代数与代数基本定理的历史
代数基本定理的几种证明
代数基本定理的几种证明作者:李志国邵泽玲李志新来源:《科技风》2020年第13期摘;要:代数基本定理是数学中最重要最基本的定理之一,不仅仅在代数学中起着重要的基础作用,乃至整个数学研究都有着广泛的应用基础。
本文通过利用拓扑、不动点、代数等理论给出了代数学基本定理的五种不同的证明。
关键词:代数基本定理;不动点定理;同伦;分裂域代数基本定理在代数乃至整个数学中起着基础作用。
最早该定理由德国数学家罗特于1608年提出。
据说,关于代数学基本定理的证明,现有200多种证法。
迄今为止,该定理尚无纯代数方法的证明。
大数学家J.P.塞尔曾经指出:代数基本定理的所有证明本质上都是拓扑的。
美国数学家John Willard Milnor在数学名著《从微分观点看拓扑》一书中给了一个几何直观的证明,但是其中用到了和临界点测度有关的sard定理。
复变函数论中,对代数基本定理的证明是相当优美的,其中用到了很多经典的复变函数的理论结果。
代数基本定理,一般高等代数的教材中都没有给出证明,这是因为它的纯代数方法的种种证明都很复杂。
大多数参考文献中都是利用维尔定理和儒歇定理等复变函数理论来证明代数基本定理。
本文从拓扑学,不动点理论,代数理论等角度分别列举了五种不同的证明方法。
1 代数学基本定理任何一个n次多项式f(z)=anzn+an-1zn-1+…+a1z1+a0,ai∈C,an≠0在复数域C中至少有一个根。
证法一:(代数拓扑方法)视S2=C∪{SymboleB@},f(z)可以延拓为一个连续映射:F:S2=C∪{SymboleB@}→S2=C∪{SymboleB@};F(z)=f(z),z∈C;F(SymboleB@)=SymboleB@。
由此可知,只要证明0∈ImF即可。
定义H:S2×I→S2如下:H(z,t)=anzn+(1-t)(f(z)-anzn),z∈C,SymboleB@,z=SymboleB@。
令F1(z)=anzn,z∈CSymboleB@,z=SymboleB@,则H(z,t)定义了一个F与F1之间的一个同伦。
代数基本定理
代数基本定理代数基本定理是指:每一个非常数的复系数多项式都可以唯一地分解成一次和二次复系数因式的乘积。
它是代数学中的一个基本定理,被认为是十九世纪代数学的最重要成果之一,也是数学中最美丽的定理之一。
代数基本定理最初由欧拉在1748年提出,但其证明要等到1821年时Cauchy才给出。
代数基本定理的历史源远流长,但其证明需要使用现代代数学的一些工具,在欧拉的时代还无法证明。
代数基本定理说的是复系数多项式,其重要性体现在以下三个方面:1. 任何复系数多项式都可以分解成一次和二次因式的乘积,这个分解是唯一的。
2. 这个定理也意味着我们可以将多项式求解的问题转化为寻找其因式的问题,从而简化了问题的复杂度。
3. 代数基本定理是代数学中的核心定理,它不仅可以被推广到更高维度的多项式中,而且它的证明涉及到其他代数学分支的发展。
以下是代数基本定理的正式陈述和证明:假设$f(x)$是一个复系数的不可约多项式,则极有可能是一次或二次的。
具体来说,我们有以下两种情况:第一种情况:$f(x)$是一次多项式,即$f(x)=ax+b$,其中$a$和$b$是复数。
第二种情况:$f(x)$是一个二次多项式,即$f(x)=ax^2+bx+c$,其中$a$,$b$,$c$是复数且$a \eq 0$。
接下来需要证明,任意复系数多项式都可以分解成以上两种不可约多项式的乘积。
具体来说,假设$f(x)$是一个复系数多项式,则:1. 如果$f(x)$是一次多项式,则$f(x)$是一个不可约多项式,即它不能被分解成次数小于它自身的多项式的乘积。
因此$f(x)$就是一次不可约多项式。
2. 如果$f(x)$是一个次数大于一的复系数多项式,则必然存在一个不可约多项式$g(x)$,使得$f(x)=g(x)h(x)$,其中$h(x)$是次数小于$f(x)$的多项式。
因此,我们只需要考虑$g(x)$是否是一次或二次多项式。
如果$g(x)$是一次多项式,则$f(x)$可以写成$f(x)=(ax+b)h(x)$的形式,其中$a$和$b$是复数,$h(x)$是一个次数小于$f(x)$的多项式。
代数学的历史
代数学的历史可以追溯到古代,最早的数学文献中出现了一些初等代数学的内容。
在中国,周朝时期的《九章算术》中就已经包含了初等代数学的知识,如解线性方程组、二次方程等。
在古希腊,欧几里得的《几何原本》中也有一些代数学的知识,如解二次方程等。
随着时间的推移,代数学得到了进一步的发展。
在中世纪,阿拉伯数学家发挥了重要的作用。
花拉子米是阿拉伯数学家中的代表人物,他编写了代数学的著作《还原与对消的科学》,该著作被认为是最早的代数学教科书之一。
此外,阿拉伯数学家还研究了方程的解法,提出了代数基本定理的雏形,发展了多项式的因式分以及代数方程的解法等。
到了欧洲文艺复兴时期,代数学的研究逐渐走向系统化、符号化。
法国数学家韦达(Vieta)是第一个系统地使用字母表示代数式的数学家,他的方法标志着代数进入了一个新的发展阶段。
随后,代数学逐渐分为两个分支:初等代数学和抽象代数学。
初等代数学是更古老的算术的推广和发展,主要研究线性方程、二次方程、分式方程、根式方程等的解法和性质。
在19世纪以前,初等代数学是代数学的主要内容。
而抽象代数学则是在初等代数学的基础上产生和发展起来的,它以集合、映射、运算等概念为基础,强调抽象性和公理化方法,更加注重概念、定理和证明。
在20世纪,代数学得到了进一步的发展和推广。
一些新的代数结构被发现和研究,如群、环、域、模等。
这些代数结构在理论物理、计算机科学、信息理论等领域有着广泛的应用。
此外,随着计算机科学的发展,代数学在计算机算法设计、密码学等领域也得到了广泛的应用。
总之,代数学的历史是一个不断发展和演进的过程。
它从古代的初等代数学逐渐发展成为现代的抽象代数学,并在各个领域得到了广泛的应用。
代数的历史与发展
代数的历史与发展代数学(algebra)是数学中最重要的分支之一。
代数学的历史悠久,它随着人类生活的提高,生产技术的进步,科学和数学本身的需要而产生和发展。
在这个过程中,代数学的研究对象和研究方法发生了重大的变化。
代数学可分为初等代数学和抽象代数学两部分。
初等代数学是更古老的算术的推广和发展,而抽象代数学则是在初等代数学的基础上产生和发展起来的。
代数学的西文名称algebra来源于9世纪阿拉伯数学家花拉子米的重要著作的名称。
该著作名为”ilm al-jabr wa’I muqabalah”,原意是“还原与对消的科学”。
这本书传到欧洲后,简译为algebra。
清初曾传入中国两卷无作者的代数书,被译为《阿尔热巴拉新法》,后改译为《代数学》(李善兰译,1853)。
初等代数学是指19世纪上半叶以前的方程理论,主要研究某一方程(组)是否可解,怎样求出方程所有的根(包括近似根)以及方程的根所具有的各种性质等。
代数之前已有算术,算术是解决日常生活中的各种计算问题,即整数与分数的四则运算。
代数与算术不同,主要区别在于代数要引入未知数,根据问题的条件列方程,然后解方程求未知数的值。
这一类数学问题,早在古埃及的数学纸草书(约公元前1800年)中就有了启示,书中将未知数称为“堆”(一堆东西),并以象形文字表示。
古巴比伦人也知道某些二次方程的解法,在汉穆拉比时代(公元前18世纪)的泥板中,就载有二次方程问题,甚至还有相当于三次方程的问题。
数学史家们曾为此发生过热烈争论:在什么意义下能把巴比伦数学看成代数?古希腊时代,几何学明显地从代数学中分离出来,并在希腊科学中占统治地位,其威力之大,以至于纯算术的或代数的问题都被转译为几何语言:量被理解为长度,两个量之积解释为矩形、面积等。
现在数学中保留的称二次幂为“平方”,三次幂为“立方”,就是来源于此。
古希腊时期流传至今的与代数有关的著作只有丢番图的《算术》。
该书中解决了某些一次、二次方程问题和不定方程问题,出现了缩写符号和应用负数之例。
代数学的创立与发展过程
代数学是一门研究数学结构和运算规则的学科,它的创立和发展可以追溯到古希腊和古印度时期。
以下是代数学的创立和发展过程的简要概述:
1. 古希腊时期,毕达哥拉斯学派发现了数学的基本定理,包括勾股定理和平方差定理等,这些定理为代数学的发展奠定了基础。
2. 古印度时期,阿拉伯数学家将代数学引入欧洲,他们发展了代数学中的一些基本概念,如方程、多项式和因式分解等。
3. 16世纪,意大利数学家卡尔达诺发明了求解三次和四次方程的方法,开创了代数学的新时代。
4. 17世纪,牛顿和莱布尼茨发明了微积分学,为代数学的发展提供了新的工具和方法。
5. 19世纪,群论的发展使代数学得到了更深入的理解,代数学家开始研究代数结构和代数变换等问题。
6. 20世纪,代数学家们开始研究抽象代数学,研究代数结构的一般性质和分类问题。
代数学的发展是一个漫长而丰富多彩的历史过程,代数学家们不断地探索代数结构的本质和规律,并将代数学应用于各种实际问题的解决中。
代数学在数学、物理、工程、计算机科学等领域都有着广泛的应用,是现代科学发展中不可或缺的一部分。
韦达定理
韦达定理韦达定理说明了一元n次方程中根和系数之间的关系。
法国数学家韦达最早发现代数方程的根与系数之间有这种关系,因此,人们把这个关系称为韦达定理。
历史是有趣的,韦达在16世纪就得出这个定理,证明这个定理要依靠代数基本定理,而代数基本定理却是在1799年才由高斯作出第一个实质性的论性。
基本介绍英文名称:Vieta's formulas韦达定理证明了一元n次方程中根和系数之间的关系。
这里讲一元二次方程两根之间的关系。
一元二次方程aX^2+bX+C=0﹙a≠0﹚中,两根X1,X2有如下关系:X1+X2=-b/a,X1*X2=c/a定理内容一元二次方程ax^2+bx+c=0 (a≠0 且△=b^2-4ac>0)中,设两个根为x1,x2 则X1+X2= -b/aX1*X2=c/a用韦达定理判断方程的根一元二次方程ax^2+bx+c=0 (a≠0)中,若b^2-4ac<0 则方程没有实数根若b^2-4ac=0 则方程有两个相等的实数根若b^2-4ac>0 则方程有两个不相等的实数根证明结论由一元二次方程求根公式为:X = (-b±√b^2-4ac)/2a (注意:a指二次项系数,b指一次项系数,c指常数,且a≠0)可得X1= (-b+√b^2-4ac)/2a ,X2= (-b-√b^2-4ac)/2a 1. X1﹢X2=(-b+√b^2-4ac)/2a+(-b-√b^2-4ac)/2a所以X1﹢X2=-b/a2. X1X2= [(-b+√b^2-4ac﹚÷2a]×[(-b-√b^2-4ac﹚÷2a]所以X1X2=c/a(补充:X1^2+X2^2=(X1+X2)^2-2X1·X2(扩充)3.X1-X2=(-b+√b^2-4ac)/2a-(-b-√b^2-4ac)/2a 又因为X1.X2的值可以互换,所以则有X1-X2=±【(-b+√b^2-4ac)/2a-(-b-√b^2-4ac)/2a】所以X1-X2=±(√b^2-4ac)/a韦达定理推广的证明设X1,X2,……,xn是一元n次方程∑AiXi =0的n个解。
代数发展史
•对于两鼠穿墙问题,《九章算术》给出的解法便是享誉 古今的“盈不足术”。(回忆一下,这是我们小学时学过 •的)具体解法如下:
• 解:假设两只老鼠打洞2天,则仍差5寸(1寸为0.1 尺),不能把墙打穿,假设打洞3天,就会多 出3尺7寸半,这样一来,便化繁为简,成为 了典型的“盈不足”问题:
两只老鼠相遇的 23.7530.522
3.2 代数运算
• 引入数学符号之后,人们开始对于方程,方程组的叙 述做到了简约而不简单,而这个极大的简化也正式将 代数运算推上了历史的舞台。
• 而各种算术中的运算法则在代数运算中的通用性更是 大大的加速了人们对于方程求解这一类在日常生活和 科学研究中占据重要地位的数学问题的研究,最终导 致了新的数学学科的发现。
• 今有垣厚五尺,两鼠对穿,大鼠日一尺, 小鼠亦日一尺,大鼠日自倍,小鼠日自半, 问几何日相逢?各穿几尺?
• 用今天的办法,设大鼠和小鼠在x日后相逢: • 我们得出这样的一个用数列求和的等式:
1 2 4 2 x 1 1 1 1 5 24 2 x
1.1.3 求解过程
• 由数列求和公式得:
代数发展史
整体脉络
• 1.算术与数的进制 • 2.数的表示与数的扩充 • 3.数学符号与代数运算 • 4.方程求解与抽象代数
1.1 算术
• 高斯说:“算术给予我们一个用之不竭、 充满乐趣的宝库。”
• 中国古代的政治制度,很大程度决定了 中国数学中“算”占据了最主要的地位, 所以毋庸置疑的是,中国古代数学对于 算术的重视程度和取得的成就都是世界 上数一数二的,而传承下来的著作,解 决掉的难题和让人拍案叫绝的计算方法 仍是当今数学界的瑰宝。
• 在这其中,丢番图,以及我们熟知的韦达,笛卡尔都做了 巨大的贡献,他们将繁琐的文字表达方式改进为使用 x,y,z代表未知量,用a,b,c代表已知量。
高斯代数基本定理
高斯代数基本定理高斯代数基本定理(Gauss's Fundamental Theorem of Algebra)是现代代数学中的一个重要定理,它揭示了复数域上代数方程的根的存在性。
该定理由德国数学家卡尔·弗里德里希·高斯于1799年首次提出,并在1828年发表。
在代数学中,一个代数方程是形如f(x) = 0的方程,其中f(x)是一个多项式函数,而x是未知数。
高斯代数基本定理指出,对于任何次数大于等于1的复系数多项式方程,总存在至少一个复数根。
具体来说,高斯代数基本定理可以表述为:任何一个次数大于等于1的复系数多项式方程f(x) = 0,在复数域上总有解。
换句话说,复数域上的代数方程总能够被复数根解决。
为了更好地理解高斯代数基本定理,我们可以通过一个简单的例子来说明。
考虑方程x^2 + 1 = 0,其中x是未知数。
根据高斯代数基本定理,我们知道这个方程在复数域上必定有解。
实际上,这个方程的解是x = ±i,其中i是虚数单位。
高斯代数基本定理的证明并不简单,它需要使用复数域的性质和代数学的基本概念。
高斯通过将复数域扩展为复平面,并利用复数的极坐标形式来证明了这个定理。
他的证明是基于代数学中的重要定理之一,即代数基本定理(Fundamental Theorem of Algebra),它指出任何一个次数大于等于1的复系数多项式方程在复数域上至少有一个复数根。
高斯代数基本定理的重要性不仅在于它解决了复数域上的代数方程,还在于它为代数学的发展奠定了基础。
通过这个定理,我们能够更深入地研究多项式方程的性质和解的特征。
它在代数学、数论、几何学等领域都有广泛的应用。
除了在理论研究中的应用,高斯代数基本定理还在实际问题中发挥着重要作用。
例如,在工程和科学领域中,我们经常需要解决各种复杂的方程和模型。
高斯代数基本定理提供了一种有效的方法来确定方程的解的存在性,并为我们提供了解决问题的思路和方法。
代数基本定理介绍
代数基本定理介绍代数基本定理是代数学中的一条重要定理,它描述了复数的性质。
代数基本定理最初由法国数学家德罗弗公布于1798年。
它表明,任何一个非常值的复系数多项式方程都有至少一个复数根。
这个定理对于代数学的发展起到了非常重要的作用,也在数学的其他领域中得到了广泛的应用。
要理解代数基本定理的内容,首先需要了解复数的概念。
复数是由实数和虚数构成的数,它可以写成a + bi的形式,其中a是实数部分,bi是虚数部分,i是虚数单位,满足i^2 = -1。
复数的实数部分可以等于0,虚数部分可以等于0,实数部分和虚数部分都等于0的复数为零。
代数基本定理的内容可以表述为:任何一个非常值的复系数多项式方程都有至少一个复数根。
这个定理可以用数学的方式进行证明,其中一种常见的证明方法是利用数学分析的知识,引入复数的模和辐角的概念,并利用三角函数的性质进行推导。
代数基本定理的重要性在于它为复数多项式方程的解的存在性提供了保证。
通过代数基本定理,我们可以确定至少存在一个复数解。
事实上,如果一个方程有n次复数根,那么它在复数域上恰好有n个解(包括重根)。
这个结论可以直接推导出欧拉恒等式,即e^(iπ) + 1 = 0。
因此,代数基本定理不仅对代数学理论本身具有重要意义,也对实际问题的求解提供了帮助。
代数基本定理的应用广泛,它在代数学的其他领域中起到了重要作用。
首先,代数基本定理为代数方程论提供了理论基础。
方程是数学中一个重要的研究对象,通过代数基本定理,我们可以对方程的解的存在性进行讨论。
其次,代数基本定理在复变函数论中也有应用。
复变函数论研究的是复数域上的函数,通过代数基本定理,我们可以讨论复变函数的零点和极点的性质。
此外,代数基本定理在代数几何中也有广泛的应用。
代数几何研究的是多项式方程的几何性质,通过代数基本定理,我们可以研究代数曲线和代数曲面的性质。
除了上述应用外,代数基本定理还在密码学和信号处理等领域中得到了广泛的应用。
韦达定理及运用
韦达定理及运用韦达定理是法国数学家韦达最早发现代数方程的根与系数之间有这种关系,因此,人们把这个关系称为韦达定理。
历史是有趣的,韦达的16世纪就得出这个定理,证明这个定理要依靠代数基本定理,而代数基本定理却是在1799年才由高斯作出第一个实质性的论性。
由代数基本定理可推得:任何一元n 次方程在复数集中必有根。
因此,该方程的左端可以在复数范围内分解成一次因式的乘积:其中是该方程的个根。
两端比较系数即得韦达定理。
韦达定理在方程论中有着广泛的应用。
韦达定理应用中的一个技巧在解有关一元二次方程整数根问题时,若将韦达定理与分解式αβ±(α+β)+1=(α±1)(β±1)结合起来,往往解法新颖、巧妙、别具一格.例说如下.例1 已知p+q=198,求方程x2+px+q=0的整数根.(94祖冲之杯数学邀请赛试题) 解:设方程的两整数根为x1、x2,不妨设x1≤x2.由韦达定理,得x1+x2=-p,x1x2=q.于是x1x2-(x1+x2)=p+q=198,即x1x2-x1-x2+1=199.∴(x1-1)(x2-1)=199.注意到x1-1、x2-1均为整数,解得x1=2,x2=200;x1=-198,x2=0.例2 已知关于x的方程x2-(12-m)x+m-1=0的两个根都是正整数,求m的值.解:设方程的两个正整数根为x1、x2,且不妨设x1≤x2.由韦达定理得x1+x2=12-m,x1x2=m-1.于是x1x2+x1+x2=11,即(x1+1)(x2+1)=12.∵x1、x2为正整数,解得x1=1,x2=5;x1=2,x2=3.故有m=6或7.例3 求实数k,使得方程kx2+(k+1)x+(k-1)=0的根都是整数.解:若k=0,得x=1,即k=0符合要求.若k≠0,设二次方程的两个整数根为x1、x2,由韦达定理得∴x1x2-x1-x2=2,(x1-1)(x2-1)=3.因为x1-1、x2-1均为整数,所以例4 已知二次函数y=-x2+px+q的图像与x轴交于(α,0)、(β,0)两点,且α>1>β,求证:p+q>1.(97四川省初中数学竞赛试题)证明:由题意,可知方程-x2+px+q=0的两根为α、β.由韦达定理得α+β=p,αβ=-q.于是p+q=α+β-αβ,=-(αβ-α-β+1)+1=-(α-1)(β-1)+1>1(因α>1>β).。
中国古代数学代数
中国古代数学代数1.引言1.1 概述古代中国数学代数,作为中国数学发展的重要组成部分,涵盖了古代中国数学领域中代数学的起源、发展和影响等方面。
通过研究古代中国数学代数,我们可以了解到中国古代数学在代数学方面的独特贡献和文化价值。
本文将通过概述古代中国数学代数的起源、发展和重要性,来全面介绍这一主题。
首先,我们将回顾古代中国数学的悠久历史,了解数学在中国古代社会的地位和作用。
随后,我们会详细阐述古代中国数学代数的起源,包括数学符号的发展、方程求解方法的探索以及代数方程的研究成果等方面。
同时,我们也会探讨古代中国数学代数在数论、几何等学科领域中的应用,以及其对后世数学发展的影响。
古代中国数学代数在整个数学领域中具有独特的贡献,不仅体现在具体的数学理论和方法上,更表现在中国传统文化和哲学思想的渗透。
例如,古代中国数学代数强调推理和思辨,注重数学实践与应用,这与中国古代文化中追求和谐与平衡的思想理念相一致。
这种思想方式与西方数学代数发展的路径形成鲜明对比,给予了古代中国数学代数独特的思维方式和方法论。
在现代,古代中国数学代数的研究对于探索古代中国科学文化的独特价值具有重要意义。
通过对古代中国数学代数的深入研究,我们可以更好地认识中国古代数学的发展历程,探究古代数学家们的智慧和思想,并从中汲取启示。
另外,研究古代中国数学代数也有助于促进数学教育的发展,为培养创新人才提供新的思路和方法。
综上所述,本文将通过对古代中国数学代数的概述,全面展示其在古代中国数学发展中的重要地位和文化价值。
通过系统性地梳理和阐述,希望能够让读者对古代中国数学代数有更全面的认识,进一步推动古代中国数学代数的研究和传承。
1.2文章结构文章结构的设计是为了帮助读者更好地理解和组织文章的内容。
在本文中,我们将按照以下结构展开叙述古代中国数学代数的发展:2. 正文2.1 古代中国数学的起源在本节中,我们将探索古代中国数学代数的起源。
我们将回顾古代中国数学的历史背景,并介绍中国古代数学家提出的代数概念和方法。
代数学发展历程
代数学发展历程在宽广的数学领域范围内,代数学只是其中的一个分支,一个部分.“代数学”这个名称,在我国是1859年正式开始使用的.那么什么是代数?代数学又是如何发展的呢?1847年,英国人伟烈亚力来到上海,他用中文写了一本《数学启蒙》,在序中说:“有代数、微分诸书在,余将续梓之.”这是第一次使用代数这个词来作为数学分科的名称.李善兰是我国清代数学家.1859年和伟烈亚力合译英国棣么甘(Augustus De Morgan)的“Elements of Algebra”正式定名为《代数学》.这是我国第一本代数学书,代数的名称就是这样来的.代数是对字母、字母表达式进行运算或变换的学问.在初等数学中字母代表数,在近代数学中字母可以代表更广泛的对象,如向量、张量、矩阵、变换等.代数的发展大致分为三个时期.第一个时期从九世纪的花拉子米始,到十六世纪止.这个时期人们把代数看成为对字母进行运算,关于字母公式的变换以及关于代数方程式的学问.这些就是目前中学代数的内容.第二个时期从十六世纪开始到十九世纪,这时意大利数学家解出了三次方程和四次方程.由此人们开始研究更高次的代数方程.代数的中心问题逐渐变为代数方程式的理论了.十九世纪谢尔的两卷本的代数问世,在这部书中代数被定义为方程式论.这在当时是个创举.在第二个时期内,行列式与矩阵的理论,二次型与变换的理论,特别是不变量的理论等代数工具也发展起来了.在这个时期内群论及不变量的理论的发展对几何学的发展起了重大影响.第三个时期从上世纪末到本世纪.这时在力学,物理以及数学本身越来越频繁地研究到一些对象,对这些对象也要考虑加法、减法,有时要考虑乘法和除法.这些对象中有矩阵、张量、旋量、超复数等.这样人们就不得不考虑某种更一般的集合,在这种集合中有某种运算,并满足一定的运算法则.这就是说,我们不得不考虑某种代数系统.这样一来,代数的目的是研究各种代数系统.这就是公理化,或抽象化的代数.说它是抽象的,是因为所考虑的代数系统是用字母表示的.说它是公理化的,是因为它只遵从作为它的基础的那些公理.有趣的是这样的代数系统无论就数学本身而言,或就它的应用而言都具有巨大意义.以下我是通过初等代数,高等代数以及抽象代数三个阶段的发展来研究代数学领域的发展的.1.初等代数初等代数是研究数字和文字的代数运算理论和方法,更确切的说,是研究实数和复数,以及以它们为系数的多项式的代数运算理论和方法的数学分支学科.初等代数是更古老的算术的推广和发展.在古代,当算术里积累了大量的,关于各种数量问题的解法后,为了寻求有系统的、更普遍的方法,以解决各种数量关系的问题,就产生了以解方程的原理为中心问题的初等代数.代数是由算术演变来的,这是毫无疑问的.代数和算术的主要区别,就在于前者引入未知量,根据问题的条件列出方程,然后解方程求出未知量的值.至于什么年代产生的代数学这门学科,就很不容易说清楚了.比如,如果你认为“代数学”是指解这类用符号表示的方程的技巧,那么,这种“代数学”是在十六世纪才发展起来的.如果我们对代数符号不是要求象现在这样简练,那么代数学可以上溯到更早的年代.大约在公元前2000年,巴比伦算术已经演化成为一种高度发展的用文字叙述的代数学.从载有数字表的文件中,可以获得巴比伦人的数系和数字运算方面的许多知识.他们既能用相当于代入一般公式的方法,又能用配方法来解二次方程,还讨论了某些三次方程和双二次(四次)方程.已经发现一块书板,它给出的数表不仅包括从1到30的整数的平方和立方,还包括了这个范围的整数组合.公元前2500年左右,埃及的草片文书(Ahmes)中有求一个未知量问题的解法,这个问题大体上相当于今日的一元一次方程.不过用的方法纯粹是算术的,并且在埃及人心目中这并不成其为一门独特的学科——解方程.公元200—1200年时期,印度人也在代数上获得一些进展.他们用缩写文字和一些记号来描述运算.印度人认识到二次方程有两个根,而且包括负根和无理根.在不定方程方面印度人超过了Diaphanous,印度人要求出所有整数解,而Diaphanous则只得出一个有理的解.印度人也研究了不定二次方程.他们解出了(其中不是平方数)这种类型的方程,并可看出这种类型对处理很重要.西方人将公元前三世纪古希腊数学家Diaphanous看作是代数学的鼻祖.而在中国,用文字来表达的代数问题出现得就更早了.“代数”作为一个数学专有名词,代表一门数学分支在我国正式使用,最早是在1859年.那年,清代数学家李善兰和英国人韦列亚力共同翻译了英国人棣么甘所写的一本书,译本的名称就叫做《代数学》.当然,代数的内容和方法,我国古代早就产生了,比如成书于公元一世纪初的《九章算术》中就有方程问题.在《九章》方程章中,经刘徽注给方程予以最早的定义:“程,课程也.群物总杂,各列有数,总言其实.令每行为率,二物者再程,三物者三程,皆如物数程之,并列为行,帮谓之方程”.这里的“群物总杂,各列有数,总言其实”是说每一行(相当于今称的方程式)的系数、未知数和常数项(此叫“实”)的组成方法.令每行为率(就是列出几个等式),二物者再乘(两个未知数,列两个等式或程式),三物三乘(三个未知数列三个等式或程式),如物数程之(就是有几个未知数,就列出几个等式或程式),用算筹并列成一方形,所以叫做方程.在方程的定义里,“程”就是“课”,而“课”的本义是试验,考核.正是在试验与考核的意义上,“程”与“课”是相通的.由“课”将数学应用题转化为盈亏类问题,而由“程”把问题布列为“方程”.这种问题模式化的思想和方法是一脉相承的.当然,在这里方程的定义是狭隘的,仅指线性方程组,但《九章》实际上还涉及到二次方程,而且已能用“带从开方术”(“从”读“纵”)求出方程的正根.共步骤相当于“配方法”.《九章》关于多元一次方程组的解法,是将其“所出率”用算筹摆成一个方阵,然后应用“遍乘,通约,齐同”三种基本演算,达到“消元”为目的.《九章》称解方程组的过程为“直除”,即现代的消元法.《九章》方程解法有方程术和正负术,刘徽注又添了新方程术,反映了我国古代方程理论发展的不同阶段.这些解法经刘徽注释,把它们作为比率理论的应用和发展,从而获得了统一的理论基础.初等代数的中心内容是解方程,因而长期以来都把代数学理解成方程的科学,数学家们也把主要精力集中在方程的研究上.它的研究方法是高度计算性的.要讨论方程,首先遇到的一个问题是如何把实际中的数量关系组成代数式,然后根据等量关系列出方程.所以初等代数的一个重要内容就是代数式.由于事物中的数量关系的不同,大体上初等代数形成了整式,分式和根式这三大类代数式.代数式是数的化身,因而在代数中它们都可以进行四则运算,服从基本运算定律,而且还可以进行乘方和开方两种新的运算.通常把这六种运算叫做代数运算,以区别于只包含四种运算的算术运算.在初等代数的产生和发展的过程中,通过解方程的研究也促进了数的概念的进一步发展,将算术中讨论的整数和分数的概念扩充到有理数的范围,使数包括正负整数、正负分数和零.这是初等代数的又一重要内容,就是数的概念的扩充.有了有理数,初等代数能解决的问题就大大地扩充了.但是,有些方程在有理数范围内仍然没有解.于是,数的概念再一次扩充到了实数,进而又进一步扩充到了复数.那么到了复数范围内是不是仍然有方程没有解,还必须把复数再进行扩展呢?数学家们说:不用了.这就是代数里的一个著名的定理——代数基本定理.这个定理简单地说就是n个方程有n个根.1742年12月15日,瑞士数学家欧拉曾在一封信中明确地做了陈述.后来另一个数学家德国的高斯在1799年给出了严格的证明.把上面分析过了的内容综合起来,组成初等代数的基本内容就是:三种数——有理数、无理数、复数.三种式——整式、分式、根式.中心内容是方程——整式方程、分式方程、根式方程和方程组.初等代数的内容大体上相当于现代中学设置的代数课程的内容,但又不完全相同.比如严格地说,数的概念,排列和组合应归入算术的内容;函数是分析数学的内容;不等式的解法有点像解方程的方法,但不等式作为一种估算数值的方法,本质上是属于分析数学的范围;坐标法是研究解析几何的…….这些都只是历史上形成的一种编排方法.初等代数是算术的继续和推广,初等代数研究的对象是代数式的运算和方程的求解.代数运算的特点是只进行有限次的运算.全部初等代数总起来有十条规则.这是学习初等代数需要理解并掌握的要点.这十条规则是:五条基本运算律:加法交换律、加法结合律、乘法交换律、乘法结合律、乘法对加法的分配律;两条等式基本性质:等式两边同时加上一个数,等式不变;等式两边同时乘以一个非零的数,等式不变;三条指数律:同底数幂相乘,底数不变指数相加;幂的乘方等于底数不变指数相乘;积的乘方等于乘方的积.初等代数学进一步向两个方面发展,一方面是研究未知数更多的一次方程组;另一方面是研究未知数次数更高的高次方程.这时候,代数学已由初等代数向着高等代数的方向发展了.2.高等代数初等代数从最简单的一元一次方程开始,一方面进而讨论二元及三元的一次方程组,另一方面研究二次以上及可以转化为二次的方程组.沿着这两个方向继续发展,代数在讨论任意多个未知数的一次方程组(也叫线性方程组)的同时还研究次数更高的一元方程组.发展到这个阶段,就叫做高等代数.高等代数是代数学发展到高级阶段的总称,它包括许多分支.现在大学里开设的高等代数一般包括两部分:线性代数、多项式代数.高等代数在初等代数的基础上研究对象进一步扩充,引进了许多新的概念以及与通常很不相同的量,比如最基本的有集合、向量和向量空间等.这些量具有和数相类似的运算特点,不过研究的方法和运算的方法都更加繁复.集合是具有某种属性的事物的全体;向量是除了具有数值还同时具有方向的量;向量空间也叫线性空间,是由许多向量组成的并且符合某些规则的集合.向量空间中的运算对象已经不只是数,而是向量了,其运算性质也有了很大的不同.古典代数学(即初等代数学)的中心课题是解方程问题.就方程本身而言,它是向两个方向发展的.一个方向是一元高次方程,另一个方向是多元一次方程组与多元高次联立方程组.前者发展成为后来的方程论(或多项式论)的研究,方程论的扩展便是高等代数学.到了十九世纪,还诱发了近世代数的出现.后者的发展形成了线性代数学,它的中心内容是行列式与线性方程组,矩阵及线性空间和线性变换的理论等.多项式是一类最常见,最简单的函数,它的应用非常广泛.多项式理论是以代数方程的根的计算和分布作为中心问题的,也叫做方程论.研究多项式理论,主要在于探讨代数方程的性质,从而寻找简易的解方程的方法.多项式代数所研究的内容,包括整除性理论,因式分解理论等.这些大体上和中学代数里的内容类似.多项式的整除性质对于解代数方程是很有用的.解代数方程无非就是求对应多项式的零点,零点不存在的时候,所对应的代数方程就没有解.我们知道一次方程叫线性方程,讨论线性方程的代数就叫做线性代数.线性代数学的兴起与发展是随着十七、十八世纪生产和科学技术的发展与要求而发展的.在线性代数中最重要的内容是行列式和矩阵.早在十七世纪和十八世纪初,行列式在解方程中就得到了发展.在线性方程组中,由于碰到方程的个数与未知量个数相等,所以就提出行列式这个词.行列式的概念最早是由十七世纪日本数学家关孝和提出来的,他在1683年写了一部叫做《解伏题之法》的著作,标题的意思是“解行列式问题的方法”,书中对行列式的概念和它的展开已经有了清楚的叙述.此外,1750年瑞士克莱姆(C ramer,1704--1752)的“克莱姆法则”也出现,但没有把行列式作为一个单独理论加以研究和阐述.欧洲第一个提出行列式概念的是德国的数学家莱布尼茨.1772年法国数学家范德蒙(Vandermonde,1735--1796)首先把行列式作为专门理论独立于线性方程组之外进行研究.故人们称他是行列式理论的奠基者.德国数学家雅可比于1841年发表了《论行列式的形式与性质》一文标志着行列式的系统理论的建立.行列式有一定的计算规则,利用行列式可以把一个线性方程组的解表示成公式,因此行列式是解线性方程组的工具.行列式可以把一个线性方程组的解表示成公式,也就是说行列式代表着一个数.因为行列式要求行数等于列数,排成的表总是正方形的,通过对它的研究又发现了矩阵的理论.矩阵概念和行列式一样是从解线性方程组中产生的.矩阵概念最早也出现在我国的《九章算术》方程章里.该书所说的“方程”实际是“矩阵”,所说的“方程术”的中心内容是对“方程”(即矩阵)施行“遍乘”与“直除”两种运算.在欧洲,由于有行列式的成果作为基础,1850年前后,矩阵的理论发展是非常迅速的.“矩阵”这个词是西勒维斯特(J.J.Sylvester,1814--1897)在1850年首先提出并使用的.他在碰到线性方程组的方程的个数与未知量个数不等,无法运用行列式概念时提出这个词的.1855年凯莱也引出了矩阵概念.他在文章中介绍他发现这一概念的思想时说:“我决不是通过四元数而获得矩阵概念的,它或是直接从行列式的概念而来,或是作为一个表达方程组的方便的方法而来的.”矩阵也是由数排成行和列的数表,行数和列数可以相等也可以不等.矩阵和行列式是两个完全不同的概念,行列式代表着一个数,而矩阵仅仅是一些数的有顺序的摆法.利用矩阵这个工具可以把线性方程组中的系数组成向量空间中的向量,这样对于一个多元线性方程组的解的情况,以及不同解之间的关系等等一系列理论上的问题,就都可以彻底地解决.矩阵的应用是多方面的,不仅在数学领域里,而且在力学、物理、科技等方面都有十分广泛的应用.1879年,德国数学家弗罗尼乌斯(Frobenius)引入矩阵秩的概念,英国数学家史密斯(H.J.S Smith,1826--1883)引入增广矩阵的概念,证明了n 个未知数m个方程的方程组相容的充分必要条件是其增广矩阵与非增广矩阵的秩相等.在行列式的理论和矩阵理论与应用发展的同时,线性空间以及与之相联系的线性变换的理论也蓬蓬勃勃地发展起来.由于采用向量的概念,可以使得解析几何特别地简单和清楚.向量可以相加,也可以相乘,并且满足如下运算规律:1.2.存在着“零元素”0,使得对任意x,3.对于任意元素x,存在着一个逆元素-x,使得4.5.6.7.8.这里x、y、z是线性空间里的元素,而1、、、是数.如果向量由它的坐标(即它在坐标轴上的射影)给出,那么在向量上进行的加法运算和数乘运算就相应着由它的坐标所组成的行(或列)上同名的运算.这样一来,由三个数组成的行或列就宜于几何上地解释作三维空间中的向量,同时在“行”(或“列”)上进行的运算就解释作为空间中向量上所进行的相应的运算,使得由三个数所组成行(或列)的代数在形式上与三维空间中的向量代数没有差别.线性方程组的系数、线性方程组的解是一个多元有序数组,在多元有序数组集合中引进加法、数乘运算,可以简化线性方程组的讨论,这使它们自然地将三维向量空间推广到n元有序数组集合的n维向量空间.不仅n维向量的集合具备上面所说的这些特性,就是同一类型的矩阵集合以及物理向量:力、速度、加速度等等也具备这些性质.完全是另外性质的数学对象,如一个变元的多项式全体、已知区间[a,b]上的连续函数的全体,线性齐次微分方程解的全体等等,也都具备这些性质.这些例子引导人们进一步推广向量空间的概念,这种空间的元素可以是任意数学对象或物理对象,这就引进了一般的线性空间的概念.同样它们满足加法和数乘一定的运算规律.在很多数学研究中需要改换变数,即从一组变数,…… ,过渡到与它们有函数关系的另一组变数,,…….例如,如果变数是平面上或空间中点的坐标,那么从一个坐标系过渡到另一个坐标系就引起坐标的一个交换,它将原来的坐标用新的坐标表出.此外,在研究一个物体从一个位置或状态变为另一个位置或状态时,如果它的位置或状态由变数的值所给出,变数的变换也会产生.线性变换是线性空间到自身的变换.线性空间中每一个线性变换都对应着一个方阵,变换本身可以用矩阵语言写成形状,这里x是原向量的坐标组成的列,y是变换后的向量的坐标组成的列,是变换的系数矩阵.欧氏空间中,将保持向量长度不变的线性变换称为正交变换.正交变换是将三维空间中坐标原点不动的旋转或旋转与对通过原点的某一平面的反射的联合对n维空间的推广.正交变换是非退化变换的重要特殊情形.线性空间与线性变换是线性代数的几何架构,数组向量和矩阵实际上是它们的代数形式,其间的转换枢纽是基底,就好象是平面和立体几何里的坐标系.然而线性代数里的向量空间却往往从抽象定义开始,这只是相当大的一般性.3.抽象代数在十八世纪后半叶,数学内部悄悄积累的矛盾已经开始酝酿新的变革.当时数学家们面临一系列数学发展进程中自身提出的、长期悬而未决的问题,其中在代数方面最突出的是:高于四次的代数方程的根式求解问题.在十九世纪初,这个问题已变得越发尖锐而不可回避.它们引起了数学家们集中的关注和热烈的探讨,并导致了代数学发展的新突破.在前面曾经说过,中世纪的阿拉伯数学家把代数学看成是解方程的学问.直到十九世纪初,代数学研究仍未超出这个范围.不过这时数学家们的注意力集中在了五次和高于五次的代数方程上.考虑一般的五次式更高次的方程能否像二、三、四次方程一样来求解,也就是说对于形如:(其中)的代数方程,它的解能否通过只对方程的系数作加、减、乘、除和求正整数次方根等运算的公式得到呢?遗憾的是这个问题虽然耗费了许多数学家的时间和精力,但一直持续了长达三个多世纪都没有解决.最终,阿贝尔(1802--1829)解决了五次和高于五次的一般方程的求解问题,证明了五次或五次以上方程不可能有代数解.即这些方程的根不能用方程的系数通过加、减、乘、除、乘方、开方这些代数运算表示出来.他还考虑了一些特殊的能用根式求解的方程,其中的一类被称为“阿贝尔方程”.在这一工作中,他实际上引进了“域”这一重要的近世代数概念,虽然他没有这样来称呼.但他没能解决判定已知方程是否可用根式来求解的问题.这个问题最终由另一个年轻的天才数学家法国的伽罗瓦彻底解决.在十九世纪,代数学的研究对象已突破了数(包括用符号表示的数)的范畴,这种突破是由伽罗瓦群的概念开始的.伽罗瓦20岁的时候,因为积极参加法国资产阶级革命运动曾两次被捕入狱,1832年4月,他出狱不久便在一次私人决斗中死去,年仅21岁.伽罗瓦在临死前预料自己难以摆脱死亡的命运,所以曾连夜给朋友写信,仓促地把自己生平的数学研究心得扼要写出,并附以论文手稿.他在给朋友舍瓦利叶的信中说:“我在分析方面做了一些新发现.有些是关于方程论的;有些是关于整函数的……公开请求雅可比或高斯,不是对这些定理的正确性而是对这些定理的重要性发表意见.我希望将来有人发现消除所有这些混乱对它们是有益的.”伽罗瓦死后,按照他的遗愿,舍瓦利叶把他的信发表在《百科评论》中.他的论文手稿过了14年,才由刘维尔(1809--1882)编辑出版了他的部分文章,并向数学界推荐.随着时间的推移,伽罗瓦的研究成果的重要意义愈来愈为人们所认识.伽罗瓦虽然十分年轻,但是他在数学史上做出的贡献,不仅是解决了几个世纪以来一直没有解决的高次方程的代数解的问题,更重要的是他在解决这个问题中提出了“群”的概念.在伽罗瓦之后,群的概念本身进一步发展,除了有限的、离散的群,又出现了无限群、连续群等,并由此发展了一整套关于群和域的理论,开辟了代数学的一个崭新的天地,直接影响了代数学研究方法的变革.从此,代数学不再以方程理论为中心内容,而转向对代数结构性质的研究,促进了代数学的进一步发展.在数学大师们的经典著作中,伽罗瓦的论文是最薄的,但他的数学思想却是光彩夺目的.代数对象的扩张,在十九世纪还沿着其他途径进行,先后产生了许多其他代数系统,例如四元数与超复数、域、理想等.十九世纪数学家还引进了环(戴德金,1871.克罗内克也研究过环并称之为“order”,希尔伯特首先使用了“ring”即环这个名称)和格(戴德金,1897)等.。
近代欧洲数学发展史
1、欧洲中世纪数学中世纪开始于公元476年西罗马帝国灭亡,约结束于15世纪。
这一千年的历史大致可以分为两段。
十一世纪之前常称为黑暗时代,这时西欧在基督教神学和烦琐哲学的教条统治下,人们失去了思想自由,生产墨守成规,技术进步缓慢,数学停滞不前。
十一世纪以后情况稍有好转。
希腊文化通过罗马人传到中世纪的很少,这大部分体现在博伊西斯(约480~524)的著作中。
他的《算术原理》大体上是新毕达哥拉斯学派数学家尼科马霍斯《算术入门》的译本,但若干精采的命题均被删去。
博伊西斯的《几何》取材于欧几里得《几何原本》,但却完全没有证明,因为他认为证明是多余的。
公元529年,东罗马帝国皇帝查士丁尼勒令关闭雅典的学校,严禁研究和传播数学。
数学发展再一次受到沉重的打击。
此后数百年,值得称道的数学家屈指可数,而且多是神职人员。
号称博学多才的比德是英国的僧侣学者,终生在修道院度过。
他的本领是会算复活节(每年过春分月圆后的第一个星期日)的日期,和用手指来计算。
稍后的阿尔昆也是著名的英国神学家。
781年左右,接受查理曼大帝的聘请,到法兰克王国担任宫廷教师和顾问。
他所编的算术书,现在看来是相当粗浅的。
热尔贝原是兰斯的大主教,后被选为教皇,改名西尔威斯特二世。
他热心提倡学术,对推动“四艺”(音乐、几何、算术、天文)的学习有一定的功劳。
十字军远征(1096~1291)使欧洲人接触到阿拉伯国家所保有古代文化宝藏。
他们将大量的阿拉伯文书籍译成拉丁文。
于是希腊、印度和阿拉伯人创造的文化,还有中国的四大发明便传到了欧洲。
意大利地处东西方交通的要冲,逐渐成为新的经济和文化中心。
12、13世纪欧洲数学界的代表人物是斐波那契,他向欧洲人介绍了印度-阿拉伯数码和位值制记数法,以及各种算法在商业上的应用。
中国的盈不足术和《孙子算经》的不定方程解法也出现在斐波那契的书中。
此外他还有很多独创性的工作。
14世纪的法国主教奥尔斯姆引入了分指数记法和坐标制的思想,后者是从天文、地理的 经纬度到近代坐标几何的过渡。
代数基本定理高斯证明
高斯在他的博士论文中证明了代数基本定理,即一个带有复数系数的n次代数方程g(x)=0,其中n为正整数,至少有一个复数解。
高斯给出了四种不同的证明方法,其中第一种方法是在他的博士论文中首次提出的。
高斯的第一种证明方法是通过纯粹的存在性证明,他并没有具体构造出多项式方程的解,而是证明了这样的解一定存在。
他的证明基于复数域的完备性,即任何复数多项式都可以表示为一次因式的乘积。
他通过考虑多项式的根和系数的关系,以及多项式的因式分解,证明了代数基本定理的正确性。
高斯的第二种证明方法是通过几何论据来证明的,但这种方法相对复杂,不是很容易理解。
第三种证明方法是通过判别式来证明的,即证明每两个根之差的乘积可以表示成多项式和它的导数的线性组合,这种方法也不易理解。
第四种证明方法是基于前三种方法的变种,但高斯更自由地使用了复数,使得证明更加简洁和易于理解。
总之,高斯的代数基本定理证明在数学史上具有重要地位,它不仅解决了长期以来数学家们对于多项式方程解的存在性的疑惑,而且为复数域的研究奠定了基础。
高斯的证明方法也展示了他在数学领域的卓越才华和创新思维。
代数发展史
代数发展史一门科学的历史是那门科学中最珍贵的一部分,因为科学只能给我们知识,而历史却能给我们智慧。
数学的历史是重要的,它是文明史的有价值的组成部分,人类的进步和科学思想是一致的。
数学发展到现在,已经成为科学世界中拥有100多个主要分支学科的庞大的“共和国”。
大体说来,数学中研究数的部分属于代数学的范畴;研究形的部分,属于几何学的范筹;沟通形与数且涉及极限运算的部分,属于分析学的范围。
这三大类数学构成了整个数学的本体与核心。
在这一核心的周围,由于数学通过数与形这两个概念,与其它科学互相渗透,而出现了许多边缘学科和交叉学科。
在此简要介绍代数学的有关历史发展情况。
“代数”〔algebra〕一词最初来源于公元9世纪阿拉伯数学家、天文学家阿尔·花拉子米〔al-Khowārizmī,约780-850〕一本著作的名称,书名的阿拉伯文是‘ilm al-jabr wa’l muqabalah,直译应为《复原与对消的科学》.al-jabr 意为“复原”,这里指把负项移到方程另一端“复原”为正项;muqabalah 意即“对消”或“化简”,指方程两端可以消去相同的项或合并同类项.在翻译中把“a l-jabr”译为拉丁文“aljebra”,拉丁文“aljebra”一词后来被许多国家采用,英文译作“algebra”。
阿布·贾法尔·穆罕默德·伊本·穆萨·阿尔—花拉子米的传记材料,很少流传下来.一般认为他生于花拉子模[Khwarizm,位于阿姆河下游,今乌兹别克境内的希瓦城(Хива)附近],故以花拉子米为姓.另一说他生于巴格达附近的库特鲁伯利(Qut-rubbullī).祖先是花拉子模人.花拉子米是拜火教徒的后裔,早年在家乡接受初等教育,后到中亚细亚古城默夫(Мерв)继续深造,并到过阿富汗、印度等地游学,不久成为远近闻名的科学家.东部地区的总督马蒙(al-Ma’mūn,公元786—833年)曾在默夫召见过花拉子米.公元813年,马蒙成为阿拔斯王朝的哈利发后,聘请花拉子米到首都巴格达工作.公元830年,马蒙在巴格达创办了著名的“智慧馆”(Bayt al-Hikmah,是自公元前3世纪亚历山大博物馆之后最重要的学术机关),花拉子米是智慧馆学术工作的主要领导人之一.马蒙去世后,花拉子米在后继的哈利发统治下仍留在巴格达工作,直至去世.花拉子米生活和工作的时期,是阿拉伯帝国的政治局势日渐安定、经济发展、文化生活繁荣兴盛的时期.花拉子米科学研究的范围十分广泛,包括数学、天文学、历史学和地理学等领域.他撰写了许多重要的科学著作.在数学方面,花拉子米编著了两部传世之作:《代数学》和《印度的计算术》. 1859年,我国数学家李善兰首次把“algebra”译成“代数”。
数学发展简史
10
西安半坡遗址
• 中国西安半坡遗址反映的是约公元前6000年的人类 活动,
• 那里出土的彩陶上有多种几何图形,包括平行线、 三角形、圆、长方形、菱形等。
11
半坡遗址陶器残12 片
埃及金字塔
• 建于约公元前2900年的埃及法老胡夫 的金字塔,塔基每边长约230米,
• 塔基的正方程度与水平程度的 平均误差不超过万分之一。
1.分数四则运算遥遥领先于世界各国,在欧洲直到16~17
世纪才有人总结出类似运算法则。
2.开平方,开立方法领先世界1400~1500年。
3.“盈不足术”在世界上也是首创,中世纪被欧洲人视之为算
术问题的万能解法.
4.负数概念及有理数运算法则也是前无古人,在国外印度直到
《九章算术》600年后才承认负数,欧洲人论述负数则是《九章
31
3.欧洲文艺复兴时期
(公元16世纪——17世纪初)
1)方程与符号
意大利 - 塔塔利亚、卡尔丹、费拉里 三次方程的求根公式
法国 - 韦达 引入符号系统,代数成为独立的学科
32
2)透视与射影几何
画家 - 布努雷契、柯尔比、迪勒、达.芬奇 数学家 - 阿尔贝蒂、德沙格、帕斯卡、拉伊尔
3)对数
简化天文、航海方面烦杂计算,把乘除转化为加减。 英国数学家 - 纳皮尔
花拉子米(波斯
)——要》)曾长期作
为欧洲的数学课本,“代数”一词,即起
源于此;阿拉伯语原意是“还原”,即
“移项”;此后,代数学的内容,主要是
解方程。
30
波斯是伊朗在欧洲的古希腊语和拉丁语的旧 称译音,在中文里,“波斯”被用于描述 1935年之前的伊朗,或该民族从古就有的 名称,如波斯猫、波斯语和波斯地毯,现 代政治、经济等事物则用“伊朗”一词
代数基本定理
代数基本定理
在代数发展史上的很长一段时期内,解一元多项式方程一直是人们研究的一个中心问题.早在古巴比伦时期,人们就会解一元二次方程.16世纪上半叶,数学家们得到了一元三次方程、一元四次方程的解法(包括求根公式).此后,数学家们转向求解一元五次及五次以上的方程。
他们想弄清楚以下问题:一般的一元多项式方程有没有根?如果有根,根的个数是多少?是否存在求根公式?
我们可以发现这样一个现象:随机生成的一元多项式,在复数集中最终都可以分解成一次因式的乘积,且一次因式的个数(包括重复因式)就是被分解的多项式的次数。
事实上,数学中有如下定理:代数基本定理,任何一元n(n∈N)复系数多项式方程f(x)=0至少有一个复数根.
代数基本定理是数学中最重要的定理之一,它在代数学中起着基础作用。
代数基本定理的证明方法有很多种,但每种证法都涉及高等数学知识,此处不作介绍.有兴趣的同学可以查阅相关资料.
由代数基本定理可以得到:任何一元n(n∈N*)次复系数多项式f(x)在复数集中可以分解为n个一次因式的乘积。
进而,一元n次多项式方程有n个复数根(重根按重数计).尽管一元n次多项式方程有n个复数根(重根按重数计),但是一元五次及五次以上的方程不存在一般的求根公式.。
代数基本定理总结知识点
代数基本定理总结知识点在本文中,我们将深入探讨代数基本定理,并总结其知识点。
1. 代数基本定理的表述代数基本定理可以表述为:任何一个次数大于等于1的复系数多项式方程在复数域上都至少有一个复数解。
换句话说,对于形如\[P(z)=a_nz^n+a_{n-1}z^{n-1}+...+a_1z+a_0=0\]的多项式方程,如果多项式的次数n大于等于1,系数a_k为复数,那么该多项式方程必定有解。
2. 代数基本定理的证明代数基本定理最早的证明可以追溯到18世纪,由数学家欧拉和高斯分别给出了不同的证明方法。
在现代数学中,代数基本定理的证明可以通过多种方法完成,例如复变函数论、拓扑学等。
其中,基于复变函数论的证明方法利用了柯西定理,而基于拓扑学的证明方法则需要运用度量紧致性等性质。
3. 代数基本定理的意义代数基本定理揭示了复数域上多项式方程的性质,它对于数学的各个分支都有着重要的意义。
在解析几何中,代数基本定理说明了复数域上的多项式方程对应于射影几何中的代数曲线,它揭示了代数曲线与解析几何的内在联系。
在复变函数论中,代数基本定理为全纯函数的性质研究提供了重要的工具,例如利用了代数基本定理,我们可以证明全纯函数的零点分布性质,从而推导出全纯函数的级数展开等结论。
在拓扑学中,代数基本定理可以应用于度量空间的紧致性问题,例如代数基本定理说明了复平面上的有界闭集是紧致的,这对于拓扑学的研究有着深远的影响。
4. 代数基本定理的推论代数基本定理还有一些重要的推论,例如:(1)一个次数为n的复系数多项式方程在复数域上的n个复数根(计重数)。
(2)一个次数为n的复系数多项式方程可以完全分解为n个一次因子的乘积,其中每个一次因子对应一个复数根。
这些推论揭示了多项式方程的根和因子分解的性质,可以应用于多项式方程的求解和因子分解等问题。
5. 代数基本定理的应用代数基本定理在数学的各个领域都有着重要的应用,例如:(1)在数论中,代数基本定理可以应用于证明不可约多项式的存在性,从而揭示了整数环上多项式的性质。
代数基本定理
代数基本定理
代数基本定理﹝Fundamental Theorem of Algebra﹞是指:对于复数域,每个次数不少于1的复系数多项式在复数域中至少有一根。
由此推出,一个n次复系数多项式在复数域内有且只有n个根,重根按重数计算。
这个定理的最原始思想是印度数学家婆什迦罗﹝1114-1185?﹞在1150年提出的。
他提出了一元二次方程的求根公式,发现了负数作为方程根的可能性,并开始触及方程根的个数,即一元二次方程有两个根。
婆什迦罗把此想法称为《丽罗娃提》﹝Lilavati﹞,这个词原意是「美丽」,也是他女儿的名称。
1629年荷兰数学家吉拉尔在《代数新发现》中提出他的猜测,并断言n次多项式方程有n个根,但是没有给出证明。
1637年笛卡儿﹝1596-1650﹞在他的《几何学》的第三卷中提出:一个多少次的方程便有多少个根,包括他不承认的虚根与负根。
欧拉在1742年12月15日在给朋友的一封信中明确地提出:任意次数的实系数多项式都能够分解成一次和二次因式的乘积。
达朗贝尔、拉格朗日和欧拉都曾试过证明此定理,可惜证明并不完全。
高斯在1799年给出了第一个实质证明,但仍欠严格。
后来他又给出另外三个证明﹝1814-1815,1816,1848-1850﹞,而「代数基本定理」一名亦被认为是高斯提出的。
高斯研究代数基本定理的方法开创了探讨数学中存在性问题的新途径。
20世纪以前,代数学所研究的对象都是建立在实数域或复数域之上,因此代数基本定理在当时曾起到核心的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
代数与代数基本定理的历史
代数与代数基本定理的历史
1.关于代数的故事
在十九世纪以前,代数被理解为关于方程的科学。
十九世纪,法国数学家伽罗华(Evaristr Galois)开创群论以后,代数不再以方程为中心,而是以各种代数结构为中心。
作为中学数学课程的代数,其中心内容就是方程理论。
代数的发展是和方程分不开的。
代数对于算术来说,是一个巨大的进步,代数和算术的主要区别说在于前者引入了未知量,根据问题
,然后解方程求出未知量,我们举一个例子:一个乘以3,再除以5,等于的条件列同方程
60,求这个数。
算术求法(公元1200年左右伊斯兰教的数学家们就是这样解的:既然这个数的3/5是60,那么它的1/5就是20一个数的1/5是20那么这个数是20的5倍,即100。
代数解法:设某数为x ,则可见代数解法与算术思路不同。
各有自己的一套规则,代数解法比较简单明了。
古埃及人、巴比伦人在一些实际计算问题已使用过代数的方法。
据说,1858年苏格兰有一位古董收藏家兰德在非洲的
尼罗河边买了一卷公元前1600年左右遗留下来的古埃及的纸莎草卷,他惊奇地发现,这卷草卷中有一些含有未知数的数学问题(当然都是用象形文字表示的)。
例如有一个问题翻译成数学语言是:
“啊哈,它的全部,它的1/7,其和等于19。
”
如果用x表示这个问题中的求知数,就得到方程,解这个方程,得到。
令人惊奇的是,虽然古埃及人没有我们今天所使用的方程的表示和解法,却成功得到解决了这个答数。
我国古代的代数研究在世界上一直处于领先地位,在经典数学著作《九章算术》中,除了方程外,还有开平方、开立方、正负数的不同表示法和正负
数的加减法则等代数的最基本问题,到宋、元时代,我国对代数的研究达到了高峰。
贾宪等的高次方程数值解方法,秦九
及其韶的联立一次同余式解法,李治的列方程一般方法,朱世杰的多元高次方程组解法,有限级数求和的“招差法公式”,都早于欧洲几百年。
“代数学”这个名称,在我国是1859年正式开始使用的,来自拉丁文(Algebra),它又是从阿拉伯文变来的,其中有一段曲折的历史。
公元825年左右,花拉子模的数学家阿尔——花拉子模写了一本书《Kitabaljabr-W’al-mugabala》意思是“整理”和“对比”,这本书的阿拉伯文版已经失传,但12世纪的一册拉丁文译本却流传到今,在这个译本中,把“aljabr”译成拉丁语“Aljebra”,并作为一门学科,它的课题最首要的就是用字母表示的式子的变形和解方程的规则方程。
我国清代数学李善兰,1859年编译西方代数时,把“Algebra”译成了“代数学”。
从些,“代数”这个名词便一直在我国沿用下来。
2.代数基本定理
任何n(n>0)次多项式在复数域中至少有一个根。
一元一次方程有且只有一个根,一元二次方程在复数域中有且只有两个根,因此,人们自然研究一元n次方程在复数域中有几个根。
此外,当初的积分运算中采用部分分式法也引起了与此有关的问题:是不是任何一个实系数多项式都能分解成一次因式的积,或分解成实系数的一次因式和二次因式的积,这样的分解,关键证明代数基本定理。
代数基本定理的第一个证明是法国数学家达朗贝尔给出的,但他的证明是首先默认了数学分析中一条明显的引理:定义在有限闭区间上的连续函数一定在某一点取得最小值,而这个引理在达朗贝尔的研究100年以后才得到证明。
接着,欧拉也给出了一个证明,但有缺陷,拉格朗日于1772年又重新证明了代数基本定理,后经高斯分析,发现他的证法中把实数的尚未证明其真实性的各种性质应用了,所以该证明仍然是很不严格的。
1799年,高斯在他的博士论文中第一个严格证明了代数基本定理,其基
本思路如下:设f (z)为n次实系数多项式,记z = x + yi (x, y为实数),考察方程:f (x + yi) = u (x, y) + v (x, y)i = 0即u (x, y) = 0与v (x, y) = 0分别表示oxy坐标平面上的两条曲线,于是通过对曲线作定性的研究,他证明了这两条曲线必有一个交点,从而得出u (a, b) = v (a,
b) = 0即f (a + bi) = 0,故此便是代数方程f (z)的一个根。
这个论证具有高度的创造性,但
从现代的标准来看,依然是不严格的,因为他依靠了曲线的图形,证明它们必然相交,而这些图形是比较复杂的。
高斯后来又给出了另外三个证明方法,第二个证法中,不依靠几何的论据,但是却应用了当时未经证明的命题:设多项式p (x) 在x的两个不同的值之间没有零点,则它在这两个值处不可能改变符号。
高斯在71岁时还公布了第四个证法,在这个证法中,他容许多项式的系数是复数。
应指出,在许多证法中,这个定理都不是在最一般的情况下证明的,都是假定了多项式中的文字系数表示实数,但整个定理却包括复系数的情
代数基本定理已作为其他定理的推论。
代数基本定理在代数乃至况。
复变函数论发展后,
整个数学中起着基础作用。
代数学基本定理(Fundamental Theorem of Algebra)是说每个次数不小于1的复系数多项式在复数域中至少有一复根。
这个定理实际上表述了复数域的代数完备性这一事实。
高斯运用含参量积分的结论贡献了一个首创的代数学基本定理的证明;而利用复变函数论中的结论证明起来比较简洁;卢丁(Rudin)在他那本著名的《数学分析原理》中给出了一个看上去更清晰的证明,但其间用到很多专属于他那本著作的定理,要看懂此定理的证明,至少要先研读50页的前文,而全书不过300页具体的证明就不赘述了,自己去查参考文献吧,如果你真的感兴趣的话。
参考文献:
菲赫金哥尔茨 "微积分学教程" ?14.2 [512] 代数学基本定理的高斯证明高
教出版社 Walter Rudin "Principles of Mathematical Analysis" Theorem 8.8 机械工业出版社
Courant, R. and Robbins, H. "The Fundamental Theorem of Algebra." ?2.5.4 in What Is Mathematics?: An Elementary Approach to Ideas and Methods, 2nd ed. Oxford, England: Oxford University Press, pp. 101-103, 1996.
S. G. "The Fundamental Theorem of Algebra." ?1.1.7 and 3.1.4 in Handbook of Complex Krantz,
Variables. Boston, MA: Birkhäuser, pp. 7 and 32-33, 1999.。