坐标旋转变换公式的推导
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
坐标旋转变换公式的推导
翻译自: -
翻译:汤永康
出处:
转贴请注明出处
1 围绕原点的旋转
如下图,在2维坐标上,有一点p(x, y) , 直线opの长度为r, 直线op和x轴的正向的夹角为a。直线op围绕原点做逆时针方向b度的旋转,到达p’(s,t)
s = r cos(a + b) = r cos(a)cos(b) – r sin(a)sin(b) (1.1)
t = r sin(a + b) = r sin(a)cos(b) + r cos(a) sin(b) (1.2)
其中x = r cos(a) , y = r sin(a)
代入(1.1), (1.2) ,
s = x cos(b) – y sin(b) (1.3)
t = x sin(b) + y cos(b) (1.4)
用行列式表达如下:
2.座标系的旋转
在原坐标系xoy中, 绕原点沿逆时针方向旋转theta度,变成座标系sot。
设有某点p,在原坐标系中的坐标为(x, y), 旋转后的新坐标为(s, t)。
oa = y sin(theta) (2.1)
as = x cos(theta) (2.2)
综合(2.1),(2.2) 2式
s = os = oa + as = x cos(theta) + y sin(theta)
t = ot = ay – by = y cos(theta) – x sin(theta)
用行列式表达如下:
本文来自CSDN博客,转载请标明出处:/archive/2010/04/14/5484636.aspx