半导体激光特性实验
半导体激光器实验报告
半导体激光器实验报告摘要:本文旨在通过对半导体激光器的实验研究,探索其基本原理、结构和性能,并分析实验结果。
通过实验,我们了解了激光器的工作原理、调制和控制技术以及其应用领域。
在实验过程中,我们测量了激光器的输出功率、光谱特性和波长调制特性等参数,并对实验结果进行了分析和讨论。
1.引言半导体激光器是一种利用半导体材料作为活性介质来产生激光的器件。
由于其小尺寸、高效率和低成本等优点,半导体激光器被广泛应用于通信、光存储、医学和科学研究等领域。
本实验旨在研究不同结构和参数的半导体激光器的性能差异,并通过实验数据验证理论模型。
2.实验原理2.1 半导体激光器的基本结构半导体激光器由活性层、波导结构和光学耦合结构组成。
活性层是激光器的关键部分,其中通过注入电流来激发电子和空穴复合形成激光。
波导结构用于限制光的传播方向,并提供反射面以形成光腔。
光学耦合结构用于引导激光光束从激光器中输出。
2.2 半导体激光器的工作原理半导体激光器利用注入电流激发活性层中的电子和空穴,使其发生复合并产生激光。
通过适当选择材料和结构参数,使波导结构中的光在垂直方向形成反射,从而形成光腔。
当光经过活性层时,激发的电子和空穴产生辐射跃迁,并在激光器中形成激光。
随着光的多次反射和放大,激光逐渐增强,最终从光学耦合结构中输出。
3.实验步骤3.1 实验器材本实验使用的主要器材有半导体激光器装置、电源、光功率计、多道光谱仪等。
3.2 实验过程首先,将半导体激光器装置与电源连接,并通过电源控制激光器的注入电流。
然后,使用光功率计测量激光器的输出功率,并记录相关数据。
接下来,使用多道光谱仪测量激光器的光谱特性,并记录各个波长的输出光功率。
最后,调节激光器的注入电流,并测量波长调制特性。
完成实验后,对实验数据进行分析和讨论。
4.实验结果与分析通过实验测量,我们得到了半导体激光器的输出功率、光谱特性和波长调制特性等数据,并对其进行了分析。
实验结果显示,随着注入电流的增加,激光器的输出功率呈现出递增趋势,但当电流达到一定值后,增长速度逐渐减慢。
半导体激光器实验报告
半导体激光器实验报告半导体激光器实验报告引言:半导体激光器是一种重要的光电子器件,具有广泛的应用领域,如通信、医疗、工业等。
本实验旨在通过搭建实验装置,研究半导体激光器的工作原理和性能特点,并探索其在光通信领域的应用。
实验一:激光器的工作原理激光器的工作原理是基于光放大和光反馈的原理。
在实验中,我们使用一台半导体激光器,通过电流注入激发半导体材料,产生光子。
这些光子在激光腔中来回反射,不断受到增益介质的放大,最终形成激光束。
实验装置中的关键组件包括半导体激光器、激光腔、准直器和光探测器。
半导体激光器通过电流注入,激发载流子跃迁,产生光子。
光子在激光腔中来回反射,经过准直器调整光束的方向,最后被光探测器接收。
实验二:激光器的性能特点在实验中,我们测试了激光器的输出功率、波长和光谱宽度等性能指标。
通过改变注入电流和温度等参数,我们研究了激光器的输出特性。
首先,我们测试了激光器的输出功率。
通过改变注入电流,我们观察到激光器输出功率随电流增加而增加的趋势。
然而,当电流达到一定值后,激光器的输出功率不再增加,甚至出现下降。
这是由于激光器的光子数饱和效应和损耗机制导致的。
其次,我们测量了激光器的波长。
通过调节激光腔的长度,我们观察到激光器的波长随腔长的变化而变化。
这是由于激光腔的谐振条件决定了激光器的输出波长。
最后,我们研究了激光器的光谱宽度。
通过光谱仪测量激光器的光谱分布,我们发现激光器的光谱宽度与注入电流和温度有关。
随着注入电流的增加和温度的降低,激光器的光谱宽度变窄,光纤通信系统中要求的窄光谱宽度可以通过适当的调节实现。
实验三:半导体激光器在光通信中的应用半导体激光器在光通信领域有着重要的应用。
我们通过实验研究了激光器在光纤通信中的应用。
首先,我们将激光器的输出光束通过光纤传输。
通过调节激光器的输出功率和波长,我们实现了光纤通信中的光信号传输。
通过光探测器接收光信号,并通过示波器观察到了传输过程中的光信号波形。
半导体激光器_实验报告
半导体激光器_实验报告【标题】半导体激光器实验报告【摘要】本实验主要通过实际操作和测量,研究半导体激光器的工作原理和性能特点。
通过改变电流和温度等参数,观察激光器的输出功率和波长、发散角度等特性的变化,并分析其与激光器内部结构和材料特性之间的关系。
【引言】半导体激光器具有体积小、功耗低、效率高等优点,在光通信、激光加工、医疗等领域有广泛应用。
了解半导体激光器的工作原理和特性对于深入理解其应用具有重要意义。
【实验内容】1. 实验器材与仪器准备:准备半导体激光器、电源、温度控制器、功率测量仪等实验设备。
2. 实验步骤:a. 连接电源和温度控制器,调节温度至设定值。
b. 调节电流,记录相应的激光器输出功率。
c. 测量激光器的输出波长和发散角度。
d. 分析激光器输出功率、波长和发散角度等特性随电流和温度变化的规律。
【实验结果】1. 实验数据记录:记录不同电流和温度下的激光器输出功率、波长和发散角度数据。
2. 实验结果分析:a. 输出功率与电流和温度的关系。
b. 输出波长与电流和温度的关系。
c. 发散角度与电流和温度的关系。
【讨论】根据实验结果,结合半导体激光器的内部结构和材料特性,讨论激光器输出功率、波长和发散角度等特性与电流和温度的关系。
分析激光器的工作原理和性能特点,并讨论其在实际应用中的优缺点。
【结论】通过实验,我们深入了解了半导体激光器的工作原理和性能特点。
通过调节电流和温度等参数,可以控制激光器的输出功率、波长和发散角度等特性。
半导体激光器具有体积小、功耗低、效率高等优点,但也存在一些限制,如温度敏感性较强。
最后,我们对半导体激光器的应用前景进行了展望。
半导体激光器P-I特性测试实验
太原理工大学学生实验报告
1.根据实验记录数据,算出半导体激光器驱动电流,画出相应的光功率与注入电
流的关系曲线。
(测得电阻为Ω)
2.根据所画的P-I特性曲线,找出半导体激光器阈值电流I th的大小。
3.根据P-I特性曲线,求出半导体激光器的斜率效率。
七、注意事项
1.半导体激光器驱动电流不可超过40mA,否则有烧毁激光器的危险。
2.由于光功率计,光跳线等光学器件的插头属易损件,使用时应轻拿轻放,切忌
用力过大。
八、思考题
1.试说明半导体激光器发光工作原理。
半导体激光器工作原理是激励方式,利用半导体物质(既利用电子)在能带间跃迁发光,用半导体晶体的解理面形成两个平行反射镜面作为反射镜,组成谐振腔,使光振荡、反馈、产生光的辐射放大,输出激光。
半导体激光二极管(LD)或简称半导体激光器,它通过受激辐射发光,(处于高能级E2的电子在光场的感应下发射一个和感应光子一模一样的光子,而跃迁到低能级E1,这个过程称为光的受激辐射
2.环境温度的改变对半导体激光器P-I特性有何影响
随着温度的上升,阈值电流越来越大,功率随电流变化越来越缓慢。
3.分析以半导体激光器为光源的光纤通信系统中,半导体激光器P-I特性对系统。
半导体激光器特性及调制特性实验
实验三半导体激光器特性及调制特性实验一、实验目的1.掌握半导体泵浦固体激光器的工作原理,测量泵浦LD经快轴压缩后的阈值电流和输出特性曲线;2.用辅助激光器法,构造固体激光器谐振腔,并使其发光;3.选用不同透过率腔镜,测试不同LD电流下的激光输出功率,结合LD的功率-电流关系,计算两种耦合输出下的激光斜效率和光光转换效率。
二、实验仪器半导体激光器、耦合系统、Nd:YAG晶体、输出镜、功率计、探测器三、实验内容1、LD安装及系统准直将LD电源接通。
通过上转换片观察LD出射光近场和远场的光斑。
测量LD经快轴压缩后的阈值电流和输出特性曲线。
2、半导体泵浦固体激光器实验用大功率的808nmLD泵浦Nd:YAG晶体,通过不同输出镜并调节腔镜产生1064nm的红外光。
测试不同LD电流下的激光输出功率;根据实验数据和曲线,计算两种耦合输出下的激光斜效率和光光转换效率,并作简要分析。
四、实验结果(1)数据结果:电流(A)0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8功率(mw)0 0 0 0 0 0.019 0.048 0.077 电流(A)0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6功率(mw)0.113 0.150 0.202 0.267 0.330 0.373 0.406 0.432 电流(A) 1.7 1.8 1.9 2 2.1功率(mw)0.461 0.485 0.506 0.525 0.555(2)激光输出功率-泵浦功率曲线:(3)根据数据和图像可知:故,转换效率:%04.38=η五、实验总结通过本次实验,掌握了半导体泵浦固体激光器的工作原理,学会了测量泵浦LD 经快轴压缩后的阈值电流和绘制了输出特性曲线,实现了用辅助激光器法,构造固体激光器谐振腔,并使其发光,选用了不同透过率腔镜,测试了不同LD 电流下的激光输出功率,结合LD 的功率-电流关系,计算出来两种耦合输出下的激光斜效率和光光转换效率。
半导体激光器特性及调制特性实验
(操作性实验)课程名称:激光原理与技术实验题目:半导体激光器特性及调制特性实验指导教师:班级:学号:学生姓名:一、实验目的和任务1.掌握半导体泵浦固体激光器的工作原理,测量泵浦LD经快轴压缩后的阈值电流和输出特性曲线。
2.用辅助激光器法,构造固体激光器谐振腔,并使其发光。
3.选用不同透过率腔镜,测试不同LD电流下的激光输出功率,结合LD的功率-电流关系,计算两种耦合输出下的激光斜效率和光光转换效率。
二、实验仪器及器件1、半导体激光器2、耦合系统3、Nd:YAG晶体4、输出镜5、功率计6、探测器三、实验内容及原理1、LD安装及系统准直将LD电源接通。
通过上转换片观察LD出射光近场和远场的光斑。
测量LD经快轴压缩后的阈值电流和输出特性曲线。
2、半导体泵浦固体激光器实验用大功率的808nmLD泵浦Nd:YAG晶体,通过不同输出镜并调节腔镜产生1064nm的红外光。
测试不同LD电流下的激光输出功率;根据实验数据和曲线,计算两种耦合输出下的激光斜效率和光光转换效率,并作简要分析。
1、半导体激光泵浦固体激光器工作原理:上世纪80年代起,生长半导体激光器(LD)技术得到了蓬勃发展,使得LD的功率和效率有了极大的提高,也极大地促进了DPSL技术的发展。
与闪光灯泵浦的固体激光器相比,DPSL 的效率大大提高,体积大大减小。
在使用中,由于泵浦源LD的光束发散角较大,为使其聚焦在增益介质上,必须对泵浦光束进行光束变换(耦合)。
泵浦耦合方式主要有端面泵浦和侧面泵浦两种,其中端面泵浦方式适用于中小功率固体激光器,具有体积小、结构简单、空间模式匹配好等优点。
侧面泵浦方式主要应用于大功率激光器。
本实验采用端面泵浦方式。
端面泵浦耦合通常有直接耦合和间接耦合两种方式。
直接耦合:将半导体激光器的发光面紧贴增益介质,使泵浦光束在尚未发散开之前便被增益介质吸收,泵浦源和增益介质之间无光学系统,这种耦合方式称为直接耦合方式。
直接耦合方式结构紧凑,但是在实际应用中较难实现,并且容易对LD造成损伤。
实验报告半导体激光实验
一、实验目的1. 了解半导体激光器的基本原理和光学特性;2. 掌握半导体激光器耦合、准直等光路的调节;3. 根据半导体激光器的光学特性考察其在光电子技术方面的应用;4. 熟悉WGD6光学多道分析器的使用。
二、实验原理1. 半导体激光器的基本结构半导体激光器,全称为半导体结型二极管激光器,是一种利用半导体材料作为工作物质的激光器。
其基本结构包括工作物质、谐振腔和激励能源。
工作物质通常采用V族化合物半导体,如GaAs、MoSb等;谐振腔由两个平行端面构成,起到反射镜的作用;激励能源有电注入、光激励、高能电子束激励和碰撞电离激励等。
2. 半导体激光器的阈值条件半导体激光器的阈值电流是各种材料和结构参数的函数。
在满足阈值条件时,半导体激光器才能产生激光。
阈值电流表达式为:\[ I_{th} = \frac{L}{\eta} \frac{P}{h\nu} \]其中,\( I_{th} \) 为阈值电流,\( L \) 为有源层长度,\( \eta \) 为内量子效率,\( P \) 为注入功率,\( h \) 为普朗克常数,\( \nu \) 为发射光的真空波长。
3. 半导体激光器的光学特性半导体激光器的光学特性主要包括单色性好、高亮度、体积小、重量轻、结构简单、效率高、寿命长等。
三、实验仪器与设备1. 半导体激光器及可调电源;2. WGD6型光学多道分析器;3. 可旋转偏振片;4. 旋转台;5. 多功能光学升降台;6. 光功率指示仪。
四、实验步骤1. 搭建实验系统,连接各仪器设备;2. 调节可旋转偏振片,观察偏振光的变化;3. 调节旋转台,观察光斑在屏幕上的变化;4. 调节多功能光学升降台,观察光功率指示仪的读数;5. 使用WGD6型光学多道分析器,对半导体激光器的光谱进行测量;6. 记录实验数据,分析实验结果。
五、实验结果与分析1. 通过调节可旋转偏振片,观察到偏振光的变化,验证了半导体激光器的偏振特性;2. 通过调节旋转台,观察到光斑在屏幕上的变化,验证了半导体激光器的准直特性;3. 通过调节多功能光学升降台,观察到光功率指示仪的读数变化,验证了半导体激光器的功率特性;4. 使用WGD6型光学多道分析器,对半导体激光器的光谱进行测量,得到激光波长、线宽等参数,进一步验证了半导体激光器的光学特性。
实验一半导体激光器pi特性曲线测量
实验四半导体激光器光谱测量与模式分析一、实验目的:1.了解半导体激光器的工作原理和相关特性;2.掌握半导体激光器模式参数的测量方法;二、实验原理:半导体激光器的模式分为空间模和纵模(轴模)。
空间模描述围绕输出光束轴线某处的光强分布,或者是空间几何位置上的光强(或光功率)的分布,也称远场分布;纵模则表示一种频谱,它反映所发射的光束其功率在不同频率(或波长)分量上的分布。
二者都可能是单模或者出现多个模式(多模)。
边发射半导体激光器具有非圆对称的波导结构,而且在垂直于异质结平面方向(称横向)和平行于结平面方向(称侧向)有不同的波导结构和光场限制情况。
横向上都是异质结构成的折射率波导,而在侧向目前多是折射率波导,但也可采取增益波导,因此半导体激光器的空间模式又有横模与侧模之分。
图1表示这两种空间模式。
图1 半导体激光器横模与侧模由于有源层厚度很薄(约为0.15μm),都能保证在单横模工作;而在侧向,则其宽度相对较宽,因而视其宽度可能出现多侧模。
如果在这两个方向都能以单模(或称基模)工作,则为理想的TEM00模,此时出现光强峰值在光束中心且呈“单瓣”。
这种光束的光束发散角最小、亮度最高,能与光纤有效地耦合,也能通过简单的光学系统聚焦到较小的斑点,这对激光器的应用是非常有利的。
相反,若有源区宽度较宽,则发光面上的光场(称近场)在侧向表现出多光丝,好似一些并行的发光丝,在远场的侧向则有对应的光强分布,如图2所示。
这种多侧模的出现以及它的不稳定性,易使激光器的P-I特性曲线发生“扭折”(kink),使P-I线性变坏,这对信号的模拟调制不利;同时多侧模也影响与光纤高效率的耦合,侧模的不稳定性也影响出纤功率的稳定性;不能将这种多侧模的激光束聚焦成小的光斑。
图2 有多侧模的半导体激光器的近场和远场由于半导体激光器发光区几何尺寸的不对称,其远场呈椭圆状,其长、短轴分别对应于横向与侧向。
在许多应用中需用光学系统对这种非圆对称的远场光斑进行圆化处理。
半导体激光器的光学特性测试
实验八半导体激光器的光学特性测试[实验目的]1、通过实验熟悉半导体激光器的光学特性。
2、掌握半导体激光器耦合、准直等光路的调节。
3、根据半导体激光器的光学特性考察其在光电子技术方面的应用。
[实验仪器]1、半导体激光器及可调电源2、光谱仪3、可旋转偏振片4、旋转台5、光功率计图1. 半导体激光器的结构[实验原理]1、半导体激光器的基本结构至今,大多数半导体激光器用的是GaAs或Ga1-x Al x As材料,p-n结激光器的基本结构如图1所示。
P—n结通常在n型衬底上生长p型层而形成。
在p区和n区都要制作欧姆接触,使激励电流能够通过,这电流使结区附近的有源区内产生粒子数反转,还需要制成两个平行的端面起镜面作用,为形成激光模提供必须的光反馈。
图1中的器件是分立的激光器结构,它可以与光纤传输线连接,如果设计成更完整的多层结构,可以提供更复杂的光反馈,更适合单片集成光路。
2、半导体激光器的阈值条件:当半导体激光器加正向偏置并导通时,器件不会立即出现激光振荡。
小电流时发射光大都来自自发辐射,光谱线宽在数百唉数量级。
随着激励电流的增大,结区大量粒子数反转,发射更多的光子。
当电流超过阈值时,会出现从非受激发射到受激发射的突变。
实际上能够 观察到超过阈值电流时激光的突然发生,只要观察在光功率对激励电流曲线上斜率的急速突变,如图2所示;这是由于激光作用过程的本身具有较高量子效率的缘故。
从定量分析,激光的阈值对应于:由受激发射所增加的激光模光子数(每秒)正好等于由散射、吸收激光器的发射所损耗的光子数(每秒)。
据此,可将阈值电流作为各种材料和结构参数的函数导出一个表达式:)]1(121[8202Rn a Den J Q th +∆=ληγπ (1) 这里,Q η是内量子效率,O λ是发射光的真空波长,n 是折射率,γ∆是自发辐射线宽,e 是电子电荷,D 是光发射层的厚度,α是行波的损耗系数,L 是腔长,R 为功率反射系数。
实验5-1 半导体激光器的特性测试实验
光信息专业实验指导材料(试用)实验5-1 半导体激光器的特性测试[实验目的]1、通过测量半导体激光器工作时的功率、电压、电流,画出P-V、P-I、I-V曲线,让学生了解半导体的工作特性曲线;2、学会通过曲线计算半导体激光器的阈值,以及功率效率,外量子效率和外微分效率,并对三者进行比较;3、内置四套方波信号或者外加信号直接调制激光器,通过调整不同的静态工作点,和输入信号强度大小不同,观察到截至区,线性区,限流区的信号不同响应(信号畸变,线性无畸变),了解调制工作原理。
[实验仪器]实验室提供:半导体激光器实验箱(内置三个半导体激光器),示波器,两根电缆线。
[实验原理]半导体激光器是用半导体材料作为工作物质的一类激光器,由于物质结构上的差异,产生激光的具体过程比较特殊。
常用材料有砷化镓(GaAs)、硫化镉(CdS)、磷化铟(InP)、硫化锌(ZnS)等。
激励方式有电注入、电子束激励和光泵浦三种形式。
半导体激光器件,可分为同质结、单异质结、双异质结等几种。
同质结激光器和单异质结激光器室温时多为脉冲器件,而双异质结激光器室温时可实现连续工作。
半导体激光器具有体积小、效率高等优点,广泛应用于激光通信、印刷制版、光信息处理等方面。
一、半导体激光器的结构与工作原理1.半导体激光器的工作原理。
半导体材料多是晶体结构。
当大量原子规则而紧密地结合成晶体时,晶体中那些价电子都处在晶体能带上。
价电子所处的能带称价带(对应较低能量)。
与价带对应的高能带称导带,价带与导带之间的空域称为禁带。
当加外电场时,价带中电子跃迁到导带中去,在导带中可以自由运动而起导电作用。
同时,价带中失掉一个电子,相当于出现一个带正电的空穴,这种空穴在外电场的作用下,也能起导电作用。
因此,价带中空穴和导带中的电子都有导电作用,统称为载流子。
没有杂质的纯净半导体,称为本征半导体。
如果在本征半导体中掺入杂质原子,则在导带之下和价带之上形成了杂质能级,分别称为施主能级和受主能级。
实验一 半导体激光器pi特性曲线测量
实验一半导体激光器P-I特性曲线测量一、实验目的:1. 了解半导体光源和光电探测器的物理基础;2. 了解发光二极管(LED)和半导体激光二极管(LD)的发光原理和相关特性;3. 了解PIN光电二极管和雪崩光电二极管(APD)的工作原理和相关特性;4. 掌握有源光电子器件特性参数的测量方法;二、实验原理:光纤通信中的有源光电子器件主要涉及光的发送和接收,发光二极管(LED)和半导体激光二极管(LD)是最重要的光发送器件,PIN光电二极管和APD光电二极管则是最重要的光接收器件。
1.发光二极管(LED)和半导体激光二极管(LD):LED是一种直接注入电流的电致发光器件,其半导体晶体内部受激电子从高能级回复到低能级时发射出光子,属自发辐射跃迁。
LED 为非相干光源,具有较宽的谱宽(30~60nm)和较大的发射角(≈100°),常用于低速、短距离光波系统。
LD通过受激辐射发光,是一种阈值器件。
LD不仅能产生高功率(≥10mW)辐射,而且输出光发散角窄,与单模光纤的耦合效率高(约30%—50%),辐射光谱线窄(Δλ=0.1-1.0nm),适用于高比特工作,载流子复合寿命短,能进行高速(>20GHz)直接调制,非常适合于作高速长距离光纤通信系统的光源。
使粒子数反转从而产生光增益是激光器稳定工作的必要条件,对于处于泵浦条件下的原子系统,当满足粒子数反转条件时将会产生占优势的(超过受激吸收)受激辐射。
在半导体激光器中,这个条件是通过向P型和N型限制层重掺杂使费密能级间隔在PN结正向偏置下超过带隙实现的。
当有源层载流子浓度超过一定值(称为透明值),就实现了粒子数反转,由此在有源区产生了光增益,在半导体内传播的输入信号将得到放大。
如果将增益介质放入光学谐振腔中提供反馈,就可以得到稳定的激光输出。
(1) LED和LD的P-I特性与发光效率:图1是LED和LD的P-I特性曲线。
LED是自发辐射光,所以P-I 曲线的线性范围较大。
半导体激光器实验报告
一、实验目的1. 熟悉半导体激光器的基本结构和工作原理。
2. 掌握半导体激光器的电学特性、光学特性及其调节方法。
3. 通过实验了解半导体激光器在光电子技术方面的应用。
4. 学习使用WGD6光学多道分析器等实验仪器。
二、实验原理半导体激光器是一种基于半导体的电致发光效应的激光器。
当电流通过p型和n型半导体材料形成的pn结时,电子和空穴在pn结的活性区内复合,释放出能量,产生光子。
这些光子在谐振腔中多次反射和放大,最终形成具有特定波长、相位和方向性的激光输出。
半导体激光器的主要结构包括:半导体材料、pn结、谐振腔、光学元件等。
其中,半导体材料是激光器的核心部分,决定了激光器的波长、功率和效率。
pn结是半导体激光器的能量源,谐振腔是激光器的放大器,光学元件则用于调节激光器的光路。
三、实验仪器与材料1. 半导体激光器及可调电源2. WGD6型光学多道分析器3. 可旋转偏振片4. 旋转台5. 多功能光学升降台6. 光功率指示仪四、实验步骤1. 连接仪器:将半导体激光器、可调电源、WGD6型光学多道分析器、可旋转偏振片、旋转台、多功能光学升降台和光功率指示仪连接好。
2. 调节激光器:调整可调电源,使激光器工作在阈值电流附近。
观察激光器输出光斑,调整激光器的光路,使光斑最小化。
3. 测量电学特性:记录激光器在不同电流下的输出功率,分析激光器的电学特性。
4. 测量光学特性:使用WGD6型光学多道分析器测量激光器的光谱特性,分析激光器的光学特性。
5. 调节光路:通过旋转偏振片和旋转台,观察激光器的输出光斑,调整光路,使光斑最小化。
6. 观察应用:观察激光器在光电子技术方面的应用,如光纤通信、激光雷达等。
五、实验结果与分析1. 电学特性:实验结果显示,随着电流的增加,激光器的输出功率逐渐增加,但在阈值电流附近,输出功率增加速率最快。
这表明半导体激光器具有饱和特性。
2. 光学特性:实验结果显示,激光器的光谱线为单色线,且光斑最小化。
实验一半导体激光器pi特性测试实验
常用光纤器件特性测试实验 实验一半导体激光器P-I 特性测试实验一、实验目的1、学习半导体激光器发光原理和光纤通信中激光光源工作原理2、了解半导体激光器平均输出光功率与注入驱动电流的关系3、掌握半导体激光器P (平均发送光功率)-I (注入电流)曲线的测试方法二、实验内容1、测量半导体激光器输出功率和注入电流,并画出P-I 关系曲线。
2、根据P -I 特性曲线,找出半导体激光器阈值电流,计算半导体激光器斜率效率。
三、预备知识1、光源的种类2、半导体激光器的特性、内部结构、发光原理四、实验仪器1、ZY12OFCom13BG3型光纤通信原理实验箱 1台2、FC 接口光功率计 1台3、FC/PC-FC/PC 单模光跳线 1根4、万用表1台5、连接导线20根五、实验原理半导体激光二极管(LD )或简称半导体激光器,它通过受激辐射发光,是一种阈值器件。
处于高能级E 2的电子在光场的感应下发射一个和感应光子一模一样的光子,而跃迁到低能级E 1,这个过程称为光的受激辐射,所谓一模一样,是指发射光子和感应光子不仅频率相同,而且相位、偏振方向和传播方向都相同,它和感应光子是相干的。
由于受激辐射与自发辐射的本质不同,导致了半导体激光器不仅能产生高功率(≥10mW )辐射,而且输出光发散角窄(垂直发散角为30~50°,水平发散角为0~30°),与单模光纤的耦合效率高(约30%~50%),辐射光谱线窄(Δλ=0.1~1.0nm ),适用于高比特工作,载流子复合寿命短,能进行高速信号(>20GHz )直接调制,非常适合于作高速长距离光纤通信系统的光源。
阈值电流是非常重要的特性参数。
图1-1上A 段与B 段的交点表示开始发射激光,它对应的电流就是阈值电流th I 。
半导体激光器可以看作为一种光学振荡器,要形成光的振荡,就必须要有光放大机制,也即激活介质处于粒子数反转分布,而且产生的增益足以抵消所有的损耗。
半导体激光器P-I特性测试实验
实验二半导体激光器P-I特性测试实验一、实验目的1、学习半导体激光器发光原理和光纤通信中激光光源工作原理2、了解半导体激光器平均输出光功率与注入驱动电流的关系3、掌握半导体激光器P(平均发送光功率)-I(注入电流)曲线的测试方法二、实验内容1、测量半导体激光器输出功率和注入电流,并画出P-I关系曲线2、根据P-I特性曲线,找出半导体激光器阈值电流,计算半导体激光器斜率效率三、实验仪器1、ZY1804I型光纤通信原理实验系统1台2、FC接口光功率计1台3、FC-FC单模光跳线1根4、万用表1台5、连接导线20根四、实验原理光源是把电信号变成光信号的器件,在光纤通信中占有重要的地位。
性能好、寿命长、使用方便的光源是保证光纤通信可靠工作的关键。
光纤通信对光源的基本要求有如下几个方面:首先,光源发光的峰值波长应在光纤的低损耗窗口之内,要求材料色散较小。
其次,光源输出功率必须足够大,入纤功率一般应在10微瓦到数毫瓦之间。
第三,光源应具有高度可靠性,工作寿命至少在10万小时以上才能满足光纤通信工程的需要。
第四,光源的输出光谱不能太宽以利于传输高速脉冲。
第五,光源应便于调制,调制速率应能适应系统的要求。
第六,电—光转换效率不应太低,否则会导致器件严重发热和缩短寿命。
第七,光源应该省电,光源的体积、重量不应太大。
作为光源,可以采用半导体激光二极管(LD,又称半导体激光器)、半导体发光二极管(LED)、固体激光器和气体激光器等。
但是对于光纤通信工程来说,除了少数测试设备与工程仪表之外,几乎无例外地采用半导体激光器和半导体发光二极管。
本实验简要地介绍半导体激光器,若需详细了解发光原理,请参看各教材。
半导体激光二极管(LD)或简称半导体激光器,它通过受激辐射发光,是一种阈值器件。
处于高能级E2的电子在光场的感应下发射一个和感应光子一模一样的光子,而跃迁到低能级E1,这个过程称为光的受激辐射,所谓一模一样,是指发射光子和感应光子不仅频率相同,而且相位、偏振方向和传播方向都相同,它和感应光子是相干的。
半导体激光器电学特性的测量实验
半导体激光器电学特性的测量实验一、测试实验原理半导体激光器的核心是PN 结,当用光照和电子束激励或电注入等方式使半导体中的载流子从平衡状态时的基态跃迁到非平衡状态时的激发态,此过程称为激发或激励,它的逆过程就是处于非平衡态激发态上的非平衡载流子回复到较低的能态而放出光子的过程,这就是复合辐射。
半导体发光器件的本质就是注入到半导体PN 结中的非平衡载流子——电子空穴对复合发光。
这是一种非平衡载流子复合的自发辐射,激光器则是上述的非平衡载流子的复合发光在激光器的具有增益的光介质谐振腔作用下形成相干振荡而输出激光,所以发光管的发光效率决定于半导体材料的自发辐射系数的大小。
激光器辐射发光除与材料的增益系数有关外还与谐振腔的特性和结构尺寸有关。
半导体材料的增益系数为:jm g β=β为增益因子,m 为与结构有关的指数,j 为电流密度。
激光器的阈值条件为:)/1()2/1(21R R L L a g n +=a 为腔内的其它损耗,L为腔长,1R 2R 为腔端面的反射系数,所以激光器的阈值电流密度为:()()[]21/12/1/1R R L L j n mth +=αβ由上可知一个制作好的激光器件或发光管,它既是一个PN 结二极管,又是一个电光转换器,它们的工作过程是,当给它正向注入载流子时则在二极管中产生电 子空穴对的复合跃迁而发射光子,光子的能量由二极管的材料的禁带宽度gE 决定,hvE g =,h 为普朗克常数,v 为光频率,发射的同时还存在光的吸收,称为吸收跃迁。
注入小时,吸收大于发射,没有光输出,当注入载流子增大时随发射的增加将逐渐大于吸收而得到荧光输出,发光管就是这样工作的。
但对于激光器由于有介质谐振腔存在,则输入载流子达到激光器的阈值电流时则产生激光输出,再继续增加注入电流,输出光功率也增大,同理,管的功率发热也增加,注入过大时则管子因发热而损坏,从这里我们可以看出,半导体激光器件的特性包括PN 结二极管的I —V 特性和载流子注入而产生的电光转换特性,测量其特性参数可采用两种电注入方法:第一种为脉冲法、第二种为直流法。
半导体激光器特性测量YLSTU
半导体激光器特性测量指导老师:余云鹏实验者:刘毅合作者:谭广权班级:08物理1.实验目的1)通过实验熟悉半导体激光器的光学特性;2)掌握半导体激光器耦合,准直等光路的调节;3)根据半导体激光器的光学特性考察其在光电子技术方面的应用。
2.实验及仪器半导体激光器及可调电源,WGD-6光学躲到分析器,可旋转偏振片(最小刻度为1°),旋转台(0—360°最小刻度值1°),多功能光学升降仪,光功率指示仪3.实验原理3.1半导体激光器的基本结构半导体激光器大多数用的是GaAs或Gal-xAlxAs材料,p-n结激光器的基本结构如图1所示,p-n结通常在n型衬底上生长p型层而形成。
在p区和n区都要制作欧姆接触,使激励电流能够通过,这电流使结区附近的有源去内产生粒子数反转,还需要制成两个平行的端面其镜面作用,为形成激光模提供必须的光反馈。
图1中的器件是分立的激光器结构,它可以与光纤传输连成线,如果设计成更完整的多层结构,可以提供更复杂的光反馈,更适合单片集成光电路。
3.2半导体激光器的阈值条件当半导体激光器加正向偏置并导通时,器件不会立即呈现激光振荡。
小电流时发射光大都来自自发辐射,光谱线宽在数百A数量级。
随着激励电流的增大,结区大量粒子数反转,发射更多的光子。
当电流超过阈值时,会出现从非受激光射到受激发射的突变,实际上只能观察到超过阈值电流时激光的突然发生,只要观察在光功率对激励电流曲线上斜率的急速突变,如图2所示,这是由于激光作用过程的本身具有较高量子效率的缘故。
从定量分析,激光的阈值对应于:由受激光射所增加的激光模光子数(每秒)正好等于有散射,吸收激光器的发射所损耗的光子数(每秒)。
据此可将阈值电流作为各种材料和结构参数的函数导出一个表达式:式中,η是内量子效率,λ是发射光的真空波长,n是折射率,△γ是自发辐射线宽,e是电子电荷,D是光发射层的厚度,α是行波的损耗系数,L是腔长,R为功率发射系数。
半导体激光特性的研究
实验六半导体激光光谱特性的研究一、实验目的了解半导体激光器的主要光学特性和光谱测量的基本方法;了解光栅光谱仪的工作原理,并掌握操作方法。
二、实验原理2.1实验装置光谱仪是指利用折射或衍射产生色散的一类光谱测量仪器。
光栅光谱仪是光谱测量中最常用的仪器,基本结构如图1所示。
它由入射狭缝S1、准直球面反射镜M1、光栅G、聚焦球面反射镜M2,物镜M3以及输出狭缝S2构成。
M1反射镜、M2准光镜、M3物镜、G平面衍射光栅S1入射狭缝、S2光电倍增管接收、S3 CCD接收图1 光谱仪光学原理图WGD-6型组合式多功能光栅光谱仪,由光栅单色仪,接收单元,扫描系统,电子放大器,A/D采集单元,计算机组成。
该设备集光学、精密机械、电子学、计算机技术于一体。
光学系统采用C-T型,如图1。
入射狭缝、出射狭缝均为直狭缝,宽度范围0-2mm连续可调,光源发出的光束进入入射狭缝S1,S1位于反射式准光镜M2的焦面上,通过S1射入的光束经M2反射成平行光束投向平面光栅G上,衍射后的平行光束经物镜M3成象在S2上或S3上。
仪器的入射狭缝和出射狭缝均为直狭缝,宽度范围0~2mm连续可调,顺时针旋转为狭缝宽度加大,反之减小。
每旋转一周狭缝宽度变化0.5mm ,最大调节宽度为2mm 。
为延长使用寿命,狭缝宽度调节时应注意最大不要超过2mm 。
仪器测量完毕或平常不使用时,狭缝最好调节到0.1mm 至0.5mm 左右。
衍射光栅是光栅光谱仪的核心色散器件。
它是在一块平整的玻璃或金属材料表面(可以是平面或凹面)刻画出一系列平行、等距的刻线,然后在整个表面镀上高反射的金属膜或介质膜,就构成一块反射试验射光栅。
相邻刻线的间距d 称为光栅常数,通常刻线密度为每毫米数百至数十万条,刻线方向与光谱仪狭缝平行。
入射光经光栅衍射后,相邻刻线产生的光程差(sin sin )s d αβ∆=±,α为入射角,β为衍射角,则可导出光栅方程:(sin sin )d m αβλ±=光栅方程将某波长的衍射角和入射角通过光栅常数d 联系起来,λ为入射光波长,m 为衍射级次,取0,1,2,±±等整数。
实验一半导体激光器P-I特性曲线测量(常用版)
Δν=c/2ngL (7)
式中,λ为激射波长;c为光速;ng为有源材料的群折射率。
一般的半导体激光器其纵模间隔为0.5~1nm,而激光介质的增益谱宽为数十纳米,因而有可能出现多纵模振荡。然而传输速率高(如大于622Mb/s)的光纤通信系统,要求半导体激光器是单纵模的。这一方面是为了避免由于光功率在各个纵模之间随机分配所产生的所谓模分配噪声;另一方面纵模的减少也是得到很窄的光谱线宽所必须的,而窄的线宽有利于减少在高数据传输速率光纤通信系统中光纤色散的影响。即使有些激光器连续工作时是单纵模的,但在高速调制下由于载流子的瞬态效应,而使主模两旁的边模达到阈值增益而出现多纵模振荡,因此必须考虑纵模的控制。为了得到单纵模,应弄清纵模的模谱,影响单纵模存在的因素,才能设法得到所要求的单纵模激光器。
图2 有多侧模的半导体激光器的近场和远场
由于半导体激光器发光区几何尺寸的不对称,其远场呈椭圆状,其长、短轴分别对应于横向与侧向。在许多应用中需用光学系统对这种非圆对称的远场光斑进行圆化处理。
如果半导体激光器发射的是理想的高斯光束,应有如下的光强分布:
I(r)=Imaxexp(-2(r/w)2) (1)
(4)在直接调制下张弛振荡频率降低。
一般来说,半导体激光器有比气体和固体激光器高约5个数量级的自发发射因子(10-4)。由图8看出,纵模谱随γ变化很大。当γ=10-5时,几乎所有的激光功率集中在一个纵模内,即单纵模工作;当γ=10-4时,只有约80%的光功率集中在主模上,而其余的由旁模所分配;当γ=10-3时,则有更多的纵模参与功率分配。另一方面,若自发发射因子γ→1(如在微腔情况),则出现量变到质变的情况,此时每一个自发发射光子引发出一个受激发射光子,却能得到很好的单纵模。
半导体激光器特性测量实验报告
半导体激光器特性测量一、实验目的:1.通过本实验学习半导体激光器原理。
2.测量半导体激光器的几个主要特性。
3.掌握半导体激光器性能的测试方法。
二、实验仪器:半导体激光器装置、WGD-6型光学多道分析器、电脑等。
三、实验原理:WGD-6 型光学多道分析器,由光栅单色仪,CCD 接收单元,扫描系统,电子放大器,A/D 采集单元,计算机组成。
该设备集光学、精密机械、电子学、计算机技术于一体。
光学系统采用C-T 型,如图M1 反射镜、M2 准光镜、M3 物镜、M4 转镜、G 平面衍射光栅、S1 入射狭缝、S2 光电倍增管接收、S3 CCD 接收。
入射狭缝、出射狭缝均为直狭缝,宽度范围0-2mm 连续可调,光源发出的光束进入入射狭缝S1、S1 位于反射式准光镜M2 的焦面上,通过S1 射入的光束经M2 反射成平行光束投向平面光栅G 上,衍射后的平行光束经物镜 M3 成像在S2 上。
四、实验内容及数据分析1.半导体激光器输出特性的测量:a)将各仪器按照要求连接好;b)打开直流稳压电源,打开光多用仪;c) 将激光器的偏置电流输入插头接于稳压电源的电流输出端;d) 将激光器与光多用仪的输入端相连并使探头正好对激光器输出端,打开光多用仪; e) 缓慢增加激光器输入电流(0mA~36mA ),注意电流不要超过LD的最大限定电流(实验中不超过38mA )。
从功率计观察输出大小随电流变化的情况; f) 记录数据; g) 绘图绘成曲线。
实验数据及结果分析: I (mA ) 1.02.03.04.05.06.07.0 8.09.010.011.0 12.0 P (uW) 0.40 0.80 1.25 1.75 2.25 2.85 3.54.255.05 5.956.98.0I (mA ) 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 P (uW) 9.310.7512.4514.5517.8522.941.0311.5753.51179.51594.51845.0根据以上实验数据绘制I —P 曲线:半导体激光器输出特性2004006008001000120014001600180020000510152025I(mA)P(uW)实验结果分析:通过半导体激光器的控制电源改变它的工作电流I ,测量对应的发光功率P ,以P 为纵轴,I 为横轴作图,描成曲线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验内容
3、偏振度 在探测器前加入偏振片,将偏振片从0°旋转到180°,每隔10°记录记录输出功率,计半导体激光器LD(650nm,<5mW)的光信号通过透镜L耦合进WGD-6光学多道分析器的输入
狭缝SL,让光学多道分析器与计算机相连,从光栅单色仪输出的光信号通过CCD接受放大输出 到计算机,通过控制软件的设置就绘出半导体激光器的谱线。分析半导体激光器的输入功率对 光谱的影响 。
P I//- I 90% I //I
纵模特性 法布里-珀罗干涉
m 2 Ln
0
实验仪器
实验内容
1、半导体激光器的P-I特性 用半导体激光器LD电源电流表(mA)的注入电流,调节半导体激光器的准直透镜把光耦合进
光功率指示仪的接收器,用光功率指示仪读出半导体激光的输出功率。把半导体激光器注入电 流I从0逐渐增加到40mA,观察半导体激光器输出功率P的变化,重复2次,将实验数据列表, 并作出P-I曲线,P为平均功率
65mA,完后电流调到最小。
静电感应对半导体激光器有影响,如果需要用手触摸半导体激光器外壳或电极时,手须先触
摸金属一下。
大型设备的启动和关闭极易损坏半导体激光器,遇此况时,先调电流为最小,然后在开关电
器。
自发辐射
受激辐射
一般激光器
激光工作介质:气体、液体、固体、半导体------粒子数反转 激励源:泵浦、抽运
电激励:用气体放电的方法利用具有动能的电子激发介质原子 光激励:脉冲光源照射工作介质 热激励 化学激励 谐振腔:光学谐振腔—放大—雪崩
半导体激光器的基本结构 材料:GaAs、InP
光学多道分析器原理
S1:入射狭缝 M1:反射镜 M2:反射式准光镜 M3:物镜 M4:物镜 G:平面衍射光栅 P:观察窗口(或出射狭缝)
光栅衍射
缝平面G
透镜L
d
观察屏 P
o
dsin
焦距 f
光栅方程
d si n kk = 0,1,2,3…中央k=0
注意事项
半导体激光器不能承受电流或电压的突变,连同好电路后需缓慢注入电流上升不要超过
实验内容
2、半导体激光器的发散角 半导体激光器置于旋转台中心,去掉激光器的准直透镜,使半导体激光器的光发射,并平行于
旋转台面。旋转探测器测量不同角度的光功率,记录光功率指示仪所测得的输出值,作出在不 同的注入电流时,其输出值随角度的变化曲线。将半导体激光器旋90°再测量侧横场发散角, 绘制半导体激光器的远场辐射特性 。
实验目的
通过实验熟悉半导体激光器的光学特性 掌握半导体激光器耦合、准直等光路的调节 掌握WGD-6光学多道分析器的使用
半导体激光器的优点和应用
体积小,寿命长 其工作电压与集成电路兼容,因而可与之单片集成 可用高达GHz的频率直接进行电流调制以获得高速调制的激光输出 光通讯、光学唱片系统、光存储、光陀螺、激光打印、测距、光雷达、红外夜视仪、报警器
PN结在n型衬底生长p型层
有源区,厚度0.2微米,形成介质波 导共振腔
P、N区欧姆接触,使激励电流能通过
基本结构
伏安特性
半导体激光器的P-I特性 阈值
Jth8eQn202D[a12lnR 1()]
横模
正横场
侧横场
/d
偏振度
因为半导体激光器共振腔面一般是晶体的解里面,对常用的GaAs异质结激光器的GaAs晶面 对TE模的反射率大于对偏振方向垂直于波导层的TM模的反射率,因此,半导体激光器输 出的激光偏振度很高。