概率论论文多篇汇总

合集下载

概率论论文10篇

概率论论文10篇

《概率论论文》概率论论文(一):《概率论与数理统计》论文摘要概率论的发展具有很长的历史,多位数学家对概率论的构成做出了巨大贡献。

纵观其发展史,在实际生活中具有很强的应用好处。

正是有了前人的努力,才有了现代的概率论体系。

本文将从概率论的研究好处、定义,以及发展历程进行叙述。

概率论的发展与起源1.1概率论的定义概率论是研究随机现象数量规律的数学分支。

随机现象是相对于决定性现象而言的,随机现象是指在基本条件不变的状况下,一系列或观察会得到不同结果的现象。

每一次实验或观察前,不能肯定会出现哪种结果,呈现出偶然性。

例如,抛一枚硬币,可能会出现正面或者反面;在同一工艺条件下生产出的灯泡,其寿命长短参差不齐等等。

随机现象的实现和对它的观察称为随机试验。

随机试验的每一可能结果称为一个基本事件,一个或者一组基本事件统称为随机事件,或者简称为事件。

事件的概率则是衡量该事件发生的可能性的量度。

虽然在一次随机试验中某个事件的发生是带有偶然性的,但那些可在相同条件下超多重复的随机实验却往往呈现出明显的数量规律。

例如,连续多次抛一枚硬币,出现正面的频率随着抛次数的增加逐渐趋近于1/2;犹如,多次测量一物体的长度,其测量结果的平均值随着测量次数的增加,逐渐稳定于一常数,并且测量值大多落在此常数的附近,其分布状况呈现中间多,两头少及某种程度的对称性。

大数定律和中心极限定律就是描述和论证这些规律的。

在实际生活中,人们往往还需要研究某一特定随机现象的演变状况。

例如,微小粒子在液体中受周围分子的随机碰撞而构成不规则的运动,即布朗运动,这就是随机过程。

随机过程的统计特征、计算与随机过程有关的某些事件的概率,个性是研究与随机过程样本轨道(及过程的一次实现)有关的问题,是现代概率论的主要课题。

在当代,随着概率论本身的发展和学科之间的交叉融合,囊括了概率理论和统计理论两大部分的广义概率论已经成为一门应用十分广泛的学科,概率方法与统计方法逐渐渗透到了其它学科的研究工作当中。

概率论总结论文

概率论总结论文

概率论总结论文第一篇:概率论总结论文概率论与数理统计在生活中的应用摘要:随机现象无处不在,渗透于日常生活的方方面面和科学技术的各个领域,概率论就是通过研究随机现象及其规律从而指导人们从事物表象看到其本质的一门科学。

生活中买彩票显示了小概率事件发生的几率之小,抽签与体育比赛赛制的选择用概率体现了公平与不公平,用概率来指导决策,减少错误与失败等等,显示了概率在人们日常生活中越来越重要。

数理统计在人们的生活中也不断的发挥重要的作用,如果没有统计学,人们在收集资料和进行各项的大型的数据收集工作是非常困难的,通过对统计方法的研究,使得我们处理各种数据更加简便,所以统计也是一门很实用的科学,应该受到大家的重视。

关键字:概率、保险、彩票、统计、数据、应用概率论与数理统计是研究随机现象统计规律的一门数学学科,是对随机现象的统计规律进行演绎和归纳的科学。

随着社会的不断发展,概率论与数理统计的知识越来越重要,运用抽样数据进行推断已经成为现代社会一种普遍适用并且强有力的思考方式。

目前,概率论与数理统计的很多原理方法已被越来越多地应用到交通、经济、医学、气象等各种与人们生活息息相关的领域。

本文将就概率论与数理统计的方法与思想,在日常生活中的应用展开一些讨论,,推导出某些表面上并非直观的结论,从中可以看出概率方法与数理统计的思想在解决问题中的高效性、简捷性和实用性。

一、彩票问题“下一个赢家就是你!”这句响亮的具有极大蛊惑性的话是大英帝国彩票的广告词。

买一张大英帝国彩票的诱惑有多大呢?只要你花上1英镑,就有可能获得2200万英镑!一点小小的投资竟然可能得到天文数字般的奖金,这没办法不让人动心,很多人都会想:也许真如广告所说,下一个赢家就是我呢!因此,自从1994年9月开始发行到现在,英国已有超过90%的成年人购买过这种彩票,并且也真的有数以百计的人成为百万富翁。

如今在世界各地都流行着类似的游戏,在我国各省各市也发行了各种福利彩票、体育彩票,各地充满诱惑的广告满天飞,而报纸、电视上关于中大奖的幸运儿的报道也热闹非凡,因此吸引了不计其数的人踊跃购买。

概率论毕业论文:概率论起源_毕业论文范文_

概率论毕业论文:概率论起源_毕业论文范文_

概率论毕业论文:概率论起源概率论是一门应用非常广泛的学科。

在数学史上,它的产生是以帕斯卡和费马在1654 年的七封通信为标志的。

由于这些信件中所解决的问题多是与赌博有关的点数问题,因此人们总是把概率论的产生归功于赌博这项机遇游戏。

但考古学发现告诉我们,赌博游戏早在文明初期就已经存在了,迄今已有几千年的历史,而概率论从诞生至今不过三百余年,这说明赌博并不是概率论产生的决定性条件。

在从赌博出现到概率论产生之间的这段“空白”期,必定还有一些十分关键的因素正在孕育之中。

那么这些因素是什么? 换句话说,需要具备哪些先决条件,概率论才能得以形成?一独立随机过程的出现对概率论而言,两个最主要的概念就是独立性和随机性[1 ] 。

概率论是从研究古典概型开始的,它所涉及的研究对象是大量的独立随机过程。

通过对这些过程中出现的问题的解决,概率理论体系才逐渐地建立起来。

因此要考察概率论的产生条件,我们首先应当对独立随机过程的产生有充分的了解。

事实上,这种过程的雏形早在原始社会就已经存在了,那时的占卜师们使用动物的趾骨作为占卜工具,将一个或多个趾骨投掷出去,趾骨落地后的不同形状指示神对人事的不同意见。

由于投掷趾骨这个过程所产生的结果具有不可预测性,而每次投掷的结果也互不影响,这与我们今天投掷骰子的基本原理相当,因此趾骨可以被看作是骰子的雏形。

但是由于趾骨形状的规则性较差,各种结果出现的机率不完全相同(即不具备等可能性) ,所以趾骨产生的随机过程还不是我们今天意义上的独立随机过程。

加之趾骨作为一种占卜工具,其本身具有神圣的地位,普通人不可能轻易使用,这也在某种程度上阻碍了人们对随机过程的认识。

随着社会的进步和文明的发展,骰子变得越来越普遍,不仅数量增多,规则性也日益精良,此时它已不再是一件神圣的器具而逐渐成为普通大众的日常用具。

从原理上看,只要一枚骰子是质地均匀的,它就可以产生一系列标准的独立随机过程。

这些过程具备良好的性质(独立性、随机性、等可能性) ,是进行概率研究的理想对象。

概率论论文

概率论论文

概率论与数理统计论文——随机变量的数字特征概率论与我们的日常生活密切联系且相互渗透,如理财问题,工作问题,保险问题彩票中奖等。

概率论作为高等学校的一门重要的数学基础课,它应用于各个学科,如天文学、经济学、金融学以及其他一些交叉学科。

概率论思维是从属一般思维的,它是人脑和概率论研究交互作用并按照一般思维规律认识概率论内容的内在理性活动。

概率论思维品质是主体的思维活动对概率论内容理解和掌握的程度或水平,是衡量主题的概率论思维发展水平的重要标志。

下面我要讨论是概率论与数理统计中的随机变量的数字特征。

在学习中我们知道:随机变量的分布函数可以完整地描述随机变量的统计规律性,但在许多实际问题中,要精确确定一个随机变量的分布往往很困难;另一个方面,有些问题也无需知道随机变量的精确分布,只要知道该随机变量的某些特征即可。

随机变量的数字特征是与随机变量有关的某些数值,这些数值能够描述该随机变量在某些方面的特征;并且,很多重要分布中的参数都与数字特征有关。

因此,随机变量的数字特征在概率论与数理统计中占有重要地位。

在实际生活中,我们都存在着随机变量的数字特征。

就说说在高中时我们要考的英语,分析某班学生的期末成绩英语水平时,只要计算该班的平均成绩和计算我们专业每位同学的考试成绩与月考成绩偏离大小,便可以对该班学生英语水平做出比较客观的判断,这种能表示随机变量某些方面特征的数就是随机变量的数字特征。

另外我们还注意到许多的重要分布东苑会含1到3个参数,而这些参数都与数字特征重合或关系密切,因此只要知道分布的类型,通过数字特征就能完全确定分布函数。

由此可见,随机变量的数字特征的研究具有理论上和实际上的重要意义。

在第一节中我们学习了,随机变量的数学期望。

数学期望的定义:设离散型随机变量X的分布律为若级数绝对收敛,则称级数的和为随机变量X的数学期望,记为。

即设连续型随机变量X的概率密度为若积分绝对收敛,则称积分的值为随机变量X的数学期望。

概率论课程小论文

概率论课程小论文

概率论与数理统计课程设计关于正态分布的几点讨论经过一个学期的学习,我对概率论有了更为深刻地理解,高中阶段的概率只是简单的古典概型和几何概型,而这个学期,我们对概率论有了进一步的认识,接触了泊松分布、贝努力分布、超几何分布、正态分布等等。

纵观全书,我感觉到正态分布在概率论这门课程中有很高的地位,而且正态分布在我们的日常生活中也有着非常广泛的应用,进而我也对正态分布产生了浓厚的兴趣。

所以在课程设计中,我想讨论一下正态分布的有关问题。

一、正太分布的由来、发展及重要性正态分布是最重要的一种概率分布。

正态分布概念是由德国的数学家和天文学家德莫佛于1733年首次提出的,但由于德国数学家高斯率先将其应用于天文学家研究,故正态分布又叫高斯分布。

在随机变量的各种分布中,正态分布占有特殊重要的地位,在高斯以后,人们又发现在实际问题中,许多随机变量都近似服从正态分布。

20世纪前半期,概率论研究的中心课题之一就是寻求独立随机变量和的极限分布式正态分布的条件。

因此,把这一方面的定理统称为中心极限定理。

较一般的中心极限定理表明:若被研究的随机变量是大量独立随机变量的和,其中每一个随机变量对于总和只起微小作用,则可以认为这个随机变量近似于正态分布。

这就揭示了正太分布的重要性。

因为现实中许多随机变量都具有上述性质,例如测量误差、射击弹着点的横坐标、人的身高等都是由大量随机因素综合影响的结果,因而是近似服从正态分布的。

数理统计中有常用的三大分布占有极重要的地位,分别是2χ分布,t 分布和F 分布,这三大分布都与正态分布有着密切的关系,由此更能看出正态分布的重要性。

二、正态分布的含义正态分布是具有两个参数μ和σ2的连续型随机变量的分布,第一参数μ是服从正态分布的随机变量的均值,第二个参数σ2是此随机变量的方差,所以正态分布记作N (μ,σ2)。

服从正态分布的随机变量的概率规律为:取与μ邻近的值的概率大,而取离μ越远的值的概率越小;σ越小,分布越集中在μ附近,σ越大分布越分散。

概率在生活中的应用——毕业论文汇编

概率在生活中的应用——毕业论文汇编

概率在生活中的应用摘要概率论与数理统计是数学科的一门基础课,也是研究随机现象规律的一门数学分支学科。

概率跟人们日常生活和生产实践相结合的非常紧密,在生活的各领域中应用范围相当广泛,包括自然科学,社会科学,工商管理,天气预报,生物学,计算机与通信等领域。

社会不断向前发展,科学不断的进步,各个学科的理论也不断的完善,学科的联系也越来越紧密,概率知识也逐渐的应用各个学科中。

例如;遗传学,信息学,生物学,通信工程等诸多学科应用得到广泛的应用。

在人们的生活中,概率的应用也广泛存在,如在赌博行业,工业的产品抽样调查,福利彩票,体育,天气预告,地震预告也涉及到数学科中的概率知识。

由此可见,概率是数学学科与社会生产实践联系最为紧密的学科之一。

应用范围也非常广泛。

关键字:概率社会生活随机现象AbstractProbability theory and mathematical statistics is a basic course of mathematics,but also on the random phenomenon of the law of a mathematics branch discipline.Probability with people's daily life and production practice of combining the very close,in the life each domain of application scope is quite widespread,including the natural sciences,social sciences,business administration,weather forecast, biology,computer and communications and other fields.Social development,scientific progress,various theories of continuous improvement,disciplines increasingly close ties,probabilistic knowledge is gradually applied in various disciplines.For example;genetics,information science,biology, communication engineering and many other disciplines applied widely used.In people's life,the use of probability is also widespread,such as in the gambling industry,industrial product sampling,welfare lottery,sports,weather forecast,the earthquake forecast is related to the mathematics of probability knowledge.Thus,the probability is a mathematical discipline and social production practice most closely contact one of the disciplines.Scope of application is also very broad.Keywords:probability of random phenomena in social life目录前言 (3)一﹑概率论的发展简史 (3)(一)概率论的起源 (3)(二)对概率在实践中发展和影响比较大的数学家 (3)(三)概率发展与生活的关系 (3)二﹑怎样认识随机事件与其概率 (3)(一)事件的分类 (4)(二)频率与概率 (4)三﹑概率在生活中的应用 (4)(一)抓阄先后且公平性 (4)(二)概率在生日问题上的应用 (4)(三)概率在经济上的应用 (5)(四)概率在医疗保险上的应用 (5)四﹑结束语 (7)五﹑参考文献 (8)引言:概率是研究随机变量的一门学科。

哈工大概率论小论文

哈工大概率论小论文

《概率论与数理统计》课程总结混沌中的统一——概率中的维度观及在与微观粒子中的应用摘要众所周知,宇宙是一个无序的混沌空间,其间的粒子似乎在无规则的运动,人们并不知道它下一个时刻会运动到哪一个位置。

但事实上,粒子运动往往遵循某种分布规律,人们可以通过观察粒子在某处出现的频率来大致推知粒子在某一时刻出现的区域,这就是概率。

而在生活中,每个事件的发生都代表着一种可能,每个事件的无数种可能就构成了更高一层的空间,这就是维度。

不同的空间,不同的维度,概率论都在其中扮演着不可或缺的重要角色。

关键词:分布规律;频率;概率;可能;维度。

第一部分概率论与微观粒子的运动规律引言:长久以来,人们对于事物的认知都处于机械论科学思维的指导下,认为一切事物的规律都是固定可预测的。

严格决定论是机械论科学思维方式的主要特点。

这种思维方式把组成物质的最终实体作为自己的考察对象,而科学所要解决的基本上是带有两个变量的问题, 确定为数不多的客体之间的因果序列。

在严格决定性理论中,所有的概念和联系都被认为是属于同一层次中的东西,都可以精确表述它们之间的关系。

大自然的规律是数学规律,上帝是几何学家。

[1]控制论创始人维纳(N orbert Wiener)认为人类科学和认知的历史历程中,严格决定论的科学思维方式早在古巴比伦时期最古老的天文学中就已经出现了。

那是的人们在这种思维的指引下,认为日食、月食等自然天象都是在可预测的周期中出现的,太阳系中的一切事件的模型,都像是轮子在转动,周而复始的出现或发生。

这在托勒密的本轮说和哥白尼的轨道说中都是如此。

天体的音乐顺唱和倒唱都是一样的。

除了初始位置和方向外, 顺转和逆转的两个太阳仪之间的运动没有任何差别, 它们都是被严格决定了的。

最后, 这一切被牛顿归结为一组抽象公设并推演出一门严格的力学。

于是,宇宙被牛顿和他的力学描写为一台结构严密,按照某种定律精确地发生的机器,未来是由过去严格决定的。

但随着人们对自然科学的认识的不断深入,人们渐渐察觉到,万物都不是永恒的,牛顿力学很大程度上只是宇宙的某一种状态。

概率论数数理统计论文1

概率论数数理统计论文1

2.1.1 随机事件内涵 随机事件是指在随机试验中,可能出现也可能不出现,而在大量重复试验中具有某种 规律性的事件叫做随机事件(简称事件)。随机事件通常用大写英文字母 A、B、C 等表示。 在概率论中,把具有以下三个特征的试验称为随机试验: (1) 可以在相同的条件下重复地进行 (2) 每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果; (3) 进行一次试验之前不能确定哪一个结果 会出现. 2.1.2 随机现象 自然界所观察到的现象叫做随机现象, 随机现象可分为确定性现象和随机现象。 其中确 定性现象是指在一定条件下必然发生的现象,比如太阳不会从西边升起,人一定会死等。显 著特征是出现的结果取决于条件; 随机现象是指在一定条件下可能出现也可能不出现的现象, 比如在相同条件下掷一枚均匀的硬币,观察正反两面出现的情况:P(A)=正面或者 P(A) =反面 2.2 古典概型 17世纪,随着赌博在西欧的盛行,的正是源自赌博的问题。 研究这些赌博问题的意义, 并不在于解决了这些问题 本身,而在于人们借助对这些问题的研究,开始逐步深入理解概率的某些性质,并最终导致 概率论的诞生。 最著名的是帕斯卡与费马的通信, 他们之间的通信开创了用数学方法研究和 思考 概率问题的先河,他们被认为是概率论的启幕者。尤其是帕斯卡的工作蕴涵了概 率论“数学期望”的重要思想。这种思想成为后来惠更斯概率论工作中的一个基本思想,并 在以后相当长的时间里在古典概率论的研究中起着重要的作用。 因此读概率论发展历史的研 究既有着重要意义, 也充满了乐趣, 于是笔者对概率论几个重要时期的发展进行了简要总结 归纳。 2.2.1 古典概型内涵 古典概型是指(1)试验的样本空间只包含有限个样本点;(2)试验中每个基本事件发生 的可能性相同;同时具备以上条件的试验叫做古典概型。其样本空间可以表示为: Ω ={a1,a2,a3,a4„„an},他的每一个基本事件发生的概率都相同,为 1/n。 2.2.2 几种典型的古典概型

概率与统计论文

概率与统计论文

概率与统计论文概率与统计是大学数学专业和某些非数学专业的基础课程。

下文是店铺为大家整理的关于概率与统计论文的范文,欢迎大家阅读参考! 概率与统计论文篇1概率论与数理统计教学探索摘要:在概率统计教学过程中注意培养同学们数学建模意识。

多举实例,教他们学会对实际生产生活问题建立概率统计模型,并力争独立解决。

提高学习兴趣,引导自主学习并真正做到学以致用。

关键词:数学建模概率统计自主学习概率论与数理统计是所有高等院校的理工、经济管理、金融类专业本科阶段开设的一门必修数学课程,同时有不少人文社科类专业也在开设这门课程。

它是与实际生产生活联系最为密切的一门课程。

由于它在自然科学、社会科学、工农业生产、金融经济等各方面的广泛应用,本课程在高等学校教育中的重要地位日益凸现。

因此,作为本门课程的授课教师,不仅要给同学们讲解它的基本理论知识,更重要的是引导学生学会运用概率统计的思想方法,来解决实际问题。

这是每位授课老师义不容辞的职责,也是同学们学习的动力源泉和最终归宿。

为了使同学们更好地运用概率统计,这种数学方法解决实际问题,在课堂上可以花少量时间向同学们介绍数学建模的思想,树立他们运用数学方法,解决实际问题的意识和全局观。

当然,在我们概率统计的教学课堂上,主要是教学生如何建立概率统计模型去解决实际问题,告诉他们概率统计模型是在处理随机性问题时非常有力有效的模型。

一旦同学们体会到了这一层,就会变被动学习为主动学习,学习效果当然也会大为提高。

作为老师,大约可以从以下几方面来做。

一、告诉大家什么是“数学建模”“数学建模”是指根据生产、生活中遇到的实际问题的特点和规律,抽象和提炼出一个数学问题,用数学的工具,包括计算机、信息查询等手段来求解,并将结果经解释验证后用于解决实际问题,指导生产生活的过程。

作为数学研究与实际的社会生产生活交叉组合,而产生的一个新兴的学科领域,数学建模随着电子计算机这一高科技运用的不断普及而日显重要。

概率论与数理统计论文(优秀3篇)

概率论与数理统计论文(优秀3篇)

概率论与数理统计论文(优秀3篇)【摘要】针对近年来医学院校招生规模不断扩大,学生基础知识和学习能力参差不齐的实际状况,探讨了概率论与数理统计分层次教学的必要性,提出了医学院校概率论与数理统计课程分层教学模式,总结了在概率与统计教学中利用现代化信息技术进行分层次教学的实践经验。

【关键词】因材施教;素质教育;概率论与数理统计;分层次教学早在2500年以前,儒家代表人物孔子把教育内容分为德行、言语、政事、文学四科,其中以德行为根本。

而德育方法由不同层次的方法构成的,特别是方法论层次上的德育方法,如因材施教法。

既然不同的学生自身的特点不同,那么在教学中就应采用不同的教育,我们所提出的分层次教学思想,就源于孔子的因材施教。

近年来,随着教育的深入,本科教育从精英化向大众化进行转变,高等院校招生规模大幅度地增加,医科院校入校学生的数学基础和学习能力参差不齐。

而大学生由于其专业对概率与数理统计知识的要求不同,其学习目标和态度不尽相同,这就使得大学生对该课程的需求有了进一步的分化;同时由于不同学生的数学基础和对数学的兴趣爱好也不尽相同,对数学学习的重视程度和投入有很大差别。

在长期的教学实践中我们深刻地体会到,为了在有限的课堂教学时间内尽可能地满足各层次学生学习的需要,满足各专业后续课程学习的前提下,最大程度地调动学生的学习积极性,必须推行分层次教学,提高数学教学的质量[1,2]。

1概率论与数理统计分层次教学研究的背景自1995年国家教委立项研究“面向21世纪非数学类专业数学课程教学内容与课程体系”以来,对于数学教育在大学教育中应有的作用,国内数学教育界逐渐认识到,我国高等院校的规模水平、专业设置、地区差异、师资力量、生源优劣都相去甚远。

而随着我国高等教育大众化趋势的步伐加快,这些差距到21世纪更加凸显,分层次教学法的提出必然是大学数学教学的规律。

这也是我们在进行大学数学分层次教学研究时的一个基本出发点。

我校在概率论与数理统计的教学实践中提出分层次教学,是在原有的师资力量和学生水平的条件下,通过分层次教学,充分满足各专业各水平不同层次学生的数学素质的要求,最大限度地挖掘学生的潜能,引导学生发挥其优势,使每个学生都能获得所需的概率统计知识,同时能够充分实现学校的教育功能和服务功能,达到教书、育人的和谐统一[3]。

概率论与数理统计论文

概率论与数理统计论文

概率论与数理统计论文•相关推荐概率论与数理统计论文(精选16篇)在学习、工作生活中,大家最不陌生的就是论文了吧,借助论文可以有效训练我们运用理论和技能解决实际问题的的能力。

那么,怎么去写论文呢?下面是小编为大家收集的概率论与数理统计论文,欢迎阅读,希望大家能够喜欢。

概率论与数理统计论文篇1摘要:在现实世界中,随着科学的发展,数学在生活中的应用越来越广,无处不在。

而概率统作为数学的一个重要分支,同样也在发挥着越来越广泛的用处。

概率统计正广泛地应用到各行各业:买保险、排队问题、患遗传病、天气预报、经济预测、交通管理、医疗诊断等问题,成为我们认识世界、了解世界和改造世界的工具,它与我们的实际生活更是息息相关,密不可分。

关键词:概率论,概率论的发展与应用正文一、概率论的起源说起概率论起源的故事,就要提到法国的两个数学家。

一个叫做帕斯卡,一个叫做费马。

帕斯卡是17世纪有名的“神童”数学家。

费马是一位业余的大数学家,许多故事都与他有关。

1651年,法国一位贵族梅累向法国数学家、物理学家帕斯卡提出了一个十分有趣的“分赌注”问题。

这两个赌徒说,他俩下赌金之后,约定谁先赢满5局,谁就获得全部赌金。

赌了半天,A赢了4局,B赢了3局,时间很晚了,他们都不想再赌下去了。

那么,这个钱应该怎么分?是不是把钱分成7份,赢了4局的就拿4份,赢了3局的就拿3份呢?或者,因为最早说的是满5局,而谁也没达到,所以就一人分一半呢?这个问题可把他难住了,他苦苦思考了两三年,到1654年才算有了点眉目。

于是他写信给的好友费马,两人讨论结果,取得了一致的意见:赌友应得64金币的。

通过这次讨论,开始形成了概率论当中一个重要的概念——数学期望。

这时有位荷兰的数学家惠更斯在巴黎听到这件新闻,也参加了他们的讨论。

讨论结果,惠更斯把它写成一本书叫《论赌博中的计算》(1657年),这就是概率论最早的一部著作。

二、概率论的发展概率论的应用在他们之后,对概率论这一学科做出贡献的是瑞士数学家族——贝努利家族的几位成员。

哈工大概率论小论文

哈工大概率论小论文

H a r b i n I n s t i t u t e o f T e c h n o l o g y概率论与数理统计小论文哈尔滨工业大学概率论在经济学的应用摘要本文通过对概率论起源、在经济学方面的发展和在经济学领域内具体的应用示例来阐述概率论的重要性。

本文先从概率论的起源谈起,讲述从17世纪到今天世界各国数学家对概率论发展所做出的贡献。

然后介绍概率论与数理统计在经济管理方面的简单应用。

关键词:经济学,概率论,发展一、概率论的起源概率论是数学的一个重要的分支,广泛应用于日常生活中,它是一门研究随机现象的数学规律的学科。

它起源于十七世纪中叶,当时数学家们首先思考概率论的问题,却是来自赌博的问题。

德梅雷、帕斯卡、费尔马等人,首先对这个问题进行了研究与讨论,后来伯努利提出了大数定律,高斯和泊松进一步的推理论证。

由于社会的发展和工程技术问题的需要,促使概率论不断发展,许多科学家进行了研究。

发展到今天,概率论和以它作为基础的数理统计学科一起,在自然科学,社会科学,工程技术,军事科学及生产生活实际等诸多领域中起着不可替代的作用。

概率论作为现代一门重要的学科,它最近几十年来在自然科学和社会科学中得到了比较广泛的应用,在社会生产和生活中起着非常重要的作用。

随着科学的发展,数学在生活中的应用越来越广,生活中的数学无处不在。

而概率作为数学的一个重要部分,同样也在发挥这越来越广泛的用处。

概率论有悠久的历史,它的起源与博弈问题有关。

116世纪,意大利的学者开始研究掷骰子等赌博中的一些简单问题。

17世纪中叶,法国数学家B.帕斯卡、P.de费马及荷兰数学家C.惠更斯基于排列组合方法,研究了一些较复杂的赌博问题,他们解决了分赌注问题、赌徒输光问题等。

随着18、19世纪科学的发展,人们注意到在某些生物、物理和社会现象与机会游戏之间有某种相似性,从而由机会游戏起源的概率论被应用到这些领域中;同时这也大大推动了概率论本身的发展。

论文-概率论论文

论文-概率论论文

论文-概率论论文标题:概率论在实际应用中的研究摘要:概率论是数学中的重要分支,广泛应用于科学、工程、金融等领域。

本论文旨在探讨概率论在实际应用中的研究,包括统计推断、风险评估、模式识别等方面。

通过详细分析概率论在各个领域的应用案例,揭示其在实际问题中的作用和价值,并提出未来研究的方向和挑战。

引言:概率论是描述随机事件发生概率的数学分支,它在现实生活中的应用越来越广泛。

通过概率论的方法,我们能够对随机事件进行建模和分析,从而为决策提供有力支持。

本论文将重点介绍概率论在统计推断、风险评估和模式识别等方面的应用,并探讨其在实际问题中的作用。

主体:1.统计推断:概率论是统计学中最重要的工具之一。

通过概率论的方法,我们可以对现有数据进行分析,从而推断出总体的未知特征。

例如,通过对抽样数据进行统计推断,我们可以估计总体的均值、方差等参数,并对总体的区间估计进行评估。

此外,概率论还可以用于假设检验,判断不同样本之间是否存在显著差异。

2.风险评估:概率论在风险评估领域的应用十分重要。

通过对风险事件进行概率建模和分析,我们可以评估风险事件发生的可能性和影响程度。

这种风险评估的方法被广泛应用于金融、保险、项目管理等领域。

例如,在金融领域,我们可以使用概率论来评估投资组合的风险和收益,并进行资产配置的决策。

3.模式识别:概率论在模式识别中的应用也十分重要。

模式识别是指通过对数据的建模和分类,识别出数据中的特定模式。

概率论为模式识别提供了一种强大的工具。

例如,在图像识别中,我们可以使用概率论的方法来建立分类模型,并通过概率计算判断图像属于某一类别的可能性。

结论:本论文对概率论在实际应用中的研究进行了综述。

通过在统计推断、风险评估和模式识别等方面的应用案例分析,我们可以看到概率论在各个领域中的作用和价值。

然而,概率论在实际应用中仍面临一些挑战,如大样本问题、高维问题等。

未来,我们需要继续研究概率论在实际问题中的应用,并探索解决这些挑战的方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率论论文多篇汇总
概率论论文
概率论论文(一):
《概率论与数理统计》论文
摘要
概率论的发展具有很长的历史,多位数学家对概率论的构成做出了巨大贡献。

纵观其发展史,在实际生活中具有很强的应用好处。

正是有了前人的努力,才有了现代的概率论体系。

本文将从概率论的研究好处、定义,以及发展历程进行叙述。

概率论的发展与起源
1.1概率论的定义
概率论是研究随机现象数量规律的数学分支。

随机现象是相对于决定性现象
而言的,随机现象是指在基本条件不变的状况下,一系列或观察会得到不同结果的现象。

每一次实验或观察前,不能肯定会出现哪种结果,呈现出偶然性。

例如,抛一枚硬币,可能会出现正面或者反面;在同一工艺条件下生产出的灯泡,其寿命长短参差不齐等等。

随机现象的实现和对它的观察称为随机试验。

随机试验的每一可能结果称为一个基本事件,一个或者一组基本事件统称为随机事件,或者简称为事件。

事件的概率则是衡量该事件发生的可能性的量度。

虽然在一次随机试验中某个事件的发生是
带有偶然性的,但那些可在相同条件下超多重复的随机实验却往往呈现出明显的数量规律。

例如,连续多次抛一枚硬币,出现正面的频率随着抛次数的增加逐渐趋近于1/2;犹如,多次测量一物体的长度,其测量结果的平均值随着测量次数的增加,逐渐稳定于一常数,并且测量值大多落在此常数的附近,其分布状况呈现中间多,两头少及某种程度的对称性。

大数定律和中心极限定律就是描述和论证这些规律的。

在实际生活中,人们往往还需要研究某一特定随机现象的演变状况。

例如,微小粒子在液体中受周围分子的随机碰撞而构成不规则的运动,即布朗运动,这就是随机过程。

随机过程的统计特征、计算与随机过程有关的某些事件的概率,个性是研究
与随机过程样本轨道(及过程的一次实现)有关的问题,是现代概率论的主要课题。

在当代,随着概率论本身的发展和学科之间的交叉融合,囊括了概率理论和
统计理论两大部分的广义概率论已经成为一门应用十分广泛的学科,概率方法与统计方法逐渐渗透到了其它学科的研究工作当中。

无论是在自然科学领域还是社会科学领域,各门学科中都能看到概率论的身影。

概率论已经成为一种重要的工具,在社会发展中发挥着巨大的作用。

1.2课题背景及研究的目的和好处
现代社会步调快,信息更新快,信息量大,如何从中选取分
析最有效的信息
成为发展的先决条件,故概率统计学有着不可比拟的重要地位与作用。

无论是在日常生活中,还是商业经济、科学研究,小到日常下雨,大到卫星发射,各种事物发展中都有概率统计的影子。

在这个科技革新的时代,概率统计学必将发挥前所未有的重大影响,所以研究概率学具有十分重要的好处。

1.3概率论的发展
1.3.1概率论的早期雏形
早在原始社会,那时的占卜师们使用动物的趾骨作为占卜工具,将一个或多个
趾骨投掷出去,趾骨落地后的不同形状指示神对人事的不同意见。

由于投掷趾骨这个过程所产生的结果具有不可预测性,而每次投掷的结果也互不影响,这个能够说是概率事件最早的雏形了,然而由于趾骨的大小形状不同,每个事件发生的概率并不是完全相等。

与其基本原理相类似的就是掷骰子。

在16世纪,赌博中的偶然现象就开始
引起人们的注意,数学家卡丹诺(Cardano)首先觉察到,赌博输赢虽然是偶然的,但较大的赌博次数会呈现必须的规律性,卡丹诺为此还写了一本《论赌博》的小册子,书中计算了掷两颗骰子或三颗骰子时,在一切可能的方法中有多少方法得到某一点数。

1564年,卡尔扎诺,利用自己的智慧和赌博经验,用拉丁文。

相关文档
最新文档