含参不等式以及含参不等式组的解法知识分享
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
含参不等式以及含参不等式组的解法
含参不等式以及含参不等式组的解法
不等式在中考中的运用,往往掺杂参数来增加难度,我们只要读清楚题目找到解题思路便能迎刃而解了。
本节课我们就重点讲讲如何读题去寻找解题思路。
含参不等式:
解不等式5(x-1)<3x+1
通过去括号、移项、合并同类项等一系列运算可以求出解为:x<3 求不等式57x -<3
2-x 的最小整数解. 通过去括号、移项、合并同类项等一系列运算可以求出解为:x>
831,故可以得出最小整数为4.
那么含参不等式如下:
在这些需要讨论的情况下,等号最后讨论才方便,不会讨论重合。
例题:1、求不等式kx+2>2x-3的解集
移项、合并同类项、讨论取值
2、(1)求不等式解集mx+a>nx+b
移项、合并同类项、讨论取值
(2)(m-1)x>a2+1对于任意x都成立,则参数m的值为
2、解关于x 的不等式组⎩
⎨⎧+->+-<-8)21(563x m x mx mx mx
3、如果一元一次不等式组⎪⎩⎪⎨⎧≥≤≤-a
x x 432
(1)有解,求a 的取值范围。
(2)无解,求a 的取值范围。
(3)有且只有一个解,求a 的取值范围。
(4)只有两个整数解,求a 的取值范围。