以等号形式成立。 反之,如果等号成立,则 0 ,上面二次函数(抛物线)有零点(与 x 有交点),即
n
存在 t R 使 (xit yi )2 0 ,于是 yi txi kxi 。 i 1
sin(x) x 得 sin x x 。
综上,我们又得到不等式
sin x x , x R
其中等号仅当 x 0 时成立.
4、区间与邻域[一些记号]
a,b {x | a x b} ,a,b , (a,b] ,[a,b)
(a, ) ,[a, ) , (, a) , (, a] , (, ) R
4、可数集与不可数集 引例:古阿拉伯人,只会数 1,如何知道谁口袋里的贝壳(钱)多? 问:对于两个无穷集,如何比较“多少”?
华师大版数学分析第一章实数集与函数1.4函数的性质ppt
图(1)
12、设定义在[a,+∞)上的函数f 在任何闭区间[a,b]上有界,定义[a, + ∞)上的函数: m(x)= f(y),M(x)= f(y).试讨论它们的图像, (1)f(x)=cosx, x∈[0,+∞);(2)f(x)=x2,x∈[-1,+∞). (2)当x∈[-1,0]时,m(x)=x2;当x∈[0, + ∞)时,m(x)≡0; 当x∈[-1,1]时,M(x)≡1;当x∈[1, + ∞)时,M(x)= x2; ∴m(x)与M(x)的图象如图(2).
(3)f(x)=
=
;
(1)(2)中已证在[-a,a]上, F(x)是偶函数, G(x)是奇函数;
∴在[-a,a]上, 是偶函数; 是奇函数. 得证!
5、设f为定义在D上的函数。若存在σ>0,使得 对一切x∈D有f(x±σ)=f(x),则称f为周期函数, σ为f的一个周期。 在所有周期中最小的周期,称为基本周期, 或简单称为周期。 常量函数没有基本周期。
01-第1讲集合与函数-PPT课件
例10 讨论函数函数的有: 界y 性x2。
解 函数的定义 Df域 (为 , : )。
因 M 0 , 为 x 0 M 取 1 ( , ) , 有 |f(x 0 )| (M 1 )2 M 1 M ,
y
。此时,称函数
xx0
f 在点 x0处有定义。
xA时的全体函数 ,值 称的 为集 f函 的 合 数 值 域,记 R(f为 )或f(A),即
R(f){y| yf(x),xA}。
2. 函数的表示法
解析法 表格法 图示法
自己看书!
3. 求函数定义域举例
数学分析的主要研究对象是函数,确定函数的 定义域是一件十分重要的事情。
例7 函数 f(x)|x|与g(x) x2是否相同? 解 f(x) 与g(x) 的定义域均为实 R, 数域
又 x2|x|, 即f(x)与g(x)的对应关, 系相同 函f数 (x)与 g(x)相同。
5.函数的图形 在平面上建立直角坐标系O x y,则 x y 平面上的点集
{ (x ,y )|y f(x ),x D f}
我们以后将运用微积分的方法研究函数的单调性。
2. 有界性 有界性
有界 有上界 有下界
函数有界性的定义
设函数 y = f ( x ) 在区间 I 上有定义。 若存在实数 A , B , 使对一切 x I 恒有
A f(x)B 则称函数 y = f ( x ) 在区间 I 上有界。
否则, 称函数 y = f ( x ) 在区间 I 上无界。
注意:不论用那一种方法表示集合,集合中的元素不得 重复出现。
3. 有界集
A≠Ф,若存在M >0, x∈A,均有|x|≤M,则称A为 有界集;
《数学分析》第一章 实数集与函数 1
( ∞ , b ) = { x x < b}
无限区间
x obxFra bibliotek区间长度的定义: 区间长度的定义: 两端点间的距离(线段的长度 称为区间的长度 两端点间的距离 线段的长度)称为区间的长度 线段的长度 称为区间的长度.
3.邻域: 3.邻域: 设a与δ是两个实数 , 且δ > 0. 邻域
数集{ x x a < δ }称为点a的δ邻域 ,
o a x b 称为闭区间, { x a ≤ x ≤ b} 称为闭区间 记作 [a , b] o a
b
x
{ x a ≤ x < b} { x a < x ≤ b}
称为半开区间, 称为半开区间 记作 [a , b ) 称为半开区间, 称为半开区间 记作 (a , b] 有限区间
[a ,+∞ ) = { x a ≤ x }
a a≥0 a = a a < 0 运算性质: 运算性质 ab = a b ;
5.绝对值: 5.绝对值: 绝对值
( a ≥ 0)
a a = ; b b
绝对值不等式: 绝对值不等式
a b ≤ a ± b ≤ a + b.
x ≤ a ( a > 0) x ≥ a ( a > 0)
a ≤ x ≤ a;
点a叫做这邻域的中心 , δ 叫做这邻域的半径 .
U δ (a ) = { x a δ < x < a + δ }.
δ
δ
x
a aδ a+δ 0 点a的去心的 δ邻域 , 记作 U δ (a ).
U δ (a ) = { x 0 < x a < δ }.
4.常量与变量: 4.常量与变量: 常量与变量 在某过程中数值保持不变的量称为常量 在某过程中数值保持不变的量称为常量, 常量 而数值变化的量称为变量 变量. 而数值变化的量称为变量 注意 常量与变量是相对"过程"而言的. 常量与变量是相对"过程"而言的 常量与变量的表示方法: 常量与变量的表示方法: 通常用字母a, 等表示常量, 通常用字母 b, c等表示常量 等表示常量 用字母x, 等表示 等表示变 用字母 y, t等表示变量.
数学分析教案(华东师大版)第一章实数集与函数
第一章实数集与函数导言数学分析课程简介( 2 学时 )一、数学分析(mathematical analysis)简介:1.背景: 从切线、面积、计算32sin、实数定义等问题引入.2.极限 ( limit ) ——变量数学的基本运算:3.数学分析的基本内容:数学分析以极限为基本思想和基本运算研究变实值函数.主要研究微分(differential)和积分(integration)两种特殊的极限运算,利用这两种运算从微观和宏观两个方面研究函数, 并依据这些运算引进并研究一些非初等函数. 数学分析基本上是连续函数的微积分理论.微积运算是高等数学的基本运算.数学分析与微积分(calculus)的区别.二、数学分析的形成过程:1.孕育于古希腊时期:在我国,很早就有极限思想. 纪元前三世纪, Archimedes就有了积分思想.2.十七世纪以前是一个漫长的酝酿时期,是微积分思想的发展、成果的积累时期.3.十七世纪下半叶到十九世纪上半叶——微积分的创建时期.4.十九世纪上半叶到二十世纪上半叶——分析学理论的完善和重建时期:三、数学分析课的特点:逻辑性很强, 很细致, 很深刻; 先难后易, 是说开头四章有一定的难度, 倘能努力学懂前四章(或前四章的), 后面的学习就会容易一些; 只要在课堂上专心听讲, 一般是可以听得懂的, 但即便能听懂, 习题还是难以顺利完成. 这是因为数学分析技巧性很强, 只了解基本的理论和方法, 不辅以相应的技巧, 是很难顺利应用理论和方法的. 论证训练是数学分析课基本的,也是重要的内容之一, 也是最难的内容之一. 一般懂得了证明后, 能把证明准确、严密、简练地用数学的语言和符号书写出来,似乎是更难的一件事. 因此, 理解证明的思维方式, 学习基本的证明方法, 掌握叙述和书写证明的一般语言和格式, 是数学分析教学贯穿始终的一项任务.有鉴于此, 建议的学习方法是: 预习, 课堂上认真听讲, 必须记笔记,但要注意以听为主, 力争在课堂上能听懂七、八成. 课后不要急于完成作业, 先认真整理笔记, 补充课堂讲授中太简或跳过的推导, 阅读教科书, 学习证明或推导的叙述和书写. 基本掌握了课堂教学内容后, 再去做作业. 在学习中, 要养成多想问题的习惯.四、课堂讲授方法:1.关于教材及参考书:这是大学与中学教学不同的地方, 本课程主要从以下教科书中取材:[1]华东师范大学数学系编,数学分析,高等教育出版社,2001;[2]刘玉琏傅沛仁编,数学分析讲义,高等教育出版社,1992;[3]谢惠民,恽自求等数学分析习题课讲义,高等教育出版社,2003;[4]马振民,数学分析的方法与技巧选讲,兰州大学出版社,1999;[5]林源渠,方企勤数学分析解题指南,北京大学出版社,2003.2.本课程按[1]的逻辑顺序并在其中取材.本课程为适应教学改革的要求,只介绍数学分析最基本的内容,并加强实践环节,注重学生的创新能力的培养。
《数学分析》第一章实数集与函数
数学分析(mathematical analysis)课程简介(计划课时:2时)一、背景:从切线、面积等问题引入.1极限 (limit) ——变量数学的基本运算.2数学分析的基本内容:数学分析以极限作为工具来研究函数的一门学科(仅在实数范围内进行讨论).主要研究微分(differential)和积分(integration)两种特殊的极限运算,利用这两种运算从微观和宏观两个方面研究函数,并依据这些运算引进并研究一些非初等函数.数学分析基本上是连续函数的微积分理论.3 数学分析的形成过程:孕育于古希腊时期:在我国很早就有极限思想.纪元前三世纪, Archimedes就有了积分思想.十七世纪以前是一个漫长的酝酿时期,是微积分思想的发展、成果的积累时期:十七世纪下半叶到十九时纪上半叶——微积分的创建时期:十九时纪上半叶到二十时纪上半叶——分析学理论的完善和重建时期.二、数学分析课的特点:逻辑性很强, 很细致, 很深刻; 先难后易, 是说开头四章有一定的难度, 若能努力学懂前四章(或前四章的80%),后面的学习就会容易一些; 只要在课堂上专心听讲,一般是可以听得懂的,但即便能听懂,习题还是难以顺利完成.这是因为数学分析技巧性很强,只了解基本的理论和方法,不辅以相应的技巧,是很难顺利应用理论和方法的.论证训练是数学分析课基本的,也是重要的内容之一,也是最难的内容之一.一般懂得了证明后,能把证明准确、严密、简练地用数学的语言和符号书写出来,似乎是更难的一件事. 因此, 理解证明的思维方式,学习基本的证明方法, 掌握叙述和书写证明的一般语言和格式, 是数学分析教学贯穿始终的一项任务.有鉴于此, 建议的学习方法是:课前要复习,做好必要的听课准备;课堂上认真听讲, 必须记笔记, 但要注意以听为主,力争在课堂上能听懂七、八成.课后不要急于完成作业, 先认真整理笔记, 补充课堂讲授中太简或跳过的推导,阅读教科书,学习证明或推导叙述和书写的格式与方法.基本掌握了课堂教学内容后, 再去做作业.在学习中,要养成多想问题的习惯,善于论证进行肯定,尤其要善于举反例进行否定;对概念不能有一点含糊,那是一个数学名词的固定含义,那是推理论证的根据.数学分析是数学系最重要的一门专业基础课,因为它不仅是大学数学系学生进校后首先面临的一门重要课程,而且大学本科乃至研究生阶段的很多后继课程在本质上都可以看作是它的延伸、深化或应用,至于它的基本概念、思想和方法,更可以说是无处不在.本课程的主要任务是:使学生获得极限论、单多元微积分、级数论等方面的系统知识;为后继数学专业课程(如微分方程、实变函数和复变函数、概率论、统计及有关的泛函分析、微分几何等选修课程)及普通物理课程等提供所需的基础理论和知识;提高学生思维能力,开发学生智能,加强“三基”(基础知识、基本理论、基本技能)训练及培养学生独立工作能力.数学分析是数学专业各个方向上考研必考的专业基础课(另一门是高等代数).三、课堂讲授方法:1.关于教材与参考书目:没有严格意义上的教科书. 这是大学与中学教学不同的地方,本课程主要从以下教科书中取材:[1] 华东师范大学数学系编,数学分析(上下册)(第三版),高等教育出版社,2001.6.[2] 数学分析讲义(上下册)(第三版). 刘玉琏 傅沛仁编.高等教育出版社,2001.[3] 数学分析新讲(一、二、三册). 张筑生编.北京大学出版社,1991.[4] 微积分学教程(共八册). Γ.Μ.菲赫金哥尔茨著.人民教育出版社,1978.[5] 数学分析中的反例. 王俊青编.电子科技大学出版社,1996.[6] 数学分析中的典型问题与方法.裴礼文编.高等教育出版社,2002.[7] 数学分析习题集题解(共六册).Б.Л.吉米多维奇编.费定辉等译,山东科技出版社,1983.本课程基本按[1]的逻辑顺序, 主要在[1]、[2]、[3]中取材.在讲授中, 有时会指出所讲内容的出处.本课程为适应课时少和学分制的要求,只介绍数学分析最基本的内容.因此删去了[1]中第十九和二十三等两章, 相应的内容作为选修课将在学完数学分析课之后开设.2. 内容多,课时紧:大学课堂教学与中学不同的是,这里每次课介绍的内容很多,因此,内容重复的次数少,讲课只注重思想性与基本思路,具体内容或推导,特别是同类型或较简的推理论证及推导计算,可能讲得很简,留给课后的学习任务一般很重.3.讲解的重点:概念的意义与理解,几何直观,理论的体系,定理的意义、条件、结论. 定理证明的分析与思路,具有代表性的证明方法,解题的方法与技巧.某些精细概念之间的本质差别.在第一、二章教学中,可能会写出某些定理证明,以后一般不会做特别具体的证明叙述.四、要求、辅导及考试:1. 学习方法:尽快适应大学的学习方法,尽快进入角色.课堂上以听为主,但要做课堂笔记.课后一定要认真复习消化,补充笔记.一般课堂教学与课外复习的时间比例应为1:3(国外这个比例通常是1: 4 )对将来从事数学教学工作的师范大学本科生来说,课堂听讲的内容应该更为丰富:要认真评价教师的课堂教学,把教师在课堂上的成功与失败变为自己的经验.这对未来的教学工作是很有用的.2. 作业:作业以[1]的练习题中划线以上的部分习题为主要内容,同时可参考[7]与[1]中划线以下部分的习题.大体上每个练习收一次作业,每次收作业总数的三分之一.作业的收交和完成情况有一个较详细的登记,缺交作业将直接影响学期总评成绩.作业要按数学排版格式书写恭整.要求活页作业, 要有作业封面, 尺寸为cm 5.275.19 .3.辅导:大体每周一次, 第一学期要求辅导时不缺席.4.考试:按学分制的要求, 只以最基本的内容进行考试, 大体上考课堂教学和所布置作业的内容, 包括[1]中的典型例题. 开设三学期考三次.考试题为标准化试题.五.内容安排1.课时分配: 第一学期16×6=96; 第二学期18×6=108;第三学期18×4=72.2.内容分配: 第一学期一元函数微分学; 第二学期一元函数积分学与级数论; 第三学期二元函数微积分学.第一章 实数集与函数(计划课时:6 时)P1—22§1 实 数(1时)一.实数及其性质:回顾中学中关于实数集的定义.1. 实数用无限小数表示的方法:为了把有限小数(包括整数)表示为无限小数, 规定: 对于正有限小数(包括正整数)x ,n a a a a x 210.=时,其中,90≤≤i a ,0,,,2,1≠=n a n i 0a 为非负整数,记 9999)1(.210-=n a a a a x ; 而当0a x =为正整数时,则记 9999).1(0-=a x ;对于负有限小数(包括负整数)y ,则先将y -表示为无限小数,再在所得无限小数之前加负号;又规定数0表示为 000.0.例如 010999.2011.2=, 999.78-=-.2. 实数的大小:定义1: (实数大小的概念)见[1]P1.定义2: (不足近似与过剩近似的概念)见[1]P2.命题: 设 210.a a a x =与 210.b b b y =为两个实数,则y x >⇔n ∃,使得n n y x >. 例1 设x 、y 为实数,y x <.证明:存在有理数r 满足y r x <<. [1]P17E1.3. 实数的性质:⑴.四则运算封闭性:⑵.三歧性(即有序性):⑶.Rrchimedes 性:b na N n a b R b a >∍∈∃>>∈∀,,0,,.⑷.稠密性: 有理数和无理数的稠密性, 给出稠密性的定义.⑸.实数集的几何表示 ─── 数轴:⑺.两实数相等的充要条件: . ,0 εε<->∀⇔=b a b a二. 区间和邻域的概念:见[1]P5三.几个重要不等式:1. 绝对值不等式: 定义 {}. , max a a a -= [1]P2 的六个不等式.2. 其它不等式:⑴ ,222ab b a ≥+ .1 sin ≤x . sin x x ≤⑵ 均值不等式: 对,,,,21+∈∀R n a a a 记 ,1 )(121∑==+++=ni i n i a n n a a a a M (算术平均值),)(1121n n i i n n i a a a a a G ⎪⎪⎭⎫⎝⎛==∏= (几何平均值) .1111111)(1121∑∑====+++=n i i n i i n i a n a n a a a n a H (调和平均值)有平均值不等式:),( )( )(i i i a M a G a H ≤≤ 等号当且仅当n a a a === 21时成立.⑶ Bernoulli 不等式: ,1->∀x 有不等式 . ,1)1(N ∈+≥+n nx x n当1->x 且 0≠x , N ∈n 且2≥n 时, 有严格不等式 .1)1(nx x n +>+证 由 01>+x 且>+++++=-++⇒≠+111)1(1)1( ,01 n n x n x x).1( )1( x n x n n n +=+> .1)1( nx x n +>+⇒⑷ 利用二项展开式得到的不等式: 对,0>∀h 由二项展开式,!3)2)(1(!2)1(1)1(32n n h h n n n h n n nh h ++--+-++=+ 有>+n h )1( 上式右端任何一项.Ex [1]P4: 3,4,5,6;§2 确界原理(2时)一、有界数集:定义(上、下有界,有界), 闭区间、b a b a ,( ),(为有限数)、邻域等都是有界数集,如集合 {}) , ( ,sin ∞+∞-∈==x x y y E 也是有界数集. 二、无界数集: 定义, ) , 0 ( , ) 0 , ( , ) , (∞+∞-∞+∞-等都是无界数集,如集合 ⎭⎬⎫⎩⎨⎧∈==) 1 , 0 ( ,1 x x y y E 也是无界数集. 三、确界:给出直观和刻画两种定义.例1 ⑴,) 1(1⎭⎬⎫⎩⎨⎧-+=n S n 则._______inf ______,sup ==S S ⑵{}.),0( ,sin π∈==x x y y E 则._________inf ________,sup ==E E 例2 非空有界数集的上(或下)确界是唯一的.例3 设S 和A 是非空数集,且有.A S ⊃ 则有 .inf inf ,sup sup A S A S ≤≥.例4 设A 和B 是非空数集. 若对A x ∈∀和,B y ∈∀都有,y x ≤ 则有.inf sup B A ≤ 证,B y ∈∀y 是A 的上界,.sup y A ≤⇒ A sup ⇒是B 的下界,.inf sup B A ≤⇒ 例5 A 和B 为非空数集, .B A S = 试证明: {}. inf , inf m in inf B A S = 证 ,S x ∈∀有A x ∈或,B x ∈ 由A inf 和B inf 分别是A 和B 的下界,有A x inf ≥或{}. inf , inf m in .inf B A x B x ≥⇒≥即{} inf , inf m in B A 是数集S 的下界, {}. inf , inf m in inf B A S ≥⇒ 又S A S ,⇒⊃的下界就是A 的下界,S inf 是S 的下界, S inf ⇒是A 的下界, ;inf inf A S ≤⇒ 同理有.inf inf B S ≤ 于是有{} inf , inf m in inf B A S ≤. 综上, 有 {} inf , inf m in inf B A S =.四、数集与确界的关系: 确界不一定属于原集合. 以例1⑵为例做解释.五、确界与最值的关系:设E 为数集.⑴E 的最值必属于E , 但确界未必, 确界是一种临界点.⑵非空有界数集必有确界(见下面的确界原理), 但未必有最值.⑶若E max 存在, 必有 .sup max E E = 对下确界有类似的结论.六、确界原理: Th (确界原理).Ex [1]P9: 2,4,5.§3 函数概念 ( 2时 )一. 函数的定义:1. 函数: [1]P10—11的四点说明.2. 定义域: 定义域和存在域.3. 函数的表示法:4. 反函数: 一 一对应, 反函数存在定理.5. 函数的代数运算:二.分段函数: 以函数⎪⎩⎪⎨⎧>=<-=1 ,,1 ,2,1 ,1)(2x x x x x x f 和⎪⎩⎪⎨⎧>≤-=1 ,,1 ,2)(2x x x x x g 为例介绍概念.,123)(--=x x f 去掉绝对值符号.例2 ⎩⎨⎧>-≤=.1 ,1,1 ,)(x x x x x f 求 ).2( ),1( ),0(f f f 例3 设 []⎩⎨⎧<+≥-=.10,)5(,10 ,3)(x x f f x x x f 求 ).5(f (答案为8) 三. 复合函数: 例4 .1)( ,)(2x x g u u u f y -==== 求 ()[]).()(x g f x g f = 并求定义域.例5 ⑴ ._______________)( ,1)1(2=++=-x f x x x f⑵ .1122xx x x f +=⎪⎭⎫ ⎝⎛+ 则) ( )(=x f A. ,2x B. ,12+x C. ,22-x D. .22+x四. 初等函数:1. 基本初等函数:2. 初等函数:3. 初等函数的几个特例: 设函数)(x f 和)(x g 都是初等函数, 则⑴ )( x f 是初等函数, 因为 ().)( )( 2x f x f =⑵ {})( , )(m ax )(x g x f x =Φ 和 {})( , )(m in )(x g x f x =φ都是初等函数,因为 {})( , )(m ax )(x g x f x =Φ[])()()()(21x g x f x g x f -++=, {})( , )(m in )(x g x f x =φ [])()()()(21x g x f x g x f --+= .⑶ 幂指函数 ()()0)( )()(>x f x f x g 是初等函数,因为 ()(). )()(ln )()(ln )()(x f x g x f x g e e x f x g ==五. 介绍一些特殊函数:1. 符号函数2. Dirichlet 函数3. Riemann 函数4. 取整函数5. 非负小数部分函数Ex [1]P15 1(4)(5),2, 3,4,5, 6, 7, 8;§4 具有某些特性的函数 ( 1时 )一、有界函数: 有界与无界函数的概念.例1 验证函数 325)(2+=x x x f 在R 内有界. 解法一 由,62322)3()2(32222x x x x =⋅≥+=+ 当0≠x 时,有.3625625325325 )( 22≤=≤+=+=x x x x x x x f 30 )0( ≤=f ,∴对 ,R ∈∀x 总有 ,3 )( ≤x f 即)(x f 在R 内有界.解法二 令 3252⇒+=x x y 关于x 的二次方程 03522=+-y x yx 有实数根. 22245 y -=∆∴.2 ,42425 ,02≤⇒≤≤⇒≥y y 解法三 令 ⎪⎭⎫ ⎝⎛-∈=2,2 ,23ππt tgt x 对应). , (∞+∞-∈x 于是 ==+=+⎪⎪⎭⎫ ⎝⎛=+=t t t t tg tgt tgt tgt x x x f 2222sec 1cos sin 65123353232235325)(.6252sin 625 )( ,2sin 625 ≤=⇒=t x f t例2 见[1]P17.例3 见[1]P17. 二、关于单调函数、奇偶函数和周期函数 (略) ,参阅[1]P17—19,Ex [1]P20 1,2, 3,4,5, 6, 7;。
数学分析第一章
前页 后页 返回
设
k
是满足
k n
a
的最大的正整数,即
k +1 n
> a.
于是, a < k + 1 < k + 2 < b, 则 k + 1, k + 2 是
nn
nn
a 与 b 之间的有理数, 而 k + 1 + π 是 a 与 b 之间 n 4n
的无理数.
例2 若a,b R,对 > 0,a < b + ,则 a b.
3.实数集的大小关系具有传递性.即若a > b, b > c,则有
a>c.
4.实数具有阿基米德性 , 即对任何 a, b R, 若 b > a > 0
则存在正整数 n, 使得na > b.
5.实数集R具有稠密性.即任何两个不相等的实数之间必 有另一个实数,且既有有理数,也有无理数.
6.实数集R与数轴上的点具有一一对应关系.即任一实数 都对应数轴上唯一的一点,反之,数轴上的每一点也都唯 一的代表一个实数.
证 倘若a > b,设 a b > 0, 则 a b + ,
与 a < b + 矛盾.
前页 后页 返回
(6)实数与数轴上的点一一对应
实数集 R与数轴上的点可建立一一对应关系.
1. 这种对应关系,粗略地可这样描述: 设 P 是数轴上的一点 (不妨设在 0的右边), 若 P 在 整数 n与 n + 1之间,则 a0 n. 把(n, n + 1]十等分, 若点 P 在第 i 个区间,则 a1 i. 类似可得到 an, n 2, 3, L . 这时, 令点 p 对应于 a0 .a1a2 L an L .
【自制】数学分析 重点概念整理 保研考研面试必备
数学分析重点概念整理第一章 集合与函数1. 集合定理1.1.1可列个可列集之并也是可列集。
定理1.1.2 有理数集Q 是可列集Descartes 乘积集合{(,)|}A B x y x A y B ⨯=∈∈并且 2. 映射与函数映射的基本要素映射要求元素的像必须是唯一的,但不要求逆像也具有唯一性。
基本初等函数Dirichlet 函数,任何有理数都是其周期。
定义1.2.7 算术平均值:1...n a a n ++,调和平均值111...nna a ++第二章 数列极限1.实数系的连续性上确界的定义:下确界的定义:定理 2.1.1(确界存在定理——实数系连续性定理)非空有上界的数集必有上确界;非空有下界的数集必有下确界。
定理2.1.2非空有界数集的上(下)确界是唯一的。
2.数列与数列极限数列极限的形式 (1)唯一性定理2.2.1 收敛数列的极限必唯一 (2)有界性定理2.2.2收敛数列必有界 (3)数列的保序性定理2.2.3 设数列{},{}n n x y 均收敛,若,且a b <,则存在正整数N ,当n N >是,成立n n x y <四则运算只能推广到有限个数列的情况3.无穷大量4.收敛准则定理2.4.1 单调有界数列必定收敛。
(确界存在定理)用定理证明的时候先用方法证明有界性(归纳法等),再证明单调性(做差)用闭区间套定理可以证明定理2.4.3 实数集R 是不可列集。
定理2.4.5(Bolzano-Weierstrass 定理)有界数列必有收敛子列。
定理 2.4.6 若{}n x 是一个无界数列,则存在子列{}k n x 使得lim k n k x →∞=∞。
定理2.4.7(Cauchy收敛原理)数列{}n x收敛的充要条件是{}n x是基本数列。
由实数构成的基本数列必存在实数极限,这一性质称为实数系的完备性,有理数不具有完备性。
实数系之间的推理关系:定理2.4.8 实数系的完备性等价于实数系的连续性。
数学分析第一章
第一章 实数集与函数§1 实数Ⅰ.教学目的与要求1.理解实数的概念,掌握实数的表示方法2.了解实数的性质, 并在有关命题中正确地加以应用3.理解绝对值的概念,掌握绝对值的性质,并在有关命题中正确地加以应用. Ⅱ.教学重点与难点重点: 实数的定义及性质、绝对值与不等式.难点: 实数的定义及其应用.Ⅲ.讲授内容一 实数及其性质实数的组成:实数由有理数与无理数两部分组成.有理数的表示:有理数可用分数形式q p(p ˛q 为整数,q ≠0)表示,也可用有限十进小数或无限十进循环小数来表示.无理数:无限十进不循环小数则称为无理数.有理数和无理数统称为实数.有限小数(包括整数)也表示为无限小数.规定如下:对于正有限小数(包括整数)x,当x=a 0.a1a 2n a K 时,其中0,9≤≤i a i=1,2,K n, na ,0≠0a 为非负整数,记x=a 0.a 1a 2-n a (K 1)̣.999 9,K而当x=a 1为正整数时,则记x=(a 0—1).999 9…,例如2.001记为2.000 999 9…;对于负有限小数(包括负整数)y ,则先将—y 表示为无限小数,再在所得无限小数之前加负号,例如—8记为—7.999 9…;又规定数0表示为0.000 0….于是,任何实数都可用一个确定的无限小数来表示.我们已经熟知比较两个有理数大小的方法.现定义两个实数的大小关系. 定义1 给定两个非负实数x= 0a .a a 1n a K ,K y=,.210K K n b b b b其中00,b a 为非负整数,k k b a ,(k=1,2,…)为整数,0≤a k ≤9,0≤b k ≤9.若有==k b a k k ,0,1,2,,K 则称x 与y 相等,记为x=y ;若00b a >或存在非负整数L ,使得 a k =b k (k=0,1,2,…,L)而11++>l l b a ,则称x 大于y 或y 小于x ,分别记为x>y 或y<x .对于负实数x ,y ,若按上述规定分别有y x -=-与y x ->-,则分别称x=y 与x<y(或y>x).另外,自然规定任何非负实数大于任何负实数.定义2 : x =a 0.a 1a 2n a K K 为非负实数.称有理=n x a 0.1a a 2n a K K 为实数x 的n 位不足近似,而有理数=n x nn x 101+称为x 的n 位过剩近似,n=0,1,2,K . 对于负实数ΛΛn a a a a a x 3210.-=,其n 位不足近似与过剩近似分别规定为n n n a a a a a x 101.3210--=Λ与=n x n a a a a a Λ3210.-. 注 不难看出,实数x 的不足近似n x 当n 增大时不减,即有x 0≤x 1≤x 2≤…,而过剩近似n x 当n 增大时不增,即有0x ≥1x ≥2x ≥….命题 设x=a 0.a 1a2K 与y=b 0.b 1b 2…为两个实数,则x>y 的等价条件是:存在非负整数n ,使得 x n >n y ,其中x n 表示x 的n 位不足近似,n y 表示y 的n 位过剩近似.例1 设x 、y 为实数,x<y.证明:存在有理数r 满足x y r <<.证 由于x y <,故存在非负整数n,使得n n y x <,令 r=),(21n n y x + 则r 为有理数,且有 x ,y y r x n n ≤<<≤即得 x<r<y .全体实数构成的集合记为R,即 R =}.|{为实数x x实数的主要性质:1.实数集R 对加、减、乘、除(除数不为0)四则运算是封闭的,即任意两个实数的和、差、积、商(除数不为0)仍然是实数.2.实数集是有序的,即任意两实数a 、b 必须满足下述三个关系之一:a <b, a =b ,a >b .3.实数的大小关系具有传递性,即若a >b ,b >c ,则有a >c .4.实数具有阿基米德(Archimedes)性,即对任何a 、b ∈R ,若b >a >0,则存在正整数n ,使得n a >b .5.实数集R 具有稠密性,即任何两个不相等的实数之间必有另一个实数,且既有有理数(见例1),也有无理数.6.如果在一直线(通常画成水平直线)上确定一点O 作为原点,指定一个方向为正向(通常把指向右方的方向规定为正向),并规定一个单位长度,则称此直线为数轴.任一实数都对应数轴上唯一的一点;反之,数轴上的每一点也都唯一地代表一个实数.于是,实数集R 与数轴上的点有着一一对应关系.因此在以后的叙述中,常把“实数a ”与“数轴上的点a ”看作具有相同的含义﹒例2 设a 、b ∈R .证明:若对任何正数ε有a <b +ε,则a ≤b .证 用反证法.倘若结论不成立,则根据实数集的有序性,有a >b .令a =εb -,则ε为正数且ε+=b a ,但这与假设a <b ε+相矛盾.从而必有a ≤b .二 绝对值与不等式实数a 的绝对值定义为⎩⎨⎧<-≥=.0,,0,a a a a a 从数轴上看,数a 的绝对值a 就是点a 到原点的距离.实数的绝对值有如下一些性质:1. a a -=≥0;当且仅当a =0时有a =0.2.a -≤a ≤a .3.a h <h a h <<-⇔;()0>≤≤-⇔≤h h a h h a ﹒4.对于任何a 、b ∈R 有如下的三角形不等式:b a b a b a +≤±≤-.5.b a ab =.6.()0≠=b ba b a . 下面只证明性质4,其余性质由学生自行证明.由性质2有.,b b b a a a ≤≤-≤≤-两式相加后得到 .)(b a b a b a +≤+≤+-根据性质3,上式等价于.b a b a +≤+ ()1将(1)式b 换成b -,(1)式右边不变,即得b a b a +≤-,这就证明了性质4不等式的右半部分.又由)式有据(1,b b a a +-=.b b a a +-≤从而得.b a b a -≤- ()2 将(2)式中b 换成b -,即得得性质4.b a b a +≤-证.Ⅳ 小结与提问:本节要求学生掌握实数的概念及其性质,牢记并熟练运用实数绝对值的有关性质以及常见的不等式,并在有关命题证明中正确地加以运用.3、4、5、6、7、8、9.Ⅴ课外作业:P4。
华师大版数学分析第一章实数集与函数1.2数集与确界原理ppt
1、设S为R中的一个数集。 若存在数M(L),使得对一切x∈S,都有x≤M(x≥L), 则称S为有上界(下界)的数集, 数M(L)称为S的一个上界(下界)。 若数集S既有上界又有下界,则称S为有界集。 若S不是有界集,则称S为无界集。
证明数集N+={n|n为正整数}有下界而无上界。 证:任何一个不大于1的实数都是的N+下界, ∴N+为有下界的数集; ∀M>0,取n0=[M]+1,则n0∈N+, 且n0> M,∴N+为无上界的数集。
又对任何x∈A,有x∈S=>x≥inf S=>inf A≥inf S; 同理inf B≥inf S,故得inf S≥min{inf A, inf B} ∴inf S=min{inf A, inf B}
若数集S无上界,则 定义+∞为S的非正常上确界,记作sup S=+∞; 若数集S无下界,则 定义-∞为S的非正常下确界,记作inf S= -∞.
又对任何x∈A,有x∈S=>x≤sup S=>sup A≤sup S; 同理sup B≤sup S,故得sup S≥max{sup A, sup B} ∴sup S=max{sup A, sup B}
设A、B为非空数集,S=AUB. 证明: 1) sup S=max{sup A, sup B}; 2) inf S=min{inf A, inf B}. 证:依题意,S为非空有界,sup S,inf S都存在. 2)对任何x∈S,有x∈A或x∈B=>x≥inf A或x≥inf B, 从而有x≥min{inf A, inf B}, 故得inf S≤min{inf A, inf B}
1、用区间表示下列不等式的解: (1)|1-x|-x≥0;(2)|x+ |≤6; (3)sinx≥ ; (4)(x-a)(x-b)(x-c)>0 (a,b,c为常数,且a<b<c); 解:(1) 1-x≥x或1-x≤- x;即x≤ ; ∴原不等式的解为:x∈(-∞, ]. (2) -6≤x+ ≤6,且x≠0; 当x>0时,-6x≤x2+1≤6x;解得3-2 ≤x≤3+2 ; 当x>0时,-6x≤x2+1≤6x;解得3-2 ≤x≤3+2 ; ∴x∈[3-2 , 3+2 ]∪[-3-2 , -3+2 ]
《数学分析》(上册)第一章实数集与函数试题和答案
第一章实数集与函数§1实数1、设a 为有理数,x 为无理数,试证明:⑴x a +是无理数.⑵当0≠a 时,ax 是无理数.证: ⑴ 假设x a +是有理数,则x a x a =-+)(是有理数,这与题设x 为无理数相矛盾, 故x a +是无理数.⑵假设ax 是有理数,则x aax=为有理数,这与题设x 为无理数相矛盾 故ax 是无理数.1、 试在数轴上表示出下列不等式的解: ⑴ 0)1(2>-x x ;⑵⑶2、 设a 、R b ∈.证明:若对任何正数ε有ε<-b a ,则b a =. 证:用反证法.倘若结论不成立,则根据实数集有序性,有b a >或b a <; 若b a >,则又由绝对值定义知:b a b a -=-.令b a -=ε,则ε为正数,但这与ε<-=-b a b a 矛盾; 若b a <,则又由绝对值定义知:a b b a -=-.令a b -=ε,则ε为正数,但这与ε<-=-a b b a 矛盾; 从而必有b a =. 3、 设0≠x ,证明21≥+xx ,并说明其中等号何时成立. 证:因x 与x 1同号,从而21211=⋅≥+=+xx x x x x , 等号当且仅当xx 1=,即1±=x 时成立.4、 证明:对任何R x ∈,有⑴ 121≥-+-x x ;⑵2321≥-+-+-x x x 证: ⑴因为21111-=+-≤--x x x ,所以121≥-+-x x .⑵因为21132-+-≤-≤--x x x x , 所以2321≥-+-+-x x x5、 设a 、b 、+∈R c (+R 表示全体正实数的集合),证明:c b c a b a -≤+-+2222证:对任意的正实数a 、b 、c 有)(22222c b a bc a +≤,两端同时加244c b a +,有224222222242c b a c a b a bc a c b a +++≤++, 即))(()(222222c a b a bc a ++≤+bc c a b a a 2))((2222222-≤++-,两端再同加22c b +,则有c b c a b a -≤+-+2222其几何意义为:当c b ≠时,以),(b a ,),(c a ,)0,0(三点为顶点的三角形,其两边之差小于第三边. 当c b =时,此三角形变为以),(c a ,)0,0(为端点的线段,此时等号成立6、 设0,0>>b x ,且b a ≠,证明x b x a ++介于1与ba之间. 证:因为x b a b x b x a +-=++-1,)()(x b b a b x b a x b x a +-=-++,且0,0>>b x 所以当b a >时, b ax b x a <++<1; 当b a <时, 1<++<xb xa b a ; 故x b x a ++总介于1与ba 之间.7、 设p 为正整数,证明:若p 不是完全平方数,则p 是无理数证:假设p 是有理数,则存在正整数m 、n 使nmp =,且m 与n 互素. 于是22m p n =.可见n 能整除2m .由于m 与n 互素,从而它们的最大公因数为1,由辗转相除法知:存在整数u 、v 使1=+nv mu .从而m mnv u m =+2因n 能整除2m ,又能整除mnv ,故能整除其和,于是n 可整除m ,这样1=n 因此2m p =.这与p 不是完全平方数相矛盾, 故p 是无理数8、 设a 与b 为已知实数,试用不等式符号(不用绝对值符号)表示下列不等式的解: ⑴ b x a x -<-;⑵b x a x -<-;⑶b a x <-2.解: ⑴原不等式等价于11<---bx ba 这又等价于20<--<b x b a 即⎩⎨⎧-<-<>b x b a b x 220或⎩⎨⎧->-><b x b a bx 220即⎪⎪⎩⎪⎪⎨⎧>+>>b a b a x b x 2或⎪⎪⎩⎪⎪⎨⎧<+<<ba b a x b x 2故当b a >时,不等式的解为2ba x +>当b a <时,不等式的解为2ba x +<当b a =时,不等式无解.⑵原不等式等价于⎩⎨⎧-<->b x a x b x 且⎩⎨⎧-<->b x x a bx即⎩⎨⎧>>b a b x 且⎪⎩⎪⎨⎧+>>2b a x bx 故当b a >时,21bx +>; 当b a ≤时,不等式无解. ⑶当0≤b 时,显然原不等式无解,当0>b 时原不等式等价于b a x b a +<<-2因此①当0≤+b a 或0≤b 时,无解②当0>+b a 且0>b 时,有解 Ⅰ 如果b a ≥,则解为b a x b a +<<-即b a x b a +<<-或b a x b a +>>--Ⅱ 如果b a <,则解为b a x +< 即b a x b a +<<+-§2数集 确界原理1、 用区间表示下列不等式的解: ⑴01≥--x x ;⑵61≤+xx ; ⑶0))()((>---c x b x a x (a 、b 、c 为常数,且c b a <<)⑷22sin ≥x 解 ⑴原不等式等价于以下不等式组⎩⎨⎧≥--<011x x x 或⎩⎨⎧≥--≥011x x x前一不等式组的解为21≤x ,后一不等式组无解. 所以原不等式的解为⎥⎦⎤ ⎝⎛∞-∈21,x ⑵不等式61≤+xx 等价于616≤+≤-x x这又等价于不等式组⎩⎨⎧≤+≤->x x x x 61602或⎩⎨⎧-≤+≤<xx x x 61602前一不等式组的解为]223,223[+-∈x ,后一不等式组解为]223,223[+---∈x . 因此原不等式解为 ]223,223[]223,223[+-+---∈x⑶令))()(()(c x b x a x x f ---=,则由c b a <<知:⎪⎩⎪⎨⎧∞+∈>-∞∈<= ;),(),(,0;),(),(,0)(c b a x c b a x x f因此0)(>x f 当且仅当 ;),(),(∞+∈c b a x因此原不等式的解为 ),(),(∞+∈c b a x .⑷当]43,4[ππ∈x 时22sin ≥x .由正弦函数的周期性知22sin ≥x 的解是]432,42[ππππ++∈k k x ,其中k 是整数2、设S 为非空数集,试给出下列概念的定义:⑴数集S 没有上界; ⑵数集S 无界.解: ⑴设S 为一非空数集,若对任意的0>M ,总存在S x ∈0,使M x >0,则称数集S 没有上界 ⑵设S 为一非空数集,若对任意的0>M ,总存在S x ∈0,使M x >0,则称数集S 无界3、证明:由(3)式确定的数集有上界,无下界. 证:{}22R x x y y S ∈-==.对任意的R x ∈,222≤-=x y 所以数集S 有上界2而对任意的0>M ,取m x +=31,则S M M x y ∈--=--===1322211, 但M y -<1,因此数集S 无下界4、 求下列数集的上、下确界,并依定义加以验证. ⑴{}22<=x x S⑵{},!为自然数n n x x S ==; ⑶{})1,0(内的无理数为x x S =; ⑷⎩⎨⎧=-==},2,1,211 n x x S n 解: ⑴2sup =S ,2inf -=S ,以下依定义加以验证.由22<x 知22<<-x ,因之对任意的S x ∈,有2<x 且2->x ,即2,2-分别是S 的上、下界.又对任意的0>ε,不妨设22<ε,于是存在220ε-=x ,221ε+-=x使0x 、1x S ∈,但ε->20x ,ε+-<21x ,所以2sup =S ,2inf -=S⑵+∞=S sup ,1inf =S ,以下依定义加以验证. 对任意的S x ∈,+∞<≤x 1,所以1是S 的下界.对任意的自然数n ,+∞<!n ,所以+∞=S sup ;对任意的0>ε,存在S x ∈==1!11,使ε+<11x ,所以1inf =S ⑶1sup =S ,0inf =S ,以下依定义加以验证.对任意的S x ∈,有10<<x ,所以1、0分别是S 的上、下界.又对任意的0>ε,取εη<<0,且使η-1为无理数,则η-1S ∈,εη->-11 所以1sup =S ;由η的取法知η是无理数,S ∈η,εεη+=<0,所以0inf =S⑷1sup =S ,21inf =S ,以下依定义加以验证. 对任意的S x ∈,有121≤≤x ,所以1、21分别是S 的上、下界.对任意的0>ε,必存在自然数k ,使S x k k ∈-=211,且ε->-=1211k k x所以1sup =S又S x ∈=-=21211,ε+<=-=2121211x 所以21inf =S5. 设S 为非空有下界数集.证明:S S S min inf =⇔∈=ξξ证:设S S ∈=inf ξ,则对一切S x ∈有ξ≥x ,而S ∈ξ,故ξ是数集S 中最小的数,即S min =ξ. 设S min =ξ,则S ∈ξ,下面验证S inf =ξ. Ⅰ 对一切S x ∈,有ξ≥x ,即ξ是S 的下界. Ⅱ 对任何ξβ>,只须取S x ∈=ξ0,则β<0x ,从而ξ不是S 的下界,故S inf =ξ.6.设S 为非空数集,定义}{S x x S ∈-=-,证明:⑴S S sup inf -=-⑵S S inf sup -=-证: ⑴设-=S inf ξ,由下确界的定义知,对任意的-∈S x ,有ξ≥x ,且对任意的0>ε,存在-∈S x 0,使εξ+<0x由}{S x x S ∈-=-知, 对任意的S x ∈-,ξ-≤-x ,且存在S x ∈-0,使εξ-->-0x ,由上确界的定义知ξ-=-S sup ,即S S sup inf -=-. 同理可证⑵式成立.7.设B A 、皆为非空有界数集,定义数集},,{B y A x y x z z B A ∈∈+==+. 证明: ⑴B A B A sup sup )sup(+=+ ⑵B A B A inf inf )inf(+=+ 证: ⑴设1sup η=A ,2sup η=B .对任意的B A z +∈,存在A x ∈,B y ∈,使y x z +=. 于是1η≤x ,2η≤y ,从而21ηη+≤z对任意的0>ε,必存在A x ∈0,B y ∈0且210εη->x ,220εη->y ,则存在B A y x z +∈+=000,使εηη-+>)(210z ,所以B A B A sup sup )sup(21+=+=+ηη ⑵同理可证8.设x a a ,1,0≠>为有理数,证明:{{⎪⎩⎪⎨⎧<>=<<,1}inf ,1}sup a r a a r a a rxr r x r x ,当为有理数,当为有理数证: 只证1>a 的情况, 1<a 的情况可以类似地予以证明.设}{x r r a E r<=,为有理数.因为1>a ,r a 严格递增,故对任意的有理数x r <,有x r a a <,即x a 是E 的一个上界.对任意的0>ε,不妨设x a <ε,于是必存在有理数x r <0,使得xr x a a a <<-0ε.事实上,由x a log 递增知:xx a a <-<ε0等价于x a a xa x a =<-log )(log ε取有理数0r ,使得x r a xa <<-0)(log ε.所以E a xsup =,即}{sup 为有理数r aa rxr x<=§4具有某些特征的函数1、证明:21)(x xx f +=是R 上的有界函数. 证: 利用不等式212x x +≤有2112211)(22≤+=+=x x xx x f 对一切的),(∞+-∞∈x 都成立 故21)(x xx f +=是R 上的有界函数2、⑴证明陈述无界函数的定义; ⑵证明:21)(x x f =为)1,0(上的无界函数. ⑶举出函数f 的例子,使f 为闭区间]1,0[上的无界函数.解: ⑴设)(x f 在D 上有定义,若对任意的正数M ,都存在D x ∈0,使M x f >)(0,则称函数)(x f 为D 上的无界函数.⑵对任意的正数M ,存在)1,0(110∈+=M x ,使M M x x f >+==11)(2所以21)(xx f =为)1,0(上的无界函数. ⑶设⎪⎩⎪⎨⎧=∈=0,0]1,0(,1)(x x x x f .下证)(x f 为无界函数0>∀M ,]1,0(110∈+=∃M x ,使得M M x f >+=1)(0 所以⎪⎩⎪⎨⎧=∈=0,0]1,0(,1)(x x x x f 是闭区间[0,1]上的无界函数.3、 证明下列函数在指定区间上的单调性: ⑴13-=x y 在),(∞+-∞内严格递增; ⑵x y sin =在]2,2[ππ-上严格递增;⑶x y cos =在],0[π上严格递减.证: ⑴任取1x 、),(2∞+-∞∈x ,21x x <, 则0)(3)13()13()()(212121<-=---=-x x x x x f x f , 可见)()(21x f x f <,所以13-=x y 在),(∞+-∞内严格递增. ⑵任取1x 、]2,2[2ππ-∈x ,21x x <,则有22221ππ<+<-x x ,02221<-≤-x x π, 因此02cos21>+x x ,02sin 21<-x x , 从而02sin 2cos 2sin sin )()(21212121<-+=-=-x x x x x x x f x f , 故)()(21x f x f <,所以x y sin =在]2,2[ππ-上严格递增.⑶任取1x 、],0[2π∈x ,21x x <,则π<+<2021x x ,02221<-≤-x x π, 从而02sin21>+x x ,02sin 21<-x x 02sin 2sin2cos cos )()(21212121>-+-=-=-x x x x x x x f x f 故)()(21x f x f >,所以x y cos =在],0[π上严格递减.4、 判别下列函数的奇偶性:(1)12)(24-+=x x x f ;(2) x x x f sin )(+=;(3)22)(x e x x f -=; (4))1lg()(2x x x f -+=解(1)因)(121)(2)()(2424x f x x x x x f =-+=--+-=-, 故12)(24-+=x x x f 是偶函数. (2)因),()sin ()sin()()(x f x x x x x f -=+-=-+-=-故x x x f sin )(+=是奇函数.(3)因)()()(222)(2x f e x e x x f x x ==-=----,故22)(x e x x f -=是偶函数. (4))()1lg(11lg)1lg())(1lg()(2222x f x x x x x x x x x f -=++-=++=++-=-++-=-故)1lg()(2x x x f -+=是奇函数.5、 求下列函数的周期:(1)x x f 2cos )(=;(2)x x f 3tan )(=;(3)3sin 22cos )(xx x f +=. 解 (1) )2cos 1(21cos )(2x x x f +==,而x 2cos 1+的周期是π,所以x x f 2cos )(=的周期是π. (2))3tan(x 的周期是3π,所以x x f 3tan )(=的周期是3π. (3)2cos x 的周期是π4,3sin x 的周期是π6,所以3sin 22cos )(xx x f +=的周期是π12.6、 设)(x f 为定义在],[a a -上的任一函数,证明: (1) ],[),()()(a a x x f x f x F -∈-+=为偶函数; (2) ],[),()()(a a x x f x f x G -∈--=为奇函数; (3) f 可表示为某个奇函数与某个偶函数之和.证 (1)由已知函数)(x F 的定义域关于原点对称且],,[a a x -∈∀)()()()()()(x F x f x f x f x f x F =-+=+-=-.故)(x F 为],[a a -的偶函数.(2) 由已知函数)(x G 的定义域关于原点对称且],,[a a x -∈∀有)()]()([)()()(x G x f x f x f x f x G -=---=--=-.故)(x G 为],[a a -的奇函数.(3)由(1)(2)知: ),(2)()(x f x G x F =+从而)(21)(212)()()(x G x F x G x F x f +=+=,而)(x F ,)(x G 分别是偶函数和奇函数.显然)(21x F 也是偶函数, )(21x G 也是奇函数.从而f 可表示为某个奇函数与某个偶函数之和.7、 设)(x f ,)(x g 为定义在D 上的有界函数,且对任一)()(,x g x f D x ≤∈,证明:(1))(sup )(sup x g x f Dx D x ∈∈≤;(2) )(inf )(inf x g x f Dx D x ∈∈≤. 证 (1)假设)(sup )(sup x g x f Dx D x ∈∈>. 令))(sup )(sup (21x g x f D x D x ∈∈-=ε,则0>ε 由上确界定义知,存在D x ∈0,))(sup )(sup (21)(sup )(0x g x f x f x f Dx D x D x ∈∈∈+=->ε,又对任意的D x ∈,<)(x g ))(sup )(sup (21)(sup x g x f x g D x D x D x ∈∈∈+=+ε. 由此知)()(0x g x f >,这与题设)()()(D x x g x f ∈∀≤相矛盾,所以)(sup )(sup x g x f D x D x ∈∈≤.(2)同理可证结论成立.8、 设f 为定义在D 上的有界函数,证明:(1) )(inf )}({sup x f x f Dx D x ∈∈-=-;(2) )(sup )}({inf x f x f Dx D x ∈∈-=- 证: (1)令ξ=∈)(inf x f Dx .由下确界的定义知,对任意的D x ∈,ξ≥)(x f ,即ξ-≤-)(x f , 可见ξ-是)(x f -的一个上界;对任意的0>ε,存在D x ∈0,使εξ+<)(0x f ,即εξ-->-)(0x f ,可见ξ-是)(x f -的上界中最小者.所以)(inf )}({sup x f x f Dx D x ∈∈-=-=-ξ(2)同理可证结论成立.9、 证明:函数x x f tan )(=在)2,2(ππ-内为无界函数,但在)2,2(ππ-内任一闭区间[]b a ,上有界.证: (1)对任意的正数M ,取)1arctan(0+=M x , 则220ππ<<-x ,M M M x >+=+=1)1(tan(arctantan 0 所以x x f tan )(=在)2,2(ππ-内是无界函数. (2)任取[]b a ,)2,2(ππ-∈,由于x tan 在[]b a ,上是严格递增的,从而b x a tan tan tan ≤≤对任意的[]b a x ,∈都成立.令}tan ,tan max{a a M =,则对一切的[]b a x ,∈,有M x ≤tan ,所以x x f tan )(=在)2,2(ππ-内任一闭区间[]b a ,上有界.10、 讨论狄利克雷函数⎩⎨⎧=为无理数时当为有理数时当x x x D ,0,1)(的周期性、单调性、有界性。
《数学分析》第一章 实数集与函数
sin x 1. sin x x .
(2)对 a1 , a2 ,, an R , 记
M (a i ) a1 a 2
an n
1 n
n
ai ,
i 1
(算 术 平 均 值 )
1
G(ai ) n
a1 a2 an
ቤተ መጻሕፍቲ ባይዱ
n i1
ai
n ,
(几 何 平 均 值 )
H (ai )
1
n 1 1
第一章 实数集与函数
教学目标:
1 掌握函数的概念及表示方法; 2 理解函数的单调性、有界性、奇
偶性、周期性等基本性质; 3 理解复合函数、反函数、基本初
等函数、初等函数等概念。
下页
第一章 实数集与函数
§1 实 数
数学分析研究的对象是定义在实数集上的函数,因此先叙述一下实数的有关概
念
一. 实数及其性质:
5 稠密性: 有理数和无理数的稠密性, 给出稠密性的定义.
6 实数集的几何表示: 数轴: a b, 0, a b .
例 0, a < b + a b
下页
二. 绝对值与不等式
绝对值定义:
|
a
|
a a
, ,
a0 a0
从数轴上看的绝对值就是到原点的距离:
-a
0
a
绝对值的一些主要性质
1. | a| |a|0 当且仅当 a0 时 | a| 0
(1 x) n 1 nx n( n 1) x 2 n(n 1)(n 2) x3 x n ,
2!
3!
下页
有: (1 h )n 上式右端任何一项.
§2 数集. 确界原理
一 区间与邻域: 区间 :
必修一数学第一章集合与函数概念知识点总结
必修一数学第一章集合与函数概念知识点总结一、集合有关概念1. 集合的含义2. 集合的中元素的三个特性:(1) 元素的确定性如:世界上最高的山(2) 元素的互异性如:由HAPPY 的字母组成的集合{H,A,P ,Y} (3) 元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1) 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2) 集合的表示方法:列举法与描述法。
◆ 注意:常用数集及其记法: 非负整数集(即自然数集) 记作:N正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R1) 列举法:{a,b,c ……} 2) 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
{x ∈R|x-3>2} ,{x| x-3>2}3) 语言描述法:例:{不是直角三角形的三角形} 4) Venn 图: 4、集合的分类:(1) 有限集 含有有限个元素的集合 (2) 无限集 含有无限个元素的集合(3) 空集 不含任何元素的集合 例:{x|x 2=-5}二、集合间的基本关系 1.“包含”关系—子集注意:有两种可能(1)A 是B 的一部分,;(2)A 与B 是同一集合。
反之: 集合A 不包含于集合B,或集合B 不包含集合A,记作A B 或B A 2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设 A={x|x 2-1=0} B={-1,1} “元素相同则两集合相等” 即:① 任何一个集合是它本身的子集。
A ⊆A②真子集:如果A ⊆B,且A ≠ B 那就说集合A 是集合B 的真子集,记作A B(或B A)③如果 A ⊆B, B ⊆C ,那么 A ⊆C④ 如果A ⊆B 同时 B ⊆A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
华师大版数学分析第一章实数集与函数1.3函数概念ppt
3、由基本初等函数经过有限次四则运算与复合运算 所得到的函数,统称为初等函数。
7、试问y=|x|是初等函数吗? 解:y=|x|= = ; u=x2; 可见 y=|x|是由基本初等函数有限次复合而成的函数, ∴y=|x|是初等函数.
8、确定下列初等函数的存在域: (1)y=sin(sinx);(2)y=lg(lgx); (3)y=arcsin(lg );(4)y=lg(arcsin ).
9、下列函数是由哪些基本初等函数复合而成: (1)y=(1+x)20; (2)y=(arcsinx2)2;
(3)y=lg(1+
); (4)y=
.
解:(1)y=u20, u=v1+v2, v1=1, v2=x; (2)y=u2, u=arcsinv, v=x2; (3)y=lgu, u=(u1+u2), u1=1, u2= , v=u1+w, w=x2; (4)y=, u=v2, v=sinx.
或f(x)=xsgn x
狄利克雷函数:D(x)= 定义在[0,1]上的黎曼函数: R(x)=
1、试作下列函数的图象: (1)y=x2+1;(2)y=(x+1)2; (3)y=1-(x+1)2;(4)y=sgn(sinx);(5)y= 解:如图:
(1)
(2)
(3)
1、试作下列函数的图象: (1)y=x2+1;(2)y=(x+1)2; (3)y=1-(x+1)2;(4)y=sgn(sinx);(5)y= 解:如图:
注: 两个相同的函数对应法则相同,定义域也相同, 但对应法则的表达形式可能不同,如: f(x)=|x|,x∈R和f(x)= ,x∈R.
函数的三种表示法: 即解析法(或称公式法)、列表法和图象法。 在不同的定义域用不同公式表示的函数称为分段函数。
《数学分析》第一章 实数集与函数 2
y = ex
y = ax
(a > 1)
( 0 ,1)
4,三角函数 , 正弦函数 y = sin x
y = sin x
余弦函数 y = cos x
y = cos x
正切函数 y = tan x
y = tan x
3,对数函数 y = log a x ,
(a > 0, a ≠ 1) y = ln x
恒成立 . 则称f ( x )为周 期函数 , l称为 f ( x )的周期 .
(通常说周期函数的周期是指其最小正周期). 通常说周期函数的周期是指其最小正周期) 周期
3l 2
l 2
l 2
3l 2
三,反函数
y
函数 y = f ( x )
y0
y
反函数 x = ( y )
y0
W
W
o
x0
x
o
x0
x
D
y
D : ( 1,1)
如果自变量在定 y 义域内任取一个数值 时,对应的函数值总 是只有一个, 是只有一个,这种函 W y 数叫做单值函数, 数叫做单值函数,否 则叫与多值函数. 则叫与多值函数.
( x, y)
x
例如, 例如, x + y = a .
2 2 2
o
x
D
定义: 定义: 点集C = {( x , y ) y = f ( x ), x ∈ D} 称为
o
I
x
设函数 f ( x )的定义域为 D , 区间 I ∈ D ,
如果对于区间 I 上任意两点 x1 及 x 2 , 当 x1 < x 2时,
恒有 ( 2) f ( x1 ) > f ( x 2 ),
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
{x | x < − M }∆U (−∞) 称为 − ∞ 邻域.
4. 设 S 是 R 中的一个数集,若数 η 满足: (1)对一切 x ∈ S , 有 x ≤ η ,即 η 是上 界; ( 2) 对任何 α < η ,存在 x0 ∈ S ,使得 x0 > α ,即η 又是 S 的最小上界;则称数 η 为 S 的上确 界,记作
四、基本例题解题点击
【 例 1 】设 x,y 为实 数, x<y..证明 :存在 有理数 r 满足 x<r<y ;存 在无理数 α 满足 x <α < y. 【提示及点评】 � 这是实数的稠密性; � 利用不足近似与过剩近似就可以证明. 【证明】由于 x<y,故存在非负整数 n,使得 x n < y n (其中 x n , y n 分别为 x 的 n 位过剩 近似值与 y 的 n 位不足近似值) 。令
数.记作: y = f ( g ( x)) . 注:两个函数能否复合的充分必要条件就是 E * ≠ φ 3.以形式 y = f ( x), x ∈ D 表示函数的, 称为显函数; 而以方程的形式表示 f ( x, y ) = 0 表 示一个函数的,称为隐函数.例如 y − 2 x = 0, x ∈ [ −1,1] 就是一个隐函数. 4.设函数 y = f ( x), x ∈ D ;满足:对于值域 f ( D) 中的每一个值 y,D 中有且只有一个 值 x 使得 f ( x) = y .则按此对应法则得到一个定义在 f ( D) 上的函数,称这个函数为 f 的反 函数,记作 x = f
(三)二维平面 R2 的性质
2 1.全平面上的点所组成的点集 {( x, y ) | −∞ < x < +∞,−∞ < x < +∞}∆R ;坐标平面上的
满足条件 P 的点的集合 E={(x,y)|(x,y)满足条件 P},称为平面点集.
2 2 2 2. 平面上的点 A( x0 , y 0 ) ,平面点集 {( x, y ) | ( x − x0 ) + ( y − y 0 ) < δ } 称为点 A 的 δ 2 2 2
α
D ⊂ ∪ ∆ i ).
i =1
n
(四)集合间的关系:映射、函数
数学是为解决实际问题提供一些系统方法的学科, 它通过量化的数来表示事物, 通过数 的变化来反映事物的变化.在不同时间、不同的地点所表示物体的量的不同,实质就是建立 了表示物体的量与时间、 地点之间的一个映射, 当一个映射满足一定的条件时, 就是函数. 因 此,函数是数学最重要的一个概念,同时对函数性质的研究是数学分析处理问题的基础. 1.给定两个实数集 D 和 M,若有对应法则 f,使对 D 内每一个数 x,都有唯一的一个数 y ∈M 与之对应,则称 f 是定在数集 D 上的函数,记作: f : D → M ,通常记为 y = f ( x) . 注:只要讲清了对应法则,而且满足对于第一个集合上的每一个元素,在第二个集合都有 惟一的元素和它对应,则这个法则就建立了从第一个集合到第二个集合的函数.
y = sin x, y = cos x, y = tan x, y = cot x 、 反 三 角 函 数 y = arcsin x, y = arccos x,
y = arctan x, y = arc cot x 统称为基本初等函数.由基本初等函数经过有限次四则运算与复
合运算所得到的函数,统称为初等函数.并不是每个函数都是初等函数,例如: y = x x 就不 是初等函数. 6.设 f 为定义在 D 上的函数.(1)若存在正数 M,使得对每一个 x ∈ D 有 | f ( x) |≤ M , 则称 f 为 D 上的有界函数; (2)若对任意 x1 , x 2 ∈ D, x1 < x 2 ,若是都有 f ( x1 ) ≤ f ( x 2 ) , 则称 f 为 D 上的增函数;若是都有 f ( x1 ) ≥ f ( x 2 ) ,则称 f 为 D 上的减函数; ( 3)若 D 为 对称于原点的数集,且对 x ∈ D ,都有 f (− x) = − f ( x)( f (− x) = f ( x)) ,则称 f 为 D 上的 奇(偶)函数; ( 4)若存在 σ > 0 ,使得对一切 x ∈ D 都有 f ( x ± σ ) = f ( x) ,则称 f 为周 期函数. 7.设平面点集 D ⊂ R 2 ,若按照某对应法则 f ,D 中每一点 P(x,y)都有唯一确定的实数 z 与 之对应,则称 f 为定义在 D 上的二元函数.记作: z = f ( x, y ), ( x, y ) ∈ D .
r=
即
1 ( x n + y n ) ,则 r 为有理数,且 2
x ≤ xn < r < yn ≤ y
x<r< y
设 η 是任意一无理数,由 x<y,则 x − η < y − η ,根据上面可知,存在有理数 r,使得 x − η < r < y − η ,从而 x < r + η < y ,令 α = r + η ,则 x < α < y ,且 α 是无理数 ■ 【知识扩展提示】实数的稠密性是实数的重要性质,在证明有关稠密性方面的时候, 经常利用不足近似与过剩近似值来证明, 在证明过程两边同时加一个数或减一个数也是常常 利用的技巧. 【例 2】设 S 是非空数集,定义 S − = {x | − x ∈ S } 。证明: inf S − = − sup S . 【提示及点评】 这类证明的关键点在于抓住上下确界的定义, � 集合的上下确界的证明是一个难点,
第一章
一、本章知识脉络框图
实 数
集合与函数
实数的性质:稠密性
实数对 (x,y) 对组 集合间关系:映射 集 合 成的集合集 R
2
函数
数集及一些常 用数集:区 间、邻域
函数的相关定 义:反函数,隐 函数
平面点集的相关定义:距离、 邻域、聚点、界点、边界点、 开(闭)集,有(无)界性
数集的性质: 有界性
2. a 是 实 数 、 δ > 0 , {x || x − a |< δ }∆U ( a; δ ) 称 为 a 的 δ 邻 域 ,
{x | 0 <| x − a |< δ }∆U o (a; δ ) 称为 a 的空心 δ 邻域; [a, a + δ )∆U + (a ) 称为 a 的 δ 右邻域, (a − δ , a]∆U − (a) 称 为 a 的 左 δ 邻 域 ; (a, a + δ )∆U 0 + (a ) 称 为 a 的 右 空 心 邻 域 , (a − δ , a)∆U 0 − (a ) 称为 a 的左空心邻域.
研究是数学的基础. 本章在中学的基础上主要讨论了实数的性质、数集的性质,实数对组成的二维空间 R2 的一些集合的性质; 同时还通过两个集合之间的映射关系引进函数的定义, 并且讨论与函数 相关的其他一些定义. 本章的难点主要有以下两个方面: � � 函数的概念、隐函数、一些简单函数的反函数存在性的判定与函数反函数的求法. 实数集上的确界存在定理、闭区间套定理、聚点定理、有限覆盖定理的证明与应 用;熟练运用这些定理证明闭区间上连续函数的性质.
三、本章的基本知识要点
(一)实数及其性质
1.实数集 R 具有稠密性, 即任何两个不相等的实数之间必有另一个实数, 且既有有理数 , 也有无理数. 2.实数集 R 具有阿基米德性, 即对任何 a、b ∈ R ,若 b>a>0, 则存在正整数 n, 使得 na>b.
(二)实数集 R 的性质
1.a,b 是 实 数 , 实 数 集 合 上 的 {x | a < x < b}∆ ( a, b) 、 {x | a ≤ x < b}∆[ a, b) 、
⎧ 1, x > 0 ⎪ 例如: sgn x = ⎨ 0, x = 0 是一个函数,称为符号函数 ⎪− 1 x < 0 ⎩
* 2. 设有两个函数 y = f (u ), u ∈ D; u = g ( x), x ∈ E ,令 E = {x | g ( x) ∈ D} ∩ E ,若
E * ≠ φ ,则对每一个 x ∈ E * ,可通过函数 g 对应 D 内唯一的一个值 u,而 u 又通过函数 f 对应唯一的一个值 y.这就确定了一个定义在 E * 上的函数,称为函数 f 与 g 的复合函
8.区间套定理的推论:若 ξ ∈ [ a n , bn ](n = 1,2, ⋯) 是区间套 {[ a n , bn ]} 所确定的,则对任 给的 ε > 0, 存在 N>0,使得 n>N 时有
[a n , bn ] ⊂ U (ξ ; ε ) .
9. (维尔斯特拉斯(Weierstrass)聚点定理): 实轴上的任一有界无限点集 S 至少有一个聚点. 10. (海涅-波雷尔(Heine-Borel)有限覆盖定理) 设 H 为闭区间[a,b]的一个(无限)开覆盖, 则从 H 中可选出有限个开区间来覆盖[a,b] .
初等函数及其性质
确界存在定理
闭区间套定理
聚点定理
有限覆盖定理
二、本章重点及难点
数学是分析处理问题的系统方法论学科。对事物分析,量化是第一步;数是表示量的符 号.随着科学的发展,数的内涵与表示得到不断地发展;同时随着数的内涵与表示的发展, 分析解决问题的方法也得到了质的发展.数从自然数----整数----有理数---实数—复数的发展 过程,也反映了社会的进步与解决问题能力的提升.因此,对数以及一些数组成的集合进行
{x | a < x ≤ b}∆(a, b] 、 {x | a ≤ x ≤ b}∆[a, b] 称为 有 限 区 间 ; 而 {x | x < a}∆(−∞, a ) 、 {x | x ≤ a}∆(−∞, a ] 、 {x | x > a}∆(a,+∞) 、 {x | x ≥ a}∆[a,+∞) 、 {x | −∞ < x < +∞} ∆(−∞,+∞) 称为无限区间,有限区间与无限区间统称为区间.