静电场中的导体与电介质作业

合集下载

大学物理学 大作业参考解答

大学物理学 大作业参考解答
大学物理学
静电场中的导体和电介质
大作业参考解答
选择题1:当一个带电导体达到静电平衡时, (A)导体表面上电荷密度较大处电势较高; (B)导体表面曲率较大处电势较高; (C)导体内部的电势比导体表面的电势高; (D)导体内任一点与表面上任一点的电势差等于零。
NIZQ 第1页
大学物理学
静电场中的导体和电介质
d a
a
E dx
x
d a d ln ln 0 a 0 a
0 q 1 C U U A U B ln d a
NIZQ 第18页
大学物理学
静电场中的导体和电介质
计算题3:如图所示,在一不带电的金属球旁,有一点电荷 +q,金属球半径为R,点电荷+q与金属球球心的间距为d, 试求: (1)金属球上感应电荷在球心处产生的电场强度。 (2)若取无穷远处为电势零点,金属球的电势为多少?
-σ1 σ1 σ2 -σ2
d1 (A) d2 (C) 1
d2 (B) d1 d2 (D) 2 d1
2
d1
d2
1 2 d1 d2 0 0
NIZQ 第8页
大学物理学
静电场中的导体和电介质
填空题1:如图所示,两同心导体球壳,内球壳带 电量+q,外球壳带电量 -2q . 静电平衡时,外球壳 的内表面带电量为 ;外表面带电量 -q 为 。 -q
q CU r C 0U r q 0
U E E0 d
1 1 1q 2 W qU CU r E0 2 2 2C
NIZQ 第16页
2
计算题1:两块相互平行的导体板a和b ,板面积均为S,
大学物理学
静电场中的导体和电介质

静电场中的导体与电介质习题课

静电场中的导体与电介质习题课
∞ ∞
静电场中的导体和介质习题课
全部分布在外表面。 (2)连接后电荷 +q全部分布在外表面。 )连接后电荷Q+ 全部分布在外表面
Q+q U1 = U 2 = 4πε 0 R3
(3)内球接地,U1=0。内球带电 ´,外球壳内表面- q´, )内球接地, 。内球带电q´ 外球壳内表面- ´ 外表面Q+ ´ 外表面 + q´,
− q′ Q + q′ U1 = + + =0 4πε 0 R1 4πε 0 R2 4πε 0 R3 R1 R2Q q′ = R1 R2 + R3 ( R2 − R1 )
U 2 = −∫
R1 R2
q′
− q′( R2 − R1 ) Edr = ∫ dr = R2 4πε r 2 4πε 0 R1 R2 0
静电场中的导体和介质习题课
例:计算机键盘的键结构如图。按键连有一可移动的金属片。 计算机键盘的键结构如图。按键连有一可移动的金属片。 下面是一固定的金属片,中间是软的绝缘介质( )。两 下面是一固定的金属片,中间是软的绝缘介质(εr=2)。两 )。 块金属片就构成一个平板电容器。当键按下时, 块金属片就构成一个平板电容器。当键按下时,电容器的电容 发生变化,与之相连的电路就能检测出哪一个键被按下, 发生变化,与之相连的电路就能检测出哪一个键被按下,从而 给出相应的信号。设金属片面积为50mm2,两金属片间距 给出相应的信号。设金属片面积为 0.6mm。如果电路能检测出的电容的变化是 。如果电路能检测出的电容的变化是0.25pF,那么需要 , 将键按下多大的距离才能给出必要的信号? 将键按下多大的距离才能给出必要的信号? 解:按键前电容 C = ε r ε 0 S 1 d ε rε 0 S 按键后电容 C2 = d − ∆d

工科物理大作业06-静电场中的导体与电介质

工科物理大作业06-静电场中的导体与电介质

图6-1(a)图6-1(b)0606 静电场中的导体与电介质班号 学号 姓名 成绩一、选择题(在下列各题中,均给出了4个~5个答案,其中有的只有1个是正确答案,有的则有几个是正确答案,请把正确答案的英文字母序号填在题后的括号内)1.如图6-1(a)所示,一个原来不带电的导体球壳,内半径为R 1,外半径为R 2,其圆心O 处放置一个点电荷q +。

现将q +由O 点移至P 点,则在下列说法中,正确的是:A .在1R r <的区域内,各点的电场强度要发生变化,而2R r >的区域电场强度不变;B .球壳内、外表面的感应电荷分布没有变化;C .球壳内表面的感应电荷不再均匀分布,外表面不受影响;D .球壳内、外表面的感应电荷不再均匀分布。

(A 、C )[知识点] 静电感应、感应电荷的分布。

[分析与解答] 导体球壳内放入点电荷+q ,球壳内表面要感应出-q ,外表面将感应出+q 的电荷。

由于点电荷+q 在球壳内由O 点移到P 点,球壳内表面距离点电荷+q (P 点)近的地方,感应电荷的密度大,距离点电荷+q (P 点)远处的地方,感应电荷的密度小,即球壳内表面-q 的分布将不均匀;而对于球壳外表面来说,其内部(指内表面和点电荷)有等量异号的电荷,由于屏蔽,其电场将完全不影响壳外电场,外表面又是球面,因此外表面感应电荷+q 分布均匀,如图6-1(b)所示。

由点电荷电场强度公式知,当点电荷+q 在O 点时,其电场为球对称分布,而移到P 点后,在1R r <区域内,距离P 点近的场点电场强度要大,远场点电场强度要小,在2R r >,由高斯定理知为球对称分布电场,与点电荷+q 放置在O 点时一致。

2.如图6-2所示,一金属球半径为R ,带电Q -,距球心为3R 处有一点电荷q -。

现将金属球接地,则金属球面上的电荷为:A .0;B .q Q +-;C .3q; D .q +。

(C )图6-2图6-3(a)图6-3(b)[知识点] 外壳接地后电势叠加为零。

第十章 静电场中的导体和电介质习题解答

第十章 静电场中的导体和电介质习题解答

10-1 如题图所示,一内半径为a 、外半径为b 的金属球壳,带有电荷Q ,在球壳空腔内距离球心r 处有一点电荷q ,设无限远处为电势零点。

试求: (1) 球壳内外表面上的电荷;(2) 球心O 点处,由球壳内表面上电荷产生的电势;(3) 球心O 点处的总电势。

习题10-1图解:(1) 由静电感应,金属球壳的内表面上有感生电荷-q ,外表面上带电荷q +Q 。

(2) 不论球壳内表面上的感生电荷是如何分布的,因为任一电荷元离O 点的 距离都是a ,所以由这些电荷在O 点产生的电势为0d 4q qU aπε-=⎰aq04επ-=(3) 球心O 点处的总电势为分布在球壳内外表面上的电荷和点电荷q 在O 点产生的电势的代数和q Q q q O U U U U +-++=04qr πε=04qa πε-04Q qb πε++01114()q r a bπε=-+04Q bπε+ 10-2 有一"无限大"的接地导体板 ,在距离板面b 处有一电荷为q 的点电荷,如题图(a)所示。

试求:(1) 导体板面上各点的感生电荷面密度分布(参考题图(b)); (2) 面上感生电荷的总电荷(参考题图(c))。

习题10-2图解:(1) 选点电荷所在点到平面的垂足O 为原点,取平面上任意点P ,P 点距离原点为r ,设P 点的感生电荷面密度为.在P 点左边邻近处(导体内)场强为零,其法向分量也是零,按场强叠加原理,()220cos 024P q E r b θσεπε⊥=+=+ ∴ ()2/3222/b r qb +-=πσ (2) 以O 点为圆心,r 为半径,d r 为宽度取一小圆环面,其上电荷为 ()3222d d d //Q S qbr r r bσ==-+q Q a bO r()q brrr qb S Q S-=+-==⎰⎰∞2322d d /σ10-3 如题图所示,中性金属球A ,半径为R ,它离地球很远.在与球心O 相距分别为a 与b 的B 、C 两点,分别放上电荷为A q 和B q 的点电荷,达到静电平衡后,问: (1) 金属球A 内及其表面有电荷分布吗?(2) 金属球A 中的P 点处电势为多大?(选无穷远处为电势零点)B C R AP Oq A q Bba习题10-3图解:(1) 静电平衡后,金属球A 内无电荷,其表面有正、负电荷分布,净电荷为零. (2) 金属球为等势体,设金属球表面电荷面密度为. ()()000d 4=4////AP A B S U U S R q a q a σπεπε==⋅+⎰⎰∵d 0AS S σ⋅=⎰⎰∴ ()()04///P A B U q a q a πε=+10-4 三个电容器如题图联接,其中C 1 = 10×10-6 F ,C 2 = 5×10-6 F ,C 3 = 4×10-6 F ,当A 、B 间电压U =100 V 时,试求:(1) A 、B 之间的电容;(2) 当C 3被击穿时,在电容C 1上的电荷和电压各变为多少?ABC 1C 2 C 3U习题10-4图解:(1) =+++=321321)(C C C C C C C 3.16×10-6 F(2) C 1上电压升到U = 100 V ,电荷增加到==U C Q 111×10-3 C10-5 一个可变电容器,由于某种原因所有动片相对定片都产生了一个相对位移,使得两个相邻的极板间隔之比为2:1,问电容器的电容与原来的电容相比改变了多少?(a) (b)习题10-5图解:如图所示,设可变电容器的静片数为n ,定片数为1-n ,标准情况下,极板间的距离为d (图a ),极板相对面积为S 。

大学物理第7章静电场中的导体和电介质课后习题及答案

大学物理第7章静电场中的导体和电介质课后习题及答案

大学物理第7章静电场中的导体和电介质课后习题及答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第7章 静电场中的导体和电介质 习题及答案1. 半径分别为R 和r 的两个导体球,相距甚远。

用细导线连接两球并使它带电,电荷面密度分别为1σ和2σ。

忽略两个导体球的静电相互作用和细导线上电荷对导体球上电荷分布的影响。

试证明:Rr=21σσ 。

证明:因为两球相距甚远,半径为R 的导体球在半径为r 的导体球上产生的电势忽略不计,半径为r 的导体球在半径为R 的导体球上产生的电势忽略不计,所以半径为R 的导体球的电势为R R V 0211π4επσ=14εσR= 半径为r 的导体球的电势为r r V 0222π4επσ=24εσr= 用细导线连接两球,有21V V =,所以R r =21σσ 2. 证明:对于两个无限大的平行平面带电导体板来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)相背的两面上,电荷的面密度总是大小相等而符号相同。

证明: 如图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ(1)取与平面垂直且底面分别在A 、B 内部的闭合圆柱面为高斯面,由高斯定理得S S d E S ∆+==⋅⎰)(10320σσε 故 +2σ03=σ上式说明相向两面上电荷面密度大小相等、符号相反。

(2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即0222204030201=---εσεσεσεσ 又 +2σ03=σ 故 1σ4σ=3. 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量。

解:如图所示,设金属球表面感应电荷为q ',金属球接地时电势0=V由电势叠加原理,球心电势为=O V R qdq R 3π4π4100εε+⎰03π4π400=+'=Rq R q εε故 -='q 3q 4.半径为1R 的导体球,带有电量q ,球外有内外半径分别为2R 、3R 的同心导体球壳,球壳带有电量Q 。

《大学物理学》习题解答(第12章 静电场中的导体和电介质)(1)

《大学物理学》习题解答(第12章 静电场中的导体和电介质)(1)
d R
(2)两输电线的电势差为 U
xR

E dl

R
Ed x
d R ln 0 R
(3)输电线单位长度的电容 C

U
0 / ln
d R d 0 / ln 4.86 1012 F R R
【12.9】半径为 R1 的导体球被围在内半径为 R2 、外半径为 R3 、相对电容率为 r 的介质球壳内,它们是同 球心的。若导体带电为 Q ,则导体内球表面上的电势为多少? 【12.9 解】先求各区域电场 (1)
Q 4 0 R3
( R3 r )
B 球壳为等势体,其电势为
V
R3
E dr
Q 4 0
R3
r
dr
2
【12.2】一导体球半径为 R1,外罩一半径为 R2 的同心薄导体球壳,外球壳所带总电荷为 Q,而内球的电势为 V0.求此系统的电势和电场分布。 【12.2 解】已知内球电势为 V0 ,外球壳带电 Q 。 (1)先求各区域的电场强度:设内球带电荷 q 。由高斯定理,有

E
U

z
2R
( 1 )一根带电 的输电线在两线之间、距其轴心 x 处 p 点的场强为
x
dx
p
E i 2 0 x
另一根带电 的输电线在 p 点产生的电场强度为
x
E

2 0 ( d x )
i
p 点的总电场强度为
E E E
d R
1 1 ( )i 2 0 x d x
E1 0
(r R1 ) ( R1 r R2 ) 4 r 2 D Q , D 0 r E3

第十二章 静电场中的导体和电介质作业答案

第十二章 静电场中的导体和电介质作业答案

B E dx
A
B A
q1 q2 S20
dx
q1 q2 20S
d
3. 有一接地的金属球,用一弹簧吊起,金属球原来不带电.若在它的下方放置一电荷
为q的点电荷,如图所示,则 C
(A) 只有当q 0时,金属球才下移.
(B) 只有当q 0时,金属球才下移.
(C) 无论q是正是负金属球都下移.
(D) 无论q是正是负金属球都不动.
0
Q球
1 2
q
二、填空题
1. 地球表面附近的电场强度约为100N/C,方向垂直地面向下,假设地球上的电荷都均
匀分布在地球表面上,则地面的电荷密度为______。
分析:地球是一个等势体,里边的场强为零,达到静电平衡,表面附近的场强
E
0
100
0 100 8. 85 1012 100 8. 85 1010 C2 m-2
q UAB
q
1
UAB
q
1
UAB 40RB外表面
1
q UAB
1 4 0 R B外表面
40RB外表面
q UAB
q UAB
4 0 R B外表面
q
1
UAB
q
1
UAB 40RB外表面
jintian 2. 在空气平行板电容器中,平行地插上一块各向同性均匀电介质板,如图所示,当电 容器充电后,若忽略边缘效应,则电介质中的场强E与空气中的场强E0相比较,应
q
分析:一带电量为q、半径为R的金属薄球壳,里边的场强为零,电介质不被极化,电介质
不产生附加电场,壳外是真空,壳外的场强就是电量q产生的场强。半径为R的金属薄球壳
是一个等势体,
E U壳

大物AI作业参考解答_No.08 静电场中的导体和电介质

大物AI作业参考解答_No.08 静电场中的导体和电介质

《大学物理AI 》作业No.08静电场中的导体和电介质班级________学号________姓名_________成绩______--------------------------------------------------------------------------------------------------------------------****************************本章教学要求****************************1、理解静电平衡的条件,理解静电感应、静电屏蔽的原理;2、掌握静电平衡时导体表面感应电荷的分布和电场、电势的计算;3、了解电介质的极化现象和微观解释,理解电位移矢量D的定义,确切理解电介质中的高斯定理,并能利用它求解有电介质存在时具有一定对称性的电场问题;4、理解电容的定义,掌握电容器电容的计算方法;5、掌握电容器的储能公式,理解电场能量密度的概念,并能计算电荷系的静电能;6、理解电流强度和电流密度的概念,理解恒定电场的特点及电源电动势的概念。

--------------------------------------------------------------------------------------------------------------------一、选择题:1.把A ,B 两块不带电的导体放在一带正电导体的电场中,如图所示。

设无限远处为电势零点,A 的电势为U A ,B 的电势为U B ,则[D ](A)U B >U A ≠0(B)U B >U A =0(C)U B =U A (D)U B <U A解:电力线如图所示,电力线指向电势降低的方向,所以U B <U A 。

2.半径分别为R 和r 的两个金属球,相距很远。

用一根细长导线将两球连接在一起并使它们带电。

在忽略导线的影响下,两球表面的电荷面密度之比为[D ](A)R/r (B)R 2/r 2(C)r 2/R 2(D)r/R解:两个金属球用导线相接意味着它们的电势相等,设它们各自带电为21q q 、,选无穷远处为电势0点,那么有:rq Rq 020144,我们对这个等式变下形r R rr r q R R R q 21020144 ,即面电荷密度与半径成反比。

2.3 静电场中的导体与电介质

2.3  静电场中的导体与电介质

被积函数 代入原式
r r r r r r P(r ') ∇′ ⋅ P(r ')) 1 P(r ') ⋅∇′ = ∇′ ⋅ − R R R
r r r r P (r ') r 1 ∇′ ⋅ P (r ') ϕ p (r ) = ∇′ ⋅ dV ′ − ∫ dV ′ ∫V ′ V′ 4π ε0 R R
+
+++ +
+
+ + +
感应电荷
CQU
+ + + +
+ + + +
+ + + +
v E0
CQU
v E0
v E=0
v' E
+ + + + + + + +
v E0
v v v' E = E0 + E = 0
导体内电场强度 外电场强度 感应电荷电场强度
CQU
静电平衡条件: 静电平衡条件 (1)导体内部任何一点处的电场强度为零; )导体内部任何一点处的电场强度为零; 都与导体表面垂直; (2)导体表面处的电场强度的方向 都与导体表面垂直 )导体表面处的电场强度的方向,都与导体表面垂直 (3)导体为一等位体,导体表面为等位面; )导体为一等位体,导体表面为等位面; (4)电荷(或感应电荷)分布在导体表面上,形成面电荷 )电荷(或感应电荷)分布在导体表面上,形成面电荷. 导体表面是等势面
2.3 静电场中的导体与电介质
CQU
导体与介质放在电场中会发生什么现象? 导体与介质放在电场中会发生什么现象? 导体:静电感应; 介质:极化现象。 导体:静电感应; 介质:极化现象。

大学物理下册第10章课后题答案

大学物理下册第10章课后题答案

习题10-3图第10章 静电场中的导体和电介质习 题一 选择题10-1当一个带电导体达到静电平衡时,[ ] (A) 表面上电荷密度较大处电势较高 (B) 表面曲率较大处电势较高(C) 导体内部的电势比导体表面的电势高(D) 导体内任一点与其表面上任一点的电势差等于零 答案:D解析:处于静电平衡的导体是一个等势体,表面是一个等势面,并且导体内部与表面的电势相等。

10-2将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,导体B 的电势将[ ](A) 升高 (B)降低 (C)不会发生变化 (D)无法确定 答案:A解析:不带电的导体B 相对无穷远处为零电势。

由于带正电的带电体A 移到不带电的导体B 附近的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A )。

10-3将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷。

若将导体N 的左端接地(如图10-3所示),则[ ](A) N 上的负电荷入地 (B) N 上的正电荷入地 (C) N 上的所有电荷入地 (D) N 上所有的感应电荷入地 答案:A解析:带负电的带电体M移到不带电的导体N附近的近端感应正电荷;在远端感应负电荷,不带电导体的电势将低于无穷远处,因此导体N的电势小于0,即小于大地的电势,因而大地的正电荷将流入导体N,或导体N的负电荷入地。

故正确答案为(A)。

10-4 如图10-4所示,将一个电荷量为q电的导体球附近,点电荷距导体球球心为d。

设无穷远处为零电势,则在导体球球心O点有[ ](A)0E,4πε=qVd(B)24πε=qEd,4πε=qVd(C) 0E,0V(D)24πε=qEd,4πε=qVR答案:A解析:导体球处于静电平衡状态,导体球内部电场强度为零,因此0E。

导体球球心O点的电势为点电荷q及感应电荷所产生的电势叠加。

感应电荷分布于导体球表面,至球心O的距离皆为半径R,并且感应电荷量代数和q∑为0,因此4qVRπε==∑感应电荷。

第13章-静电场中的导体和电介质汇总

第13章-静电场中的导体和电介质汇总

(2)空腔内电场强度处处为零,或者说,空腔内的电势处处相等。
证明:在导体内部作一个包围内表面的闭
q
合曲面,由静电平衡v条件,此曲面
上各点的电场强度 E 0,则通过
Ò闭S合Ev曲d面Sv的 0电通量所为以零,即q:i 0
S
假设导体空腔内表面上分布有等量异号的 电荷,是否可以?
屏蔽作用──导体壳内所包围的区域不受外电场的影响。
第13章 静电场中的导体和电介质
本章重点: 本章作业:
§13.1 静电场中的导体
一、导体的静电平衡条件
导体在静电场中,两侧出现正、负电
荷的现象叫做静电感应现象。产生的
电荷称为感应电荷。产生外电场的
电荷称为施感电荷。
静电平衡时:
E E0 E 0
E0
E0
E0
静电平衡时,要求表面电荷也不能移动.即表面处的静电场
( R1 r R2 ) (r R2 )
q
R2
R1
R
(2)根据静电平衡条件和电势的定义可得电势的分布为
R
R1
R2
R1 q
qQ
U1
r
E1dr
R
E2dr
E3dr
R1
E4dr
R2
R
4π0r 2 dr
R2
4π0r 2 dr
1
4π 0
q R
q R1
qQ R2
(r R)
U2
R1
E2dr
E2
则面元dS所受的电场力为 单位面积上受到的电场力为
F
2
2 0
E2 en
dS
2 2 0
d Sen
例题13-3 半径为R的孤立金属球,接 地,与球心相距 l 处有一点电荷+q, 求球 上的感应电荷q′。

大学物理习题静电场中的导体和电介质习题课

大学物理习题静电场中的导体和电介质习题课

解:因保持与电源连接,两极间电势保持不变,而
电容值为 C 0S / d C' 0S /(nd ) C / n
电容器储存的电场能量由 We CU 2 / 2
We' C'U 2 / 2 CU 2 / 2n
We
We'We
U
2
/ 2(C
/n
C)
CU 2
21
n n
当电介质被裁成两段后撤去电场,极化的电介质又恢 复原状,仍各保持中性。
选择题:
1.“无限大”均匀带电平面 A 附近平行放 置有一定厚度的“无限大”平面导体板 B, 如图所示,已知 A 上的电荷面密度为 + , 则在导体板 B 的两个表面 1 和 2 上的感
应电荷面密度为
(A) 1=–, 2=0 (B) 1= –, 2=+, (C) 1= – /2 , 2=+ /2 (D) 1= – /2 , 2= – /2
电量还是原来的分布吗?
C

+Q -Q
C
+2Q -2Q

C
+-qq11
C
+-qq22
C +-qq11
C
由(2)得 由(1)得
C +1.5Q C -1.5Q
+-qq22
求 q1,q2:
q1 q2 3Q
q1 q2 CC
q1 q1

q2 q2

3 2
Q
(1) (2)
+1.5Q -1.5Q
[C]
1 2
AB
2.在一个带电量为 +q 的外表面为球形的 空腔导体 A 内,放有一带电量为 +Q 的带 电导体 B ,则比较空腔导体 A 的电势 UA, 和导体 B 的电势 UB 时,可得以下结论:

大学物理静电场中的导体和电介质习题答案

大学物理静电场中的导体和电介质习题答案

第13章 静电场中的导体和电介质P70.13.1 一带电量为q ,半径为r A 的金属球A ,与一原先不带电、内外半径分别为r B 和r C 的金属球壳B 同心放置,如图所示,则图中P 点的电场强度如何?若用导线将A 和B 连接起来,则A 球的电势为多少?(设无穷远处电势为零)[解答]过P 点作一个同心球面作为高斯面,尽管金属球壳内侧会感应出异种,但是高斯面内只有电荷q .根据高斯定理可得 E 4πr 2 = q /ε0, 可得P 点的电场强度为204q E rπε=.当金属球壳内侧会感应出异种电荷-q 时,外侧将出现同种电荷q .用导线将A 和B 连接起来后,正负电荷将中和.A 球是一个等势体,其电势等于球心的电势.A 球的电势是球壳外侧的电荷产生的,这些电荷到球心的距离都是r c ,所以A 球的电势为04cq U r πε=.13.2 同轴电缆是由半径为R 1的导体圆柱和半径为R 2的同轴薄圆筒构成的,其间充满了相对介电常数为εr 的均匀电介质,设沿轴线单位长度上导线的圆筒的带电量分别为+λ和-λ,则通过介质内长为l ,半径为r 的同轴封闭圆柱面的电位移通量为多少?圆柱面上任一点的场强为多少?[解答]介质中的电场强度和电位移是轴对称分布的.在内外半径之间作一个半径为r 、长为l 的圆柱形高斯面,根据介质中的高斯定理,通过圆柱面的电位移通过等于该面包含的自由电荷,即 Φd = q = λl .设高斯面的侧面为S 0,上下两底面分别为S 1和S 2.通过高斯面的电位移通量为d d SΦ=⋅⎰D S12d d d 2S S S rlD π=⋅+⋅+⋅=⎰⎰⎰D S D S D S ,可得电位移为 D = λ/2πr , 其方向垂直中心轴向外.电场强度为 E = D/ε0εr = λ/2πε0εr r , 方向也垂直中心轴向外.13.3 金属球壳原来带有电量Q ,壳内外半径分别为a 、b ,壳内距球心为r 处有一点电荷q ,求球心o 的电势为多少?[解答]点电荷q 在内壳上感应出负电荷-q ,不论电荷如何分布,距离球心都为a .外壳上就有电荷q+Q ,距离球为b .球心的电势是所有电荷产生的电势叠加,大小为000111444o q q Q qU r a bπεπεπε-+=++13.4 三块平行金属板A 、B 和C ,面积都是S = 100cm 2,A 、B 相距d 1 = 2mm ,A 、C 相距d 2 = 4mm ,B 、C 接地,A 板带有正电荷q = 3×10-8C ,忽略边缘效应.求(1)B 、C 板上的电荷为多少?图14.3图14.4(2)A板电势为多少?[解答](1)设A的左右两面的电荷面密度分别为σ1和σ2,所带电量分别为q1 = σ1S和q2 = σ2S,在B、C板上分别感应异号电荷-q1和-q2,由电荷守恒得方程q = q1 + q2 = σ1S + σ2S.①A、B间的场强为E1 = σ1/ε0,A、C间的场强为E2 = σ2/ε0.设A板与B板的电势差和A板与C板的的电势差相等,设为ΔU,则ΔU = E1d1 = E2d2,②即σ1d1 = σ2d2.③解联立方程①和③得σ1 = qd2/S(d1 + d2),所以q1 = σ1S = qd2/(d1+d2) = 2×10-8(C);q2 = q - q1 = 1×10-8(C).B、C板上的电荷分别为q B= -q1 = -2×10-8(C);q C= -q2 = -1×10-8(C).(2)两板电势差为ΔU = E1d1 = σ1d1/ε0 = qd1d2/ε0S(d1+d2),由于k = 9×109 = 1/4πε0,所以ε0 = 10-9/36π,因此ΔU = 144π= 452.4(V).由于B板和C板的电势为零,所以U A = ΔU = 452.4(V).13.5 一无限大均匀带电平面A,带电量为q,在它的附近放一块与A平行的金属导体板B,板B有一定的厚度,如图所示.则在板B的两个表面1和2上的感应电荷分别为多少?[解答]由于板B原来不带电,两边感应出电荷后,由电荷守恒得q1 + q2 = 0.①虽然两板是无限大的,为了计算的方便,不妨设它们的面积为S,则面电荷密度分别为σ1 = q1/S、σ2 = q2/S、σ = q/S,它们产生的场强大小分别为E1 = σ1/ε0、E2 = σ2/ε0、E = σ/ε0.在B板内部任取一点P,其场强为零,其中1面产生的场强向右,2面和A板产生的场强向左,取向右的方向为正,可得E1 - E2–E = 0,即σ1 - σ2–σ= 0,或者说q1 - q2 + q = 0.②解得电量分别为q2 = q/2,q1 = -q2 = -q/2.13.6 两平行金属板带有等异号电荷,若两板的电势差为120V,两板间相距为1.2mm,忽略边缘效应,求每一个金属板表面的电荷密度各为多少?[解答]由于左板接地,所以σ1 = 0.由于两板之间的电荷相互吸引,右板右面的电荷会全部吸引到右板左面,所以σ4 = 0.由于两板带等量异号的电荷,所以σ2 = -σ3.两板之间的场强为E = σ3/ε0,而 E = U/d,所以面电荷密度分别为σ3 = ε0E = ε0U/d = 8.84×10-7(C·m-2),σ2 = -σ3 = -8.84×10-7(C·m-2).13.7 一球形电容器,内外球壳半径分别为R1和R2,球壳与地面及其他物体相距很远.将内球用细导线接地.试证:球面间电容可用公式202214RCR Rπε=-表示.(提示:可看作两个球电容器的并联,且地球半径R>>R2)[证明]方法一:并联电容法.在外球外面再接一个半径为R3大外球壳,外壳也接地.内球壳和外球壳之间是一个电容器,电容为P2图14.5图14.61210012211441/1/R R C R R R R πεπε==--外球壳和大外球壳之间也是一个电容器,电容为2023141/1/C R R πε=-.外球壳是一极,由于内球壳和大外球壳都接地,共用一极,所以两个电容并联.当R 3趋于无穷大时,C 2 = 4πε0R 2.并联电容为12120022144R R C C C R R R πεπε=+=+-202214R R R πε=-. 方法二:电容定义法.假设外壳带正电为q ,则内壳将感应电荷q`.内球的电势是两个电荷产生的叠加的结果.由于内球接地,所以其电势为零;由于内球是一个等势体,其球心的电势为0201`044q q R R πεπε+=,因此感应电荷为12`R q q R =-. 根据高斯定理可得两球壳之间的场强为122002`44R q q E r R rπεπε==-, 负号表示场强方向由外球壳指向内球壳.取外球壳指向内球壳的一条电力线,两球壳之间的电势差为1122d d R R R R U E r =⋅=⎰⎰E l121202()d 4R R R qr R rπε=-⎰ 1212021202()11()44R q R R q R R R R πεπε-=-= 球面间的电容为202214R q C U R R πε==-.13.8 球形电容器的内、外半径分别为R 1和R 2,其间一半充满相对介电常量为εr 的均匀电介质,求电容C 为多少?[解答]球形电容器的电容为120012211441/1/R R C R R R R πεπε==--.对于半球来说,由于相对面积减少了一半,所以电容也减少一半:0121212R R C R R πε=-.当电容器中充满介质时,电容为:0122212r R R C R R πεε=-.由于内球是一极,外球是一极,所以两个电容器并联:01212212(1)r R R C C C R R πεε+=+=-.13.9 设板面积为S 的平板电容器析板间有两层介质,介电常量分别为ε1和ε2,厚度分别为d 1和d 2,求电容器的电容.[解答]假设在两介质的介面插入一薄导体,可知两个电容器串联,电容分别为C 1 = ε1S/d 1和C 2 = ε2S/d 2. 总电容的倒数为122112*********d d d d C C C S S Sεεεεεε+=+=+=, 总电容为 122112SC d d εεεε=+.13.10 圆柱形电容器是由半径为R 1的导线和与它同轴的内半径为R 2的导体圆筒构成的,其长为l ,其间充满了介电常量为ε的介质.设沿轴线单位长度导线上的电荷为λ,圆筒的电荷为-λ,略去边缘效应.求:(1)两极的电势差U ;(2)介质中的电场强度E 、电位移D ; (3)电容C ,它是真空时电容的多少倍?[解答]介质中的电场强度和电位移是轴对称分布的.在内外半径之间作一个半径为r 、长为l 的圆柱形高斯面,侧面为S 0,上下两底面分别为S 1和S 2.通过高斯面的电位移通量为d d SΦ=⋅⎰D S12d d d 2S S S rlD π=⋅+⋅+⋅=⎰⎰⎰D S D S D S ,高斯面包围的自由电荷为 q = λl , 根据介质中的高斯定理 Φd = q , 可得电位为 D = λ/2πr , 方向垂直中心轴向外.电场强度为 E = D/ε = λ/2πεr , 方向也垂直中心轴向外.取一条电力线为积分路径,电势差为21d d d 2R LLR U E r r r λπε=⋅==⎰⎰⎰E l 21ln 2R R λπε=. 电容为 212ln(/)q lC U R R πε==. 在真空时的电容为00212ln(/)l q C U R R πε==, 所以倍数为C/C 0 = ε/ε0.13.11 在半径为R 1的金属球外还有一层半径为R 2的均匀介质,相对介电常量为εr .设金属球带电Q 0,求:(1)介质层内、外D 、E 、P 的分布; (2)介质层内、外表面的极化电荷面密度.[解答](1)在介质内,电场强度和电位移以及极化强度是球对称分布的.在内外半径之间作一个半径为r 的球形高斯面,通过高斯面的电位移通量为2d d 4d SSD S r D Φπ=⋅==⎰⎰D S高斯面包围的自由电荷为q = Q 0, 根据介质中的高斯定理 Φd = q , 可得电位为 D = Q 0/4πr 2, 方向沿着径向.用矢量表示为D = Q 0r /4πr 3.电场强度为E = D /ε0εr = Q 0r /4πε0εr r 3, 方向沿着径向.由于 D = ε0E + P , 所以 P = D - ε0E = 031(1)4rQ rεπ-r. 在介质之外是真空,真空可当作介电常量εr = 1的介质处理,所以D = Q 0r /4πr 3,E = Q 0r /4πε0r 3,P = 0. (2)在介质层内靠近金属球处,自由电荷Q 0产生的场为E 0 = Q 0r /4πε0r 3;极化电荷q 1`产生的场强为E` = q 1`r /4πε0r 3;总场强为 E = Q 0r /4πε0εr r 3. 由于 E = E 0 + E `,解得极化电荷为 `101(1)rq Q ε=-,介质层内表面的极化电荷面密度为``01122111(1)44r Q q R R σπεπ==-. 在介质层外表面,极化电荷为``21q q =-,面密度为``02222221(1)44r Q q R R σπεπ==-.13.12 两个电容器电容之比C 1:C 2 = 1:2,把它们串联后接电源上充电,它们的静电能量之比为多少?如果把它们并联后接到电源上充电,它们的静电能之比又是多少?[解答]两个电容器串联后充电,每个电容器带电量是相同的,根据静电能量公式W = Q 2/2C ,得静电能之比为W 1:W 2 = C 2:C 1 = 2:1. 两个电容器并联后充电,每个电容器两端的电压是相同的,根据静电能量公式W = CU 2/2,得静电能之比为W 1:W 2 = C 1:C 2 = 1:2. 13.13 一平行板电容器板面积为S ,板间距离为d ,接在电源上维持其电压为U .将一块厚度为d 相对介电常量为εr 的均匀介电质板插入电容器的一半空间内,求电容器的静电能为多少?[解答]平行板电容器的电容为C = ε0S/d ,当面积减少一半时,电容为C 1 = ε0S /2d ; 另一半插入电介质时,电容为C 2 = ε0εr S /2d .两个电容器并联,总电容为C = C 1 + C 2 = (1 + εr )ε0S /2d ,静电能为W = CU 2/2 = (1 + εr )ε0SU 2/4d . 13.14 一平行板电容器板面积为S ,板间距离为d ,两板竖直放着.若电容器两板充电到电压为U 时,断开电源,使电容器的一半浸在相对介电常量为εr 的液体中.求:(1)电容器的电容C ;(2)浸入液体后电容器的静电能; (3)极板上的自由电荷面密度.[解答](1)如前所述,两电容器并联的电容为C = (1 + εr )ε0S /2d . (2)电容器充电前的电容为C 0 = ε0S/d , 充电后所带电量为 Q = C 0U . 当电容器的一半浸在介质中后,电容虽然改变了,但是电量不变,所以静电能为W = Q 2/2C = C 02U 2/2C = ε0SU 2/(1 + εr )d . (3)电容器的一半浸入介质后,真空的一半的电容为 C 1 = ε0S /2d ;介质中的一半的电容为 C 2 = ε0εr S /2d . 设两半的所带自由电荷分别为Q 1和Q 2,则Q 1 + Q 2 = Q . ① 由于C = Q/U ,所以U = Q 1/C 1 = Q 2/C 2. ② 解联立方程得01112211/C U C QQ C C C C ==++, 真空中一半电容器的自由电荷面密度为00112122/2(1/)(1)r C U U Q S C C S dεσε===++. 同理,介质中一半电容器的自由电荷面密度为0021222(/1)(1)r r C U UC C S dεεσε==++.13.15 平行板电容器极板面积为200cm 2,板间距离为1.0mm ,电容器内有一块1.0mm 厚的玻璃板(εr = 5).将电容器与300V 的电源相连.求:(1)维持两极板电压不变抽出玻璃板,电容器的能量变化为多少?(2)断开电源维持板上电量不变,抽出玻璃板,电容器能量变化为多少?[解答]平行板电容器的电容为C 0 = ε0εr S/d ,静电能为 W 0 = C 0U 2/2. 玻璃板抽出之后的电容为C = ε0S/d .(1)保持电压不变抽出玻璃板,静电能为 W = CU 2/2, 电能器能量变化为ΔW = W - W 0 = (C - C 0)U 2/2 = (1 - εr )ε0SU 2/2d = -3.18×10-5(J). (2)充电后所带电量为 Q = C 0U , 保持电量不变抽出玻璃板,静电能为W = Q 2/2C ,电能器能量变化为2000(1)2C C U W W W C ∆=-=- 20(1)2r r SU dεεε=-= 1.59×10-4(J).13.16 设圆柱形电容器的内、外圆筒半径分别为a 、b .试证明电容器能量的一半储存在半径R =[解答]设圆柱形电容器电荷线密度为λ,场强为 E = λ/2πε0r , 能量密度为 w = ε0E 2/2, 体积元为 d V = 2πrl d r , 能量元为 d W = w d V .在半径a 到R 的圆柱体储存的能量为20d d 2VVW w V E V ε==⎰⎰2200d ln 44Ral l R r r a λλπεπε==⎰.当R = b 时,能量为210ln 4l b W aλπε=;当R =22200ln48l l b W aλλπεπε==,所以W 2 = W 1/2,即电容器能量的一半储存在半径R =13.17 两个同轴的圆柱面,长度均为l ,半径分别为a 、b ,柱面之间充满介电常量为ε的电介质(忽略边缘效应).当这两个导体带有等量异号电荷(±Q )时,求:(1)在半径为r (a < r < b )、厚度为d r 、长度为l 的圆柱薄壳中任一点处,电场能量体密度是多少?整个薄壳层中总能量是多少?(2)电介质中总能量是多少(由积分算出)?(3)由电容器能量公式推算出圆柱形电容器的电容公式?[解答](1)圆柱形内柱面的电荷线密度为 λ = Q/l ,根据介质是高斯定理,可知电位移为D = λ/2πr = Q /2πrl ,场强为 E = D/ε = Q /2πεrl , 能量密度为w = D ·E /2 = DE /2 = Q 2/8π2εr 2l 2.薄壳的体积为d V = 2πrl d r , 能量为 d W = w d V = Q 2d r /4πεlr .(2)电介质中总能量为22d d ln 44bV aQ Q bW W r lr l a πεπε===⎰⎰.(3)由公式W = Q 2/2C 得电容为222ln(/)Q lC W b a πε==.13.18 两个电容器,分别标明为200PF/500V 和300PF/900V .把它们串联起来,等效电容多大?如果两端加上1000V 电压,是否会被击穿?[解答]当两个电容串联时,由公式211212111C C C C C C C +=+=, 得 1212120PF C C C C C ==+.加上U = 1000V 的电压后,带电量为Q = CU ,第一个电容器两端的电压为U1 = Q/C1 = CU/C1 = 600(V);第二个电容器两端的电压为U2 = Q/C2 = CU/C2 = 400(V).由此可知:第一个电容器上的电压超过它的耐压值,因此会被击穿;当第一个电容器被击穿后,两极连在一起,全部电压就加在第二个电容器上,因此第二个电容器也接着被击穿.。

静电场中的导体和电介质(大学物理作业,考研真题)

静电场中的导体和电介质(大学物理作业,考研真题)

物理(下)作业专业班级:姓名:学号:第十一章静电场中的导体和电介质(1)一、选择题1、两个同心薄金属球壳,半径分别为1R 和2R (1R <2R ),若分别带上电量1q 和2q 的电荷,则两者的电势分别为1U 和2U (选无穷远处为电势零点)。

现用导线将两球壳连接,则它们的电势为(A )、1U ;(B )、2U ;(C )、21U U ;(D )、)(2121U U 。

[]2、两导体板A 和B 相距为d ,并分别带有等量异号电荷。

现将另一不带电的,且厚度为t (t ﹤d )的导体板C 插入A 、B 之间(不与它们接触),则导体板A 和B 之间的电势差U AB 的变化为:(A )、不变;(B )、增大;(C )、减小;(D )、不一定。

[]3、(2018年暨南大学)将一带电量为Q 的金属小球靠近一个不带电的金属导体时,则有:(A )金属导体因静电感应带电,总电量为-Q ;(B )金属导体因感应带电,靠近小球的一端带-Q ,远端带+Q ;(C )金属导体两端带等量异号电荷,且电量q<Q ;(D )当金属小球与金属导体相接触后再分离,金属导体所带电量大于金属小球所带电量。

二、填空题1、导体在达到静电平衡时,其导体内部的场强应为______;整个导体(包括导体表面)的电势应是______;导体表面的场强方向应是______。

2、当空腔导体达到静电平衡时,若腔内无电荷,则给该空腔导体所带的电荷应分布在;若腔内有电荷,则空腔导体上的电荷应分布在。

3、如图所示,两同心导体球壳,内球壳带电量+q ,外球壳带电量-2q 。

静电平衡时,外球壳的内表面带电量为______;外表面带电量为_______。

三、计算题1、同轴传输线是由两个很长且彼此绝缘的同轴金属直圆柱体构成,如图所示。

设内圆柱体的半径为R 1,外圆柱体的内半径为R 2。

并假定内外圆柱导体分别带等量异号电荷,其线电荷密度大小为λ,求内外圆柱导体之间的电场强度分布以及它们之间的电势差。

大学物理下 静电场中的导体和电介质习题解答

大学物理下 静电场中的导体和电介质习题解答

q
q q
2.如图所示,一带负电荷的金属球,外面同 心地罩一不带电的金属球壳,则在球壳中一点 P处的场强大小与电势(设无穷远处为电势零 点)分别为:
(A) E = 0,U > 0. (B) E = 0,U < 0. B
(C) E = 0,U = 0. (D) E > 0,U < 0.
P
球壳内表面带正电荷,外表面带负电荷 金属球壳是一个等势体
ε1 ε2
5. 一导体球外充满相对介电常量为εr的均匀电介质,若测得导 体表面附近场强为 E ,则导体球面上的自由电荷面密度ε0 εr E 。
D ds Dds ds D
s
D
0
r
E
6. 一电荷为q的点电荷,处在半径为R、介电常量为ε1的各向同性、
均匀电介质球体的中心处,球外空间充满介电常量为ε2的各向同
性、均匀电介质,则在距离点电荷r (r<R) 处的场强为

电势 (选U∞=0)为

D ds qi
s
i
4r 2 Dr q
Er Dr
U
E
4Rrq1rR2
Er d r , U
q 4π1
1 r
1 R
q 4 2 R
2 1 qr R
7. 两金属球的半径之比为1:4,带等量的同号电荷。当两者的距 离远大于两球半径时,系统具有电势能W04 r
q 4 r
0
0
球心O点处总电势为分布在球壳内、外表面上的电荷和点电荷
q在O点产生的电势的代数和,
U 0
Uq
Uq
UQq
q 4 r
0
q 40R1
q Q 4 R
02

习题课后作业(静电场中的导体和电介质)

习题课后作业(静电场中的导体和电介质)

习题课后作业(静电场中的导体和电介质)1、一个平行板电容器的电容值C =100Pf ,面积S =100cm 2,两板间充以相对电容率为εr =6的云母片,当把它接到50V 的电源上时,云母中电场强度大小E =9.42×103v/m ,金属板上的自由电荷量q =5.00×10-9C 。

(CU q =εDE =εσ==Sqr 0εε)2、一空气平行板电容器,电容为C ,两极板间距离为d ,充电后,两极板间相互作用力为F ,则两极板间的电势差为 C Fd 2,极板上的电荷量大小为FCd 2。

3、一平行板电容器,两极板间电压为U 12,其间充满相对电容率为εr 的各向同性均匀电介质,电介质厚度为d ,则电介质中的电场能量密度为221202d U w r εε= (d U E 12=, 2/20E w r εε=)4、如图,在与电源连接的平行板电容器中,填入两种不同的均匀的电介质,则两种电介质中的场强相等,电位移不相等。

(填相等或不相等)dUE E ==21,011E D r εε=, 2022E D r εε=, 12r r εε≠ , 21D D ≠∴5、平行板电容器在接入电源后,把两板间距拉大,则电容器( D )(A)电容增大; (B)电场强度增大;(C)所带电量增大 (D)电容、电量及两板内场强都减小。

由dSC 0ε=, U =Ed , q =CU 可见,接入电源后,U 不变,若d 增大,则C 减小, E 减小,Q 减小6、如图所示,一内半径为a ,外半径为b 的金属球壳,带有电量Q ,在球壳空腔内距离球心为r 处有一点电荷q ,设无限远处为电势零点。

试求:(1)球壳外表面上的电荷;(2)球心O 点处由球壳内表面上电荷产生的电势; (3)球心O 点处的总电势。

解: (1) 设球壳内、外表面电荷分别为q 1 , q 2,以O 为球心作一半径为R (a <R <b )的高斯球面S,由高斯定理 ⎰+=⋅S oq q S d E ε1 ,根据导体静电平衡条件,当a <R <b 时,0=E .则0=⋅⎰S S d E.即1=+q q ,得q q -=1根据电荷守恒定律,金属球壳上的电量为21q q Q +=q Q q Q q +=-=∴12(2)在内表面上任取一面元,其电量为dq ,在O 点产生的电势为:adq dU o πε411=q 1在O 点产生的电势aq aq adq dU U o o o πεπεπε4441111-====⎰⎰内内(3) 同理,外球面上的电荷q 2在O 点产生的电势bqQ bq U o o πεπε4422+== 点电荷q 在O 点产生的电势rq U o q πε4=∴ O 点的总点势o q U U U U πε41210=++=(b q Q aq r q ++-)7、一平行板电容器,两极板间的距离d =5.00mm 板面积100cm 2,以300V 电源使之充电。

静电场习题课1

静电场习题课1
2
2.两条无限长平行直导线相距为 0,均匀带有等量异号电荷,电 两条无限长平行直导线相距为r 均匀带有等量异号电荷, 两条无限长平行直导线相距为 .(1) 荷线密度为λ.( )求两导线构成的平面上任一点的电场强度 设该点到其中一线的垂直距离为x);( );(2) (设该点到其中一线的垂直距离为 );( )求每一根导线上 单位长度导线受到另一根导线上电荷作用的电场力. 单位长度导线受到另一根导线上电荷作用的电场力. 分析: 分析 : ( 1 ) 在两导线构成的平面上 任一点的电场强度为两导线单独在 此所激发的电场的叠加. 此所激发的电场的叠加. (2)由F = qE,单位长度导线所受 , 的电场力等于另一根导线在该导线 o 处的电场强度来乘以单位长度导线 所带电的量, 应该注意: 所带电的量,即:F = λE应该注意: 应该注意 式中的电场强度E是除去自身电荷 式中的电场强度 是除去自身电荷 外其它电荷的合电场强度. 外其它电荷的合电场强度.
= r0 λ i 2πε 0 x ( r0 x )
λ
E
E+
λ
p
o
分别表示正, (2)设F+,F-分别表示正,负带电 导线单位长度所受的电场力, 导线单位长度所受的电场力,则有
x
x
r0
λ2 F+ = λE = i 2πε0r0
λ2 F = λE+ = i 2πε0r0
相互作用力大小相等, 相互作用力大小相等,方向相 两导线相互吸引. 反,两导线相互吸引.
b2 x =0 2
2
x=
b , ( 0 ≤ x ≤ b) 2
6
6.在一半径为 的金属球A外面套有一个同心的金属球壳 6.在一半径为R1 =6.0 cm的金属球 外面套有一个同心的金属球壳 在一半径为 的金属球 B.已知球壳 的内,外半径分别为 2 =8.0 cm,R3 =10.0 cm.设 的内, .已知球壳B的内 外半径分别为R , . 带有总电荷Q 球壳B带有总电荷 带有总电荷Q 球A带有总电荷 A= 3.0×10-8C ,球壳 带有总电荷 B= 2.0×10-8C. 带有总电荷 × × . 和球壳B的电势 (l)求球壳 内,外表面上所带的电荷以及球 和球壳 的电势; )求球壳B内 外表面上所带的电荷以及球A和球壳 的电势; 接地然后断开, 接地, 和球壳B (2)将球壳 接地然后断开,再把金属球 接地,求球 和球壳 )将球壳B接地然后断开 再把金属球A接地 求球A和球壳 外表面上所带的电荷以及球A和球壳 的电势. 和球壳B的电势 内,外表面上所带的电荷以及球 和球壳 的电势. 分析:( )根据静电感应和静电平衡 分析:(1) :( 时导体表面电荷分布的规律,电荷Q 时导体表面电荷分布的规律,电荷 A 均匀分布在球A表面 球壳B内表面带 表面, 均匀分布在球 表面,球壳 内表面带 电荷电荷-QA ,

习题解答---大学物理第7章习题2

习题解答---大学物理第7章习题2

专业班级_____ 姓名________学号________ 第七章静电场中的导体和电介质一、选择题:1,在带电体A旁有一不带电的导体壳B,C为导体壳空腔内的一点,如下图所示。

则由静电屏蔽可知:[ B ](A)带电体A在C点产生的电场强度为零;(B)带电体A与导体壳B的外表面的感应电荷在C点所产生的合电场强度为零;(C)带电体A与导体壳B的内表面的感应电荷在C点所产生的合电场强度为零;(D)导体壳B的内、外表面的感应电荷在C点产生的合电场强度为零。

解答单一就带电体A来说,它在C点产生的电场强度是不为零的。

对于不带电的导体壳B,由于它在带电体A这次,所以有感应电荷且只分布在外表面上(因其内部没有带电体)此感应电荷也是要在C点产生电场强度的。

由导体的静电屏蔽现象,导体壳空腔内C点的合电场强度为零,故选(B)。

2,在一孤立导体球壳内,如果在偏离球心处放一点电荷+q,则在球壳内、外表面上将出现感应电荷,其分布情况为 [ B ](A)球壳内表面分布均匀,外表面也均匀;(B)球壳内表面分布不均匀,外表面均匀;(C)球壳内表面分布均匀,外表面不均匀;(D)球壳的内、外表面分布都不均匀。

解答 由于静电感应,球壳内表面感应-q ,而外表面感应+q ,由于静电屏蔽,球壳内部的点电荷+q 和内表面的感应电荷不影响球壳外的电场,外表面的是球面,因此外表面的感应电荷均匀分布,如图11-7所示。

故选(B )。

3. 当一个带电导体达到静电平衡时:[ D ](A) 表面上电荷密度较大处电势较高 (B) 表面曲率较大处电势较高。

(C)导体内部的电势比导体表面的电势高。

(D)导体内任一点与其表面上任一点的电势差等于零。

4. 如图示为一均匀带电球体,总电量为+Q ,其外部同心地罩一内、外半径分别为r 1、r 2的金属球壳、设无穷远处为电势零点,则在球壳内半径为r 的P 点处的场强和电势为: [ D ](A )E= (B )E=0,(C )E=0,(D )E=0,5. 关于高斯定理,下列说法中哪一个是正确的? [ C ](A )高斯面内不包围自由电荷,则面上各点电位移矢量为零。

静电场中的导体和电介质(含答案,大学物理作业,考研真题)

静电场中的导体和电介质(含答案,大学物理作业,考研真题)

1、一片二氧化钛晶片,其面积为 1.0cm2, 厚度为 0.10mm 。把平行板电容器的两极板紧
贴在晶片两侧。此时电容器的电容为_____________. ;当在电容器的两板上加上 12V 电压时,
极板上的电荷为_____________. ;电容器内的电场强度为_____________ .。(二氧化钛的相
[
]
3、(2018 年暨南大学)将一带电量为 Q 的金属小球靠近一个不带电的金属导体时,则有:
(A)金属导体因静电感应带电,总电量为-Q;
(B)金属导体因感应带电,靠近小球的一端带-Q,远端带+Q;
(C)金属导体两端带等量异号电荷,且电量 q<Q;
(D)当金属小球与金属导体相接触后再分离,金属导体所带电量大于金属小球所带电量。
二、 填空题
1、导体在达到静电平衡时,其导体内部的场强应为______;整个导体(包括导体表面)
的电势应是______;导体表面的场强方向应是______。
2、当空腔导体达到静电平衡时,若腔内无电荷,则给该空腔导体所带的电荷应分布

;若腔内有电荷,则空腔导体上的电荷应分布


3、如图所示,两同心导体球壳,内球壳带电量+q,外球壳带电量-2q。
(C)、使电容增大,但与介质板的位置无关;(D)、使电容增大,但与介质板的位置有关。
[
]
3、(2011 年太原科技大学)两个半径相同的金属球,一为空心,一为实心,把两者各自
孤立时的电容值加以比较,则:
(A)空心球电容值大;
(B)实心球电容值大;
(C)两球电容值相等;
(D)大小关系无法确定
[
]
二、 填空题
(1)若两极上分别带有电荷+Q 和—Q,求各区域的电位移 D,电场强度 E,及电势 U;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

静电场中的导体与电介质作业
1.题号:40743001 分值:10分
如图下所示,一半径为1R 的无限长导体,单位长度带电量为λ,外有一半径为2R ,
单位长度带电量为λ-的圆筒形导体,两导体同轴,内外圆柱面间充满相对电容率为
r ε的均匀电介质。

求:(1)该导体系统内外的电场分布;(2)两导体轴心处的电势(设
外圆筒面外任意一点P 的电势为零,P 点与中心轴的距离为P R );(3)电介质中的极化强度;(4)画出r E -曲线。

2.题号:40743002 分值:10分
半径为1R 的金属球带电荷量Q +,外罩一半径为2R 的同心金属球壳,球壳带电量
Q +,厚度不计,内外两球面间充满相对电容率为r ε的均匀电介
质。

求:(1)该球面系统内外的电场分布;(2)球心处的电势;(3)电介质中的极化强度;(4)画出r E -曲线。

3.题号:40743003 分值:10分
一个半径为R 电容率为ε的均匀电介质球的中心放有点电荷q ,求(1)电介质球内、外电位移的分布;(2)电介质球内、外电场强度和电势的分布;(3)球体表面极化电荷的密度。

4.题号:40743004
分值:10分
如图所示,带电量为Q 、半径为0R 的金属球置于介电常量为ε,半径为R 的均匀介质球内。

求(1)介质层内、
外的D 、E
的分布;(2)介质层内、外表面上的束缚电荷面密度。

5.题号:40843012 分值:10分
如下图所示,真空中的球形电容器的内、外球面的半径分别为1R 和2R ,所带电荷量为Q ±。

求:(1)该系统各区间的场强分布;(2)该系统各区间的电势分布;(3)该系统的电容。

6.题号:40842020 分值:10分
(1).一电荷面密度为σ “无限大”均匀带电平面,若以该平面处为电势零点,试求带电平面
x >0 空间的电势分布。

(2).如图所示,真空中的球形电容器的内、外半径分别为1R 和2R ,所带电荷量为Q ±。

求该电容器的电容。

静电场中的导体与电介质作业解答
1.题号:40743001 分值:10分 解答及评分标准:
(1)由高斯定理得出电场分布:0
2032
022
1
11
=>=
<<=<E R r r
E R r R E R r r επελ
(3分)
方向均沿径矢方向。

(1分)
(2)设外圆筒面外任意一点P 的电势为零,P 点与中心轴的距离为P R ,如图所示,则轴心处的电势为:(2分)
1
2
0003210ln 21
2
1
2
R R l d E l d E l d E l d E V P
P
R R R R R R r ⎰⎰⎰⎰=
⋅+⋅+⋅=⋅=επελ
(3)电介质中的极化强度为:
)(21
)1(2120R r R r
E P r r r <<-=-=λ
πεεεε(2分)
方向与电场强度同向。

(1分) (4)r E -曲线:(1分)
2.题号:40743002
分值:10分
解:(1)根据高斯定理,可得出整个系统的电场分布:
2
032
2
022*******r Q
E R r r Q E R r R E R r r πεεπε=
>=
<<=<(3分)
方向沿径矢方向。

(1分)
(2)球心处的电势:(2分) 2
0210
003210
1
42)11(
41
21
2
R Q R R Q l d E l d E l d E l d E V R R R R r
πεεπε+
-=
⋅+⋅+⋅=⋅=
⎰⎰⎰⎰∞

(3)极化强度:2
2041)1(r
Q
E P r r r πεεεε-=
-=(2分) 方向与电场强度方向一相同。

(1分)
(4)r E -曲线:(1分)
3.题号:40743003
分值:10分
解:(1)由高斯定理 ⎰
=⋅S
q S d D

R r < 2
4r q D π=
R r > 2
4r
q D π= (2)由 E E D r
εεε==0 得
电场强度的分布 R r < 2
4r
q E πε=
R r > 2
04r q E πε=
由 ⎰∞
⋅=r l d E V

电势的分布 R r < )1
1(440R r q R q V -+=
πεεπ
R r > r
q V 04πε=
(3)球体表面极化电荷的密度: ε
πεε2
0)(0r 4)()1'R q
E εεP σR -=-==(
4.题号:40743004 分值:10分 解答及评分标准:
根据对称问题的性,D
的分布具有球对称性, 在介质层中取一半径为r 的高斯面。


=⋅s
r D S d D 2
4π ⎰=⋅s Q S d D
(2分)
求得介质内的电位移为:
2
14r
Q
D π=
)(0R r R <<(2分) 介质外的电位移为:
2
24r Q
D π=
)(R r >(2分) 根据E D ε=,得
2
14r Q
E πε=
)(0R r R <<(2 分) 2
24r
Q
E πε= )(R r >(2分)
5.题号:40843012 分值:10分
解答与评分标准:
(1)由高斯定理得电场分布:0
40
32
2
022
111=>=
<<=<E R r r
Q E R r R E R r πε (4分)
(2)电势分布:
⎰⎰⎰⎰⎰⎰⎰⎰∞∞∞∞∞=⋅=>-=⋅+⋅=⋅=<<-=⋅+⋅+⋅=⋅=<r
r R r R r R r R R R l d E U R r R r Q l d E l d E l d E U R r R R R Q l d E l d E l d E l d E U R r 0
)
1
1(4)
1
1(4322
02212
101122
1212
πεπε(4分) (3)两极板间的电势差:)1
1(42
1021
R R Q l d E U R R -=⋅=⎰πε (1分) 电容:1
22
104R R R R U Q C -==
πε (1分)
6.题号:40842020 分值:10分
(1).解答及评分标准:
2εσ
=
E (2分)
x dx l d E V p
a
x 0
0022εσ
εσ-==⋅=⎰⎰ (3分)
(2).解答及评分标准:
由高斯定理得电场分布:
40
32
2
022111=>=
<<=<E R r r Q E R r R E R r πε(2分)
两极板间的电势差:)11(42
102
1
R R Q l d E U R R -=⋅=

πε (2分)
电容:1
22
104R R R R U Q C -==
πε(1分)。

相关文档
最新文档