【必考题】高一数学上期中模拟试卷(及答案)

合集下载

2023-2024学年高一(上)期中数学试卷(带解析)

2023-2024学年高一(上)期中数学试卷(带解析)

2023-2024学年高一(上)期中数学试卷一、选择题:共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.(5分)已知集合A={1,2,3},集合B={x||x﹣1|<1},则A∩B=()A.∅B.{1}C.{1,2}D.{1,2,3} 2.(5分)已知x∈R,p:|x﹣2|<1,q:1<x<5,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(5分)命题“∃x∈(1,+∞),x2+2<0”的否定是()A.∃x∈(﹣∞,1],x2+2<0B.∃x∈(1,+∞),x2+2≥0C.∀x∈(1,+∞),x2+2>0D.∀x∈(1,+∞),x2+2≥04.(5分)下列函数中,f(x)和g(x)表示同一个函数的是()A.B.f(x)=1,g(x)=x0C.D.f(x)=|x+2|,5.(5分)已知不等式ax2+bx+c>0的解集为{x|x1<x<x2}且x1>0,则不等式cx2+bx+a>0的解集为()A.{x|x1<x<x2}B.{x|x>x2或x<x1}C.D.或6.(5分)已知函数,若函数f(x)=max{﹣x+1,x2﹣3x+2,x﹣1},则函数f(x)的最小值为()A.0B.1C.2D.37.(5分)已知正实数x,y满足2x+y+6=xy,记xy的最小值为a;若m,n>0且满足m+n=1,记的最小值为b.则a+b的值为()A.30B.32C.34D.368.(5分)已知函数f(x)满足f(x)+f(4﹣x)=4,f(x+2)﹣f(﹣x)=0,且f(1)=a,则f(1)+f(2)+f(3)+⋯+f(51)的值为()A.96B.98+a C.102D.104﹣a二、选择题(共4小题,每小题5分,满分20分)(多选)9.(5分)下列不等关系一定成立的是()A.若a>b,则B.若,则ab>0C.若,则a>0>bD.若a>b,a2>b2,则a>b>0(多选)10.(5分)已知x∈(1,+∞),下列最小值为4的函数是()A.y=x2﹣4x+8B.C.D.(多选)11.(5分)下列说法正确的是()A.“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件B.“0<a<4”是“ax2+ax+1>0在R上恒成立”的充要条件C.“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的必要不充分条件D.已知a,b∈R,则“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件(多选)12.(5分)已知x,y>0且满足x2+y2+1=(xy﹣1)2,则下列结论正确的是()A.xy≥2B.x+y≥4C.x2+y2≥8D.x+4y≥9三、填空题(共4小题,每小题5分,满分20分)13.(5分)已知函数,则函数f(x)的定义域为.14.(5分)已知函数f(x)满足,则函数f(x)的解析式为.15.(5分)已知函数,则f(﹣26)+f(﹣25)+⋯+f(﹣1)+f (1)+⋯+f(26)+f(27)的值为.16.(5分)已知x,y>0且满足x+y=1,若不等式恒成立,记的最小值为n,则m+n的最小值为.四、解答题:共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知集合A={x|x2﹣2x﹣3≤0},集合B={x|m﹣1<x<2m+1}.(1)当m=3时,求A∪B;(2)若“x∈A”是“x∈B”的必要不充分条件,求实数m的取值范围.18.(12分)已知函数f(x)=(2m2﹣m)x2m+3是幂函数,且函数f(x)的图象关于y轴对称.(1)求实数m的值;(2)若不等式(a﹣1)m<(2a﹣3)m成立,求实数a的取值范围.19.(12分)已知函数为定义在R上的奇函数.(1)求实数a,b的值;(2)求不等式|f(x)|≥3的解集.20.(12分)某高科技产品投入市场,已知该产品的成本为每件1000元,现通过灵活售价的方式了解市场,通过多日的市场销售数据统计可得,某店单日的销售额与日产量x(件)有关.当1≤x≤3时,单日销售额为(千元);当3≤x≤6时,单日销售额为(千元);当x>6时,单日销售额为21(千元).(1)求m的值,并求该产品日销售利润P(千元)关于日产量x(件)的函数解析式;(销售利润=销售额﹣成本)(2)当日产量x为何值时,日销售利润最大?并求出这个最大值.21.(12分)已知a,b,c是实数,且满足a+b+c=0,证明下列命题:(1)“a=b=c=0”是“ab+bc+ac=0”的充要条件;(2)“abc=1,a≥b≥c”是“”的充分条件.22.(12分)已知函数f(x)=ax2+bx+c(a≠0),满足f(0)=1,f(1)=3.(1)若函数f(x)有最小值,且此最小值为,求函数f(x)的解析式;(2)记g(a)为函数f(x)在区间[1,2]上的最大值,求g(a)的表达式.2023-2024学年高一(上)期中数学试卷参考答案与试题解析一、选择题:共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.(5分)已知集合A={1,2,3},集合B={x||x﹣1|<1},则A∩B=()A.∅B.{1}C.{1,2}D.{1,2,3}【分析】结合交集的定义,即可求解.【解答】解:集合A={1,2,3},集合B={x||x﹣1|<1}={x|0<x<2},故A∩B={1}.故选:B.【点评】本题主要考查交集及其运算,属于基础题.2.(5分)已知x∈R,p:|x﹣2|<1,q:1<x<5,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】根据题意,解绝对值不等式得1<x<3,结合充要条件的定义加以判断,即可得到本题的答案.【解答】解:根据题意,|x﹣2|<1⇒﹣1<x﹣2<1⇒1<x<3,由|x﹣2|<1可以推出1<x<5,且由1<x<5不能推出|x﹣2|<1.因此,若p:|x﹣2|<1,q:1<x<5,则p是q的充分不必要条件.故选:A.【点评】本题主要考查不等式的性质、充要条件的判断等知识,考查了计算能力、逻辑推理能力,属于基础题.3.(5分)命题“∃x∈(1,+∞),x2+2<0”的否定是()A.∃x∈(﹣∞,1],x2+2<0B.∃x∈(1,+∞),x2+2≥0C.∀x∈(1,+∞),x2+2>0D.∀x∈(1,+∞),x2+2≥0【分析】根据命题的否定的定义,即可求解.【解答】解:命题“∃x∈(1,+∞),x2+2<0”的否定是:∀x∈(1,+∞),x2+2≥0.故选:D.【点评】本题主要考查特称命题的否定,属于基础题.4.(5分)下列函数中,f(x)和g(x)表示同一个函数的是()A.B.f(x)=1,g(x)=x0C.D.f(x)=|x+2|,【分析】观察函数三要素,逐项判断是否同一函数.【解答】解:由题意得:选项A定义域不同,f(x)的定义域为R,g(x)中,x≠0;选项B定义域不同,f(x)的定义域为R,g(x)中,x≠0;选项C对应法则不同,g(x)=|x|;D项,三要素相同,为同一函数.故选:D.【点评】本题考查同一函数的判断,属于基础题.5.(5分)已知不等式ax2+bx+c>0的解集为{x|x1<x<x2}且x1>0,则不等式cx2+bx+a>0的解集为()A.{x|x1<x<x2}B.{x|x>x2或x<x1}C.D.或【分析】由题意可知,a<0,方程ax2+bx+c=0的两个根分别为x1,x2,再结合韦达定理求解即可.【解答】解:根据题意:a<0,方程ax2+bx+c=0的两个根分别为x1,x2,所以,,,,解得,即不等式的解集为{x|}.故选:C.【点评】本题主要考查了韦达定理的应用,考查了一元二次不等式的解法,属于基础题.6.(5分)已知函数,若函数f(x)=max{﹣x+1,x2﹣3x+2,x﹣1},则函数f(x)的最小值为()A.0B.1C.2D.3【分析】根据函数f(x)的定义可知,在一个坐标系中画出y=﹣x+1,y=x2﹣3x+2,y =x﹣1的图象,取最上面的部分作为函数f(x)的图象,由图象即可求出函数的最小值.【解答】解:根据题意,在同一个直角坐标系中,由﹣x+1=x2﹣3x+2,得x2﹣2x+1=0,解得x=1;由x2﹣3x+2=x﹣1,得x2﹣4x+3=0,解得x=3或x=1,所以f(x)=,同时画出函数y=﹣x+1,y=x2﹣3x+2,y=x﹣1,如图分析:所以函数f(x)的最小值为0.故选:A.【点评】本题考查利用函数的图象求函数的最值,属中档题.7.(5分)已知正实数x,y满足2x+y+6=xy,记xy的最小值为a;若m,n>0且满足m+n=1,记的最小值为b.则a+b的值为()A.30B.32C.34D.36【分析】由已知结合基本不等式先求出xy的范围,即可求a,然后利用乘1法,结合基本不等式可求b,进而可求a+b.【解答】解:∵xy=2x+y+6+6,当且仅当2x=y,即x=3,y=6时取等号,∴a=18.∵m+n=1,m>0,n>0.则=6,当且仅当n=3m且m+n=1,即m=,n=时取等号,∴,∴b=16;∴a+b=34.故选:C.【点评】本题主要考查了基本不等式在最值求解中的应用,属于基础题.8.(5分)已知函数f(x)满足f(x)+f(4﹣x)=4,f(x+2)﹣f(﹣x)=0,且f(1)=a,则f(1)+f(2)+f(3)+⋯+f(51)的值为()A.96B.98+a C.102D.104﹣a【分析】由已知结合函数的对称性先求出函数的周期,然后结合对称性及周期性即可求解.【解答】解:根据题意:函数f(x)满足f(x)+f(4﹣x)=4,可得函数f(x)关于点(2,2)成中心对称,函数f(x)满足f(x+2)﹣f(﹣x)=0,所以函数f(x)关于x=1对称,所以函数f(x)既关于x=1成轴对称,同时关于点(2,2)成中心对称,所以f(2)=2,T=4,又因为f(1)=a,所以f(3)=4﹣a,f(4)=f(﹣2)=f(﹣2+4)=f(2)=2,所以f(1)+f(2)+f(3)+f(4)=a+2+4﹣a+2=8,所以f(1)+f(2)+f(3)+⋯+f(51)=12[f(1)+f(2)+f(3)+f(4)]+f(1)+f(2)+f(3)=12×8+a+2+4﹣a=102.故选:C.【点评】本题主要考查了函数的奇偶性,对称性及周期性在函数求值中的应用,属于中档题.二、选择题(共4小题,每小题5分,满分20分)(多选)9.(5分)下列不等关系一定成立的是()A.若a>b,则B.若,则ab>0C.若,则a>0>bD.若a>b,a2>b2,则a>b>0【分析】由已知举出反例检验选项A,D;结合不等式的性质检验B,C即可判断.【解答】解:当a=1,b=﹣1时,A显然错误;若,则=<0,所以ab>0,B正确;若,即b﹣a<0,则=>0,所以ab<0,所以b<0<a,C正确;当a=2,b=﹣1时,D显然错误.故选:BC.【点评】本题主要考查了不等式的性质在不等式大小比较中的应用,属于基础题.(多选)10.(5分)已知x∈(1,+∞),下列最小值为4的函数是()A.y=x2﹣4x+8B.C.D.【分析】根据二次函数的性质检验选项A,结合基本不等式检验选项BCD即可判断.【解答】解:根据题意:选项A,y=x2﹣4x+8,根据二次函数的性质可知,x=2时取最小值4,故选A;,当且仅当时取最小值,不在x∈(1,+∞)范围内,故选项B错误;选项C,=,当且仅当,即x=3时成立,故选项C正确;选项D,,令,原式为,当且仅当t=,即t=2时等式成立,不在范围内,故选项D错误.故选:AC.【点评】本题主要考查了基本不等式及二次函数性质在最值求解中的应用,属于中档题.(多选)11.(5分)下列说法正确的是()A.“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件B.“0<a<4”是“ax2+ax+1>0在R上恒成立”的充要条件C.“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的必要不充分条件D.已知a,b∈R,则“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件【分析】根据充分必要条件的定义,对各个选项中的两个条件进行正反推理论证,即可得到本题的答案.【解答】解:对于选项A,a>1,b>1⇒a﹣1>0,b﹣1>0⇒(a﹣1)(b﹣1)>0,反之,若(a﹣1)(b﹣1)>0,则可能a=b=0,不能得出a>1,b>1.故“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件,A正确;对于选项B,ax2+ax+1>0在R上恒成立,当a=0时,可得1>0恒成立,而区间(0,4)上没有0,故“0<a<4”不是“ax2+ax+1>0在R上恒成立”的充要条件,B不正确;对于选项C,f(x)=x2﹣ax在(1,+∞)上单调递增,可以推出是a⩽2的子集,故“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的充分不必要条件,C不正确;对于选项D,a3+a2b﹣a2﹣ab+a+b=a2(a+b)﹣a(a+b)+(a+b)=(a+b)(a2﹣a+1),,ab>0⇎(a+b)>0,因此,“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件,D正确.故选:AD.【点评】本题主要考查了充分条件与必要条件的判断、不等式的性质、二次函数的单调性等知识,属于基础题.(多选)12.(5分)已知x,y>0且满足x2+y2+1=(xy﹣1)2,则下列结论正确的是()A.xy≥2B.x+y≥4C.x2+y2≥8D.x+4y≥9【分析】将所给等式化简整理,得到(x+y)2=x2y2,结合x,y>0可得x+y=xy,.由此出发对各个选项逐一加以验证,即可得到本题的答案.【解答】解:根据题意,x2+y2+1=(xy﹣1)2,即x2+y2=x2y2﹣2xy,整理得x2+y2+2xy =x2y2,所以x2+y2+2xy=x2y2,即(x+y)2=x2y2,而x、y均为正数,故x+y=xy,可得.对于A,,两边平方得x2y2≥4xy,可得xy≥4,故A错误;对于B,由A的计算可知x+y=xy≥4,当且仅当x=y=2时取到等号,故B正确;对于C,x2+y2=x2y2﹣2xy=(xy﹣1)2+1≥32﹣1=8,当且仅当x=y=2时取到等号,故C正确;对于D,,当且仅当x=2y,即时取到等号,故D正确.故选:BCD.【点评】本题主要考查了不等式的性质、基本不等式及其应用等知识,考查了计算能力、逻辑推理能力,属于中档题.三、填空题(共4小题,每小题5分,满分20分)13.(5分)已知函数,则函数f(x)的定义域为[﹣2,1].【分析】根据函数的解析式,列出使函数解析式有意义的不等式组,求出解集即可.【解答】解:函数∴﹣x2﹣x+2⩾0,解得﹣2⩽x⩽1.∴函数的定义域为[﹣2,1].故答案为:[﹣2,1].【点评】本题主要考查函数定义域的求解,属于基础题.14.(5分)已知函数f (x )满足,则函数f (x )的解析式为.【分析】利用解方程组的方法求函数解析式即可.【解答】解:根据题意:①,令代替x ,可得②,①﹣②×2得:,∴函数f (x )的解析式为.故答案为:.【点评】本题考查求函数解析式,属于基础题.15.(5分)已知函数,则f (﹣26)+f (﹣25)+⋯+f (﹣1)+f(1)+⋯+f (26)+f (27)的值为.【分析】根据已知条件,结合偶函数的性质,即可求解.【解答】解:令函数,可得函数f (x )=g (x )+2,∵函数为奇函数,∴g (﹣x )=﹣g (x )⇒g (﹣x )+g (x )=0,f (﹣26)+f (﹣25)+⋯+f (﹣1)+f (1)+⋯+f (26)+f (27)=g (﹣26)+g (﹣25)+⋯+g (﹣1)+g (1)+⋯+g (26)+g (27)+2×53=g (27)+2×53=.故答案为:.【点评】本题主要考查函数值的求解,属于基础题.16.(5分)已知x ,y >0且满足x +y =1,若不等式恒成立,记的最小值为n ,则m +n 的最小值为.【分析】由恒成立,可知左边的最小值大于等于9,因此求的最小值,结合基本不等式求出m+n的最小值.【解答】解:∵实数x,y>0满足x+y=1,∴x+y+1=2,而=,当时,等号成立,所以,解得m⩾8.而=,令,则原式,当时,等号成立,∴实数n的值为,可得实数m+n的最小值为.故答案为:.【点评】本题主要考查基本不等式及其应用,考查了计算能力、逻辑推理能力,属于基础题.四、解答题:共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知集合A={x|x2﹣2x﹣3≤0},集合B={x|m﹣1<x<2m+1}.(1)当m=3时,求A∪B;(2)若“x∈A”是“x∈B”的必要不充分条件,求实数m的取值范围.【分析】(1)把m=3代入求得B,再由并集运算求解;(2)“x∈A”是“x∈B”的必要不充分条件,得B⫋A,然后分B=∅和B≠∅分别求解m 的范围,取并集得答案.【解答】解:(1)∵集合A={x|x2﹣2x﹣3⩽0},由x2﹣2x﹣3⩽0,即(x+1)(x﹣3)⩽0,解得﹣1⩽x⩽3,∵集合B={x|m﹣1<x<2m+1},当m=3时,即B={x|2<x<7},∴A∪B={x|﹣1⩽x<7}.(2)“x∈A”足“x∈B”的必要不充分条件,可得集合B是集合A的真子集,当m﹣1⩾2m+1⇒m⩽﹣2时,集合B为空集,满足题意;当m﹣1<2m+1⇒m>﹣2时,集合B是集合A的真子集,可得,∴实数m的取值范围为{m|m⩽﹣2或0⩽m⩽1}.【点评】本题考查并集的运算,考查分类讨论思想,是中档题.18.(12分)已知函数f(x)=(2m2﹣m)x2m+3是幂函数,且函数f(x)的图象关于y轴对称.(1)求实数m的值;(2)若不等式(a﹣1)m<(2a﹣3)m成立,求实数a的取值范围.【分析】(1)结合幂函数的性质,以及偶函数的性质,即可求解;(2)结合函数的性质,即可求解.【解答】解:(1)由题意可知,2m2﹣m=1,解得m=或1,又∵函数f(x)关于y轴对称,当,满足题意;当m=1⇒f(x)=x5,此时函数f(x)为奇函数,不满足题意,∴实数m的值为;(2)函数,分析可得该函数在(0,+∞)单调递减,∴由(a﹣1)m<(2a﹣3)m可得:.∴实数a的取值范围为.【点评】本题主要考查函数的性质,是基础题.19.(12分)已知函数为定义在R上的奇函数.(1)求实数a,b的值;(2)求不等式|f(x)|≥3的解集.【分析】(1)当x<0时,﹣x>0,代入已知函数解析式,对比函数解析式即可求解a,b;(2)结合奇函数的对称性及二次不等式的求法即可求解.【解答】解:(1)根据题意:当x<0时,﹣x>0,则f(x)=﹣f(﹣x)=﹣[(﹣x)2+2(﹣x)]=﹣x2+2x,故a=﹣1,b=2;(2)当x⩾0时,|f(x)|⩾3可得f(x)⩾3,即x2+2x⩾3⇒x2+2x﹣3⩾0,解得x⩾1,根据奇函数可得:|f(x)|⩾3的解集为{x|x⩾1或x⩽﹣1}.【点评】本题主要考查了奇函数的定义在函数解析式求解中的应用,还考查了奇函数的对称性在不等式求解中的应用,属于中档题.20.(12分)某高科技产品投入市场,已知该产品的成本为每件1000元,现通过灵活售价的方式了解市场,通过多日的市场销售数据统计可得,某店单日的销售额与日产量x(件)有关.当1≤x≤3时,单日销售额为(千元);当3≤x≤6时,单日销售额为(千元);当x>6时,单日销售额为21(千元).(1)求m的值,并求该产品日销售利润P(千元)关于日产量x(件)的函数解析式;(销售利润=销售额﹣成本)(2)当日产量x为何值时,日销售利润最大?并求出这个最大值.【分析】(1)根据单日销售额函数,列方程求出m的值,再利用利润=销售额﹣成本,即可得出日销售利润函数的解析式.(2)利用分段函数求出每个区间上的最大值,比较即可得出结论.【解答】解:(1)根据题意知,单日销售额为f(x)=,因为f(3)=+6+3=+9,解得m=,因为利润=销售额﹣成本,所以日销售利润为P(x)=,化简为P (x )=.(2)根据题意分析:①日销售利润P (x )=+x +3=+(x +1)+2,令t =x +1=2,3,4,所以函数为,分析可得当t =2时,取最大值,其最大值为;②日销售利润P (x )=+2x =+2x =﹣+2x ,该函数单调递增,所以当x =6时,P (x )取最大值,此最大值为15;③日销售利润P (x )=21﹣x ,该函数单调递减,所以当x =7时,P (x )取最大值,此最大值为14;综上知,当x =6时,日销售利润最大,最大值为15千元.【点评】本题考查了分段函数模型应用问题,也考查了运算求解能力,是中档题.21.(12分)已知a ,b ,c 是实数,且满足a +b +c =0,证明下列命题:(1)“a =b =c =0”是“ab +bc +ac =0”的充要条件;(2)“abc =1,a ≥b ≥c ”是“”的充分条件.【分析】(1)根据完全平方公式,等价变形,可证出结论;(2)利用基本不等式,结合不等式的性质加以证明,即可得到本题的答案.【解答】证明:(1)∵(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac ,充分性:若a =b =c =0,则ab +bc +ac =0,充分性成立;必要性:若ab +bc +ac =0,由a +b +c =0,得(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac ,所以a 2+b 2+c 2=0,可得a =b =c =0,必要性成立.综上所述,a =b =c =0是ab +bc +ac =0的充要条件;(2)由a ⩾b ⩾c ,且abc =1>0,可知a >0,b <0,c <0,由a +b +c =0,得,当且仅当b =c 时等号成立,由,得,a 3⩾4,可知≤a =﹣b ﹣c ≤﹣2c ,解得,因此,abc=1且a⩾b⩾c是的充分条件.【点评】本题主要考查等式的恒等变形、不等式的性质与基本不等式等知识,考查了计算能力、逻辑推理能力,属于基础题.22.(12分)已知函数f(x)=ax2+bx+c(a≠0),满足f(0)=1,f(1)=3.(1)若函数f(x)有最小值,且此最小值为,求函数f(x)的解析式;(2)记g(a)为函数f(x)在区间[1,2]上的最大值,求g(a)的表达式.【分析】(1)根据题意,由f(0)=1,f(1)=3分析可得f(x)=ax2+(2﹣a)x+1,由二次函数的最小值求出a的值,进而计算可得答案;(2)根据题意,由二次函数的性质分a>0与a<0两种情况讨论,分析g(a)的解析式,综合可得答案.【解答】解:(1)根据题意,函数f(x)=ax2+bx+c满足f(0)=1,f(1)=3,则有f(0)=c=1,f(1)=a+b+c=3,变形可得b=2﹣a,函数f(x)=ax2+(2﹣a)x+1,∵函数f(x)有最小值,∴a>0,函数f(x)的最小值为=,解可得:a=4或1,∴当a=4时,b=﹣2,函数f(x)的解析式为f(x)=4x2﹣2x+1;当a=1时,b=1,函数f(x)的解析式为f(x)=x2+x+1.(2)根据题意,由(1)的结论,f(x)=ax2+(2﹣a)x+1,是二次函数,分2种情况讨论:①当a>0时,i.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(2)=2a+5,ii.当对称轴时,与a>0矛盾,故当a>0时,函数f(x)在区间[1,2]上的最大值g(a)=2a+5;②当a<0时,i.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(1)=3,ii.当对称轴时,函数f(x)在区间[1,2]上的最大值,iii.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(2)=2a+5.综上所述,【点评】本题考查函数的最值,涉及二次函数的性质,属于中档题.。

【必考题】高一数学上期中模拟试卷附答案

【必考题】高一数学上期中模拟试卷附答案

【必考题】高一数学上期中模拟试卷附答案一、选择题1.已知集合{}{}2|320,,|05,A x x x x R B x x x N =-+=∈=<<∈,则满足条件A CB ⊆⊆的集合C 的个数为( )A .1B .2C .3D .42.已知函数()1ln 1xf x x -=+,则不等式()()130f x f x +-≥的解集为( ) A .1,2⎡⎫+∞⎪⎢⎣⎭B .11,32⎛⎤ ⎥⎝⎦C .12,43⎡⎫⎪⎢⎣⎭D .12,23⎡⎫⎪⎢⎣⎭3.已知函数()25,1,,1,x ax x f x a x x⎧---≤⎪=⎨>⎪⎩是R 上的增函数,则a 的取值范围是( )A .30a -≤<B .0a <C .2a ≤-D .32a --≤≤4.设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-≤≤⋂=Z ,则A .{}01,B .{}101-,,C .{}012,,D .{}1012-,,, 5.已知(31)4,1()log ,1a a x a x f x x x -+<⎧=⎨≥⎩是(,)-∞+∞上的减函数,那么a 的取值范围是( ) A .(0,1)B .1(0,)3C .11[,)73D .1[,1)76.若函数()(),1231,1x a x f x a x x ⎧>⎪=⎨-+≤⎪⎩是R 上的减函数,则实数a 的取值范围是( )A .2,13⎛⎫⎪⎝⎭B .3,14⎡⎫⎪⎢⎣⎭C .23,34⎛⎤⎥⎝⎦D .2,3⎛⎫+∞⎪⎝⎭7.若函数()(1)(0xxf x k a a a -=-->且1a ≠)在R 上既是奇函数,又是减函数,则()log ()a g x x k =+的图象是( )A .B .C .D .8.设x ∈R ,若函数f (x )为单调递增函数,且对任意实数x ,都有f (f (x )-e x )=e +1(e 是自然对数的底数),则f (ln1.5)的值等于( ) A .5.5B .4.5C .3.5D .2.59.若01a b <<<,则b a , a b , log b a ,1log ab 的大小关系为( )A .1log log b a b aa b a b >>> B .1log log a b b ab a b a >>> C .1log log b a b aa ab b >>> D .1log log a b b aa b a b >>> 10.已知定义在R 上的函数()f x 是奇函数且满足,3()(2)32f x f x f ⎛⎫-=-=-⎪⎝⎭,,数列{}n a 满足11a =-,且2n n S a n =+,(其中n S 为{}n a 的前n 项和).则()()56f a f a +=() A .3B .2-C .3-D .211.已知奇函数()f x 在R 上是增函数,若21log 5a f ⎛⎫=- ⎪⎝⎭,()2log 4.1b f =,()0.82c f =,则,,a b c 的大小关系为( )A .a b c <<B .b a c <<C .c b a <<D .c a b <<12.已知函数21,0,()|log ,0,x x f x x x ⎧+≤⎪=⎨⎪⎩若函数()y f x a =-有四个零点1x ,2x ,3x ,4x ,且12x x <3x <4x <,则312342()x x x x x ++的取值范围是( ) A .(0,1)B .(1,0)-C .(0,1]D .[1,0)-二、填空题13.设25a b m ==,且112a b+=,则m =______. 14.用max{,,}a b c 表示,,a b c 三个数中的最大值,设{}2()max ln ,1,4(0)f x x x x x x =--->,则()f x 的最小值为_______.15.已知()32,,x x af x x x a⎧≤=⎨>⎩,若存在实数b ,使函数()()g x f x b =-有两个零点,则a的取值范围是________. 16.关于下列命题:①若函数2xy =的定义域是{|0}x x ≤,则它的值域是{|1}y y ≤;② 若函数1y x =的定义域是{|2}x x >,则它的值域是1|2y y ⎧⎫≤⎨⎬⎩⎭; ③若函数2y x =的值域是{|04}y y ≤≤,则它的定义域一定是{|22}x x -≤≤; ④若函数2log y x =的值域是{|3}y y ≤,则它的定义域是{|08}x x <≤.其中不正确的命题的序号是_____________( 注:把你认为不正确的命题的序号都填上).17.若幂函数()a f x x =的图象经过点1(3)9,,则2a -=__________.18.非空有限数集S 满足:若,a b S ∈,则必有ab S ∈.请写出一个..满足条件的二元数集S =________.19.已知函数42()(0)f x x ax bx c c =+++<,若函数是偶函数,且4((0))f f c c =+,则函数()f x 的零点共有________个. 20.已知函数())ln1f x x =+,()4f a =,则()f a -=________.三、解答题21.某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益()f x 与投资额x 成正比,且投资1万元时的收益为18万元,投资股票等风险型产品的收益()g x 与投资额x 的算术平方根成正比,且投资1万元时的收益为0.5万元, (1)分别写出两种产品的收益与投资额的函数关系;(2)该家庭现有20万元资金,全部用于理财投资,问:怎样分配资金能使投资获得最大收益,其最大收益为多少万元?22.已知函数()f x 对任意的实数m ,n 都有()()()1f m n f m f n +=+-,且当0x >时,有()1f x >.(1)求()0f ;(2)求证:()f x 在R 上为增函数;(3)若()12f =,且关于x 的不等式()()223f ax f x x -+-<对任意的[)1,x ∈+∞恒成立,求实数a 的取值范围.23.已知函数()()log 0,1a f x x a a =>≠,且()()321f f -=. (1)若()()3225f m f m -<+,求实数m 的取值范围;(2)求使3227log 2f x x ⎛⎫-= ⎪⎝⎭成立的x 的值. 24.已知集合A={x|x <-1,或x >2},B={x|2p-1≤x≤p+3}.(1)若p=12,求A∩B; (2)若A∩B=B,求实数p 的取值范围.25.设ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,tan a b A =,且B 为钝角. (1)证明:2B A π-=; (2)求sin sin A C +的取值范围.26.已知函数()f x 的定义域是(0,)+∞,且满足()()()f xy f x f y =+,1()12f =,如果对于0x y <<,都有()()f x f y >. (1)求()1f 的值;(2)解不等式()(3)2f x f x -+-≥-.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】 【详解】求解一元二次方程,得{}()(){}2|320,|120,A x x x x x x x x =-+=∈=--=∈R R {}1,2=,易知{}{}|05,1,2,3,4B x x x =<<∈=N .因为A C B ⊆⊆,所以根据子集的定义, 集合C 必须含有元素1,2,且可能含有元素3,4, 原题即求集合{}3,4的子集个数,即有224=个,故选D. 【点评】本题考查子集的概念,不等式,解一元二次方程.本题在求集合个数时,也可采用列举法.列出集合C 的所有可能情况,再数个数即可.来年要注意集合的交集运算,考查频度极高.2.D解析:D 【解析】 【分析】根据题意可得函数()f x 的奇偶性以及单调性,据此原不等式转化为()()31f x f x ≥-,求解可得x 的取值范围,即可得出结论. 【详解】根据题意,函数()1ln 1xf x x-=+, 则有101xx->+,解可得11x -<<, 即函数的定义域为()1,1-,关于原点对称, 又由()()11lnln 11x xf x f x x x+--==-=--+, 即函数()f x 为奇函数, 设11xt x -=+,则y lnt =, 12111x t x x -==-++,在()1,1-上为减函数, 而y lnt =在()0,∞+上为增函数, 故()1ln1xf x x-=+在区间()1,1-上为减函数, ()()()()13013f x f x f x f x +-≥⇒≥-- ()()3131111311x x f x f x x x ≤-⎧⎪⇒≥-⇒-<<⎨⎪-<-<⎩,解可得:1223x ≤<,即不等式的解集为12,23⎡⎫⎪⎢⎣⎭; 故选:D . 【点睛】本题考查函数的奇偶性与单调性的综合应用,解题时不要忽略函数的定义域,属于中档题.3.D解析:D 【解析】 【分析】根据分段函数的单调性特点,两段函数在各自的定义域内均单调递增,同时要考虑端点处的函数值. 【详解】要使函数在R 上为增函数,须有()f x 在(,1]-∞上递增,在(1,)+∞上递增,所以21,20,115,1a a a a ⎧-≥⎪⎪<⎨⎪⎪--⨯-≤⎩,解得32a --≤≤.故选D. 【点睛】本题考查利用分段函数的单调性求参数的取值范围,考查数形结合思想、函数与方程思想的灵活运用,求解时不漏掉端点处函数值的考虑.4.B解析:B 【解析】试题分析:依题意{}{}2,1,0,1,1,0,1,2,3,M N =--=-∴{}1,0,1M N ⋂=-. 考点:集合的运算5.C解析:C 【解析】 【分析】要使函数()f x 在(,)-∞+∞上为减函数,则要求①当1x <,()(31)4f x a x a =-+在区间(,1)-∞为减函数,②当1x ≥时,()log a f x x =在区间[1,)+∞为减函数,③当1x =时,(31)14log 1a a a -⨯+≥,综上①②③解方程即可.【详解】令()(31)4g x a x =-+,()log a h x x =.要使函数()f x 在(,)-∞+∞上为减函数,则有()(31)4g x a x =-+在区间(,1)-∞上为减函数,()log a h x x =在区间[1,)+∞上为减函数且(1)(1)g h ≥,∴31001(1)(31)14log 1(1)a a a g a a h -<⎧⎪<<⎨⎪=-⨯+≥=⎩,解得1173a ≤<. 故选:C. 【点睛】考查分段函数求参数的问题.其中一次函数y ax b =+,当0a <时,函数y ax b =+在R 上为减函数,对数函数log ,(0)a y x x =>,当01a <<时,对数函数log ay x =在区间(0,)+∞上为减函数.6.C解析:C 【解析】由题意结合分段函数的解析式分类讨论即可求得实数a 的取值范围. 【详解】当1x >时,x a 为减函数,则01a <<,当1x ≤时,一次函数()231a x -+为减函数,则230a -<,解得:23a >, 且在1x =处,有:()12311a a -⨯+≥,解得:34a ≤, 综上可得,实数a 的取值范围是23,34⎛⎤ ⎥⎝⎦. 本题选择C 选项. 【点睛】对于分段函数的单调性,有两种基本的判断方法:一保证各段上同增(减)时,要注意上、下段间端点值间的大小关系;二是画出这个分段函数的图象,结合函数图象、性质进行直观的判断.7.A解析:A 【解析】 【分析】由题意首先确定函数g (x )的解析式,然后结合函数的解析式即可确定函数的图像. 【详解】∵函数()(1)xxf x k a a -=--(a >0,a ≠1)在R 上是奇函数,∴f (0)=0,∴k =2, 经检验k =2满足题意, 又函数为减函数, 所以01a <<, 所以g (x )=log a (x +2)定义域为x >−2,且单调递减, 故选A . 【点睛】本题主要考查对数函数的图像,指数函数的性质,函数的单调性和奇偶性的应用等知识,意在考查学生的转化能力和计算求解能力.8.D解析:D 【解析】 【分析】利用换元法 将函数转化为f (t )=e+1,根据函数的对应关系求出t 的值,即可求出函数f (x )的表达式,即可得到结论设t=f (x )-e x ,则f (x )=e x +t ,则条件等价为f (t )=e+1, 令x=t ,则f (t )=e t +t=e+1, ∵函数f (x )为单调递增函数, ∴t=1, ∴f (x )=e x +1,即f (ln5)=e ln1.5+1=1.5+1=2.5, 故选:D . 【点睛】本题主要考查函数值的计算,利用换元法求出函数的解析式是解决本题的关键.9.D解析:D 【解析】因为01a b <<<,所以10a a b b a a >>>>, 因为log log 1b b a b >>,01a <<,所以11a>,1log 0a b <.综上1log log a bb aa b a b >>>;故选D. 10.A解析:A 【解析】 由奇函数满足()32f x f x ⎛⎫-=⎪⎝⎭可知该函数是周期为3T =的奇函数, 由递推关系可得:112,21n n n n S a n S a n +-=+=+-, 两式做差有:1221n n n a a a -=--,即()()1121n n a a --=-, 即数列{}1n a -构成首项为112a -=-,公比为2q =的等比数列, 故:()1122,21n n n n a a --=-⨯∴=-+,综上有:()()()()()552131223f a f f f f =-+=-==--=,()()()()66216300f a f f f =-+=-==,则:()()563f a f a +=. 本题选择A 选项.11.C解析:C 【解析】由题意:()221loglog 55a f f ⎛⎫=-= ⎪⎝⎭, 且:0.822log 5log 4.12,122>><<,据此:0.822log 5log 4.12>>,结合函数的单调性有:()()()0.822log 5log 4.12f f f >>,即,a b c c b a >><<. 本题选择C 选项.【考点】 指数、对数、函数的单调性【名师点睛】比较大小是高考常见题,指数式、对数式的比较大小要结合指数函数、对数函数,借助指数函数和对数函数的图象,利用函数的单调性进行比较大小,特别是灵活利用函数的奇偶性和单调性数形结合不仅能比较大小,还可以解不等式.12.C解析:C 【解析】作出函数函数()21,0,|log ,0,x x f x x x ⎧+≤⎪=⎨⎪⎩的图象如图所示,由图象可知,123442,1,12x x x x x +=-=<≤, ∴ ()312334422222x x x x x x x ++=-+=-+, ∵422y x =-+在412x <≤上单调递增, ∴41021x <-+≤,即所求范围为(]0,1。

高一年级第一学期期中考试数学试卷及其参考答案

高一年级第一学期期中考试数学试卷及其参考答案

高一年级第一学期期中考试数学试卷(基础模块第一章、第二章)一、选择题(每小题5分,共60分)1.下列表示正确的是().A.{ 0 }=∅B.{全体实数}=RC.{ a }∈{a,b,c } D.{ x∈R∣x2+1=0 }=∅2.已知全集U={ 0,1,2,3,4,5},集合A={1,2,5},B={2,3,4},则(U C A)B=().A.{2}B.{0,2,3,4}C.{3,4}D.{1,2,3,4,5}3.已知A={ (x,y) | 2x-y=0 },B={ (x,y) | 3x+2y=7 },则A B=().A.{(2,1)}B.{1,2}C.{(1,2)}D.{x=1,y=2}4.设A={ x | 0< x < 1 },B={ x | x < a } ,若A⊆B,则a的取值范围是().A.[1,+∞) B.(-∞,0]C.[0,+∞)D.(-∞,1]5.已知集合A={ x | x2+14= 0 },若A∩R =∅,则实数m的取值范围是().A.m<1B.m≥1C.0<m<1D.0≤m<16.“A⊆B”是“A B=A”的().A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.不等式21-+xx≤0的解集为().A.{ x | x≥2}B.{ x | x≥2或x<-1 }C.{ x|-1<x≤2 }D.{x| x≥2或x≤-1 }8.已知a<b<0,c>0,那么().A.a2<b2B.a b<1C.ca<cb D.ca>cb9.绝对值不等式| 2x-3 |<5的解集是().A.{ x | x<-1或x>4 }B.{ x |-1<x<4 }C.{ x | x<-1 }D.{ x | x>4 }10.与不等式-x2-2x+3>0同解的不等式(组)是().A. x2+2x-3>0B. (x+3)(x-1)<0C.x+3>0x-1D.x+3<0x-1>0⎧⎨⎩a 、b 、c 的大小顺序是( ). A.a>b>c B.c>b>a C.b>a>c D.a>c>b12.若实数0<a <1,则)0>1(a-x)(x-a的解集为( ). A.{ x |1<x<a a } B.{ x | 1<<a x a} C.{ x | 1< >x a 或x a } D.{ x | 1<a >x 或x a}二、填空题(每小题4分,共16分)13.设全集U={ 1,2,3,4,5 },A={ 2,5 },则U C A 的所有子集的个数为 _________. 14.符合条件{a}⊆M {a,c,d}的集合M的个数是 _________.15.设a,b为实数,则“a2=b2”是“a=b”的 _________条件.(填充分或必要)16.不等式2+2m x x+n>0的解集是(11,32-),则不等式2-nx +2x-m >0的解集是 _________.三、解答题(共74分,解答应写出文字说明及演算步骤) 17.已知U={ x |-2<x<7 ,x ∈N },A={ 1,2,4 },B={ 2,3,5}.求: ⑴ A U B ;⑵ A B ;⑶ B C C U U A;⑷ B C C U U A .(12分)18.若集合A={ x | mx 2+2x -1 = 0 , m ∈R , x ∈R }中有且仅有一个元素,那么m 的值是多少?(12分)19.设集合A={ x | x 2-3x +2 = 0 },B = { x | x 2+2(a +1)x +(a 2-5) = 0 },若A B = { 2 },求实数a的值.(12分) 20.解不等式x+23-x≤1.(12分) 21.设全集为R ,A={ x | |x-1|<3 },B={ x | x 2-x -2≥0 },求A B ,A U B ,A CB .(12分)22.已知集合A={ x | x 2-x -12 ≤0 },集合B={ x | m -1≤x ≤2m +3 },若A U B=A ,求实数m 的取值范围.(14分)高一年级第一学期期中考试数学试卷参考答案二、填空题(每小题4分,共16分)13、 8 14、 3 15、 必要 16、 (-2,3)三、解答题:(22题14分,17~21题每题12分,共计74分)17.解:U={ 0,1,2,3,4,5,6 }. ⑴A U B={1,2,3,4,5}.⑵A B={2}.⑶B C C U U A ={ 0,3,5,6 }U { 0,1,4,6 }={ 0,1,3,4,5,6, }. ⑷ B C C U U A={ 0,3,5,6 } { 0,1,4,6 }={ 0,6 }.18. 解:当m=0时, A=12⎧⎫⎨⎬⎩⎭,符合题意.当m ≠0时,要使集合A 中有且仅有一个元素,必须 方程mx 2+2x -1 = 0有两个相等实数根, ∴ 2∆=2+4m =0, 即m=-1,综上所述,m=0或m=-1. 19. 解:A={ 1,2 }∵ A B={ 2 }, ∴ 2 B, ∴ 2是方程x 2+2(a +1)x +(a 2-5) = 0的根,把x=2代入此方程得2a +4a+3=0, ∴ a=-1或a=-3, 当a=-1时,B={ -2,2 }, A B={ 2 },符合题意. 当a=-3时,B={ 2 }, A B={ 2 },符合题意. 综上所述,a 的值为-1或3. 20. 解:原不等式⇔x+2-13-x ≤0⇔x+2-(3-x)3-x ≤0⇔2x-13-x≤0 ⇔2x-1x-3≥00≠⎧⇔⎨⎩x-3(2x-1)(x-3)≥012⇔x ≤或x>3, ∴ 解集为12{x |x ≤或x>3}. 21. 解:解|x-1|<3得-2<x<4, 故A=(-2,4).解x 2-x -2≥0得x ≤-1或x ≥2, 故B=(-∞,-1]∪[2,+∞).∴ A B=(-2,-1]∪[2,4),A U B=R,A C B=(-2,4) (-1,2)=(-1,2).22.解: 解x2-x-12 ≤0得-3≤x≤4, 故A=[-3,4],由A U B=A,知B A,∴⎧⎪⎨⎪⎩m-1≤2m+3,m-1≥-3,2m+3≤4,即12⎧⎪⎪⎨⎪⎪⎩m≥-4,m≥-2,m≤,∴ -2≤m≤12.。

新高一数学上期中模拟试题附答案

新高一数学上期中模拟试题附答案

新高一数学上期中模拟试题附答案一、选择题1.已知函数()25,1,,1,x ax x f x a x x⎧---≤⎪=⎨>⎪⎩是R 上的增函数,则a 的取值范围是( )A .30a -≤<B .0a <C .2a ≤-D .32a --≤≤2.在ABC ∆中,内角A 、B 、C 所对应的边分别为a 、b 、c ,则“cos cos a A b B =”是“ABC ∆是以A 、B 为底角的等腰三角形”的( ). A .充分非必要条件 B .必要非充分条件 C .充要条件D .既非充分也非必要条件3.关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数 ②f (x )在区间(2π,π)单调递增 ③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④B .②④C .①④D .①③4.设()f x 是定义在R 上的偶函数,且当0x ≥时,()21,0122,1xx x f x x ⎧-+≤<=⎨-≥⎩,若对任意的[],1x m m ∈+,不等式()()1f x f x m -≤+恒成立,则实数m 的最大值是( ) A .1-B .13-C .12-D .135.设log 3a π=,0.32b =,21log 3c =,则( ) A .a c b >>B .c a b >>C .b a c >>D .a b c >>6.函数223()2xx xf x e +=的大致图像是( )A .B .C .D .7.已知函数2()2f x ax bx a b =++-是定义在[3,2]a a -的偶函数,则()()f a f b +=( )A .5B .5-C .0D .20198.已知111,2,,3,23a ⎧⎫∈-⎨⎬⎩⎭,若()a f x x 为奇函数,且在(0,)+∞上单调递增,则实数a的值是( ) A .1,3-B .1,33C .11,,33-D .11,,3329.若0.23log 2,lg0.2,2a b c ===,则,,a b c 的大小关系为A .c b a <<B . b a c <<C . a b c <<D .b c a <<10.若a >b >0,0<c <1,则 A .log a c <log b cB .log c a <log c bC .a c <b cD .c a >c b11.三个数0.377,0.3,ln 0.3a b c ===大小的顺序是( ) A .a c b >> B .a b c >> C .b a c >> D .c a b >> 12.设0.60.3a =,0.30.6b =,0.30.3c =,则a ,b ,c 的大小关系为( )A .b a c <<B .a c b <<C .b c a <<D .c b a <<二、填空题13.设函数()f x 是定义在R 上的偶函数,记2()()g x f x x =-,且函数()g x 在区间[0,)+∞上是增函数,则不等式2(2)(2)4f x f x x +->+的解集为_____14.已知函数()x xf x e e -=-,对任意的[3,3]k ∈-,(2)()0f kx f x -+<恒成立,则x的取值范围为______. 15.函数的定义域为___.16.已知()21f x x -=,则()f x = ____. 17.10343383log 27()()161255---+=__________.18.有15人进家电超市,其中有9人买了电视,有7人买了电脑,两种均买了的有3人,则这两种都没买的有 人.19.甲、乙、丙、丁四个物体同时从某一点出发向同一个方向运动,其路程()(1,2,3,4)i f x i =关于时间(0)x x ≥的函数关系式分别为1()21x f x =-,22()f x x =,3()f x x =,42()log (1)f x x =+,有以下结论:①当1x >时,甲走在最前面; ②当1x >时,乙走在最前面;③当01x <<时,丁走在最前面,当1x >时,丁走在最后面;④丙不可能走在最前面,也不可能走在最后面; ⑤如果它们一直运动下去,最终走在最前面的是甲.其中,正确结论的序号为 (把正确结论的序号都填上,多填或少填均不得分). 20.已知函数()()0f x ax b a =->,()()43ff x x =-,则()2f =_______.三、解答题21.已知函数()f x 对任意的实数m ,n 都有()()()1f m n f m f n +=+-,且当0x >时,有()1f x >.(1)求()0f ;(2)求证:()f x 在R 上为增函数;(3)若()12f =,且关于x 的不等式()()223f ax f x x -+-<对任意的[)1,x ∈+∞恒成立,求实数a 的取值范围.22.已知3a ≥,函数F (x )=min{2|x−1|,x 2−2ax+4a−2},其中min{p ,q}={,.p p q q p q ,,≤> (Ⅰ)求使得等式F (x )=x 2−2ax+4a−2成立的x 的取值范围; (Ⅱ)(ⅰ)求F (x )的最小值m (a ); (ⅱ)求F (x )在区间[0,6]上的最大值M (a ).23.已知函数()222,00,0,0x x x f x x x mx x ⎧-+>⎪==⎨⎪+<⎩是奇函数.(1)求实数m 的值;(2)若函数()f x 在区间[]1,2a --上单调递增,求实数a 的取值范围.24.小张经营某一消费品专卖店,已知该消费品的进价为每件40元,该店每月销售量(百件)与销售单价x (元/件)之间的关系用下图的一折线表示,职工每人每月工资为1000元,该店还应交付的其它费用为每月10000元.(1)把y 表示为x 的函数;(2)当销售价为每件50元时,该店正好收支平衡(即利润为零),求该店的职工人数; (3)若该店只有20名职工,问销售单价定为多少元时,该专卖店可获得最大月利润?(注:利润=收入-支出)25.近年来,雾霾日趋严重,雾霾的工作、生活受到了严重的影响,如何改善空气质量已成为当今的热点问题,某空气净化器制造厂,决定投入生产某型号的空气净化器,根据以往的生产销售经验得到下面有关生产销售的统计规律,每生产该型号空气净化器x (百台),其总成本为()P x (万元),其中固定成本为12万元,并且每生产1百台的生产成本为10万元(总成本=固定成本+生产成本),销售收入()Q x (万元)满足20.522,016(){224,16x x x Q x x -+≤≤=>,假定该产品销售平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:(1)求利润函数()y f x =的解析式(利润=销售收入-总成本); (2)工厂生产多少百台产品时,可使利润最多?26.设集合2{|40,}A x x x x R =+=∈,22{|2(1)10,}B x x a x a x R =+++-=∈. (1)若A B B ⋃=,求实数a 的值; (2)若AB B =,求实数a 的范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】根据分段函数的单调性特点,两段函数在各自的定义域内均单调递增,同时要考虑端点处的函数值. 【详解】要使函数在R 上为增函数,须有()f x 在(,1]-∞上递增,在(1,)+∞上递增,所以21,20,115,1a a a a ⎧-≥⎪⎪<⎨⎪⎪--⨯-≤⎩,解得32a --≤≤.故选D. 【点睛】本题考查利用分段函数的单调性求参数的取值范围,考查数形结合思想、函数与方程思想的灵活运用,求解时不漏掉端点处函数值的考虑.2.B解析:B 【解析】化简cos cos a A b B =得到A B =或2A B π+=,再判断充分必要性.【详解】cos cos a A b B =,根据正弦定理得到:sin cos sin cos sin 2sin 2A A B B A B =∴=故22A B A B =∴=或222A B A B ππ=-∴+=,ABC ∆为等腰或者直角三角形.所以“cos cos a A b B =”是“ABC ∆是以A 、B 为底角的等腰三角形”的必要非充分条件 故选B 【点睛】本题考查了必要非充分条件,化简得到A B =或2A B π+=是解题的关键,漏解是容易发生的错误.3.C解析:C 【解析】 【分析】化简函数()sin sin f x x x =+,研究它的性质从而得出正确答案. 【详解】()()()()sin sin sin sin ,f x x x x x f x f x -=-+-=+=∴为偶函数,故①正确.当2x ππ<<时,()2sin f x x =,它在区间,2π⎛⎫π ⎪⎝⎭单调递减,故②错误.当0x π≤≤时,()2sin f x x =,它有两个零点:0,π;当0x π-≤<时,()()sin sin 2sin f x x x x =--=-,它有一个零点:π-,故()f x 在[],-ππ有3个零点:0-π,,π,故③错误.当[]()2,2x k k k *∈ππ+π∈N时,()2sin f x x =;当[]()2,22x k k k *∈π+ππ+π∈N 时,()sin sin 0f x x x =-=,又()f x 为偶函数,()f x ∴的最大值为2,故④正确.综上所述,①④ 正确,故选C .【点睛】画出函数()sin sin f x x x =+的图象,由图象可得①④正确,故选C .4.B解析:B【分析】由题意,函数()f x 在[0,)+∞上单调递减,又由函数()f x 是定义上的偶函数,得到函数()f x 在(,0)-∞单调递增,把不等式(1)()f x f x m -≤+转化为1x x m -≤+,即可求解. 【详解】易知函数()f x 在[)0,+∞上单调递减, 又函数()f x 是定义在R 上的偶函数, 所以函数()f x 在(),0-∞上单调递增, 则由()()1f x f x m -≤+,得1x x m -≥+,即()()221x x m -≥+,即()()22210g x m x m =++-≤在[],1x m m ∈+上恒成立,则()()()()()()3110121310g m m m g m m m ⎧=-+≤⎪⎨+=++≤⎪⎩,解得113m -≤≤-, 即m 的最大值为13-. 【点睛】本题主要考查了函数的基本性质的应用,其中解答中利用函数的基本性质,把不等式转化为1x x m -≤+ 求解是解答的关键,着重考查了分析问题和解答问题的能力,以及推理与运算能力,属于中档试题.5.C解析:C 【解析】 【分析】先证明c<0,a>0,b>0,再证明b>1,a<1,即得解. 【详解】 由题得21log 3c =2log 10<=,a>0,b>0. 0.30log 3log 1,22 1.a b πππ====所以b a c >>.故答案为C 【点睛】(1)本题主要考查指数函数对数函数的单调性,考查实数大小的比较,意在考查学生对这些知识的掌握水平和分析推理能力.(2)实数比较大小,一般先和“0”比,再和“±1”比.6.B解析:B 【解析】由()f x 的解析式知仅有两个零点32x =-与0x =,而A 中有三个零点,所以排除A ,又()2232xx x f x e-++'=,由()0f x '=知函数有两个极值点,排除C ,D ,故选B . 7.A解析:A 【解析】 【分析】根据函数f (x )=ax 2+bx +a ﹣2b 是定义在[a ﹣3,2a ]上的偶函数,即可求出a ,b ,从而得出f (x )的解析式,进而求出f (a )+f (b )的值. 【详解】∵f (x )=ax 2+bx +a ﹣2b 是定义在[a ﹣3,2a ]上的偶函数; ∴0320b a a =⎧⎨-+=⎩;∴a =1,b =0; ∴f (x )=x 2+2;∴f (a )+f (b )=f (1)+f (0)=3+2=5. 故选:A . 【点睛】本题考查偶函数的定义,偶函数定义域的对称性,已知函数求值的方法.8.B解析:B 【解析】 【分析】先根据奇函数性质确定a 取法,再根据单调性进行取舍,进而确定选项. 【详解】因为()af x x =为奇函数,所以11,3,3a ⎧⎫∈-⎨⎬⎩⎭因为()()0,f x +∞在上单调递增,所以13,3a ⎧⎫∈⎨⎬⎩⎭因此选B. 【点睛】本题考查幂函数奇偶性与单调性,考查基本判断选择能力.9.B解析:B【解析】 【分析】由对数函数的单调性以及指数函数的单调性,将数据与0或1作比较,即可容易判断. 【详解】由指数函数与对数函数的性质可知,a =()3log 20,1,b ∈=lg0.20,c <=0.221>,所以b a c <<,故选:B. 【点睛】本题考查利用指数函数和对数函数的单调性比较大小,属基础题.10.B解析:B 【解析】试题分析:对于选项A ,a b 1gc 1gclog c ,log c lg a lg b==,01c <<,10gc ∴<,而0a b >>,所以lg lg a b >,但不能确定lg lg a b 、的正负,所以它们的大小不能确定;对于选项B ,c lg lg log ,log lg lg c a b a b c c ==,lg lg a b >,两边同乘以一个负数1lg c改变不等号方向,所以选项B 正确;对于选项C ,利用cy x =在第一象限内是增函数即可得到c c a b >,所以C 错误;对于选项D ,利用xy c =在R 上为减函数易得a b c c <,所以D 错误.所以本题选B.【考点】指数函数与对数函数的性质【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较.11.B解析:B 【解析】试题分析:根据指数函数和对数函数的单调性知:0.30771a =>=,即1a >;7000.30.31b <=<=,即01b <<;ln0.3ln10c =<=,即0c <;所以a b c >>,故正确答案为选项B .考点:指数函数和对数函数的单调性;间接比较法.12.B解析:B 【解析】 【分析】根据指数函数的单调性得出0.60.30.30.3<,而根据幂函数的单调性得出0.30.30.30.6<,从而得出a ,b ,c 的大小关系. 【详解】解:0.3x y =在定义域上单调递减,且0.360.<,0.60.30.30.3∴<,又0.3y x∴=在定义域上单调递增,且0.360.<,0.30.30.30.6∴<,0.60.30.30.30.30.6∴<<,a cb ∴<<故选:B . 【点睛】考查指数函数和幂函数的单调性,以及增函数和减函数的定义.二、填空题13.【解析】【分析】根据题意分析可得为偶函数进而分析可得原不等式转化为结合函数的奇偶性与单调性分析可得解可得的取值范围【详解】根据题意且是定义在上的偶函数则则函数为偶函数又由为增函数且在区间上是增函数则 解析:()(),40,-∞-+∞【解析】 【分析】根据题意,分析可得()g x 为偶函数,进而分析可得原不等式转化为()()22g x g +>,结合函数的奇偶性与单调性分析可得22x +>,解可得x 的取值范围. 【详解】根据题意()()2g x f x x =-,且()f x 是定义在R 上的偶函数,则()()()()()22g x f x x f x x g x -=---=-=,则函数()g x 为偶函数,()()()()()()()22224222422f x f x x f x x f g x g +->+⇒+--⇒+>>+,又由()g x 为增函数且在区间[0,)+∞上是增函数,则22x +>, 解可得:4x <-或0x >, 即x 的取值范围为()(),40,-∞-+∞,故答案为()(),40,-∞-+∞;【点睛】本题考查函数的奇偶性与单调性的综合应用,注意分析()g x 的奇偶性与单调性,属于中档题.14.【解析】【分析】先判断函数的单调性和奇偶性根据单调性和奇偶性化简题目所给不等式利用一次函数的性质求得的取值范围【详解】由于故函数为奇函数而为上的增函数故由有所以即将主变量看成()表示一条直线在上纵坐解析:11,2⎛⎫- ⎪⎝⎭【解析】 【分析】先判断函数()f x 的单调性和奇偶性,根据单调性和奇偶性化简题目所给不等式,利用一次函数的性质,求得x 的取值范围. 【详解】由于()()f x f x -=-故函数为奇函数,而()1xxf x e e =-为R 上的增函数,故由(2)()0f kx f x -+<,有()()()2f kx f x f x -<-=-,所以2kx x -<-,即20xk x +-<,将主变量看成k ([3,3]k ∈-),表示一条直线在[]3,3-上纵坐标恒小于零,则有320320x x x x -+-<⎧⎨+-<⎩,解得112x -<<.所以填11,2⎛⎫- ⎪⎝⎭.【点睛】本小题主要考查函数的单调性和奇偶性的运用,考查化归与转化的数学思想方法,考查一元一次不等式组的解法,属于中档题.15.(-12)∪(2+∞)【解析】【分析】根据式子成立的条件对数式要求真数大于零分式要求分母不等于零即可求得函数的定义域【详解】要使函数有意义则x+1>012-x≠0解得x>-1且x≠2所以函数的定义域 解析:【解析】 【分析】根据式子成立的条件,对数式要求真数大于零,分式要求分母不等于零,即可求得函数的定义域. 【详解】要使函数有意义,则,解得且,所以函数的定义域为:,故答案是:. 【点睛】该题考查的是有关函数的定义域的求解问题,在求解的过程中,注意对数式和分式成立的条件即可,属于简单题目.16.【解析】【分析】利用换元法求函数解析式【详解】令则代入可得到即【点睛】本题考查利用换元法求函数解析式考查基本代换求解能力 解析:()21?x +【解析】 【分析】利用换元法求函数解析式. 【详解】 令 1t x -=则 t 1,x =+代入 ()21f x x -=可得到()()21f t t =+ ,即()()21f x x =+. 【点睛】本题考查利用换元法求函数解析式,考查基本代换求解能力.17.【解析】18.【解析】【分析】【详解】试题分析:两种都买的有人所以两种家电至少买一种有人所以两种都没买的有人或根据条件画出韦恩图:(人)考点:元素与集合的关系 解析:【解析】 【分析】 【详解】试题分析:两种都买的有人,所以两种家电至少买一种有人.所以两种都没买的有人.或根据条件画出韦恩图:(人).考点:元素与集合的关系.19.③④⑤【解析】试题分析:分别取特值验证命题①②;对数型函数的变化是先快后慢当x=1时甲乙丙丁四个物体又重合从而判断命题③正确;指数函数变化是先慢后快当运动的时间足够长最前面的动物一定是按照指数型函数解析:③④⑤ 【解析】试题分析:分别取特值验证命题①②;对数型函数的变化是先快后慢,当x=1时甲、乙、丙、丁四个物体又重合,从而判断命题③正确;指数函数变化是先慢后快,当运动的时间足够长,最前面的动物一定是按照指数型函数运动的物体,即一定是甲物体;结合对数型和指数型函数的图象变化情况,可知命题④正确.解:路程f i (x )(i=1,2,3,4)关于时间x (x≥0)的函数关系是:,,f 3(x )=x ,f 4(x )=log 2(x+1),它们相应的函数模型分别是指数型函数,二次函数,一次函数,和对数型函数模型. 当x=2时,f 1(2)=3,f 2(2)=4,∴命题①不正确; 当x=4时,f 1(5)=31,f 2(5)=25,∴命题②不正确;根据四种函数的变化特点,对数型函数的变化是先快后慢,当x=1时甲、乙、丙、丁四个物体又重合,从而可知当0<x <1时,丁走在最前面,当x >1时,丁走在最后面, 命题③正确;指数函数变化是先慢后快,当运动的时间足够长,最前面的动物一定是按照指数型函数运动的物体,即一定是甲物体,∴命题⑤正确.结合对数型和指数型函数的图象变化情况,可知丙不可能走在最前面,也不可能走在最后面,命题④正确. 故答案为③④⑤.考点:对数函数、指数函数与幂函数的增长差异.20.【解析】【分析】先由求出的值可得出函数的解析式然后再求出的值【详解】由题意得即解得因此故答案为【点睛】本题考查函数求值解题的关键就是通过题中复合函数的解析式求出函数的解析式考查运算求解能力属于中等题 解析:3【解析】 【分析】 先由()()43ff x x =-求出a 、b 的值,可得出函数()y f x =的解析式,然后再求出()2f 的值.【详解】 由题意,得()()()()()243ff x f ax b a ax b b a x ab b x =-=⋅--=-+=-,即2430a ab b a ⎧=⎪+=⎨⎪>⎩,解得21a b =⎧⎨=⎩,()21f x x ∴=-,因此()23f =,故答案为3.【点睛】本题考查函数求值,解题的关键就是通过题中复合函数的解析式求出函数的解析式,考查运算求解能力,属于中等题.三、解答题21.(1)1 (2)见解析(3)(),1-∞ 【解析】 【分析】(1) 令0m n ==,代入计算得到答案.(2) 任取1x ,2x ∈R ,且12x x <,计算得到()()()()221111f x f x x f x f x =-+->得到证明.(3)化简得到()()221f ax x xf -+-<,根据函数的单调性得到()2130x a x -++>对任意的[]1,x ∈+∞恒成立,讨论112a +≤和112a +>两种情况计算得到答案. 【详解】(1)令0m n ==,则()()0201f f =-()01f ∴=.(2)任取1x ,2x ∈R ,且12x x <,则210x x ->,()211f x x ->.()()()1f m n f m f n +=+-,()()()()()()221121111111f x f x x x f x x f x f x f x ∴=-+=-+->+-=⎡⎤⎣⎦,()()21f x f x ∴>()f x ∴在R 上为增函数.(3)()()223f ax f x x -+-<,即()()2212f ax f x x -+--<,()222f ax x x ∴-+-<()12f =()()221f ax x x f ∴-+-<.又()f x 在R 上为增函数221ax x x ∴-+-<,()2130x a x ∴-++>对任意的[]1,x ∈+∞恒成立.令()()()2131g x x a x x =-++≥,只需满足()min 0g x >即可当112a +≤,即1a ≤时,()g x 在[)1,+∞上递增,因此()()min 1g x g =, 由()10g >得3a <,此时1a ≤; 当112a +>,即1a >时,()min 12a g x g +⎛⎫= ⎪⎝⎭,由102a g +⎛⎫> ⎪⎝⎭得11a -<<,此时11a <<.综上,实数a的取值范围为(),1-∞. 【点睛】本题考查了抽象函数的函数值,单调性,不等式恒成立问题,意在考查学生的综合应用能力.22.(Ⅰ)[]2,2a .(Ⅱ)(ⅰ)()20,32{42,2a m a a a a ≤≤=-+->.(ⅱ)()348,34{2,4a a a a -≤<M =≥.【解析】试题分析:(Ⅰ)分别对1x ≤和1x >两种情况讨论()F x ,进而可得使得等式()2242F x x ax a =-+-成立的x 的取值范围;(Ⅱ)(Ⅰ)先求函数()21f x x =-,()2242g x x ax a =-+-的最小值,再根据()F x 的定义可得()F x 的最小值()m a ;(Ⅱ)分别对02x ≤≤和26x ≤≤两种情况讨论()F x 的最大值,进而可得()F x 在区间[]0,6上的最大值()M a .试题解析:(Ⅰ)由于3a ≥,故当1x ≤时,()()()22242212120x ax a x x a x -+---=+-->,当1x >时,()()()22422122xax a x x x a -+---=--.所以,使得等式()2242F x x ax a =-+-成立的x 的取值范围为[]2,2a . (Ⅱ)(ⅰ)设函数()21f x x =-,()2242g x x ax a =-+-, 则()()min 10f x f ==,()()2min 42g x g a a a ==-+-,所以,由()F x 的定义知()()(){}min 1,m a f g a =,即()20,32{42,2a m a a a a ≤≤+=-+-> (ⅱ)当02x ≤≤时,()()()(){}()max 0,222F x f x f f F ≤≤==,当26x ≤≤时,()()()(){}{}()(){}max 2,6max 2,348max 2,6F x g x g g a F F ≤≤=-=. 所以,()348,34{2,4a a M a a -≤<=≥.【考点】函数的单调性与最值,分段函数,不等式.【思路点睛】(Ⅰ)根据x 的取值范围化简()F x ,即可得使得等式()2242F x x ax a =-+-成立的x 的取值范围;(Ⅱ)(Ⅰ)先求函数()f x 和()g x 的最小值,再根据()F x 的定义可得()m a ;(Ⅱ)根据x 的取值范围求出()F x 的最大值,进而可得()M a . 23.(1)2;(2)(]1,3. 【解析】 【分析】(1)设0x <,可得0x ->,求出()f x -的表达式,利用奇函数的定义可得出函数()y f x =在0x <时的解析式,由此可求出实数m 的值;(2)作出函数()y f x =的图象,可得出函数()y f x =的单调递增区间为[]1,1-,于是可得出[][]1,21,1a --⊆-,进而得出关于实数a 的不等式组,解出即可. 【详解】(1)()222,00,0,0x x x f x x x mx x ⎧-+>⎪==⎨⎪+<⎩为奇函数,当0x <时,0x ->,则()()()2222f x x x x x -=--+⨯-=--, 则()()22f x f x x x =--=+,2m ∴=;(2)由(1)可得()222,00,02,0x x x f x x x x x ⎧-+>⎪==⎨⎪+<⎩,作出函数()y f x =如下图所示:由图象可知,函数()y f x =的单调递增区间为[]1,1-, 由题意可得[][]1,21,1a --⊆-,则121a -<-≤,解得13a .因此,实数a 的取值范围是(]1,3. 【点睛】本题考查奇函数解析式的求解,同时也考查了利用函数在区间上的单调性求参数,考查运算求解能力,属于中等题.24.(1)()()2140,4060150,60802x x y x x ⎧-+≤≤⎪=⎨-+<≤⎪⎩(2)30名员工(3)销售单价定为55或70元时,该专卖店月利润最大 【解析】 【分析】(1)利用待定系数法分别求出当4060x ≤≤和6080x <≤时的解析式,进而可得所求结果;(2)设该店有职工m 名,根据题意得到关于m 的方程,求解可得所求;(3)由题意得到利润的函数关系式,根据分段函数最值的求法可得所求. 【详解】(1)当4060x ≤≤时,设y ax b =+,由题意得点()()40,60,60,20在函数的图象上,∴40606020a b a b +=⎧⎨+=⎩,解得2140a b =-⎧⎨=⎩,∴当4060x ≤≤时,2140y x =-+. 同理,当6080x <≤时,1502y x =-+. ∴所求关系式为()()2140,4060150,6080.2x x y x x ⎧-+≤≤⎪=⎨-+<≤⎪⎩(2)设该店有职工m 名,当x=50时,该店的总收入为()()()4010010021404040000y x x x -⨯=-+-=元, 又该店的总支出为1000m+10000元, 依题意得40000=1000m+10000, 解得:m=30.所以此时该店有30名员工. (3)若该店只有20名职工,则月利润()()()()()21404010030000,40601504010030000,60802x x x S x x x ⎧-+-⨯-≤≤⎪=⎨⎛⎫-+-⨯-<≤ ⎪⎪⎝⎭⎩①当4060x ≤≤时,()225515000S x =--+, 所以x=55时,S 取最大值15000元; ②当6080x <≤时,()2170150002S x =--+, 所以x=70时,S 取最大值15000元; 故当x=55或x=70时,S 取最大值15000元, 即销售单价定为55或70元时,该专卖店月利润最大. 【点睛】解决函数应用问题重点解决以下几点:(1)阅读理解、整理数据:通过分析快速弄清数据之间的关系,数据的单位等等; (2)建立函数模型:关键是正确选择自变量将问题表示为这个变量的函数,建立函数的模型的过程主要是抓住某些量之间的相等关系列出函数式,注意不要忘记函数的定义域; (3)求解函数模型:主要是研究函数的单调性,求函数的值域、最大(小)值; (4)回答实际问题结果:将函数问题的结论还原成实际问题,结果明确表述出来.25.(Ⅰ)20.51212,016(){21210,16x x x f x x x -+-≤≤=-> ;(Ⅱ)12 .【解析】试题分析:(1)先求得()P x ,再由()()()f x Q x P x =-,由分段函数式可得所求;(2)分别求出各段的最大值,注意运用一次函数和二次函数的单调性求最值法,然后比较两个最值即可得到结果.试题解析:(1)由题意得()1210P x x =+∴()()()20.51212,016{21210,16x x x f x Q x P x x x -+-≤≤=-=-> .(2)当16x >时, 函数()f x 递减,∴()()1652f x f <=万元 当016x ≤≤时,函数()()20.51260f x x =--+当12x =时,()f x 有最大值60万元 所以当工厂生产12百台时,可使利润最大为60万元 .【方法点睛】本题主要考查阅读能力及建模能力、分段函数的解析式,属于难题.与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.理解本题题意的关键是构造分段函数,构造分段函数时,做到分段合理、不重不漏,分段函数的最值是各段的最大(最小)者的最大者(最小者). 26.(1)1a =;(2)1a ≤-或1a = 【解析】 【分析】(1)∵A B B ⋃=,∴A ⊆B ,又B 中最多有两个元素,∴A=B ,从而得到实数a 的值;(2)求出集合A 、B 的元素,利用B 是A 的子集,即可求出实数a 的范围. 【详解】(1)∵A B B ⋃=,∴A ⊆B ,又B 中最多有两个元素, ∴A=B ,∴x=0,﹣4是方程x 2+2(a+1)x+a 2﹣1=0的两个根, 故a=1;(2)∵A={x|x 2+4x=0,x ∈R} ∴A={0,﹣4},∵B={x|x 2+2(a+1)x+a 2﹣1=0},且B ⊆A .故①B=∅时,△=4(a+1)2﹣4(a 2﹣1)<0,即a <﹣1,满足B ⊆A ; ②B≠∅时,当a=﹣1,此时B={0},满足B ⊆A ;当a >﹣1时,x=0,﹣4是方程x 2+2(a+1)x+a 2﹣1=0的两个根, 故a=1;综上所述a=1或a ≤﹣1; 【点睛】本题主要考查集合的基本运算,属于基础题.要正确判断两个集合间的关系,必须对集合的相关概念有深刻的理解,善于抓住代表元素,认清集合的特征.。

高一数学期中考试测试题(必修一含答案)

高一数学期中考试测试题(必修一含答案)

高一数学期中考试测试题(必修一含答案)高一年级上学期期中考试数学试题一、选择题(本大题共12小题,每小题5分,共60分。

给出的四个选项中,只有一项是符合题目要求的)1.设全集U={1,2,3,4,5},集合A={1,2},B={2,3},则A ∩C U B A .{}45, B .{}23, C .{}1 D .{}2 2.下列表示错误的是(A )0?Φ (B ){}12Φ?,(C ){}{}21035(,)3,4x y x y x y +=-== (D )若,A B ?则A B A ?=3.下列四组函数,表示同一函数的是A .f (x )=2x ,g (x )=x B .f (x )=x ,g (x )=2x xC .2(),()2ln f x lnx g x x ==D .33()log (),()xa f x a a g x x =>0,α≠1=4.设1232,2,log (1), 2.(){x x x x f x -<-≥=则f ( f (2) )的值为A .0B .1C .2D .35.当0<a <1时,在同一坐标系中,函数xy a -=与log a y x =的图象是6.令0.760.76,0.7,log 6a b c ===,则三个数a 、b 、c 的大小顺序是A .b <c <aB .b <a <cC .c <a <bD .c <b <a 7.函数2()ln f x x x=-的零点所在的大致区间是 A .(1,2) B .(2,3)C .11,e ?? ???和(3,4) D .(),e +∞ 8.若2log 31x =,则39xx+的值为A .6B .3C .52 D .129.若函数y = f (x )的定义域为[]1,2,则(1)y f x =+的定义域为A .[]2,3B .[]0,1C .[]1,0-D .[]3,2-- 10.已知()f x 是偶函数,当x <0时,()(1)f x x x =+,则当x >0时,()f x = A .(1)x x - B .(1)x x -- C (1)x x + D .(1)x x -+11.设()()f x x R ∈为偶函数,且()f x 在[)0,+∞上是增函数,则(2)f -、()f π-、(3)f 的大小顺序是A .()(3)(2)f f f π->>-B .()(2)(3)f f f π->->C .()(2)f f f π-<(3)<-D .()(2)(3)f f f π-<-<12 已知函数f(x)的图象是连续不断的,x 与f(x)的对应关系见下表,则函数f(x)在区间[1,6] 上的零点至少有(A) 2(B) 3(C) 4(D) 5第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每小题4分,共16分。

【必考题】高中必修一数学上期中试题(带答案)

【必考题】高中必修一数学上期中试题(带答案)

【必考题】高中必修一数学上期中试题(带答案)一、选择题1.已知集合{}{}2|320,,|05,A x x x x R B x x x N =-+=∈=<<∈,则满足条件A CB ⊆⊆的集合C 的个数为( )A .1B .2C .3D .42.对于实数x ,规定[]x 表示不大于x 的最大整数,那么不等式[][]2436450x x -+<成立的x 的取值范围是( ) A .315,22⎛⎫⎪⎝⎭ B .[]28, C .[)2,8 D .[]2,73.已知0.6log 0.5a =,ln0.5b =,0.50.6c =,则( ) A .a c b >>B .a b c >>C .c a b >>D .c b a >>4.函数()sin lg f x x x =-的零点个数为( ) A .0B .1C .2D .35.已知函数y=f (x )定义域是[-2,3],则y=f (2x-1)的定义域是( ) A .50,2⎡⎤⎢⎥⎣⎦B .[]1,4-C .1,22⎡⎤-⎢⎥⎣⎦D .[]5,5-6.若01a b <<<,则b a , a b , log b a , 1log ab 的大小关系为( )A .1log log bab aa b a b >>>B .1log log a bb ab a b a >>>C .1log log b ab aa ab b >>>D .1log log a bb aa b a b >>>7.已知定义在R 上的函数()f x 是奇函数且满足,3()(2)32f x f x f ⎛⎫-=-=-⎪⎝⎭,,数列{}n a 满足11a =-,且2n n S a n =+,(其中n S 为{}n a 的前n 项和).则()()56f a f a +=() A .3B .2-C .3-D .28.若0.23log 2,lg0.2,2a b c ===,则,,a b c 的大小关系为A .c b a <<B . b a c <<C . a b c <<D .b c a <<9.已知函数e 0()ln 0x x f x x x ⎧≤=⎨>⎩,,,,()()g x f x x a =++.若g (x )存在2个零点,则a 的取值范围是 A .[–1,0)B .[0,+∞)C .[–1,+∞)D .[1,+∞)10.若a >b >0,0<c <1,则 A .log a c <log b c B .log c a <log c b C .a c <b c D .c a >c b 11.设0.60.3a =,0.30.6b =,0.30.3c =,则a ,b ,c 的大小关系为( ) A .b a c <<B .a c b <<C .b c a <<D .c b a <<12.三个数20.420.4,log 0.4,2a b c ===之间的大小关系是( ) A .a c b <<B .b a c <<C .a b c <<D .b c a <<二、填空题13.下列各式:(1)122[(2)]2---=- ;(2)已知2log 13a〈 ,则23a 〉 . (3)函数2xy =的图象与函数2x y -=-的图象关于原点对称;(4)函数()f x =21mx mx ++的定义域是R ,则m 的取值范围是04m <≤; (5)函数2ln()y x x =-+的递增区间为1,2⎛⎤-∞ ⎥⎝⎦.正确的...有________.(把你认为正确的序号全部写上) 14.已知函数()(0,1)x f x a b a a =+>≠的定义域和值域都是[]1,0-,则a b += . 15.若函数()y f x =的定义域是[0,2],则函数0.5()log (43)g x x =-的定义域是__________. 16.已知函数2,()24,x x mf x x mx m x m⎧≤=⎨-+>⎩ 其中0m >,若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是________________.17.已知f (x )是定义在[-2,2]上的奇函数,当x ∈(0,2]时,f (x )=2x -1,函数g (x )=x 2-2x +m .如果∀x 1∈[-2,2],∃x 2∈[-2,2],使得g (x 2)=f (x 1),则实数m 的取值范围是______________.18.已知函数()f x 满足对任意的x ∈R 都有11222⎛⎫⎛⎫++-=⎪ ⎪⎝⎭⎝⎭f x f x 成立,则 127...888f f f ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭= . 19.计算:__________.20.关于函数()2411x x f x x -=--__________.①()f x 的定义域为[)(]1,00,1-U ;②()f x 的值域为()1,1-;③()f x 的图象关于原点对称;④()f x 在定义域上是增函数.三、解答题21.已知满足(1)求的取值范围; (2)求函数的值域.22.已知二次函数()f x 满足(1)()2f x f x x +-=(x ∈R ),且(0)1f =. (1)求()f x 的解析式;(2)若函数()()2g x f x tx =-在区间[1,5]-上是单调函数,求实数t 的取值范围; (3)若关于x 的方程()f x x m =+有区间(1,2)-上有一个零点,求实数m 的取值范围. 23.某乡镇响应“绿水青山就是金山银山”的号召,因地制宜的将该镇打造成“生态水果特色小镇”.经调研发现:某珍稀水果树的单株产量W (单位:千克)与施用肥料x (单位:千克)满足如下关系:()253,02()50,251x x W x x x x ⎧+≤≤⎪=⎨<≤⎪+⎩,肥料成本投入为10x 元,其它成本投入(如培育管理、施肥等人工费)20x 元.已知这种水果的市场售价大约为15元/千克,且销路畅通供不应求.记该水果树的单株利润为()f x (单位:元). (Ⅰ)求()f x 的函数关系式;(Ⅱ)当施用肥料为多少千克时,该水果树的单株利润最大?最大利润是多少? 24.设a 为实数,函数()()21f x x x a x R =+-+∈.(1)若函数()f x 是偶函数,求实数a 的值; (2)若2a =,求函数()f x 的最小值;(3)对于函数()y m x =,在定义域内给定区间[],a b ,如果存在()00x a x b <<,满足()0()()m b m a m x b a-=-,则称函数()m x 是区间[],a b 上的“平均值函数”,0x 是它的一个“均值点”.如函数2y x =是[]1,1-上的平均值函数,0就是它的均值点.现有函数()21g x x mx =-++是区间[]1,1-上的平均值函数,求实数m 的取值范围.25.设函数f (x )是增函数,对于任意x ,y ∈R 都有f (x+y )=f (x )+f (y ). (1)求f (0);(2)证明f (x )是奇函数;(3)解不等式f (x 2)—f (x )>f (3x ).26.已知函数()3131-=+x x f x ,若不式()()2210+-<f kx f x 对任意x ∈R 恒成立,则实数k 的取值范围是________.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】 【详解】求解一元二次方程,得{}()(){}2|320,|120,A x x x x x x x x =-+=∈=--=∈R R {}1,2=,易知{}{}|05,1,2,3,4B x x x =<<∈=N .因为A C B ⊆⊆,所以根据子集的定义, 集合C 必须含有元素1,2,且可能含有元素3,4, 原题即求集合{}3,4的子集个数,即有224=个,故选D. 【点评】本题考查子集的概念,不等式,解一元二次方程.本题在求集合个数时,也可采用列举法.列出集合C 的所有可能情况,再数个数即可.来年要注意集合的交集运算,考查频度极高.2.C解析:C 【解析】 【分析】 【详解】分析:先解一元二次不等式得315[]22x <<,再根据[]x 定义求结果. 详解:因为[][]2436450x x -+<,所以315[]22x << 因为[][]2436450x x -+<,所以28x ≤<, 选C.点睛:本题考查一元二次不等式解法以及取整定义的理解,考查基本求解能力.3.A解析:A 【解析】由0.50.6log 0.51,ln 0.50,00.61><<<,所以1,0,01a b c ><<<,所以a c b >>,故选A .4.D解析:D 【解析】 【分析】画出函数图像,根据函数图像得到答案. 【详解】如图所示:画出函数sin y x =和lg y x =的图像,共有3个交点. 当10x >时,lg 1sin x x >≥,故不存在交点. 故选:D .【点睛】本题考查了函数的零点问题,画出函数图像是解题的关键.5.C解析:C 【解析】∵函数y =f (x )定义域是[−2,3], ∴由−2⩽2x −1⩽3, 解得−12⩽x ⩽2, 即函数的定义域为1,22⎡⎤-⎢⎥⎣⎦,本题选择C 选项.6.D解析:D 【解析】因为01a b <<<,所以10a a b b a a >>>>, 因为log log 1b b a b >>,01a <<,所以11a>,1log 0a b <.综上1log log a bb aa b a b >>>;故选D. 7.A解析:A【解析】 由奇函数满足()32f x f x ⎛⎫-=⎪⎝⎭可知该函数是周期为3T =的奇函数, 由递推关系可得:112,21n n n n S a n S a n +-=+=+-, 两式做差有:1221n n n a a a -=--,即()()1121n n a a --=-, 即数列{}1n a -构成首项为112a -=-,公比为2q =的等比数列, 故:()1122,21n n n n a a --=-⨯∴=-+,综上有:()()()()()552131223f a f f f f =-+=-==--=,()()()()66216300f a f f f =-+=-==,则:()()563f a f a +=. 本题选择A 选项.8.B解析:B 【解析】 【分析】由对数函数的单调性以及指数函数的单调性,将数据与0或1作比较,即可容易判断. 【详解】由指数函数与对数函数的性质可知,a =()3log 20,1,b ∈=lg0.20,c <=0.221>,所以b a c <<,故选:B. 【点睛】本题考查利用指数函数和对数函数的单调性比较大小,属基础题.9.C解析:C 【解析】分析:首先根据g (x )存在2个零点,得到方程()0f x x a ++=有两个解,将其转化为()f x x a =--有两个解,即直线y x a =--与曲线()y f x =有两个交点,根据题中所给的函数解析式,画出函数()f x 的图像(将(0)xe x >去掉),再画出直线y x =-,并将其上下移动,从图中可以发现,当1a -≤时,满足y x a =--与曲线()y f x =有两个交点,从而求得结果.详解:画出函数()f x 的图像,xy e =在y 轴右侧的去掉,再画出直线y x =-,之后上下移动,可以发现当直线过点A 时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点, 即方程()f x x a =--有两个解,也就是函数()g x 有两个零点, 此时满足1a -≤,即1a ≥-,故选C.点睛:该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图像以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果.10.B解析:B 【解析】试题分析:对于选项A ,a b 1gc 1gclog c ,log c lg a lg b==,01c <<Q ,10gc ∴<,而0a b >>,所以lg lg a b >,但不能确定lg lg a b 、的正负,所以它们的大小不能确定;对于选项B ,c lg lg log ,log lg lg c a b a b c c ==,lg lg a b >,两边同乘以一个负数1lg c改变不等号方向,所以选项B 正确;对于选项C ,利用cy x =在第一象限内是增函数即可得到c c a b >,所以C 错误;对于选项D ,利用xy c =在R 上为减函数易得a b c c <,所以D 错误.所以本题选B.【考点】指数函数与对数函数的性质【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较.11.B解析:B 【解析】 【分析】根据指数函数的单调性得出0.60.30.30.3<,而根据幂函数的单调性得出0.30.30.30.6<,从而得出a ,b ,c 的大小关系. 【详解】解:0.3xy =Q 在定义域上单调递减,且0.360.<,0.60.30.30.3∴<,又0.3y x ∴=在定义域上单调递增,且0.360.<,0.30.30.30.6∴<, 0.60.30.30.30.30.6∴<<,a cb ∴<<故选:B . 【点睛】考查指数函数和幂函数的单调性,以及增函数和减函数的定义.12.B解析:B 【解析】20.4200.41,log 0.40,21<<Q ,01,0,1,a b c b a c ∴<<∴<<,故选B.二、填空题13.(3)【解析】(1)所以错误;(2)当时恒成立;当时综上或所以错误;(3)函数上任取一点则点落在函数上所以两个函数关于原点对称正确;(4)定义域为当时成立;当时得综上所以错误;(5)定义域为由复合函解析:(3) 【解析】(1)(1122212---⎛⎫⎡⎤== ⎪⎢⎥⎣⎦⎝⎭,所以错误;(2)2log 1log 3aa a <=,当1a >时,恒成立;当01a <<时,023a <<,综上,023a <<或1a >,所以错误; (3)函数2xy =上任取一点(),x y ,则点(),x y --落在函数2x y -=-上,所以两个函数关于原点对称,正确;(4)定义域为R ,当0m =时,成立;当0m >时,240m m ∆=-≤,得04m <≤,综上,04m ≤≤,所以错误;(5)定义域为()0,1,由复合函数的单调性性质可知,所求增区间为10,2⎛⎫ ⎪⎝⎭,所以错误; 所以正确的有(3)。

【必考题】高一数学上期中试题(及答案)

【必考题】高一数学上期中试题(及答案)

【必考题】高一数学上期中试题(及答案)一、选择题1.已知函数()1ln 1xf x x -=+,则不等式()()130f x f x +-≥的解集为( ) A .1,2⎡⎫+∞⎪⎢⎣⎭B .11,32⎛⎤ ⎥⎝⎦C .12,43⎡⎫⎪⎢⎣⎭D .12,23⎡⎫⎪⎢⎣⎭2.设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x--<的解集为( )A .(10)(1)-⋃+∞,, B .(1)(01)-∞-⋃,, C .(1)(1)-∞-⋃+∞,, D .(10)(01)-⋃,, 3.关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数 ②f (x )在区间(2π,π)单调递增 ③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④ B .②④ C .①④ D .①③4.1()xf x e x=-的零点所在的区间是( ) A .1(0,)2B .1(,1)2C .3(1,)2D .3(,2)25.设集合{1,2,3},{2,3,4}A B ==,则A B =A .{}123,4,,B .{}123,,C .{}234,,D .{}134,, 6.设x ∈R ,若函数f (x )为单调递增函数,且对任意实数x ,都有f (f (x )-e x )=e +1(e 是自然对数的底数),则f (ln1.5)的值等于( ) A .5.5B .4.5C .3.5D .2.57.已知函数2()log (23)(01)a f x x x a a =--+>≠,,若(0)0f <,则此函数的单调减区间是() A .(,1]-∞-B .[1)-+∞,C .[1,1)-D .(3,1]--8.定义在R 上的奇函数()f x 满足()1(2)f x f x +=-,且在()0,1上()3xf x =,则()3log 54f =( )A .32B .23-C .23D .32-9.函数()2log ,0,2,0,x x x f x x ⎧>=⎨≤⎩则函数()()()2384g x f x f x =-+的零点个数是( )A .5B .4C .3D .610.已知()()2,11,1x x f x f x x ⎧<⎪=⎨-≥⎪⎩,则()2log 7f =( )A .7B .72C .74D .7811.函数2y 34x x =--+的定义域为( )A .(41)--,B .(41)-,C .(11)-,D .(11]-, 12.已知函数()()()ln 1ln 1f x x x =+--,若实数a 满足()()120f a f a +->,则a 的取值范围是( ) A .()1,1-B .()0,1C .10,2⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭二、填空题13.已知函数2()121()f x ax x ax a R =+++-∈的最小值为0,则实数a =_________.14.1232e 2(){log (1)2x x f x x x ,,-<=-≥,则f (f (2))的值为____________.15.已知1240x x a ++⋅>对一切(],1x ∞∈-上恒成立,则实数a 的取值范围是______. 16.已知()f x 是定义在[)(]2,00,2-⋃上的奇函数,当0x >,()f x 的图象如图所示,那么()f x 的值域是______.17.非空有限数集S 满足:若,a b S ∈,则必有ab S ∈.请写出一个..满足条件的二元数集S =________.18.已知函数42()(0)f x x ax bx c c =+++<,若函数是偶函数,且4((0))f f c c =+,则函数()f x 的零点共有________个.19.函数2()log 1f x x =-________.20.已知函数()266,34,x x f x x ⎧-+=⎨+⎩0x x ≥<,若互不相等的实数1x ,2x ,3x 满足()()()123f x f x f x ==,则123x x x ++的取值范围是__________. 三、解答题21.已知函数f (x )是定义域为R 的奇函数,当x <0时,()111f x x =+-. (1)求f (2)的值;(2)用定义法判断y =f (x )在区间(-∞,0)上的单调性. (3)求0()x f x >时,的解析式 22.已知2256x ≤且21log 2x ≥,求函数22()log log 22x xf x =⋅的最大值和最小值. 23.已知函数()f x 对任意的实数m ,n 都有()()()1f m n f m f n +=+-,且当0x >时,有()1f x >.(1)求()0f ;(2)求证:()f x 在R 上为增函数;(3)若()12f =,且关于x 的不等式()()223f ax f x x -+-<对任意的[)1,x ∈+∞恒成立,求实数a 的取值范围. 24.计算下列各式的值:(Ⅰ)322log 3lg25lg4log (log 16)++- (Ⅱ)2102329273()( 6.9)()()482-----+25.函数是奇函数.求的解析式;当时,恒成立,求m 的取值范围.26.有一种候鸟每年都按一定的路线迁陟,飞往繁殖地产卵.科学家经过测量发现候鸟的飞行速度可以表示为函数301log lg 2100xv x =-,单位是min km ,其中x 表示候鸟每分钟耗氧量的单位数,0x 表示测量过程中候鸟每分钟的耗氧偏差.(参考数据:lg 20.30=, 1.23 3.74=, 1.43 4.66=)(1)若02x =,候鸟每分钟的耗氧量为8100个单位时,它的飞行速度是多少min km ? (2)若05x =,候鸟停下休息时,它每分钟的耗氧量为多少个单位?(3)若雄鸟的飞行速度为2.5min km ,雌鸟的飞行速度为1.5min km ,那么此时雄鸟每分钟的耗氧量是雌鸟每分钟的耗氧量的多少倍?【参考答案】***试卷处理标记,请不要删除一、选择题1.D 解析:D 【解析】 【分析】根据题意可得函数()f x 的奇偶性以及单调性,据此原不等式转化为()()31f x f x ≥-,求解可得x 的取值范围,即可得出结论. 【详解】根据题意,函数()1ln 1xf x x-=+, 则有101xx->+,解可得11x -<<, 即函数的定义域为()1,1-,关于原点对称, 又由()()11lnln 11x xf x f x x x+--==-=--+, 即函数()f x 为奇函数, 设11xt x -=+,则y lnt =, 12111x t x x -==-++,在()1,1-上为减函数, 而y lnt =在()0,∞+上为增函数, 故()1ln1xf x x-=+在区间()1,1-上为减函数, ()()()()13013f x f x f x f x +-≥⇒≥-- ()()3131111311x x f x f x x x ≤-⎧⎪⇒≥-⇒-<<⎨⎪-<-<⎩,解可得:1223x ≤<,即不等式的解集为12,23⎡⎫⎪⎢⎣⎭; 故选:D . 【点睛】本题考查函数的奇偶性与单调性的综合应用,解题时不要忽略函数的定义域,属于中档题.2.D解析:D 【解析】由f (x )为奇函数可知,()()f x f x x--=()2f x x<0.而f (1)=0,则f (-1)=-f (1)=0. 当x >0时,f (x )<0=f (1); 当x <0时,f (x )>0=f (-1). 又∵f (x )在(0,+∞)上为增函数, ∴奇函数f (x )在(-∞,0)上为增函数. 所以0<x <1,或-1<x <0. 选D点睛:解函数不等式:首先根据函数的性质把不等式转化为(())(())f g x f h x >的形式,然后根据函数的单调性去掉“f ”,转化为具体的不等式(组),此时要注意()g x 与()h x 的取值应在外层函数的定义域内3.C解析:C 【解析】 【分析】化简函数()sin sin f x x x =+,研究它的性质从而得出正确答案. 【详解】()()()()sin sin sin sin ,f x x x x x f x f x -=-+-=+=∴为偶函数,故①正确.当2x ππ<<时,()2sin f x x =,它在区间,2π⎛⎫π ⎪⎝⎭单调递减,故②错误.当0x π≤≤时,()2sin f x x =,它有两个零点:0,π;当0x π-≤<时,()()sin sin 2sin f x x x x =--=-,它有一个零点:π-,故()f x 在[],-ππ有3个零点:0-π,,π,故③错误.当[]()2,2x k k k *∈ππ+π∈N时,()2sin f x x =;当[]()2,22x k k k *∈π+ππ+π∈N 时,()sin sin 0f x x x =-=,又()f x 为偶函数,()f x ∴的最大值为2,故④正确.综上所述,①④ 正确,故选C .【点睛】画出函数()sin sin f x x x =+的图象,由图象可得①④正确,故选C .4.B解析:B 【解析】函数f (x )=e x ﹣1x 是(0,+∞)上的增函数,再根据f (12)2<0,f (1)=e ﹣1>0,可得f (12)f (1)<0,∴函数f (x )=e x ﹣1x 的零点所在的区间是(12,1),故选B .点睛:判定函数的零点所在区间,只需计算区间端点处的函数值,并判断是否异号,只要异号,则区间内至少有一个零点存在.5.A解析:A 【解析】 由题意{1,2,3,4}AB ,故选A.点睛:集合的基本运算的关注点:(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提.(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决.(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn 图.6.D解析:D 【解析】 【分析】利用换元法 将函数转化为f (t )=e+1,根据函数的对应关系求出t 的值,即可求出函数f (x )的表达式,即可得到结论 【详解】 设t=f (x )-e x ,则f (x )=e x +t ,则条件等价为f (t )=e+1, 令x=t ,则f (t )=e t +t=e+1, ∵函数f (x )为单调递增函数, ∴t=1, ∴f (x )=e x +1,即f (ln5)=e ln1.5+1=1.5+1=2.5, 故选:D . 【点睛】本题主要考查函数值的计算,利用换元法求出函数的解析式是解决本题的关键.7.D解析:D 【解析】 【分析】求得函数()f x 的定义域为(3,1)-,根据二次函数的性质,求得()223g x x x =--+在(3,1]--单调递增,在(1,1)-单调递减,再由(0)0f <,得到01a <<,利用复合函数的单调性,即可求解. 【详解】由题意,函数2()log (23)a f x x x =--+满足2230x x --+>,解得31x -<<,即函数()f x 的定义域为(3,1)-,又由函数()223g x x x =--+在(3,1]--单调递增,在(1,1)-单调递减,因为(0)0f <,即(0)log 30a f =<,所以01a <<,根据复合函数的单调性可得,函数()f x 的单调递减区间为(3,1]--, 故选D. 【点睛】本题主要考查了对数函数的图象与性质,以及复合函数的单调性的判定,着重考查了推理与运算能力,属于基础题.8.D解析:D 【解析】 【分析】由题意结合函数的性质整理计算即可求得最终结果. 【详解】由题意可得:()354f log =()3log 23f +, 则()354f log =()31log 21f -+,且()()331log 21log 21f f +=--, 由于()3log 211,0-∈-,故()()31log 2333log 211log 232f f --=--=-=-,据此可得:()()3312log 21log 213f f +=-=-,()354f log =32-.本题选择D 选项. 【点睛】本题主要考查函数的奇偶性,函数的周期性及其应用等知识,意在考查学生的转化能力和计算求解能力.9.A解析:A 【解析】 【分析】通过对()g x 式子的分析,把求零点个数转化成求方程的根,结合图象,数形结合得到根的个数,即可得到零点个数.【详解】 函数()()()2384g x f x f x =-+=()()322f x f x --⎡⎤⎡⎤⎣⎦⎣⎦的零点即方程()23f x =和()2f x =的根, 函数()2log ,0,2,0x x x f x x ⎧>=⎨≤⎩的图象如图所示:由图可得方程()23f x =和()2f x =共有5个根, 即函数()()()2384g x f x f x =-+有5个零点,故选:A . 【点睛】本题考查函数的零点与方程的根的个数的关系,注意结合图象,利用数形结合求得结果时作图很关键,要标准.10.C解析:C 【解析】 【分析】根据函数的周期性以及分段函数的表达式,结合对数的运算法则,代入即可得到结论. 【详解】2222log 4log 7log 83=<<=,20log 721∴<-<,()()2log 72227log 7log 7224f f -∴=-==. 故选:C . 【点睛】本题主要考查函数值的计算,根据分段函数的表达式以及函数的周期性进行转化是解决本题的关键.11.C解析:C 【解析】要使函数有意义,需使210{340x x x +>--+>,即1{41x x >--<<,所以1 1.x -<<故选C12.B解析:B 【解析】 【分析】求出函数()y f x =的定义域,分析函数()y f x =的单调性与奇偶性,将所求不等式变形为()()21f a f a >-,然后利用函数()y f x =的单调性与定义域可得出关于实数a 的不等式组,即可解得实数a 的取值范围. 【详解】对于函数()()()ln 1ln 1f x x x =+--,有1010x x +>⎧⎨->⎩,解得11x -<<, 则函数()y f x =的定义域为()1,1-,定义域关于原点对称,()()()()ln 1ln 1f x x x f x -=--+=-,所以,函数()y f x =为奇函数,由于函数()1ln 1y x =+在区间()1,1-上为增函数,函数()2ln 1y x =-在区间()1,1-上为减函数,所以,函数()()()ln 1ln 1f x x x =+--在()1,1-上为增函数, 由()()120f a f a +->得()()()1221f a f a f a >--=-,所以,11112121a a a a -<<⎧⎪-<-<⎨⎪>-⎩,解得01a <<.因此,实数a 的取值范围是()0,1. 故选:B. 【点睛】本题考查函数不等式的求解,解答的关键就是分析函数的单调性和奇偶性,考查计算能力,属于中等题.二、填空题13.【解析】【分析】设计算可得再结合图象即可求出答案【详解】解:设则则由于函数的最小值为0作出函数的大致图象结合图象得所以故答案为:【点睛】本题主要考查分段函数的图象与性质考查转化思想考查数形结合思想属解析:±1. 【解析】【分析】 设2()()1()()21g x h x ax g x h x x ax +=+⎧⎨-=+-⎩,计算可得2(),()()()2(),()()g x g x h x f x h x g x h x ≥⎧=⎨<⎩,再结合图象即可求出答案. 【详解】解:设2()()1()()21g x h x ax g x h x x ax +=+⎧⎨-=+-⎩,则22()()1g x x ax h x x ⎧=+⎨=-⎩, 则()()()()()f x g x h x g x h x =++-2(),()()2(),()()g x g x h x h x g x h x ≥⎧=⎨<⎩, 由于函数()f x 的最小值为0,作出函数()g x ,()h x 的大致图象,结合图象,210x -=,得1x =±, 所以1a =±, 故答案为:±1. 【点睛】本题主要考查分段函数的图象与性质,考查转化思想,考查数形结合思想,属于中档题.14.2【解析】【分析】先求f (2)再根据f (2)值所在区间求f (f (2))【详解】由题意f (2)=log3(22–1)=1故f (f (2))=f (1)=2×e1–1=2故答案为:2【点睛】本题考查分段函数解析:2 【解析】 【分析】先求f (2),再根据f (2)值所在区间求f (f (2)). 【详解】由题意,f (2)=log 3(22–1)=1,故f (f (2))=f (1)=2×e 1–1=2,故答案为:2. 【点睛】本题考查分段函数求值,考查对应性以及基本求解能力.15.【解析】【分析】根据题意分离出参数a 后转化为求函数的最值即可通过换元后利用二次函数的性质可求得最大值【详解】可化为令由得则在上递减当时取得最大值为所以故答案为【点睛】本题考查二次函数的性质函数恒成立解析:3,4∞⎛⎫-+ ⎪⎝⎭【解析】 【分析】根据题意分离出参数a 后转化为求函数的最值即可,通过换元后利用二次函数的性质可求得最大值. 【详解】1240xxa ++⋅>可化为212224xx x x a --+>-=--,令2x t -=,由(],1x ∈-∞,得1,2t ⎡⎫∈+∞⎪⎢⎣⎭, 则2a t t >--,2213()24t t t --=-++在1,2⎡⎫+∞⎪⎢⎣⎭上递减,当12t =时2t t --取得最大值为34-,所以34a >-. 故答案为3,4⎛⎫-+∞ ⎪⎝⎭.【点睛】本题考查二次函数的性质、函数恒成立问题,考查转化思想,考查学生解决问题的能力.属中档题.16.【解析】【分析】先根据函数的奇偶性作出函数在y 轴左侧的图象欲求的值域分两类讨论:;结合图象即可解决问题【详解】是定义在上的奇函数作出图象关于原点对称作出其在y 轴左侧的图象如图由图可知:的值域是故答案 解析:][()2,33,2⋃--【解析】 【分析】先根据函数的奇偶性作出函数在y 轴左侧的图象,欲求()f x 的值域,分两类讨论:0x >①;0.x <②结合图象即可解决问题.【详解】()f x 是定义在(][2,00,2-⋃上的奇函数,∴作出图象关于原点对称作出其在y 轴左侧的图象,如图.由图可知:()f x 的值域是][()2,33,2⋃--. 故答案为][()2,33,2⋃--. 【点睛】本题考查函数的图象,考查同学们对函数基础知识的把握程度以及数形结合的思维能力.17.{01}或{-11}【解析】【分析】因中有两个元素故可利用中的元素对乘法封闭求出这两个元素【详解】设根据题意有所以必有两个相等元素若则故又或所以(舎)或或此时若则此时故此时若则此时故此时综上或填或【解析:{0,1}或{-1,1}, 【解析】 【分析】因S 中有两个元素,故可利用S 中的元素对乘法封闭求出这两个元素. 【详解】设{}(),S a b a b =<,根据题意有22,,a ab b S ∈,所以22,,a b ab 必有两个相等元素.若22a b =,则=-a b ,故2ab a =-,又2a a =或2a b a ==-,所以0a =(舎)或1a =或1a =-,此时{}1,1S =-.若 2a ab =,则0a =,此时2b b =,故1b = ,此时{}0,1S =. 若2b ab =,则0b =,此时2a a =,故1a =,此时{}0,1S =. 综上,{}0,1S =或{}1,1S =-,填{}0,1或{}1,1-. 【点睛】集合中元素除了确定性、互异性、无序性外,还有若干运算的封闭性,比如整数集,对加法、减法和乘法运算封闭,但对除法运算不封闭(两个整数的商不一定是整数),又如有理数集,对加法、减法、乘法和除法运算封闭,但对开方运算不封闭.一般地,若知道集合对某种运算封闭,我们可利用该运算探究集合中的若干元素.18.2【解析】因为是偶函数则解得又所以故令所以故有2个零点点睛:本题涉及函数零点方程图像等概念和知识综合性较强属于中档题一般讨论函数零点个数问题都要转化为方程根的个数问题或两个函数图像交点的个数问题本题解析:2 【解析】因为()42(0)f x x ax bx c c =+++<是偶函数,则()()f x f x -=,解得0b =,又()()4240()f f f c c ac c c c ==++=+,所以0a =,故4()f x x c =+,令4()0f x x c =+=,40x c =->,所以x =2个零点.点睛:本题涉及函数零点,方程,图像等概念和知识,综合性较强,属于中档题.一般讨论函数零点个数问题,都要转化为方程根的个数问题或两个函数图像交点的个数问题,本题由于涉及函数为初等函数,可以考虑方程来解决,转化为方程根的个数,同时注意偶函数性质在本题中的应用.19.2+∞)【解析】分析:根据偶次根式下被开方数非负列不等式解对数不等式得函数定义域详解:要使函数有意义则解得即函数的定义域为点睛:求给定函数的定义域往往需转化为解不等式(组)的问题解析:[2,+∞) 【解析】分析:根据偶次根式下被开方数非负列不等式,解对数不等式得函数定义域.详解:要使函数()f x 有意义,则2log 10x -≥,解得2x ≥,即函数()f x 的定义域为[2,)+∞.点睛:求给定函数的定义域往往需转化为解不等式(组)的问题.20.【解析】【分析】画出分段函数的图像由图像结合对称性即可得出【详解】函数的图像如下图所示不妨设则关于直线对称所以且满足则故的取值范围是【点睛】解决本题的关键是要会画分段函数的图像由图像结合对称性经过计解析:11(,6)3【解析】 【分析】画出分段函数的图像,由图像结合对称性即可得出。

2020-2021高一数学上期中模拟试题附答案

2020-2021高一数学上期中模拟试题附答案

2020-2021高一数学上期中模拟试题附答案一、选择题1.已知集合{}{}2|320,,|05,A x x x x R B x x x N =-+=∈=<<∈,则满足条件A CB ⊆⊆的集合C 的个数为( )A .1B .2C .3D .42.若35225a b ==,则11a b +=( ) A .12B .14C .1D .23.函数()log a x xf x x=(01a <<)的图象大致形状是( )A .B .C .D .4.关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数 ②f (x )在区间(2π,π)单调递增 ③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④B .②④C .①④D .①③5.若函数()(),1231,1x a x f x a x x ⎧>⎪=⎨-+≤⎪⎩是R 上的减函数,则实数a 的取值范围是( )A .2,13⎛⎫⎪⎝⎭B .3,14⎡⎫⎪⎢⎣⎭C .23,34⎛⎤⎥⎝⎦D .2,3⎛⎫+∞⎪⎝⎭6.如图,U 为全集,M 、P 、S 是U 的三个子集,则阴影部分所表示的集合是( )A .()M P S ⋂⋂B .()M P S ⋂⋃C .()()U M P S ⋂⋂ðD .()()U M P S ⋂⋃ð7.设集合{1,2,3},{2,3,4}A B ==,则A B =UA .{}123,4,,B .{}123,,C .{}234,,D .{}134,,8.已知函数2()log (23)(01)a f x x x a a =--+>≠,,若(0)0f <,则此函数的单调减区间是() A .(,1]-∞-B .[1)-+∞,C .[1,1)-D .(3,1]--9.函数3222x xx y -=+在[]6,6-的图像大致为 A . B .C .D .10.三个数0.377,0.3,ln 0.3a b c ===大小的顺序是( ) A .a c b >>B .a b c >>C .b a c >>D .c a b >>11.已知函数()f x =2log (1),(1,3)4,[3,)1x x x x ⎧+∈-⎪⎨∈+∞⎪-⎩,则函数[]()()1g x f f x =-的零点个数为( ) A .1B .3C .4D .612.方程 4log 7x x += 的解所在区间是( ) A .(1,2)B .(3,4)C .(5,6)D .(6,7)二、填空题13.已知定义在实数集R 上的偶函数()f x 在区间(],0-∞上是减函数,则不等式()()1ln f f x <的解集是________.14.已知函数()2()lg 2f x x ax =-+在区间(2,)+∞上单调递增,则实数a 的取值范围是______. 15.如果函数221xx y a a =+-(0a >,且1a ≠)在[]1,1-上的最大值是14,那么a 的值为__________.16.已知函数()()212log 22f x mx m x m ⎡⎤=+-+-⎣⎦,若()f x 有最大值或最小值,则m的取值范围为______.17.某企业去年的年产量为a ,计划从今年起,每年的年产量比上年增加b ﹪,则第x ()x N *∈年的年产量为y =______.18.若函数|1|12x y m -⎛⎫=+ ⎪⎝⎭的图象与x 轴有公共点,则m 的取值范围是__________.19.有15人进家电超市,其中有9人买了电视,有7人买了电脑,两种均买了的有3人,则这两种都没买的有 人.20.已知()f x 定义在R 上的奇函数,当0x ≥时,,则函数()()3g x f x x =-+的零点的集合为 .三、解答题21.设函数()()()22log 4log 2f x x x =⋅的定义域为1,44⎡⎤⎢⎥⎣⎦.(1)若2log t x =,求t 的取值范围;(2)求()y f x =的最大值与最小值,并求出最值时对应的x 的值. 22.设()()()log 1log (30,1)a a f x x x a a =++->≠,且()12f =. (1)求a 的值及()f x 的定义域; (2)求()f x 在区间30,2⎡⎤⎢⎥⎣⎦上的最大值.23.已知定义域为R 的函数()22xx b f x a-=+是奇函数.()1求a ,b 的值;()2用定义证明()f x 在(),-∞+∞上为减函数;()3若对于任意t R ∈,不等式()()22220f t t f t k -+-<恒成立,求k 的范围.24.函数是奇函数.求的解析式;当时,恒成立,求m 的取值范围.25.已知集合A ={x |x 2-2x -3≤0},B ={x |x 2-2mx +m 2-4≤0,m ∈R ,x ∈R}. (1)若A ∩B ={x |0≤x ≤3},求实数m 的值; (2)若A ⊆∁R B ,求实数m 的取值范围.26.近年来,“共享单车”的出现为市民“绿色出行”提供了极大的方便,某共享单车公司“Mobike”计划在甲、乙两座城市共投资120万元,根据行业规定,每个城市至少要投资40万元,由前期市场调研可知:甲城市收益P 与投入a (单位:万元)满足6P =,乙城市收益Q 与投入b (单位:万元)满足124Q b =+,设甲城市的投入为x (单位:万元),两个城市的总收益为()f x (单位:万元).(1)当甲城市投资50万元时,求此时公司总收益;(2)试问如何安排甲、乙两个城市的投资,才能使总收益最大?【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】 【详解】求解一元二次方程,得{}()(){}2|320,|120,A x x x x x x x x =-+=∈=--=∈R R {}1,2=,易知{}{}|05,1,2,3,4B x x x =<<∈=N .因为A C B ⊆⊆,所以根据子集的定义, 集合C 必须含有元素1,2,且可能含有元素3,4, 原题即求集合{}3,4的子集个数,即有224=个,故选D. 【点评】本题考查子集的概念,不等式,解一元二次方程.本题在求集合个数时,也可采用列举法.列出集合C 的所有可能情况,再数个数即可.来年要注意集合的交集运算,考查频度极高.2.A解析:A 【解析】 【分析】由指数式与对数式的转化,结合换底公式和对数的运算,即可求解. 【详解】由题意3225,5225a b==根据指数式与对数式的转化可得35log 225,log 225a b == 由换底公式可得lg 2252lg15lg 2252lg15,lg 3lg 3lg 5lg 5a b ==== 由对数运算化简可得11lg 3lg 52lg152lg15a b +=+ lg3lg52lg15+=lg1512lg152== 故选:A 【点睛】本题考查了指数式与对数式的转化,对数的运算及换底公式的应用,属于中档题.3.C解析:C 【解析】 【分析】确定函数是奇函数,图象关于原点对称,x >0时,f (x )=log a x (0<a <1)是单调减函数,即可得出结论. 【详解】由题意,f (﹣x )=﹣f (x ),所以函数是奇函数,图象关于原点对称,排除B 、D ; x >0时,f (x )=log a x (0<a <1)是单调减函数,排除A . 故选C . 【点睛】本题考查函数的图象,考查函数的奇偶性、单调性,正确分析函数的性质是关键.4.C解析:C 【解析】 【分析】化简函数()sin sin f x x x =+,研究它的性质从而得出正确答案. 【详解】()()()()sin sin sin sin ,f x x x x x f x f x -=-+-=+=∴Q 为偶函数,故①正确.当2x ππ<<时,()2sin f x x =,它在区间,2π⎛⎫π ⎪⎝⎭单调递减,故②错误.当0x π≤≤时,()2sin f x x =,它有两个零点:0,π;当0x π-≤<时,()()sin sin 2sin f x x x x =--=-,它有一个零点:π-,故()f x 在[],-ππ有3个零点:0-π,,π,故③错误.当[]()2,2x k k k *∈ππ+π∈N时,()2sin f x x =;当[]()2,22x k k k *∈π+ππ+π∈N 时,()sin sin 0f x x x =-=,又()f x 为偶函数,()f x ∴的最大值为2,故④正确.综上所述,①④ 正确,故选C .【点睛】画出函数()sin sin f x x x =+的图象,由图象可得①④正确,故选C .5.C解析:C 【解析】 【分析】由题意结合分段函数的解析式分类讨论即可求得实数a 的取值范围. 【详解】当1x >时,x a 为减函数,则01a <<,当1x ≤时,一次函数()231a x -+为减函数,则230a -<,解得:23a >, 且在1x =处,有:()12311a a -⨯+≥,解得:34a ≤, 综上可得,实数a 的取值范围是23,34⎛⎤ ⎥⎝⎦. 本题选择C 选项. 【点睛】对于分段函数的单调性,有两种基本的判断方法:一保证各段上同增(减)时,要注意上、下段间端点值间的大小关系;二是画出这个分段函数的图象,结合函数图象、性质进行直观的判断.6.C解析:C 【解析】 【分析】先根据图中的阴影部分是M∩P 的子集,但不属于集合S ,属于集合S 的补集,然后用关系式表示出来即可. 【详解】图中的阴影部分是: M∩P 的子集,不属于集合S ,属于集合S 的补集,即是C U S 的子集则阴影部分所表示的集合是(M∩P )∩(∁U S).故选C . 【点睛】本题主要考查了Venn 图表达集合的关系及运算,同时考查了识图能力,属于基础题.7.A解析:A 【解析】由题意{1,2,3,4}A B =U ,故选A. 点睛:集合的基本运算的关注点:(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提.(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决.(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn 图.8.D解析:D 【解析】 【分析】求得函数()f x 的定义域为(3,1)-,根据二次函数的性质,求得()223g x x x =--+在(3,1]--单调递增,在(1,1)-单调递减,再由(0)0f <,得到01a <<,利用复合函数的单调性,即可求解. 【详解】由题意,函数2()log (23)a f x x x =--+满足2230x x --+>,解得31x -<<,即函数()f x 的定义域为(3,1)-,又由函数()223g x x x =--+在(3,1]--单调递增,在(1,1)-单调递减,因为(0)0f <,即(0)log 30a f =<,所以01a <<,根据复合函数的单调性可得,函数()f x 的单调递减区间为(3,1]--, 故选D. 【点睛】本题主要考查了对数函数的图象与性质,以及复合函数的单调性的判定,着重考查了推理与运算能力,属于基础题.9.B解析:B 【解析】 【分析】由分子、分母的奇偶性,易于确定函数为奇函数,由(4)f 的近似值即可得出结果. 【详解】设32()22x x x y f x -==+,则332()2()()2222x x x xx x f x f x ----==-=-++,所以()f x 是奇函数,图象关于原点成中心对称,排除选项C .又34424(4)0,22f -⨯=>+排除选项D ;36626(6)722f -⨯=≈+,排除选项A ,故选B . 【点睛】本题通过判断函数的奇偶性,缩小考察范围,通过计算特殊函数值,最后做出选择.本题较易,注重了基础知识、基本计算能力的考查.10.B解析:B 【解析】试题分析:根据指数函数和对数函数的单调性知:0.30771a =>=,即1a >;7000.30.31b <=<=,即01b <<;ln0.3ln10c =<=,即0c <;所以a b c >>,故正确答案为选项B .考点:指数函数和对数函数的单调性;间接比较法.11.C解析:C 【解析】 【分析】令[]()()10g x f f x =-=,可得[]()1f f x =,解方程()1f x =,结合函数()f x 的图象,可求出答案. 【详解】令[]()()10g x f f x =-=,则[]()1f f x =,令()1f x =,若2log (1)1x +=,解得1x =或12x =-,符合(1,3)x ∈-;若411x =-,解得5x =,符合[3,)x ∈+∞.作出函数()f x 的图象,如下图,(]1,0x ∈-时,[)()0,f x ∈+∞;()0,3x ∈时,()()0,2f x ∈;[3,)x ∈+∞时,(]()0,2f x ∈. 结合图象,若()1f x =,有3个解;若1()2f x =-,无解;若()5f x =,有1个解. 所以函数[]()()1g x f f x =-的零点个数为4个. 故选:C.【点睛】本题考查分段函数的性质,考查了函数的零点,考查了学生的推理能力,属于中档题.12.C解析:C 【解析】 【分析】令函数4()log 7xf x x =+-,则函数()f x 是()0,∞+上的单调增函数,且是连续函数,根据(5)(6)0f f ⋅<,可得函数4()log 7xf x x =+-的零点所在的区间为()5,6,由此可得方程4log 7x x +=的解所在区间. 【详解】令函数4()log 7xf x x =+-,则函数()f x 是()0,∞+上的单调增函数,且是连续函数.∵(5)0f <,(6)0>f ∴(5)(6)0f f ⋅<∴故函数4()log 7xf x x =+-的零点所在的区间为()5,6∴方程4log 7x x +=的解所在区间是()5,6 故选C. 【点睛】零点存在性定理:利用定理不仅要函数在区间[,]a b 上是连续不断的曲线,且()()0f a f b ⋅<,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.二、填空题13.【解析】由定义在实数集上的偶函数在区间上是减函数可得函数在区间上是增函数所以由不等式得即或解得或即不等式的解集是;故答案为解析:()10,e,e ∞⎛⎫⋃+ ⎪⎝⎭【解析】由定义在实数集R 上的偶函数()f x 在区间(],0-∞上是减函数,可得函数()f x 在区间()0+∞,上是增函数,所以由不等式()()1ln f f x <得ln 1x >,即ln 1x >或ln 1x <-,解得x e >或10e x <<,即不等式()()1ln f f x <的解集是()10,e,e ∞⎛⎫⋃+ ⎪⎝⎭;故答案为()10,e,e ∞⎛⎫⋃+ ⎪⎝⎭. 14.【解析】【分析】根据复合函数单调性同增异减以及二次函数对称轴列不等式组解不等式组求得实数的取值范围【详解】要使在上递增根据复合函数单调性需二次函数对称轴在的左边并且在时二次函数的函数值为非负数即解得 解析:(],3-∞【解析】 【分析】根据复合函数单调性同增异减,以及二次函数对称轴列不等式组,解不等式组求得实数a 的取值范围. 【详解】要使()f x 在()2,+∞上递增,根据复合函数单调性,需二次函数22y x ax =-+对称轴在2x =的左边,并且在2x =时,二次函数的函数值为非负数,即2222220a a ⎧≤⎪⎨⎪-+≥⎩,解得3a ≤.即实数a 的取值范围是(],3-∞.【点睛】本小题主要考查复合函数的单调性,考查二次函数的性质,属于中档题.15.3或【解析】【分析】令换元后函数转化为二次函数由二次函数的性质求得最大值后可得但是要先分类讨论分和求出的取值范围【详解】设则对称轴方程为若则∴当时解得或(舍去)若则∴当时解得或(舍去)答案:3或【点解析:3或13【解析】 【分析】令x t a =,换元后函数转化为二次函数,由二次函数的性质求得最大值后可得a .但是要先分类讨论,分1a >和01a <<求出t 的取值范围. 【详解】设0x t a =>,则221y t t =+-,对称轴方程为1t =-. 若1,[1,1]a x >∈-,则1,xt a a a ⎡⎤=∈⎢⎥⎣⎦,∴当t a =时,2max 2114y a a =+-=,解得3a =或5a =-(舍去).若01a <<,[1,1]x ∈-,则1,xt a a a⎡⎤=∈⎢⎥⎣⎦∴当1t a =时,2max 112114y a a ⎛⎫=+⨯-= ⎪⎝⎭解得13a =或15a =-(舍去)答案:3或13【点睛】本题考查指数型复合函数的最值,本题函数类型的解题方法是用换元法把函数转化为二次函数求解.注意分类讨论.16.或【解析】【分析】分类讨论的范围利用对数函数二次函数的性质进一步求出的范围【详解】解:∵函数若有最大值或最小值则函数有最大值或最小值且取最值时当时由于没有最值故也没有最值不满足题意当时函数有最小值没解析:{|2m m >或2}3m <- 【解析】 【分析】分类讨论m 的范围,利用对数函数、二次函数的性质,进一步求出m 的范围. 【详解】解:∵函数()()212log 22f x mx m x m ⎡⎤=+-+-⎣⎦,若()f x 有最大值或最小值,则函数2(2)2y mx m x m =+-+-有最大值或最小值,且y 取最值时,0y >.当0m =时,22y x =--,由于y 没有最值,故()f x 也没有最值,不满足题意. 当0m >时,函数y 有最小值,没有最大值,()f x 有最大值,没有最小值.故y 的最小值为24(2)(2)4m m m m ---,且 24(2)(2)04m m m m--->,求得 2m >;当0m <时,函数y 有最大值,没有最小值,()f x 有最小值,没有最大值.故y 的最大值为24(2)(2)4m m m m ---,且 24(2)(2)04m m m m--->,求得23m <-. 综上,m 的取值范围为{|2m m >或2}3m <-. 故答案为:{|2m m >或2}3m <-.【点睛】本题主要考查复合函数的单调性,二次函数、对数函数的性质,二次函数的最值,属于中档题.17.y =a (1+b )x (x ∈N*)【解析】【分析】根据条件计算第一年产量第二年产量…根据规律得到答案【详解】设年产量经过x 年增加到y 件第一年为y =a (1+b )第二年为y =a (1+b )(1+b )=a (1+解析:y =a (1+b %)x (x ∈N *)【解析】 【分析】根据条件计算第一年产量,第二年产量…根据规律得到答案. 【详解】设年产量经过x 年增加到y 件, 第一年为 y =a (1+b %)第二年为 y =a (1+b %)(1+b %)=a (1+b %)2, 第三年为 y =a (1+b %)(1+b %)(1+b %)=a (1+b %)3, …∴y =a (1+b %)x (x ∈N *). 故答案为:y =a (1+b %)x (x ∈N *) 【点睛】本题考查了指数型函数的应用,意在考查学生的应用能力.18.【解析】【分析】由可得出设函数将问题转化为函数与函数的图象有交点利用数形结合思想可求出实数的取值范围【详解】由可得出设函数则直线与函数的图象有交点作出函数与函数的图象如下图所示由图象可知则解得因此实 解析:[)1,0-【解析】 【分析】由|1|102x y m -⎛⎫=+= ⎪⎝⎭可得出112xm -⎛⎫-= ⎪⎝⎭,设函数()112xg x -⎛⎫= ⎪⎝⎭,将问题转化为函数y m =-与函数()y g x =的图象有交点,利用数形结合思想可求出实数m 的取值范围.【详解】由|1|102x y m -⎛⎫=+= ⎪⎝⎭可得出112xm -⎛⎫-= ⎪⎝⎭,设函数()112xg x -⎛⎫= ⎪⎝⎭,则直线y m =-与函数()y g x =的图象有交点,作出函数()111,122,1x x x g x x --⎧⎛⎫≥⎪ ⎪=⎨⎝⎭⎪<⎩与函数y m =-的图象如下图所示,由图象可知()01g x <≤,则01m <-≤,解得10m -≤<. 因此,实数m 的取值范围是[)1,0-. 故答案为:[)1,0-. 【点睛】本题考查利用函数有零点求参数的取值范围,在含单参数的函数零点问题的求解中,一般转化为参数直线与函数图象有交点来处理,考查数形结合思想的应用,属于中等题.19.【解析】【分析】【详解】试题分析:两种都买的有人所以两种家电至少买一种有人所以两种都没买的有人或根据条件画出韦恩图:(人)考点:元素与集合的关系 解析:【解析】 【分析】 【详解】试题分析:两种都买的有人,所以两种家电至少买一种有人.所以两种都没买的有人.或根据条件画出韦恩图:(人).考点:元素与集合的关系.20.【解析】试题分析:当时由于定义在上的奇函数则;因为时则若时令若时令因则的零点集合为考点:奇函数的定义与利用奇函数求解析式;2函数的零点;3分段函数分段处理原则; 解析:【解析】 试题分析:当时,,由于()f x 定义在R 上的奇函数,则;因为0x ≥时,,则若时,令若时,令,因,则,的零点集合为考点:奇函数的定义与利用奇函数求解析式;2.函数的零点;3.分段函数分段处理原则;三、解答题21.(1)[]22-,;(2)24x =,最小值14-,4x =,最大值12 .【解析】试题分析:(1)根据定义域为1,44⎡⎤⎢⎥⎣⎦,利用对数函数的单调性确定函数2log t x =的取值范围;(2)根据对数的运算法则化简函数()()()()()2222log 4log 221f x x x log x log x =⋅=++利用换元法将函数()y f x =转化为关于t 的一元二次函数,利用二次函数的性质求函数的最值. 试题解析:(1)的取值范围为区间][221log ,log 42,24⎡⎤=-⎢⎥⎣⎦(2)记()()()()()()()22log 2log 12122y f x x x t t g t t ==++=++=-≤≤.∵()23124y g t t ⎛⎫==+- ⎪⎝⎭在区间32,2⎡⎤--⎢⎥⎣⎦是减函数,在区间3,22⎡⎤-⎢⎥⎣⎦是增函数 ∴当23log 2t x ==-即32224x -==时,()y f x =有最小值23124f g ⎛⎫=-=- ⎪⎝⎭⎝⎭; 当2log 2t x ==即224x ==时,()y f x =有最大值()()4212f g ==. 22.(1)2a =,定义域为()1,3-;(2)2 【解析】 【分析】(1)由()12f =,可求得a 的值,结合对数的性质,可求出()f x 的定义域; (2)先求得()f x 在区间30,2⎡⎤⎢⎥⎣⎦上的单调性,进而可求得函数的最大值.【详解】(1)()1log 2log l 242og a a a f =+==,解得2a =. 故()()22log 1)g 3(lo f x x x =++-, 则1030x x +>⎧⎨->⎩,解得13x -<<,故()f x 的定义域为()1,3-.(2)函数()()()()()222log 1log 3log 31f x x x x x =++-=-+,定义域为()1,3-,()130,2,3⎡⎤⊆⎥-⎢⎣⎦,由函数2log y x =在()0,∞+上单调递增,函数()()31y x x =-+在[)0,1上单调递增,在31,2⎡⎤⎢⎥⎣⎦上单调递减,可得函数()f x 在[)0,1上单调递增,在31,2⎡⎤⎢⎥⎣⎦上单调递减. 故()f x 在区间30,2⎡⎤⎢⎥⎣⎦上的最大值为()21log 42f ==.【点睛】本题考查了函数的定义域,考查了函数的单调性与最值,考查了学生的计算求解能力,属于基础题.23.(1) a=1,b=1 (2)见解析 (3) k<- 【解析】试题分析:(1)()f x 为R 上的奇函数⇒(0)01f b =⇒=,再由,得1a =即可;(2) 任取12x x R ∈,,且12x x <,计算2112122(22)()()0(21)(2+1)x x xx f x f x --=>+即可;(3) 不等式22(2)(2)0f t t f t k -+-<恒成立等价于22(2)(2)f t t f t k -<--⇔22(2)(2)f t t f k t -<-⇔2222t t k t ->-⇔232k t t<-恒成立,求函数2()32h t t t =-的最小值即可.试题解析: (1)∵()f x 为R 上的奇函数,∴(0)0f =,1b =. 又,得1a =.经检验11a b ==,符合题意. (2)任取12x x R ∈,,且12x x <,则1212211212121212(12)(21)(12)(21)()()2121(21)(21)x x x x x x x x x x f x f x --------=-=----21122(22)(21)(2+1)x x x x -=+. ∵12x x <,∴12220x x ->,又∴12(21)(21)0x x++>,∴12()()0f x f x ->,∴()f x 为R 上的减函数(3)∵t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,∴22(2)(2)f t t f t k -<--,∴()f x 为奇函数,∴22(2)(2)f t t f k t -<-,∴()f x 为减函数,∴2222t t k t ->-.即232k t t <-恒成立,而22111323()333t t t -=--≥-, ∴13k <-考点:1.函数的奇偶性;2.函数的单调性;3.函数与不等式.【名师点睛】本题考查函数的奇偶性、函数的单调性、函数与不等式,属中档题;高考对函数性质的考查主要有以下几个命题角度:1.单调性与奇偶性相结合;2.周期性与奇偶性相结合;3.单调性、奇偶性与周期性相结合. 24.(1);(2).【解析】 【分析】根据函数的奇偶性的定义求出a 的值,从而求出函数的解析式即可;问题转化为在恒成立,令,,根据函数的单调性求出的最小值,从而求出m 的范围即可.【详解】函数是奇函数,,故,故; 当时,恒成立, 即在恒成立, 令,,显然在的最小值是, 故,解得:. 【点睛】本题考查了函数的奇偶性问题,考查函数恒成立以及转化思想,指数函数,二次函数的性质,是一道常规题.对于恒成立问题一般要分离参数,然后利用函数单调性求函数的最大值或最小值,对于含有不等式的函数问题,一般要构造函数,利用函数的单调性来解决,但涉及技巧比较多,需要多加体会. 25.(1)2;(2){|35}m m m -或 【解析】试题分析:(1)根据一元二次不等式的解法,对A ,B 集合中的不等式进行因式分解,从而解出集合A ,B ,再根据A∩B=[0,3],求出实数m 的值;(2)由(1)解出的集合A ,B ,因为A ⊆C R B ,根据子集的定义和补集的定义,列出等式进行求解.解:由已知得:A={x|﹣1≤x≤3}, B={x|m ﹣2≤x≤m+2}. (1)∵A ∩B=[0,3] ∴∴,∴m=2;(2)C R B={x|x <m ﹣2,或x >m+2} ∵A ⊆C R B ,∴m ﹣2>3,或m+2<﹣1, ∴m >5,或m <﹣3.考点:交、并、补集的混合运算.26.(1)43.5(2)当甲城市投资72万元,乙城市投资48万元时,总收益最大,且最大收益为44万元. 【解析】(1)当50x =时,此时甲城市投资50万元,乙城市投资70万元, 所以总收益()50f =1325067024⨯+⨯+=43.5(万元). (2)由题知,甲城市投资x 万元,乙城市投资()120x -万元, 所以()f x =()132612024x x +-+=13226,4x x -+ 依题意得4012040x x ≥⎧⎨-≥⎩,解得4080x ≤≤, 故()f x =()1322640804x x x -+≤≤, 令t x =,则210,45t ⎡∈⎣,所以y =2132264t t -++=21(62)444t --+. 当62t =,即72x =万元时,y 的最大值为44万元,所以当甲城市投资72万元,乙城市投资48万元时,总收益最大,且最大收益为44万元.。

【常考题】高一数学上期中模拟试卷附答案

【常考题】高一数学上期中模拟试卷附答案

【常考题】高一数学上期中模拟试卷附答案一、选择题1.已知函数f (x )=23,0{log ,0x x x x ≤>那么f 1(())8f 的值为( )A .27B .127C .-27D .-1272.设()(),0121,1x x f x x x ⎧<<⎪=⎨-≥⎪⎩,若()()1f a f a =+,则1f a ⎛⎫= ⎪⎝⎭( ) A .2B .4C .6D .83.1()xf x e x=-的零点所在的区间是( ) A .1(0,)2B .1(,1)2C .3(1,)2D .3(,2)24.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=L ( )A .50-B .0C .2D .505.设x 、y 、z 为正数,且235x y z ==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z6.函数223()2xx xf x e +=的大致图像是( )A .B .C .D .7.函数sin21cos xy x=-的部分图像大致为A .B .C .D .8.已知()lg(10)lg(10)f x x x =++-,则()f x 是( ) A .偶函数,且在(0,10)是增函数 B .奇函数,且在(0,10)是增函数 C .偶函数,且在(0,10)是减函数D .奇函数,且在(0,10)是减函数9.方程 4log 7x x += 的解所在区间是( ) A .(1,2)B .(3,4)C .(5,6)D .(6,7)10.函数2xy x =⋅的图象是( )A .B .C .D .11.设函数3()f x x x =+ ,. 若当02πθ<<时,不等式(sin )(1)0f m f m θ+-> 恒成立,则实数m 的取值范围是( ) A .1(,1]2B .1(,1)2C .[1,)+∞D .(,1]-∞12.若函数2()sin ln(14)f x x ax x =⋅+的图象关于y 轴对称,则实数a 的值为( )A .2B .2±C .4D .4±二、填空题13.设25a b m ==,且112a b+=,则m =______. 14.若函数()6,23log ,2a x x f x x x -+≤⎧=⎨+>⎩(0a >且1a ≠)的值域是[)4,+∞,则实数a 的取值范围是__________.15.己知函数()f x 是定义在R 上的周期为2的奇函数,01x <<时,()4xf x =,5()(2019)2f f -+的值是____.16.已知集合{}{}1,1,2,4,1,0,2,A B =-=-则A B =I __________.17.已知函数()log ,03,40a x x f x x x >⎧=⎨+-≤<⎩,其中0a >且1a ≠,若函数()f x 的图象上有且只有一对点关于y 轴对称,则a 的取值范围是__________.18.已知函数(12)(1)()4(1)x a x f x ax x⎧-<⎪=⎨+≥⎪⎩,且对任意的12,x x R ∈,12x x ≠时,都有()()12120f x f x x x ->-,则a 的取值范围是________19.已知()f x 定义在R 上的奇函数,当0x ≥时,,则函数()()3g x f x x =-+的零点的集合为 .20.设函数()()()2,1{42, 1.x a x f x x a x a x -<=--≥①若1a =,则()f x 的最小值为 ;②若()f x 恰有2个零点,则实数a 的取值范围是 .三、解答题21.已知函数()()()sin 0,0,f x A x A ωϕωϕπ=+>><,在同一周期内,当12x π=时,()f x 取得最大值4:当712x π=时,()f x 取得最小值4-. (1)求函数()f x 的解析式; (2)若,66x ππ⎡⎤∈-⎢⎥⎣⎦时,函数()()21h x f x t =+-有两个零点,求实数t 的取值范围. 22.计算下列各式的值:(Ⅰ)322log 3lg25lg4log (log 16)++- (Ⅱ)2102329273()( 6.9)()()482-----+23.已知函数22()f x x x=+. (1)求(1)f ,(2)f 的值;(2)设1a b >>,试比较()f a 、()f b 的大小,并说明理由; (3)若不等式2(1)2(1)1f x x m x -≥-++-对一切[1,6]x ∈恒成立,求实数m 的最大值. 24.设函数f (x )是增函数,对于任意x ,y ∈R 都有f (x+y )=f (x )+f (y ). (1)求f (0);(2)证明f (x )是奇函数;(3)解不等式f (x 2)—f (x )>f (3x ).25.有一种候鸟每年都按一定的路线迁陟,飞往繁殖地产卵.科学家经过测量发现候鸟的飞行速度可以表示为函数301log lg 2100x v x =-,单位是min km ,其中x 表示候鸟每分钟耗氧量的单位数,0x 表示测量过程中候鸟每分钟的耗氧偏差.(参考数据:lg 20.30=, 1.23 3.74=, 1.43 4.66=)(1)若02x =,候鸟每分钟的耗氧量为8100个单位时,它的飞行速度是多少min km ? (2)若05x =,候鸟停下休息时,它每分钟的耗氧量为多少个单位?(3)若雄鸟的飞行速度为2.5min km ,雌鸟的飞行速度为1.5min km ,那么此时雄鸟每分钟的耗氧量是雌鸟每分钟的耗氧量的多少倍?26.已知函数()3131-=+x x f x ,若不式()()2210+-<f kx f x 对任意x ∈R 恒成立,则实数k 的取值范围是________.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】利用分段函数先求f (1)8)的值,然后在求出f 1(())8f 的值.f=log 2=log 22-3=-3,f=f (-3)=3-3=.【点睛】本题主要考查分段函数求值以及指数函数、对数函数的基本运算,属基础题.2.C解析:C 【解析】由1x ≥时()()21f x x =-是增函数可知,若1a ≥,则()()1f a f a ≠+,所以01a <<,由()(+1)f a f a =2(11)a a =+-,解得14a =,则1(4)2(41)6f f a ⎛⎫==-= ⎪⎝⎭,故选C. 【名师点睛】求分段函数的函数值,首先要确定自变量的范围,然后选定相应关系式,代入求解;当给出函数值或函数值的取值范围求自变量的值或自变量的取值范围时,应根据每一段解析式分别求解,但要注意检验所求自变量的值或取值范围是否符合相应段的自变量的值或取值范围.3.B解析:B 【解析】 函数f (x )=e x ﹣1x 是(0,+∞)上的增函数,再根据f (12)e 2<0,f (1)=e ﹣1>0,可得f (12)f (1)<0,∴函数f (x )=e x ﹣1x 的零点所在的区间是(12,1),故选B .点睛:判定函数的零点所在区间,只需计算区间端点处的函数值,并判断是否异号,只要异号,则区间内至少有一个零点存在.4.C解析:C 【解析】分析:先根据奇函数性质以及对称性确定函数周期,再根据周期以及对应函数值求结果. 详解:因为()f x 是定义域为(,)-∞+∞的奇函数,且(1)(1)f x f x -=+, 所以(1)(1)(3)(1)(1)4f x f x f x f x f x T +=--∴+=-+=-∴=,因此(1)(2)(3)(50)12[(1)(2)(3)(4)](1)(2)f f f f f f f f f f ++++=+++++L , 因为(3)(1)(4)(2)f f f f =-=-,,所以(1)(2)(3)(4)0f f f f +++=,(2)(2)(2)(2)0f f f f =-=-∴=Q ,从而(1)(2)(3)(50)(1)2f f f f f ++++==L ,选C.点睛:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.5.D【解析】令235(1)x y zk k ===>,则2log x k =,3log =y k ,5log =z k∴22lg lg 3lg 913lg 23lg lg8x k y k =⋅=>,则23x y >, 22lg lg5lg 2515lg 25lg lg32x k z k =⋅=<,则25x z <,故选D. 点睛:对于连等问题,常规的方法是令该连等为同一个常数,再用这个常数表示出对应的,,x y z ,通过作差或作商进行比较大小.对数运算要记住对数运算中常见的运算法则,尤其是换底公式以及0与1的对数表示.6.B解析:B 【解析】由()f x 的解析式知仅有两个零点32x =-与0x =,而A 中有三个零点,所以排除A ,又()2232xx x f x e-++'=,由()0f x '=知函数有两个极值点,排除C ,D ,故选B . 7.C解析:C 【解析】 由题意知,函数sin 21cos xy x =-为奇函数,故排除B ;当πx =时,0y =,故排除D ;当1x =时,sin 201cos 2y =>-,故排除A .故选C . 点睛:函数图像问题首先关注定义域,从图像的对称性,分析函数的奇偶性,根据函数的奇偶性排除部分选择项,从图像的最高点、最低点,分析函数的最值、极值,利用特值检验,较难的需要研究单调性、极值等,从图像的走向趋势,分析函数的单调性、周期性等.8.C解析:C 【解析】 【分析】先判断函数的定义域关于原点对称,再由奇偶性的定义判断奇偶性,根据复合函数的单调判断其单调性,从而可得结论. 【详解】由100100x x +>⎧⎨->⎩,得(10,10)x ∈-, 故函数()f x 的定义域为()10,10-,关于原点对称,又()()lg 10lg(10)()f x x x f x -=-++=,故函数()f x 为偶函数, 而()()2lg(10)lg(10)lg 100f x x x x=++-=-,因为函数2100y x =-在()0,10上单调递减,lg y x =在()0,∞+上单调递增, 故函数()f x 在()0,10上单调递减,故选C. 【点睛】本题主要考查函数的奇偶性与单调性,属于中档题. 判断函数的奇偶性首先要看函数的定义域是否关于原点对称,如果不对称,既不是奇函数又不是偶函数,如果对称常见方法有:(1)直接法, ()()f x f x -=±(正为偶函数,负为减函数);(2)和差法,()()0f x f x -±=(和为零奇函数,差为零偶函数);(3)作商法,()()1f x f x -=±(1 为偶函数,1- 为奇函数) .9.C解析:C 【解析】 【分析】令函数4()log 7xf x x =+-,则函数()f x 是()0,∞+上的单调增函数,且是连续函数,根据(5)(6)0f f ⋅<,可得函数4()log 7xf x x =+-的零点所在的区间为()5,6,由此可得方程4log 7x x +=的解所在区间. 【详解】令函数4()log 7xf x x =+-,则函数()f x 是()0,∞+上的单调增函数,且是连续函数.∵(5)0f <,(6)0>f ∴(5)(6)0f f ⋅<∴故函数4()log 7xf x x =+-的零点所在的区间为()5,6∴方程4log 7x x +=的解所在区间是()5,6 故选C. 【点睛】零点存在性定理:利用定理不仅要函数在区间[,]a b 上是连续不断的曲线,且()()0f a f b ⋅<,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.10.A解析:A 【解析】 【分析】先根据奇偶性舍去C,D,再根据函数值确定选A.因为2xy x =⋅为奇函数,所以舍去C,D; 因为0x >时0y >,所以舍去B ,选A. 【点睛】有关函数图象识别问题的常见题型及解题思路(1)由解析式确定函数图象的判断技巧:(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.(2)由实际情景探究函数图象.关键是将问题转化为熟悉的数学问题求解,要注意实际问题中的定义域问题.11.D解析:D 【解析】 【分析】 【详解】易得()f x 是奇函数,2()310()f x x f x '=+>⇒在R 上是增函数,不等式(sin )(1)0f m f m θ+-> 恒成立. 可得11(sin )(1)sin 1,0sin 111sin 1sin f m f m m m m m θθθθθ>-⇒>-⇒<<<⇒⇒≤--, 故选D.12.B解析:B 【解析】 【分析】根据图象对称关系可知函数为偶函数,得到()()f x f x =-,进而得到ax +=.【详解】()f x Q 图象关于y 轴对称,即()f x 为偶函数 ()()f x f x ∴=-即:()sin ln sin lnsin lnx ax x ax x ⋅+=-⋅=⋅ax ∴+=恒成立,即:222141x a x +-=24a ∴=,解得:2a =± 本题正确选项:B本题考查根据函数的奇偶性求解参数值的问题,关键是能够明确恒成立时,对应项的系数相同,属于常考题型.二、填空题13.【解析】【分析】变换得到代入化简得到得到答案【详解】则故故答案为:【点睛】本题考查了指数对数变换换底公式意在考查学生的计算能力【解析】 【分析】变换得到2log a m =,5log b m =,代入化简得到11log 102m a b+==,得到答案. 【详解】25a b m ==,则2log a m =,5log b m =,故11log 2log 5log 102,m m m m a b+=+==∴=【点睛】本题考查了指数对数变换,换底公式,意在考查学生的计算能力.14.【解析】试题分析:由于函数的值域是故当时满足当时由所以所以所以实数的取值范围考点:对数函数的性质及函数的值域【方法点晴】本题以分段为背景主要考查了对数的图象与性质及函数的值域问题解答时要牢记对数函数 解析:(]1,2【解析】试题分析:由于函数()()6,2{0,13log ,2a x x f x a a x x -+≤=>≠+>的值域是[)4,+∞,故当2x ≤时,满足()64f x x =-≥,当2x >时,由()3log 4a f x x =+≥,所以log 1a x ≥,所以log 2112a a ≥⇒<<,所以实数a 的取值范围12a <≤. 考点:对数函数的性质及函数的值域.【方法点晴】本题以分段为背景主要考查了对数的图象与性质及函数的值域问题,解答时要牢记对数函数的单调性及对数函数的特殊点的应用是解答的关键,属于基础题,着重考查了分类讨论的思想方法的应用,本题的解答中,当2x >时,由()4f x ≥,得log 1a x ≥,即log 21a ≥,即可求解实数a 的取值范围.15.【解析】【分析】根据题意由函数的奇偶性与周期性分析可得f (﹣)=f (﹣)=﹣f ()结合解析式求出f ()的值又因为f (2019)=f (1+2×1009)=f (1)=0;据此分析可得答案【详解】解:根据 解析:2-【解析】 【分析】根据题意,由函数的奇偶性与周期性分析可得f (﹣52)=f (﹣12)=﹣f (12),结合解析式求出f (12)的值,又因为f (2019)=f (1+2×1009)=f (1)=0;据此分析可得答案. 【详解】解:根据题意,函数f (x )是定义在R 上的周期为2的奇函数,则f (﹣52)=f (﹣12)=﹣f (12),f (2019)=f (1+2×1009)=f (1),又由函数f (x )是定义在R 上的周期为2的奇函数,则有f (1)=f (﹣1)且f (1)=﹣f (﹣1),故f (1)=0,则f (2019)=0 ,又由0<x <l 时,f (x )=4x ,则f (12)=124=2,则f (﹣52)=﹣f (12)=﹣2; 则5f f (2019)2⎛⎫-+ ⎪⎝⎭=﹣2; 故答案为:﹣2 【点睛】本题考查函数的周期性与函数值的计算,属于基础题.16.【解析】【分析】直接利用集合交集的定义求解即可【详解】因为集合两个集合的公共元素为所以故答案为【点睛】研究集合问题一定要抓住元素看元素应满足的属性研究两集合的关系时关键是将两集合的关系转化为元素间的解析:{}12-,【解析】 【分析】直接利用集合交集的定义求解即可. 【详解】因为集合{}{}1,1,2,4,1,0,2,A B =-=- 两个集合的公共元素为1,2-所以{}1,2A B =-I .故答案为{}1,2-. 【点睛】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合A 且属于集合B 的元素的集合.17.【解析】将在轴左侧的图象关于轴对称到右边与在轴右侧的图象有且只有一个交点当时一定满足当时必须解得综上的取值范围是点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关解析:(0,1)1,4⋃() 【解析】将()f x 在y 轴左侧的图象关于y 轴对称到右边,与()f x 在y 轴右侧的图象有且只有一个交点.当01a <<时一定满足,当1a >时必须log 41a >,解得4a <.综上a 的取值范围是()0,11,4⋃().点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.18.【解析】【分析】根据判断出函数在上为增函数由此列不等式组解不等式组求得的取值范围【详解】由于对任意的时都有所以函数在上为增函数所以解得故答案为:【点睛】本小题主要考查根据函数的单调性求参数的取值范围 解析:[1,0)-【解析】 【分析】 根据()()12120f x f x x x ->-判断出函数在R 上为增函数,由此列不等式组,解不等式组求得a 的取值范围.【详解】由于对任意的12,x x R ∈,12x x ≠时,都有()()12120f x f x x x ->-,所以函数在R 上为增函数,所以1210124a a a a ->⎧⎪<⎨⎪-≤+⎩,解得10a -≤<.故答案为:[)1,0-. 【点睛】本小题主要考查根据函数的单调性求参数的取值范围,考查指数函数的单调性,考查分式型函数的单调性,属于基础题.19.【解析】试题分析:当时由于定义在上的奇函数则;因为时则若时令若时令因则的零点集合为考点:奇函数的定义与利用奇函数求解析式;2函数的零点;3分段函数分段处理原则; 解析:【解析】 试题分析:当时,,由于()f x 定义在R 上的奇函数,则;因为0x ≥时,,则若时,令若时,令,因,则,的零点集合为考点:奇函数的定义与利用奇函数求解析式;2.函数的零点;3.分段函数分段处理原则;20.(1)-1(2)或【解析】【分析】【详解】①时函数在上为增函数且函数在为减函数在为增函数当时取得最小值为-1;(2)①若函数在时与轴有一个交点则则函数与轴有一个交点所以;②若函数与轴有无交点则函数与解析:(1)-1,(2)112a ≤<或2a ≥. 【解析】 【分析】 【详解】①1a =时,()()()2,1{42, 1.x a x f x x a x a x -<=--≥,函数()f x 在(,1)-∞上为增函数且()1f x >-,函数()f x 在3[1,]2为减函数,在3[,)2+∞为增函数,当32x =时,()f x 取得最小值为-1;(2)①若函数()2xg x a =-在1x <时与x 轴有一个交点,则0a >, (1)2g a =->0,则02a <<,函数()4()(2)h x x a x a =--与x 轴有一个交点,所以211a a ≥<⇒且112a ≤<; ②若函数()2xg x a =-与x 轴有无交点,则函数()4()(2)h x x a x a =--与x 轴有两个交点,当0a ≤时()g x 与x 轴有无交点,()4()(2)h x x a x a =--在1x ≥与x 轴有无交点,不合题意;当当2a ≥时()g x 与x 轴有无交点,()h x 与x 轴有两个交点,x a =和2x a =,由于2a ≥,两交点横坐标均满足1x ≥;综上所述a 的取值范围112a ≤<或2a ≥.考点:本题考点为函数的有关性质,涉及函数图象、函数的最值,函数的零点、分类讨论思想解题.利用函数图象研究函数的单调性,求出函数的最值,涉计参数问题,针对参数进行分类讨论.三、解答题21.(1)()4sin 23f x x π⎛⎫=+ ⎪⎝⎭(2)19t +< 【解析】 【分析】(1)根据三角函数性质确定振幅、周期以及初相,即得解析式; (2)先确定23x π+范围,再结合正弦函数图象确定实数t 满足的条件,解得结果.【详解】(1)解:由题意知74,212122T A πππ==-=,得周期T π= 即2ππω=得,则2ω=,则()()4sin 2f x x ϕ=+当12x π=时,()f x 取得最大值4,即4sin 2412πϕ⎛⎫⨯+= ⎪⎝⎭,得πsin φ16骣琪+=琪桫得2()62k k Z ππϕπ+=+∈,,得23()k k Z πϕπ=+∈,,ϕπ<∴Q 当0k =时,=3πϕ,因此()4sin 23f x x π⎛⎫=+⎪⎝⎭(2)()()210h x f x t =+-=,即()12t f x -= 当,66x ππ⎡⎤∈-⎢⎥⎣⎦时,则220,33x ππ⎡⎤+∈⎢⎥⎣⎦当232x ππ+=时,4sin42π=要使()12t f x -=有两个根,则142t -≤<,得19t +≤<即实数t 的取值范围是19t +< 【点睛】本题考查三角函数解析式以及利用正弦函数图象研究函数零点,考查综合分析求解能力,属中档题.22.(Ⅰ)12;(Ⅱ)12. 【解析】试题分析:(1)根据对数运算法则log ,lg lg lg ,ma a m m n mn =+= 化简求值(2)根据指数运算法则01(),1,m n mn mm a a a a a-===,化简求值 试题解析:(Ⅰ)原式()3111log 3lg 254222222=+⨯-=+-=. (Ⅱ)原式1223233343441112292992⎛⎫⨯⨯- ⎪⎝⎭⎛⎫⎛⎫=--+=--+= ⎪ ⎪⎝⎭⎝⎭. 23.(1)(1)3f =,(2)5f =;(2)()()f a f b >;详见解析(3)1-. 【解析】 【分析】(1)根据函数解析式,代入即可求值.(2)根据函数解析式,利用作差法即可比较()f a 、()f b 的大小.(3)将解析式代入,化简不等式,转化为关于二次函数的恒成立问题,即可求得实数m 的最大值. 【详解】(1)因为函数()22f x x x=+所以()221131f =+= ()222252f =+= (2)()()f a f b >,理由如下: 因为1a b >> 则()()f a f b -2222a b a b=+-- ()()()2b a a b a b ab-=-++()2a b a b ab ⎛⎫=-+- ⎪⎝⎭因为1a b >>,则2a b +>,1ab >,所以22ab<,即20a b ab +->,()0a b -> 所以()20a b a b ab ⎛⎫-+-> ⎪⎝⎭即()()f a f b >(3)因为函数()22f x x x=+则代入不等式可化为()()22212111x x m x x -+≥-++-- 化简可得243x x m -+≥,即()221x m --≥ 因为对于一切[]1,6x ∈恒成立所以()2min21x m ⎡⎤--≥⎣⎦ 当2x =时,二次函数取得最小值,即1m -≥ 所以实数m 的最大值为1- 【点睛】本题考查了函数的求值,单调性的证明及不等式恒成立问题的综合应用,属于基础题. 24.(1)0;(2)见解析;(3){x|x<0或x>5} 【解析】 【分析】 【详解】试题分析:(1)利用已知条件通过x=y=0,直接求f (0);(2)通过函数的奇偶性的定义,直接证明f (x )是奇函数;(3)利用已知条件转化不等式.通过函数的单调性直接求解不等的解集即可. 试题解析:(1)令,得,∴定义域关于原点对称 ,得,∴∴是奇函数 ,即又由已知得:由函数是增函数,不等式转化为∴不等式的解集{x|x<0或x>5}.考点:抽象函数及其应用;函数单调性的性质;函数奇偶性的判断;其他不等式的解法. 25.(1)1.70/min km ;(2)466;(3)9 【解析】试题分析:(1)直接代入求值即可,其中要注意对数的运算;(2)还是代入求值即可;(3)代入后得两个方程,此时我们不需要解出1x 、2x ,只要求出它们的比值即可,所以由对数的运算性质,让两式相减,就可求得129x x =. 试题解析:(1)将02x =,8100x =代入函数式可得:31log 81lg 22lg 220.30 1.702v =-=-=-= 故此时候鸟飞行速度为1.70/min km . (2)将05x =,0v =代入函数式可得:310log lg 52100x =-即3log 2lg52(1lg 2)20.70 1.40100x ==⋅-=⨯= 1.43 4.66100x∴==于是466x =. 故候鸟停下休息时,它每分钟的耗氧量为466个单位.(3)设雄鸟每分钟的耗氧量为1x ,雌鸟每分钟的耗氧量为2x ,依题意可得:13023012.5log lg 2100{11.5log lg 2100x x x x =-=-两式相减可得:13211log 2x x =,于是129x x =. 故此时雄鸟每分钟的耗氧量是雌鸟每分钟的耗氧量的9倍. 考点:1.函数代入求值;2.解方程;3.对数运算.26.(),1-∞-【解析】 【分析】根据函数的奇偶性及单调性,把函数不等式转化为自变量的不等式,这个问题就转化为2210kx x R +-<在上恒成立,从二次函数的观点来分析恒小于零问题。

2024-2025学年高一上学期期中模拟考试数学试题01(人教A版2019必修第一册)含解析

2024-2025学年高一上学期期中模拟考试数学试题01(人教A版2019必修第一册)含解析

2024-2025学年高一数学上学期期中模拟卷01
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:人教A版2019必修第一册第一章~第三章。

5.难度系数:0.65。

第一部分(选择题共58分)
一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

或C或D
由图知:()040f x x >⇒-<<.故选D.
二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部
选对的得6分,部分选对的得部分分,有选错的得0分.
第二部分(非选择题共92分)三、填空题:本题共3小题,每小题5分,共15分。

四、解答题:本题共5小题,共77分。

解答应写出文字说明、证明过程或演算步骤。

15.(13分)
的取值范围为.
16.(15分)
17.(15分)
18.(17分)
19.(17分)。

【常考题】高一数学上期中模拟试卷(及答案)

【常考题】高一数学上期中模拟试卷(及答案)

【常考题】高一数学上期中模拟试卷(及答案)一、选择题1.若集合{}|1,A x x x R =≤∈,{}2|,B y y x x R ==∈,则A B =A .{}|11x x -≤≤B .{}|0x x ≥C .{}|01x x ≤≤D .∅2.若偶函数()f x 在区间(]1-∞-,上是增函数,则( ) A .3(1)(2)2f f f ⎛⎫-<-< ⎪⎝⎭B .3(1)(2)2f f f ⎛⎫-<-< ⎪⎝⎭C .3(2)(1)2f f f ⎛⎫<-<- ⎪⎝⎭D .3(2)(1)2f f f ⎛⎫<-<- ⎪⎝⎭3.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=( )A .50-B .0C .2D .504.若函数()(1)(0xxf x k a a a -=-->且1a ≠)在R 上既是奇函数,又是减函数,则()log ()a g x x k =+的图象是( )A .B .C .D .5.如图,U 为全集,M 、P 、S 是U 的三个子集,则阴影部分所表示的集合是( )A .()M P S ⋂⋂B .()M P S ⋂⋃C .()()UM P S ⋂⋂D .()()UM P S ⋂⋃6.函数()1ln f x x x ⎛⎫=-⎪⎝⎭的图象大致是( ) A . B .C .D .7.设x ∈R ,若函数f (x )为单调递增函数,且对任意实数x ,都有f (f (x )-e x )=e +1(e 是自然对数的底数),则f (ln1.5)的值等于( ) A .5.5B .4.5C .3.5D .2.58.设奇函数()f x 在[1,1]-上是增函数,且(1)1f -=-,若函数2()21f x t at ≤-+对所有的[1,1]x ∈-都成立,当[1,1]a ∈-时,则t 的取值范围是( ) A .1122t -≤≤ B .22t -≤≤C .12t ≥或12t ≤-或0t = D .2t ≥或2t ≤-或0t =9.已知函数2221,2,()2,2,x x x x f x x -⎧-++<=⎨≥⎩且存在三个不同的实数123,,x x x ,使得123()()()f x f x f x ==,则123x x x ++的取值范围为( )A .(4,5)B .[4,5)C .(4,5]D .[4,5]10.已知函数21(1)()2(1)ax x f x xx x x ⎧++>⎪=⎨⎪-+≤⎩在R 上单调递增,则实数a 的取值范围是 A .[]0,1B .(]0,1C .[]1,1-D .(]1,1-11.已知函数(),1log ,1x aa x f x x x ⎧≤=⎨>⎩(1a >且1a ≠),若()12f =,则12f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭( ) A .1-B .12-C .12D 212.设0.60.3a =,0.30.6b =,0.30.3c =,则a ,b ,c 的大小关系为( ) A .b a c <<B .a c b <<C .b c a <<D .c b a <<二、填空题13.已知函数21,1()()1a x x f x x a x ⎧-+≤=⎨->⎩,函数()2()g x f x =-,若函数()()y f x g x =-恰有4个不同的零点,则实数a 的取值范围为______. 14.方程组240x y x +=⎧⎨-=⎩的解组成的集合为_________. 15.设函数10()20xx x f x x +≤⎧=⎨>⎩,,,,则满足1()()12f x f x +->的x 的取值范围是____________.16.已知函数()()22log f x x a =+,若()31f =,则a =________.17.1232e 2(){log (1)2x x f x x x ,,-<=-≥,则f (f (2))的值为____________. 18.已知f (x )是定义在[-2,2]上的奇函数,当x ∈(0,2]时,f (x )=2x -1,函数g (x )=x 2-2x +m .如果∀x 1∈[-2,2],∃x 2∈[-2,2],使得g (x 2)=f (x 1),则实数m 的取值范围是______________.19.若4log 3a =,则22a a -+= . 20.已知函数在区间,上恒有则实数的取值范围是_____.三、解答题21.已知函数f (x )是定义域为R 的奇函数,当x <0时,()111f x x =+-. (1)求f (2)的值;(2)用定义法判断y =f (x )在区间(-∞,0)上的单调性. (3)求0()x f x >时,的解析式 22.已知满足(1)求的取值范围; (2)求函数的值域.23.已知函数()()()lg 2lg 2f x x x =++-. (1)求函数()f x 的定义域;(2)若不等式f ()x m >有解,求实数m 的取值范围.24.某企业生产A ,B 两种产品,根据市场调查与预测,A 产品的利润与投资成正比,其关系如图1,B 产品的利润与投资的算术平方根成正比,其关系如图2,(注:利润与投资单位:万元)(1)分别将A,B两种产品的利润表示为投资的函数关系,并写出它们的函数关系式;(2)该企业已筹集到10万元资金,全部投入到A,B两种产品的生产,怎样分配资金,才能使企业获得最大利润,其最大利润约为多少万元(精确到1万元).25.一种放射性元素,最初的质量为500g,按每年10﹪衰减.(Ⅰ)求t年后,这种放射性元素质量ω的表达式;(Ⅱ)由求出的函数表达式,求这种放射性元素的半衰期(剩留量为原来的一半所需要的时间).(精确到0.1;参考数据:)26.在扶贫活动中,为了尽快脱贫(无债务)致富,企业甲将经营情况良好的某种消费品专卖店以5.8万元的优惠价转让给了尚有5万元无息贷款没有偿还的小型企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活费的开支3600元后,逐步偿还转让费(不计息).在甲提供的资料中有:①这种消费品的进价为每件14元;②该店月销量Q(百件)与销售价格P(元)的关系如图所示;③每月需各种开支2000元.(1)当商品的价格为每件多少元时,月利润扣除职工最低生活费的余额最大?并求最大余额;(2)企业乙只依靠该店,最早可望在几年后脱贫?【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C 【解析】 【分析】求出集合B 后可得A B .【详解】因为集合{}|1,{|11}A x x x R x x =≤∈=-≤≤,{}2|,{|0}B y y x x R y y ==∈=≥则A B ={}|01x x ≤≤,选C【点睛】本题考查集合的交,注意集合意义的理解,如(){}|,x y f x x D =∈表示函数的定义域,而(){}|,y y f x x D =∈表示函数的值域,()(){},|,x y y f x x D =∈表示函数的图像.2.D解析:D 【解析】 【分析】函数()f x 为偶函数,则()()f x f x =-则()()22f f =-,再结合()f x 在(]1-∞-,上是增函数,即可进行判断. 【详解】函数()f x 为偶函数,则()()22f f =-.又函数()f x 在区间(]1-∞-,上是增函数. 则()()3122f f f ⎛⎫<-<- ⎪⎝⎭-,即()()3212f f f ⎛⎫<-<- ⎪⎝⎭故选:D. 【点睛】本题考查函数奇偶性和单调性的应用,考查化归与转化的思想,属于基础题.3.C解析:C 【解析】分析:先根据奇函数性质以及对称性确定函数周期,再根据周期以及对应函数值求结果. 详解:因为()f x 是定义域为(,)-∞+∞的奇函数,且(1)(1)f x f x -=+, 所以(1)(1)(3)(1)(1)4f x f x f x f x f x T +=--∴+=-+=-∴=, 因此(1)(2)(3)(50)12[(1)(2)(3)(4)](1)(2)f f f f f f f f f f ++++=+++++,因为(3)(1)(4)(2)f f f f =-=-,,所以(1)(2)(3)(4)0f f f f +++=,(2)(2)(2)(2)0f f f f =-=-∴=,从而(1)(2)(3)(50)(1)2f f f f f ++++==,选C.点睛:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.4.A解析:A 【解析】 【分析】由题意首先确定函数g (x )的解析式,然后结合函数的解析式即可确定函数的图像. 【详解】∵函数()(1)xxf x k a a -=--(a >0,a ≠1)在R 上是奇函数,∴f (0)=0,∴k =2, 经检验k =2满足题意, 又函数为减函数, 所以01a <<, 所以g (x )=log a (x +2)定义域为x >−2,且单调递减, 故选A . 【点睛】本题主要考查对数函数的图像,指数函数的性质,函数的单调性和奇偶性的应用等知识,意在考查学生的转化能力和计算求解能力.5.C解析:C 【解析】 【分析】先根据图中的阴影部分是M∩P 的子集,但不属于集合S ,属于集合S 的补集,然后用关系式表示出来即可. 【详解】图中的阴影部分是: M∩P 的子集,不属于集合S ,属于集合S 的补集,即是C U S 的子集则阴影部分所表示的集合是(M∩P )∩(∁U S). 故选C . 【点睛】本题主要考查了Venn 图表达集合的关系及运算,同时考查了识图能力,属于基础题.6.B解析:B 【解析】 【分析】通过函数在2x =处函数有意义,在2x =-处函数无意义,可排除A 、D ;通过判断当1x >时,函数的单调性可排除C ,即可得结果. 【详解】当2x =时,110x x-=>,函数有意义,可排除A ; 当2x =-时,1302x x -=-<,函数无意义,可排除D ; 又∵当1x >时,函数1y x x=-单调递增, 结合对数函数的单调性可得函数()1ln f x x x ⎛⎫=- ⎪⎝⎭单调递增,可排除C ; 故选:B. 【点睛】本题主要考查函数的图象,考查同学们对函数基础知识的把握程度以及数形结合与分类讨论的思维能力,属于中档题.7.D解析:D 【解析】 【分析】利用换元法 将函数转化为f (t )=e+1,根据函数的对应关系求出t 的值,即可求出函数f (x )的表达式,即可得到结论 【详解】 设t=f (x )-e x ,则f (x )=e x +t ,则条件等价为f (t )=e+1, 令x=t ,则f (t )=e t +t=e+1, ∵函数f (x )为单调递增函数, ∴t=1, ∴f (x )=e x +1,即f (ln5)=e ln1.5+1=1.5+1=2.5, 故选:D . 【点睛】本题主要考查函数值的计算,利用换元法求出函数的解析式是解决本题的关键.8.D解析:D 【解析】试题分析:奇函数()f x 在[]1,1-上是增函数, 且()11f -=-,在[]1,1-最大值是21,121t at ∴≤-+,当0t ≠时, 则220t at -≥成立, 又[]1,1a ∈-,令()[]22,1,1r a ta t a =-+∈-, 当0t >时,()r a 是减函数, 故令()10r ≥解得2t ≥, 当0t <时,()r a 是增函数, 故令()10r -≥,解得2t ≤-,综上知,2t ≥或2t ≤-或0t =,故选D. 考点:1、函数的奇偶性与单调性能;2、不等式恒成立问题.【方法点晴】本题主要考查函数的奇偶性与单调性能、不等式恒成立问题,属于难题.不等式恒成立问题常见方法:①分离参数()a f x ≤恒成立(min ()a f x ≤即可)或()a f x ≥恒成立(max ()a f x ≥即可);②数形结合(()y f x =图象在yg x 上方即可);③讨论最值min ()0f x ≥或max ()0f x ≤恒成立;④讨论参数.本题是利用方法①求得t 的范围.9.A解析:A 【解析】不妨设123x x x <<,当2x <时,()()212f x x =--+,此时二次函数的对称轴为1x =,最大值为2,作出函数()f x 的图象如图,由222x -=得3x =,由()()()123f x f x f x ==,,且1212x x +=,即122x x +=,12332,x x x x ∴++=+ 由图可知3323,425x x <<∴<+<, 即123x x x ++的取值范围是()4,5,故选A.10.C解析:C 【解析】x ⩽1时,f (x )=−(x −1)2+1⩽1, x >1时,()()21,10a af x x f x x x=++'=-在(1,+∞)恒成立, 故a ⩽x 2在(1,+∞)恒成立, 故a ⩽1,而1+a +1⩾1,即a ⩾−1, 综上,a ∈[−1,1], 本题选择C 选项.点睛:利用单调性求参数的一般方法:一是求出函数的单调区间,然后使所给区间是这个单调区间的子区间,建立关于参数的不等式组即可求得参数范围;二是直接利用函数单调性的定义:作差、变形,由f (x 1)-f (x 2)的符号确定参数的范围,另外也可分离参数转化为不等式恒成立问题.11.C解析:C 【解析】 【分析】由()12f =,求得2a =,得到函数的解析式,进而可求解1(())2f f 的值,得到答案. 【详解】由题意,函数(),1(1log ,1x a a x f x a x x ⎧≤=>⎨>⎩且1)a ≠,()12f =, 所以()12f a ==,所以()22,1(1log ,1x x f x a x x ⎧≤=>⎨>⎩且1)a ≠,所以121()22f ==所以211(())log 22f f f ===,故选C . 【点睛】本题主要考查了函数解析式的求解,以及函数值的运算问题,其中解答中根据题意准确求得函数的解析式,合理利用解析式求解是解答的关键,着重考查了运算与求解能力,属于基础题.12.B解析:B 【解析】 【分析】根据指数函数的单调性得出0.60.30.30.3<,而根据幂函数的单调性得出0.30.30.30.6<,从而得出a ,b ,c 的大小关系. 【详解】 解:0.3x y =在定义域上单调递减,且0.360.<,0.60.30.30.3∴<,又0.3y x∴=在定义域上单调递增,且0.360.<,0.30.30.30.6∴<, 0.60.30.30.30.30.6∴<<,a cb ∴<<故选:B . 【点睛】考查指数函数和幂函数的单调性,以及增函数和减函数的定义.二、填空题13.【解析】【分析】由函数把函数恰有个不同的零点转化为恰有4个实数根列出相应的条件即可求解【详解】由题意函数且函数恰有个不同的零点即恰有4个实数根当时由即解得或所以解得;当时由解得或所以解得综上可得:实 解析:(]2,3【解析】 【分析】由函数()2()g x f x =-,把函数()()y f x g x =-恰有4个不同的零点,转化为()1f x =恰有4个实数根,列出相应的条件,即可求解. 【详解】由题意,函数()2()g x f x =-,且函数()()y f x g x =-恰有4个不同的零点, 即()1f x =恰有4个实数根,当1x ≤时,由11a x -+=,即110x a +=-≥,解得2=-x a 或x a =-,所以2112a a a a -≤⎧⎪-≤⎨⎪-≠-⎩,解得13a ;当1x >时,由2()1x a -=,解得1x a =-或1x a =+,所以1111a a ->⎧⎨+>⎩,解得2a >,综上可得:实数a 的取值范围为(]2,3. 【点睛】本题主要考查了函数与方程的应用,其中解答中利用条件转化为()1f x =,绝对值的定义,以及二次函数的性质求解是解答的关键,着重考查了数形结合思想,以及推理与计算能力,属于中档试题.14.【解析】【分析】解方程组求出结果即可得答案【详解】由解得或代入解得或所以方程组的解组成的集合为故答案为【点睛】该题考查的是有关方程组解集的问题需要注意的问题是解是二维的再者就是需要写成集合的形式属于 解析:()(){}2,2,2,2--【解析】 【分析】 解方程组240x y x +=⎧⎨-=⎩,求出结果即可得答案. 【详解】由240x -=,解得2x =或2x =-,代入0x y +=,解得22x y =⎧⎨=-⎩或22x y =-⎧⎨=⎩, 所以方程组2040x y x +=⎧⎨-=⎩的解组成的集合为{}(2,2),(2,2)--, 故答案为{}(2,2),(2,2)--.【点睛】该题考查的是有关方程组解集的问题,需要注意的问题是解是二维的,再者就是需要写成集合的形式,属于简单题目.15.【解析】由题意得:当时恒成立即;当时恒成立即;当时即综上x 的取值范围是【名师点睛】分段函数的考查方向注重对应性即必须明确不同的自变量所对应的函数解析式是什么然后代入该段的解析式求值解决此类问题时要注 解析:1(,)4-+∞【解析】由题意得: 当12x >时,12221x x -+>恒成立,即12x >;当102x <≤时,12112x x +-+> 恒成立,即102x <≤;当0x ≤时,1111124x x x ++-+>⇒>-,即014x -<≤.综上,x 的取值范围是1(,)4-+∞. 【名师点睛】分段函数的考查方向注重对应性,即必须明确不同的自变量所对应的函数解析式是什么,然后代入该段的解析式求值.解决此类问题时,要注意区间端点是否取到及其所对应的函数值,尤其是分段函数结合点处的函数值.16.-7【解析】分析:首先利用题的条件将其代入解析式得到从而得到从而求得得到答案详解:根据题意有可得所以故答案是点睛:该题考查的是有关已知某个自变量对应函数值的大小来确定有关参数值的问题在求解的过程中需 解析:-7【解析】分析:首先利用题的条件()31f =,将其代入解析式,得到()()2391f log a =+=,从而得到92a +=,从而求得7a =-,得到答案.详解:根据题意有()()2391f log a =+=,可得92a +=,所以7a =-,故答案是7-. 点睛:该题考查的是有关已知某个自变量对应函数值的大小,来确定有关参数值的问题,在求解的过程中,需要将自变量代入函数解析式,求解即可得结果,属于基础题目.17.2【解析】【分析】先求f (2)再根据f (2)值所在区间求f (f (2))【详解】由题意f (2)=log3(22–1)=1故f (f (2))=f (1)=2×e1–1=2故答案为:2【点睛】本题考查分段函数解析:2【解析】【分析】先求f (2),再根据f (2)值所在区间求f (f (2)).【详解】由题意,f (2)=log 3(22–1)=1,故f (f (2))=f (1)=2×e 1–1=2,故答案为:2. 【点睛】本题考查分段函数求值,考查对应性以及基本求解能力.18.-5-2【解析】分析:求出函数的值域根据条件确定两个函数的最值之间的关系即可得到结论详解:由题意得:在-22上f(x)的值域A 为g(x)的值域B 的子集易得A =-33B =m -18+m 从而解得-5≤m≤解析:[-5,-2].【解析】分析:求出函数()f x 的值域,根据条件,确定两个函数的最值之间的关系即可得到结论. 详解:由题意得:在[-2,2]上f (x )的值域A 为g (x )的值域B 的子集.易得A =[-3,3],B =[m -1,8+m ],从而解得-5≤m ≤-2.点睛:本题主要考查函数奇偶性的应用,以及函数最值之间的关系,综合性较强.19.【解析】【分析】【详解】∵∴∴考点:对数的计算 解析:433 【解析】【分析】【详解】∵4log 3a =,∴4323a a =⇒=,∴24223333a -+=+=. 考点:对数的计算20.(131)【解析】【分析】根据对数函数的图象和性质可得函数f (x )=loga (2x ﹣a )在区间1223上恒有f (x )>0即0<a<10<2x-a<1或a>12x-a>1分别解不等式组可得答案【详解】解析:【解析】【分析】根据对数函数的图象和性质可得,函数f (x )=log a (2x ﹣a )在区间[]上恒有f (x )>0,即,或,分别解不等式组,可得答案. 【详解】若函数f (x )=log a (2x ﹣a )在区间[]上恒有f (x )>0, 则,或 当时,解得<a <1,当时,不等式无解. 综上实数的取值范围是(,1) 故答案为(,1).【点睛】本题考查的知识点是复合函数的单调性,及不等式的解法,其中根据对数函数的图象和性质构造不等式组是解答的关键,属于中档题.三、解答题21.(1)23-;(2)见解析;(3)()1x f x x -=+ 【解析】【分析】(1)利用函数的奇偶性求解.(2)函数单调性定义,通过化解判断函数值差的正负;(3)函数为R 奇函数,x 〈0的解析式已知,利用奇函数图像关于原点对称,即可求出x 〉0的解析式.【详解】(1)由函数f (x )为奇函数,知f (2)=-f (-2)=23-· (2)在(-∞,0)上任取x 1,x 2,且x 1<x 2, 则()()1212121111111111f x f x x x x x ⎛⎫⎛⎫-=+-+=- ⎪ ⎪----⎝⎭⎝⎭ ()()211211x x x x -=-- 由x 1-1<0,x 2-1<0,x 2-x 1>0,知f (x 1)-f (x 2)>0,即f (x 1)>f (x 2).由定义可知,函数y =f (x )在区间(-∞,0]上单调递减.·(3)当x >0时,-x <0,()111f x x -=-+ 由函数f (x )为奇函数知f (x )=-f (-x ),()1111x f x x x -∴=-+=++ 【点睛】 本题考查了函数奇偶性的应用和单调性的定义,利用奇偶性求函数值和解析式主要应用奇偶性定义和图像的对称性;利用定义法证明函数单调性关键是作差后式子的化解,因为需要判断结果的正负,所以通常需要将式子化成乘积的形式.22.(1) (2)【解析】 试题分析(1)先将不等式化成底相同的指数,再根据指数函数单调性解不等式(2)令,则函数转化为关于 的二次函数,再根据对称轴与定义区间位置关系确定最值,得到值域.试题解析:解:(1) 因为由于指数函数在上单调递增(2) 由(1)得令,则,其中 因为函数开口向上,且对称轴为 函数在上单调递增 的最大值为,最小值为 函数的值域为. 23.(1)(2,2)-;(2)lg 4m <. 【解析】试题分析:(1)由对数有意义,得20{20x x +>->可求定义域;(2)不等式()f x m >有解⇔max ()m f x <,由2044x <-≤,可得()f x 的最大值为lg 4,所以lg 4m <.试题解析:(1)x 须满足20{20x x +>->,∴22x -<<, ∴所求函数的定义域为(2,2)-.(2)∵不等式()f x m >有解,∴max ()m f x <()()()lg 2lg 2f x x x =++-=2lg(4)x -令24t x =-,由于22x -<<,∴04t <≤∴()f x 的最大值为lg 4.∴实数m 的取值范围为lg 4m <.考点:对数性质、对数函数性、不等式有解问题.24.(1)A 为()()104f x x x =≥,B 为())504g x x x =≥;(2)A 产品投入3.75万元,B 产品投入6.25万元,最大利润为4万元【解析】【分析】(1)根据题意给出的函数模型,设()1f x k x =;()g x k =代入图中数据求得12,k k 既得,注意自变量0x ≥;(2)设A 产品投入x 万元,则B 产品投入()10x -万元,设企业利润为y 万元.,列出利润函数为()()104x y f x g x =+-=,用换元法,设t =函数可求得利润的最大值.【详解】解:(1)设投资为x 万元,A 产品的利润为()f x 万元,B 产品的利润为()g x 万元由题设知()1f x k x =;()g x k =由图1知()114f =,114k = 由图2知()542g =,254k =则()()104f x x x =≥,())0g x x =≥. (2)设A 产品投入x 万元,则B 产品投入()10x -万元,设企业利润为y 万元. ()()104x y f x g x =+-=,010x ∴≤≤t =,则0t ≤≤则(2210515650444216t t y t t -⎛⎫=+=--+≤≤ ⎪⎝⎭ 当52t =时,max 65416y =≈, 此时2510 3.754x =-= 所以当A 产品投入3.75万元,B 产品投入6.25万元,企业获得最大利润为4万元.【点睛】本题考查函数的应用,在已知函数模型时直接设出函数表达式,代入已知条件可得函数解析式.25.(Ⅰ)ω=500×0.9t . (Ⅱ)6.6年【解析】【分析】【详解】试题分析:(Ⅰ)最初的质量为500g ,经过1年,ω=500(1-10﹪)=500×10.9,经过2年,ω=500×20.9,……,由此推出,t 年后,ω=500×0.9t .(Ⅱ)解方程500×0.9t =250.0.9t =0.5,lg 0.9lg 0.5t =,lg 0.5 6.6lg 0.9t =≈, 所以,这种放射性元素的半衰期约为6.6年.考点:指数函数应用题及只属于对数的互化点评:本题第一问由经过一年,二年……的剩余质量归纳出t 年后的剩余含量,第二问涉及到指数式与对数式的转化x a b =转化为log a x b =26.(1)当P =19.5元,最大余额为450元;(2)20年后【解析】【分析】(1)根据条件关系建立函数关系,根据二次函数的图象和性质即可求出函数的最值; (2)根据函数的表达式,解不等式即可得到结论.【详解】设该店月利润余额为L ,则由题设得L =Q (P ﹣14)×100﹣3600﹣2000,① 由销量图,易得Q =250,14P 20340,20P 262p p -+⎧⎪⎨-+<⎪⎩ 代入①式得L =(250)(14)1005600,14P 20340(14)100560,20P 262P P P P -+-⨯-⎧⎪⎨⎛⎫-+-⨯-< ⎪⎪⎝⎭⎩ (1)当14≤P ≤20时,2(250)(14)1005600200780075600L P P p p =-+-⨯-=-+-,当P =19.5元,L max =450元,当20<P ≤26时,23340(14)100560615656022L P P P p ⎛⎫=-+-⨯-=-+- ⎪⎝⎭,当P =613元时,L max =12503元. 综上:月利润余额最大,为450元,(2)设可在n 年内脱贫,依题意有12n ×450﹣50000﹣58000≥0,解得n ≥20,即最早可望在20年后脱贫.【点睛】本题主要考查实际函数的应用问题,根据条件建立函数关系,利用二次函数的图象和性质是即可得到结论,属于中档题.。

高一数学上册期中考试题(带答案)

高一数学上册期中考试题(带答案)

高一数学上册期中考试题(带答案)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲致辞、规章制度、策划方案、合同协议、条据文书、心得体会、职业规划、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as speeches, rules and regulations, planning plans, contract agreements, documentary evidence, insights, career planning, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!高一数学上册期中考试题(带答案)关于高一数学上册期中考试题(带答案)当我们进入到高一阶段,大家的学习压力都是呈直线上升的,因此平时的积累也显得尤为重要,下面本店铺为大家带来高一数学上册期中考试题(带答案),欢迎大家参考阅读,希望能够帮助到大家!高一数学上册期中考试题(带答案)一、选择题(本大题共12小题,每小题5分,共60分.)1.设全集U=R,集合A={X|X≥1},B={X|0≤X A.{X|02.如果集合A={X|X=2kπ+π,k∈Z},B={X|X=4kπ+π,k∈Z},则( )A.A BB.B AC.A = BD.A∩B=3.设A={X∈Z||X|≤2},B={y|y=X2+1.X∈A},则B的元素个数是( )A.5B.4C.3D.24.若log2 a1.则( ).A.a>1.b>0B.a>1.b5.已知集合A=B=R,X∈A,y∈B,f:X→y=aX+b,若4和10的原象分别对应是6和9,则19在f作用下的象为( )A.18B.30C.272D.286.已知函数的周期为 2.当,那么函数的图像与函数的图像的交点共有( )A.10个B.9个C.8个D.1个7.已知f(X)是一次函数,且2f(2)-3f((1)=5.2f(0)-f(-(1)=1.则f(X)的解析式为( )A.3X-2B.3X+2C.2X+3D.2X-38.下列四组函数中,表示同一函数的是( ).A.f(X)=|X|,g(X)=B.f(X)=lg X2.g(X)=2lg XC.f(X)= ,g(X)=X+1D.f(X)= •,g(X)=9.已知函数f(X)= ,则f(-10)的值是( ).A.-2B.-1C.0D.110.设f(X)为定义在R上的奇函数.当X≥0时,f(X)=2X+2X+b(b 为常数),则f(-(1)等于( ).A.-3B.-1C.1D.311.已知2lg(X-2y)=lgX+lgy,则Xy 的值为( )A.1B.4C.1或4D.14 或412.方程2X=2-X的根所在区间是( ).A.(-1.0)B.(2.(3)C.(1.(2)D.(0,(1)三岔中学20XX-20XX学年度第一学期期中考试题高一数学答题卡一、选择题(12_5=60分)题号 1 2 3 4 5 6 7 8 9 10 11 12答案二、填空题(每小题5分,共20分.)13.求满足 > 的X的取值集合是14.设,则的大小关系是15..若定义在区间(-1.0)内的函数f(X)=log2a(X+(1)满足f(X)>0,则a的取值范围是__ _ ___.16.已知函数内有零点,内有零点,若m为整数,则m的值为三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(12分)计算下列各式的值:((1)18.(12分)集合。

高一上学期期中考试数学试卷含答案(共3套,新课标版)

高一上学期期中考试数学试卷含答案(共3套,新课标版)

高一级第一学期期中调研考试数学考生注意:1.本试卷分选择题和非选择题两部分。

满分150分,考试时间120分钟。

2.考生作答时,请将答案答在答题卡上。

选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题....区域书写的答案无效.........,在试题卷....、草稿纸上作答无效........。

3.本卷命题范围:新人教版必修第一册第一章~第四章。

一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若集合{123}A =,,,{}223B x x x =->,则A B =A .{12},B .∅C .{23},D .{1}2.命题“R x ∃∈,||0x ”的否定是A .R x ∀∈,||0x ≥B .R x ∃∈,||0x <C .R x ∀∈,||0x <D .R x ∃∉,||0x <3.若a b >,则下列不等式中成立的是 A .11<a bB .33a b >C .22a b >D .a b >4.函数y =的定义域为 A .(12)-,B .(02),C .[12)-,D .(12]-,5.某企业一个月生产某种商品x 万件时的生产成本为2()410C x x x =++(万元)。

一万件售价是30万元,若商品能全部卖出,则该企业一个月生产该商品的最大利润为 A .139万元B .149万元C .159万元D .169万元6.已知集合2{Z |Z}1A x x =∈∈-,则集合A 的真子集的个数为 A .13B .14C .15D .167.若0.33a =,3log 0.3b =,13log 3c =,则a ,b ,c 的大小关系为 A .b c a <<B .c a b <<C .a b c <<D .b a c <<8.若函数()f x 是奇函数,且在定义域R 上是减函数,(2)3f -=,则满足3(3)3f x -<-<的实数x 的取值范围是 A .(15),B .(24),C .(36),D .(25),二、选择题:本题共4小题,每小题5分,共20分。

(必考题)数学高一上期中经典题(含答案解析)

(必考题)数学高一上期中经典题(含答案解析)

一、选择题1.(0分)[ID :11816]f (x)=-x 2+4x +a ,x∈[0,1],若f (x)有最小值-2,则f (x)的最大值( ) A .-1B .0C .1D .22.(0分)[ID :11801]设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-≤≤⋂=Z ,则A .{}01,B .{}101-,,C .{}012,,D .{}1012-,,, 3.(0分)[ID :11798]在ABC ∆中,内角A 、B 、C 所对应的边分别为a 、b 、c ,则“cos cos a A b B =”是“ABC ∆是以A 、B 为底角的等腰三角形”的( ). A .充分非必要条件 B .必要非充分条件 C .充要条件D .既非充分也非必要条件4.(0分)[ID :11780]设函数()2010x x f x x -⎧≤=⎨>⎩,,,则满足()()12f x f x +<的x 的取值范围是( )A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞,5.(0分)[ID :11758]已知定义域为R 的函数()f x 在[1,)+∞单调递增,且(1)f x +为偶函数,若(3)1f =,则不等式(21)1f x +<的解集为( ) A .(1,1)- B .(1,)-+∞ C .(,1)-∞D .(,1)(1,)-∞-+∞6.(0分)[ID :11755]函数()f x 在(,)-∞+∞单调递增,且为奇函数,若(1)1f =,则满足1(2)1f x -≤-≤的x 的取值范围是( ).A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]7.(0分)[ID :11749]设x 、y 、z 为正数,且235x y z ==,则 A .2x <3y <5z B .5z <2x <3y C .3y <5z <2xD .3y <2x <5z8.(0分)[ID :11796]设x ∈R ,若函数f (x )为单调递增函数,且对任意实数x ,都有f (f (x )-e x )=e +1(e 是自然对数的底数),则f (ln1.5)的值等于( ) A .5.5B .4.5C .3.5D .2.59.(0分)[ID :11791]已知()201911,02log ,0x x f x x x ⎧+≤⎪=⎨⎪>⎩,若存在三个不同实数a ,b ,c 使得()()()f a f b f c ==,则abc 的取值范围是( ) A .(0,1)B .[-2,0)C .(]2,0-D .(0,1)10.(0分)[ID :11786]若01a b <<<,则b a , a b , log b a ,1log ab 的大小关系为( )A .1log log b a b aa b a b >>> B .1log log a bb ab a b a >>> C .1log log b a b aa ab b >>> D .1log log a b b aa b a b >>> 11.(0分)[ID :11785]定义在R 上的奇函数()f x 满足()()2f x f x +=-,且当[]0,1x ∈时,()2cos x f x x =-,则下列结论正确的是( )A .()20202019201832f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭B .()20202019201832f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭C .()20192020201823f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭D .()20192020201823f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭12.(0分)[ID :11746]若a >b >0,0<c <1,则 A .log a c <log b cB .log c a <log c bC .a c <b cD .c a >c b13.(0分)[ID :11737]已知奇函数()f x 在R 上是增函数,若21log 5a f ⎛⎫=- ⎪⎝⎭,()2log 4.1b f =,()0.82c f =,则,,a b c 的大小关系为( )A .a b c <<B .b a c <<C .c b a <<D .c a b <<14.(0分)[ID :11736]函数()245f x x x =-+在区间[]0,m 上的最大值为5,最小值为1,则实数m 的取值范围是( )A .[)2,+∞B .[]2,4C .[]0,4D .(]2,415.(0分)[ID :11760]设函数3()f x x x =+ ,. 若当02πθ<<时,不等式(sin )(1)0f m f m θ+-> 恒成立,则实数m 的取值范围是( )A .1(,1]2B .1(,1)2C .[1,)+∞D .(,1]-∞二、填空题16.(0分)[ID :11921]函数的定义域是 .17.(0分)[ID :11919]已知函数241,0()3,0x x x x f x x ⎧--+≤=⎨>⎩,则函数(())3f f x =的零点的个数是________.18.(0分)[ID :11915]幂函数y=x α,当α取不同的正数时,在区间[0,1]上它们的图像是一族美丽的曲线(如图).设点A (1,0),B (0,1),连接AB ,线段AB 恰好被其中的两个幂函数y=x α,y=x β的图像三等分,即有BM=MN=NA ,那么,αβ等于_____.19.(0分)[ID :11903]若函数()y f x =的定义域是[0,2],则函数0.5()log (43)g x x =-的定义域是__________.20.(0分)[ID :11891]某在校大学生提前创业,想开一家服装专卖店,经过预算,店面装修费为10000元,每天需要房租水电等费用100元,受营销方法、经营信誉度等因素的影响,专卖店销售总收入P 与店面经营天数x 的关系是P(x)=21300,0300245000,300x x x x ⎧-≤<⎪⎨⎪≥⎩则总利润最大时店面经营天数是___.21.(0分)[ID :11887]已知函数()2()lg 2f x x ax =-+在区间(2,)+∞上单调递增,则实数a 的取值范围是______.22.(0分)[ID :11879]已知2a =5b =m ,且11a b+=1,则m =____. 23.(0分)[ID :11836]已知函数(12)(1)()4(1)x a x f x ax x⎧-<⎪=⎨+≥⎪⎩,且对任意的12,x x R ∈,12x x ≠时,都有()()12120f x f x x x ->-,则a 的取值范围是________24.(0分)[ID :11830]已知函数42()(0)f x x ax bx c c =+++<,若函数是偶函数,且4((0))f f c c =+,则函数()f x 的零点共有________个.25.(0分)[ID :11916]函数2()log 1f x x =-________.三、解答题26.(0分)[ID :12028]已知函数f (x )是定义域为R 的奇函数,当x <0时,()111f x x =+-. (1)求f (2)的值;(2)用定义法判断y =f (x )在区间(-∞,0)上的单调性. (3)求0()x f x >时,的解析式27.(0分)[ID :12021]已知2256x ≤且21log 2x ≥,求函数22()log 22x xf x =⋅的最大值和最小值.28.(0分)[ID :11991]某乡镇响应“绿水青山就是金山银山”的号召,因地制宜的将该镇打造成“生态水果特色小镇”.经调研发现:某珍稀水果树的单株产量W (单位:千克)与施用肥料x (单位:千克)满足如下关系:()253,02()50,251x x W x x x x⎧+≤≤⎪=⎨<≤⎪+⎩,肥料成本投入为10x 元,其它成本投入(如培育管理、施肥等人工费)20x 元.已知这种水果的市场售价大约为15元/千克,且销路畅通供不应求.记该水果树的单株利润为()f x (单位:元).(Ⅰ)求()f x 的函数关系式;(Ⅱ)当施用肥料为多少千克时,该水果树的单株利润最大?最大利润是多少? 29.(0分)[ID :11990]某单位建造一间背面靠墙的小房,地面面积为212m ,房屋正面每平方米的造价为1200元,房屋侧面每平方米的造价为800元,屋顶的造价为5800元.如果墙高为3m ,且不计房尾背面和地面的费用,问怎样设计房屋能使总造价最低?最低造价是多少?30.(0分)[ID :11976]一个工厂生产某种产品每年需要固定投资100万元,此外每生产1件该产品还需要增加投资1万元,年产量为x (x N *∈)件.当20x ≤时,年销售总收人为(233x x -)万元;当20x >时,年销售总收人为260万元.记该工厂生产并销售这种产品所得的年利润为y 万元.(年利润=年销售总收入一年总投资) (1)求y (万元)与x (件)的函数关系式;(2)当该工厂的年产量为多少件时,所得年利润最大?最大年利润是多少?【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题 1.C 2.B 3.B 4.D 5.A 6.D7.D8.D9.C10.D11.C12.B13.C14.B15.D二、填空题16.【解析】试题分析:要使函数有意义需满足函数定义域为考点:函数定义域17.4【解析】【分析】根据分段函数的解析式当时令则解得当时做出函数的图像即可求解【详解】当时令则解得当时令得作出函数的图像由图像可知与有两个交点与有一个交点则的零点的个数为4故答案为:4【点睛】本题考查18.【解析】【分析】由条件得MN则结合对数的运算法则可得αβ=1【详解】由条件得MN 可得即α=loβ=lo所以αβ=lo·lo=1【点睛】本题主要考查幂函数的性质对数的运算法则及其应用等知识意在考查学生19.【解析】首先要使有意义则其次∴解得综上点睛:对于抽象函数定义域的求解(1)若已知函数f(x)的定义域为ab则复合函数f(g(x))的定义域由不等式a≤g(x)≤b求出;(2)若已知函数f(g (x))20.200【解析】【分析】根据题意列出总利润L(x)的分段函数然后在各个部分算出最大值比较大小就能确定函数的最大值进而可求出总利润最大时对应的店面经营天数【详解】设总利润为L(x)则L(x)=则L(x)21.【解析】【分析】根据复合函数单调性同增异减以及二次函数对称轴列不等式组解不等式组求得实数的取值范围【详解】要使在上递增根据复合函数单调性需二次函数对称轴在的左边并且在时二次函数的函数值为非负数即解得22.10【解析】因为2a=5b=m所以a=log2mb=log5m由换底公式可得=logm2+logm5=logm10=1则m=10点睛:(1)在对数运算中先利用幂的运算把底数或真数进行变形化成分数指数23.【解析】【分析】根据判断出函数在上为增函数由此列不等式组解不等式组求得的取值范围【详解】由于对任意的时都有所以函数在上为增函数所以解得故答案为:【点睛】本小题主要考查根据函数的单调性求参数的取值范围24.2【解析】因为是偶函数则解得又所以故令所以故有2个零点点睛:本题涉及函数零点方程图像等概念和知识综合性较强属于中档题一般讨论函数零点个数问题都要转化为方程根的个数问题或两个函数图像交点的个数问题本题25.2+∞)【解析】分析:根据偶次根式下被开方数非负列不等式解对数不等式得函数定义域详解:要使函数有意义则解得即函数的定义域为点睛:求给定函数的定义域往往需转化为解不等式(组)的问题三、解答题 26. 27. 28. 29. 30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、选择题 1.C 解析:C 【解析】因为对称轴2[0,1]x =∉,所以min max ()(0)2()(1)31f x f a f x f a ===-∴==+= 选C.2.B解析:B 【解析】试题分析:依题意{}{}2,1,0,1,1,0,1,2,3,M N =--=-∴{}1,0,1M N ⋂=-. 考点:集合的运算3.B解析:B 【解析】 【分析】化简cos cos a A b B =得到A B =或2A B π+=,再判断充分必要性.【详解】cos cos a A b B =,根据正弦定理得到:sin cos sin cos sin 2sin 2A A B B A B =∴=故22A B A B =∴=或222A B A B ππ=-∴+=,ABC ∆为等腰或者直角三角形.所以“cos cos a A b B =”是“ABC ∆是以A 、B 为底角的等腰三角形”的必要非充分条件 故选B 【点睛】本题考查了必要非充分条件,化简得到A B =或2A B π+=是解题的关键,漏解是容易发生的错误.4.D解析:D 【解析】分析:首先根据题中所给的函数解析式,将函数图像画出来,从图中可以发现若有()()12f x f x +<成立,一定会有2021x x x <⎧⎨<+⎩,从而求得结果.详解:将函数()f x 的图像画出来,观察图像可知会有2021x x x <⎧⎨<+⎩,解得0x <,所以满足()()12f x f x +<的x 的取值范围是()0-∞,,故选D .点睛:该题考查的是有关通过函数值的大小来推断自变量的大小关系,从而求得相关的参数的值的问题,在求解的过程中,需要利用函数解析式画出函数图像,从而得到要出现函数值的大小,绝对不是常函数,从而确定出自变量的所处的位置,结合函数值的大小,确定出自变量的大小,从而得到其等价的不等式组,从而求得结果.5.A解析:A 【解析】 【分析】由函数y =f (x +1)是定义域为R 的偶函数,可知f (x )的对称轴x =1,再利用函数的单调性,即可求出不等式的解集. 【详解】由函数y =f (x +1)是定义域为R 的偶函数,可知f (x )的对称轴x =1,且在[1,+∞)上单调递增,所以不等式f (2x+1)<1=f (3)⇔ |2x+1﹣1|)<|3﹣1|, 即|2x |<2⇔|x |<1,解得-11x << 所以所求不等式的解集为:()1,1-. 故选A . 【点睛】本题考查了函数的平移及函数的奇偶性与单调性的应用,考查了含绝对值的不等式的求解,属于综合题.6.D解析:D 【解析】 【分析】 【详解】()f x 是奇函数,故()()111f f -=-=- ;又()f x 是增函数,()121f x -≤-≤,即()(1)2(1)f f x f -≤-≤ 则有121x -≤-≤ ,解得13x ≤≤ ,故选D.【点睛】解本题的关键是利用转化化归思想,结合奇函数的性质将问题转化为()(1)2f f x -≤-(1)f ≤,再利用单调性继续转化为121x -≤-≤,从而求得正解.7.D解析:D 【解析】令235(1)x y zk k ===>,则2log x k =,3log =y k ,5log =z k∴22lg lg 3lg 913lg 23lg lg8x k y k =⋅=>,则23x y >, 22lg lg5lg 2515lg 25lg lg32x k z k =⋅=<,则25x z <,故选D. 点睛:对于连等问题,常规的方法是令该连等为同一个常数,再用这个常数表示出对应的,,x y z ,通过作差或作商进行比较大小.对数运算要记住对数运算中常见的运算法则,尤其是换底公式以及0与1的对数表示.8.D解析:D 【解析】 【分析】利用换元法 将函数转化为f (t )=e+1,根据函数的对应关系求出t 的值,即可求出函数f (x )的表达式,即可得到结论 【详解】 设t=f (x )-e x ,则f (x )=e x +t ,则条件等价为f (t )=e+1, 令x=t ,则f (t )=e t +t=e+1, ∵函数f (x )为单调递增函数, ∴t=1, ∴f (x )=e x +1,即f (ln5)=e ln1.5+1=1.5+1=2.5, 故选:D . 【点睛】本题主要考查函数值的计算,利用换元法求出函数的解析式是解决本题的关键.9.C解析:C 【解析】 【分析】画出函数图像,根据图像得到20a -<≤,1bc =,得到答案. 【详解】()201911,02log ,0x x f x x x ⎧+≤⎪=⎨⎪>⎩,画出函数图像,如图所示:根据图像知:20a -<≤,20192019log log b c -=,故1bc =,故20abc -<≤. 故选:C .【点睛】本题考查了分段函数的零点问题,画出函数图像是解题的关键.10.D解析:D 【解析】因为01a b <<<,所以10a a b b a a >>>>, 因为log log 1b b a b >>,01a <<,所以11a>,1log 0a b <.综上1log log a bb aa b a b >>>;故选D. 11.C解析:C 【解析】 【分析】根据f (x )是奇函数,以及f (x+2)=f (-x )即可得出f (x+4)=f (x ),即得出f (x )的周期为4,从而可得出f (2018)=f (0),2019122f f ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭,20207312f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭然后可根据f (x )在[0,1]上的解析式可判断f (x )在[0,1]上单调递增,从而可得出结果. 【详解】∵f(x )是奇函数;∴f(x+2)=f (-x )=-f (x );∴f(x+4)=-f (x+2)=f (x ); ∴f(x )的周期为4;∴f(2018)=f (2+4×504)=f (2)=f (0),2019122f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,20207 312f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭∵x∈[0,1]时,f (x )=2x -cosx 单调递增;∴f(0)<12f ⎛⎫⎪⎝⎭ <712f ⎛⎫ ⎪⎝⎭ ∴()20192020201823f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,故选C. 【点睛】本题考查奇函数,周期函数的定义,指数函数和余弦函数的单调性,以及增函数的定义,属于中档题.12.B解析:B 【解析】试题分析:对于选项A ,a b 1gc 1gclog c ,log c lg a lg b==,01c <<,10gc ∴<,而0a b >>,所以lg lg a b >,但不能确定lg lg a b 、的正负,所以它们的大小不能确定;对于选项B ,c lg lg log ,log lg lg c a b a b c c ==,lg lg a b >,两边同乘以一个负数1lg c改变不等号方向,所以选项B 正确;对于选项C ,利用cy x =在第一象限内是增函数即可得到c c a b >,所以C 错误;对于选项D ,利用xy c =在R 上为减函数易得a b c c <,所以D 错误.所以本题选B.【考点】指数函数与对数函数的性质【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较.13.C解析:C 【解析】由题意:()221log log 55a f f ⎛⎫=-= ⎪⎝⎭, 且:0.822log 5log 4.12,122>><<,据此:0.822log 5log 4.12>>,结合函数的单调性有:()()()0.822log 5log 4.12f f f >>,即,a b c c b a >><<. 本题选择C 选项.【考点】 指数、对数、函数的单调性【名师点睛】比较大小是高考常见题,指数式、对数式的比较大小要结合指数函数、对数函数,借助指数函数和对数函数的图象,利用函数的单调性进行比较大小,特别是灵活利用函数的奇偶性和单调性数形结合不仅能比较大小,还可以解不等式.14.B解析:B 【解析】 【分析】由函数的解析式可得函数f (x )=x 2﹣4x +5=(x ﹣2)2+1的对称轴为x =2,此时,函数取得最小值为1,当x =0或x =4时,函数值等于5,结合题意求得m 的范围. 【详解】∵函数f (x )=x 2﹣4x +5=(x ﹣2)2+1的对称轴为x =2,此时,函数取得最小值为1,当x =0或x =4时,函数值等于5.且f (x )=x 2﹣4x +5在区间[0,m ]上的最大值为5,最小值为1, ∴实数m 的取值范围是[2,4], 故选:B . 【点睛】本题主要考查二次函数的性质应用,利用函数图像解题是关键,属于中档题.15.D解析:D 【解析】 【分析】 【详解】易得()f x 是奇函数,2()310()f x x f x '=+>⇒在R 上是增函数,不等式(sin )(1)0f m f m θ+-> 恒成立. 可得11(sin )(1)sin 1,0sin 111sin 1sin f m f m m m m m θθθθθ>-⇒>-⇒<<<⇒⇒≤--, 故选D.二、填空题16.【解析】试题分析:要使函数有意义需满足函数定义域为考点:函数定义域解析:[]3,1-【解析】试题分析:要使函数有意义,需满足2232023031x x x x x --≥∴+-≤∴-≤≤,函数定义域为[]3,1- 考点:函数定义域17.4【解析】【分析】根据分段函数的解析式当时令则解得当时做出函数的图像即可求解【详解】当时令则解得当时令得作出函数的图像由图像可知与有两个交点与有一个交点则的零点的个数为4故答案为:4【点睛】本题考查解析:4 【解析】 【分析】根据分段函数的解析式当0x ≤时,令()3f x =,则2413x x --+=,解得2x =-±0x >时,()31xf x =>,1x =,做出函数()f x ,1,22y y y ==-=--.【详解】241,0()3,0x x x x f x x ⎧--+≤=⎨>⎩,∴当0x ≤时,()()2241255f x x x x =--+=-++≤,令()3f x =,则2413x x --+=, 解得22x =-±,1220,4223,-<-+<-<--<-当0x >时,()31xf x =>,令()3f x =得1x =,作出函数()f x ,1,22,22y y y ==-=--由图像可知,()f x 与1y =有两个交点,与22y =-+ 则(())3f f x =的零点的个数为4. 故答案为:4 【点睛】本题考查了分段函数的零点个数,考查了数形结合的思想,属于基础题.18.【解析】【分析】由条件得MN 则结合对数的运算法则可得αβ=1【详解】由条件得MN 可得即α=loβ=lo 所以αβ=lo·lo=1【点睛】本题主要考查幂函数的性质对数的运算法则及其应用等知识意在考查学生解析:【解析】 【分析】由条件,得M 12,33⎛⎫ ⎪⎝⎭,N 21,33⎛⎫ ⎪⎝⎭,则1221,3333αβ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,结合对数的运算法则可得αβ=1.【详解】 由条件,得M 12,33⎛⎫ ⎪⎝⎭,N 21,33⎛⎫⎪⎝⎭, 可得1221,3333αβ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,即α=lo 2313g ,β=lo 1323g . 所以αβ=lo 2313g ·lo 1312233·21333lglg g lg lg ==1. 【点睛】本题主要考查幂函数的性质,对数的运算法则及其应用等知识,意在考查学生的转化能力和计算求解能力.19.【解析】首先要使有意义则其次∴解得综上点睛:对于抽象函数定义域的求解(1)若已知函数f(x)的定义域为ab 则复合函数f(g(x))的定义域由不等式a≤g(x)≤b 求出;(2)若已知函数f(g(x))解析:3,14⎛⎫⎪⎝⎭【解析】首先要使(2)f x 有意义,则2[0,2]x ∈, 其次0.5log 430x ->,∴0220431x x ≤≤⎧⎨<-<⎩,解得01314x x ≤≤⎧⎪⎨<<⎪⎩,综上3,14x ⎛⎫∈⎪⎝⎭. 点睛:对于抽象函数定义域的求解(1)若已知函数f(x)的定义域为[a ,b],则复合函数f(g(x))的定义域由不等式a≤g(x)≤b 求出;(2)若已知函数f(g(x))的定义域为[a ,b],则f(x)的定义域为g(x)在x∈[a,b]上的值域.20.200【解析】【分析】根据题意列出总利润L(x)的分段函数然后在各个部分算出最大值比较大小就能确定函数的最大值进而可求出总利润最大时对应的店面经营天数【详解】设总利润为L(x)则L(x)=则L(x)解析:200 【解析】 【分析】根据题意,列出总利润L(x)的分段函数,然后在各个部分算出最大值,比较大小,就能确定函数的最大值,进而可求出总利润最大时对应的店面经营天数. 【详解】 设总利润为L(x),则L(x)=2120010000,0300210035000,300x x x x x ⎧-+-≤<⎪⎨⎪-+≥⎩ 则L(x)=21(200)10000,0300210035000,300x x x x ⎧--+≤<⎪⎨⎪-+≥⎩当0≤x<300时,L(x)max =10000, 当x ≥300时,L(x)max =5000,所以总利润最大时店面经营天数是200. 【点睛】本题主要考查分段函数的实际应用,准确的写出各个部分的函数关系式是解决本题的关键.21.【解析】【分析】根据复合函数单调性同增异减以及二次函数对称轴列不等式组解不等式组求得实数的取值范围【详解】要使在上递增根据复合函数单调性需二次函数对称轴在的左边并且在时二次函数的函数值为非负数即解得 解析:(],3-∞【解析】 【分析】根据复合函数单调性同增异减,以及二次函数对称轴列不等式组,解不等式组求得实数a 的取值范围. 【详解】要使()f x 在()2,+∞上递增,根据复合函数单调性,需二次函数22y x ax =-+对称轴在2x =的左边,并且在2x =时,二次函数的函数值为非负数,即2222220a a ⎧≤⎪⎨⎪-+≥⎩,解得3a ≤.即实数a 的取值范围是(],3-∞.【点睛】本小题主要考查复合函数的单调性,考查二次函数的性质,属于中档题.22.10【解析】因为2a=5b=m 所以a=log2mb=log5m 由换底公式可得=logm2+logm5=logm10=1则m=10点睛:(1)在对数运算中先利用幂的运算把底数或真数进行变形化成分数指数解析:10 【解析】因为2a =5b =m ,所以a =log 2m ,b =log 5m , 由换底公式可得11a b+=log m 2+log m 5=log m 10=1,则m =10. 点睛:(1)在对数运算中,先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后再运用对数运算法则化简合并,在运算中要注意化同底或指数与对数互化.(2)熟练地运用对数的三个运算性质并配以代数式的恒等变形是对数计算、化简、证明常用的技巧.23.【解析】【分析】根据判断出函数在上为增函数由此列不等式组解不等式组求得的取值范围【详解】由于对任意的时都有所以函数在上为增函数所以解得故答案为:【点睛】本小题主要考查根据函数的单调性求参数的取值范围 解析:[1,0)-【解析】 【分析】 根据()()12120f x f x x x ->-判断出函数在R 上为增函数,由此列不等式组,解不等式组求得a 的取值范围.【详解】由于对任意的12,x x R ∈,12x x ≠时,都有()()12120f x f x x x ->-,所以函数在R 上为增函数,所以1210124a a a a ->⎧⎪<⎨⎪-≤+⎩,解得10a -≤<.故答案为:[)1,0-. 【点睛】本小题主要考查根据函数的单调性求参数的取值范围,考查指数函数的单调性,考查分式型函数的单调性,属于基础题.24.2【解析】因为是偶函数则解得又所以故令所以故有2个零点点睛:本题涉及函数零点方程图像等概念和知识综合性较强属于中档题一般讨论函数零点个数问题都要转化为方程根的个数问题或两个函数图像交点的个数问题本题解析:2 【解析】因为()42(0)f x x ax bx c c =+++<是偶函数,则()()f x f x -=,解得0b =,又()()4240()f f f c c ac c c c ==++=+,所以0a =,故4()f x x c =+,令4()0f x x c =+=,40x c =->,所以x =2个零点.点睛:本题涉及函数零点,方程,图像等概念和知识,综合性较强,属于中档题.一般讨论函数零点个数问题,都要转化为方程根的个数问题或两个函数图像交点的个数问题,本题由于涉及函数为初等函数,可以考虑方程来解决,转化为方程根的个数,同时注意偶函数性质在本题中的应用.25.2+∞)【解析】分析:根据偶次根式下被开方数非负列不等式解对数不等式得函数定义域详解:要使函数有意义则解得即函数的定义域为点睛:求给定函数的定义域往往需转化为解不等式(组)的问题解析:[2,+∞) 【解析】分析:根据偶次根式下被开方数非负列不等式,解对数不等式得函数定义域.详解:要使函数()f x 有意义,则2log 10x -≥,解得2x ≥,即函数()f x 的定义域为[2,)+∞.点睛:求给定函数的定义域往往需转化为解不等式(组)的问题.三、解答题 26.(1)23-;(2)见解析;(3)()1x f x x -=+ 【解析】 【分析】(1)利用函数的奇偶性求解.(2)函数单调性定义,通过化解判断函数值差的正负;(3)函数为R 奇函数,x 〈0的解析式已知,利用奇函数图像关于原点对称,即可求出x 〉0的解析式. 【详解】(1)由函数f (x )为奇函数,知f (2)=-f (-2)=23-· (2)在(-∞,0)上任取x 1,x 2,且x 1<x 2,则()()1212121111111111f x f x x x x x ⎛⎫⎛⎫-=+-+=- ⎪ ⎪----⎝⎭⎝⎭ ()()211211x x x x -=-- 由x 1-1<0,x 2-1<0,x 2-x 1>0,知f (x 1)-f (x 2)>0,即f (x 1)>f (x 2). 由定义可知,函数y =f (x )在区间(-∞,0]上单调递减.· (3)当x >0时,-x <0,()111f x x -=-+由函数f (x )为奇函数知f (x )=-f (-x ),()1111x f x x x -∴=-+=++ 【点睛】本题考查了函数奇偶性的应用和单调性的定义,利用奇偶性求函数值和解析式主要应用奇偶性定义和图像的对称性;利用定义法证明函数单调性关键是作差后式子的化解,因为需要判断结果的正负,所以通常需要将式子化成乘积的形式.27.最小值为14-,最大值为2. 【解析】 【分析】 由已知条件化简得21log 32x ≤≤,然后化简()f x 求出函数的最值 【详解】由2256x ≤得8x ≤,2log 3x ≤即21log 32x ≤≤ ()()()222231log 1log 2log 24f x x x x ⎛⎫=-⋅-=-- ⎪⎝⎭.当23log ,2x = ()min 14f x =-,当2log 3,x = ()max 2f x =. 【点睛】熟练掌握对数的基本运算性质是转化本题的关键,将其转化为二次函数的值域问题,较为基础.28.(Ⅰ)()27530225,02,75030,2 5.1x x x f x x x x x⎧-+≤≤⎪=⎨-<≤⎪+⎩(Ⅱ)当施用肥料为4千克时,种植该果树获得的最大利润是480元. 【解析】 【分析】(1)根据题意可得f (x )=15w (x )﹣30x ,则化为分段函数即可,(2)根据分段函数的解析式即可求出最大利润. 【详解】(Ⅰ)由已知()()()1520101530f x W x x x W x x =--=-()2155330,02,501530,251x x x x x x x ⎧⨯+-≤≤⎪=⎨⨯-<≤⎪+⎩27530225,02,75030,2 5.1x x x x x x x ⎧-+≤≤⎪=⎨-<≤⎪+⎩(Ⅱ)由(Ⅰ)得()()22175222,02,7530225,02,5=75030,2 5.25780301,2 5.11x x x x x f x x x x x x x x ⎧⎛⎫-+≤≤⎧-+≤≤⎪⎪⎪⎪⎝⎭=⎨⎨-<≤⎡⎤⎪⎪-++<≤+⎩⎢⎥⎪+⎣⎦⎩当02x ≤≤时,()()max 2465f x f ==; 当25x <≤时,()()257803011f x x x ⎡⎤=-++⎢⎥+⎣⎦ ()2578030214801x x≤-⨯⋅+=+ 当且仅当2511x x=++时,即4x =时等号成立. 因为465480<,所以当4x =时,()max 480f x =.∴当施用肥料为4千克时,种植该果树获得的最大利润是480元. 【点睛】本题考查了函数的应用、基本不等式的性质,考查了推理能力与计算能力,属于中档题.29.当底面的长宽分别为3m ,4m 时,可使房屋总造价最低,总造价是34600元 【解析】设房屋地面的长为米,房屋总造价为元.30.(1)232100,020160,20x x x y x x ⎧-+-<≤=⎨->⎩(x N *∈);(2)当年产量为16件时,所得年利润最大,最大年利润为156万元. 【解析】 【分析】(1)根据已知条件,分当20x ≤时和当20x >时两种情况,分别求出年利润的表达式,综合可得答案;(2)根据(1)中函数的解析式,求出最大值点和最大值即可. 【详解】(1)由题意得:当20x ≤时,()223310032100y x xx xx =---=-+-,当20x >时,260100160y x x =--=-,故232100,020160,20x x x y x x ⎧-+-<≤=⎨->⎩(x N *∈);(2)当020x <≤时,()223210016156y x x x =-+-=--+, 当16x =时,156max y =, 而当20x >时,160140x -<,故当年产量为16件时,所得年利润最大,最大年利润为156万元. 【点睛】本题主要考查函数模型及最值的求法,正确建立函数关系是解题的关键,属于常考题.。

【必考题】高一数学上期中模拟试卷(带答案)

【必考题】高一数学上期中模拟试卷(带答案)

【必考题】高一数学上期中模拟试卷(带答案)一、选择题1.设集合{}1,2,4A =,{}240B x x x m =-+=.若{}1A B ⋂=,则B =( ) A .{}1,3-B .{}1,0C .{}1,3D .{}1,52.若35225a b ==,则11a b +=( ) A .12B .14C .1D .23.设log 3a π=,0.32b =,21log 3c =,则( ) A .a c b >>B .c a b >>C .b a c >>D .a b c >>4.已知定义域为R 的函数()f x 在[1,)+∞单调递增,且(1)f x +为偶函数,若(3)1f =,则不等式(21)1f x +<的解集为( ) A .(1,1)- B .(1,)-+∞ C .(,1)-∞ D .(,1)(1,)-∞-+∞5.已知函数()245fx x x +=++,则()f x 的解析式为( )A .()21f x x =+ B .()()212f x x x =+≥C .()2f x x =D .()()22f x xx =≥6.函数()1ln f x x x ⎛⎫=- ⎪⎝⎭的图象大致是( ) A . B .C .D .7.函数223()2xx xf x e +=的大致图像是( )A .B .C .D .8.已知函数2()2f x ax bx a b =++-是定义在[3,2]a a -的偶函数,则()()f a f b +=( ) A .5B .5-C .0D .20199.已知函数21(1)()2(1)a x x f x xx x x ⎧++>⎪=⎨⎪-+≤⎩在R 上单调递增,则实数a 的取值范围是 A .[]0,1B .(]0,1C .[]1,1-D .(]1,1-10.已知定义在R 上的函数()f x 是奇函数且满足,3()(2)32f x f x f ⎛⎫-=-=-⎪⎝⎭,,数列{}n a 满足11a =-,且2n n S a n =+,(其中n S 为{}n a 的前n 项和).则()()56f a f a +=() A .3B .2-C .3-D .211.若函数6(3)3,7(),7x a x x f x a x ---≤⎧=⎨>⎩单调递增,则实数a 的取值范围是( )A .9,34⎛⎫⎪⎝⎭B .9,34⎡⎫⎪⎢⎣⎭C .()1,3D .()2,312.已知()()2,11,1x x f x f x x ⎧<⎪=⎨-≥⎪⎩,则()2log 7f =( )A .7B .72C .74D .78二、填空题13.已知函数241,0()3,0x x x x f x x ⎧--+≤=⎨>⎩,则函数(())3f f x =的零点的个数是________.14.若函数()6,23log ,2a x x f x x x -+≤⎧=⎨+>⎩(0a >且1a ≠)的值域是[)4,+∞,则实数a 的取值范围是__________.15.函数f(x)为奇函数,且x>0时,f(x)=x +1,则当x<0时,f(x)=________. 16.已知函数()x x f x e e -=-,对任意的[3,3]k ∈-,(2)()0f kx f x -+<恒成立,则x 的取值范围为______.17.已知()32,,x x af x x x a⎧≤=⎨>⎩,若存在实数b ,使函数()()g x f x b =-有两个零点,则a的取值范围是________.18.某企业去年的年产量为a ,计划从今年起,每年的年产量比上年增加b ﹪,则第x ()x N *∈年的年产量为y =______.19.已知函数(12)(1)()4(1)x a x f x ax x⎧-<⎪=⎨+≥⎪⎩,且对任意的12,x x R ∈,12x x ≠时,都有()()12120f x f x x x ->-,则a 的取值范围是________20.已知()f x 定义在R 上的奇函数,当0x ≥时,,则函数()()3g x f x x =-+的零点的集合为 .三、解答题21.已知函数()()log 1xa f x a =-(0a >,1a ≠)(1)当12a =时,求函数()f x 的定义域; (2)当1a >时,求关于x 的不等式()()1f x f <的解集;(3)当2a =时,若不等式()()2log 12xf x m -+>对任意实数[]1,3x ∈恒成立,求实数m 的取值范围.22.已知函数2()(2)3f x x a x =+--.(1)若函数()f x 在[]2,4-上是单调函数,求实数a 的取值范围;(2)当5a =,[1,1]x ∈-时,不等式()24f x m x >+-恒成立,求实数m 的范围. 23.已知函数()()2,,f x ax bx c a b c R =++∈.(1)若0a <,0b >,0c且()f x 在[]0,2上的最大值为98,最小值为2-,试求a ,b 的值;(2)若1c =,102a <<,且()2f x x ≤对任意[]1,2x ∈恒成立,求b 的取值范围.(用a 来表示)24.已知函数()222,00,0,0x x x f x x x mx x ⎧-+>⎪==⎨⎪+<⎩是奇函数.(1)求实数m 的值;(2)若函数()f x 在区间[]1,2a --上单调递增,求实数a 的取值范围. 25.计算下列各式的值:(Ⅰ)22log lg25lg4log (log 16)+-(Ⅱ)2102329273()( 6.9)()()482-----+26.设函数()()()22log 4log 2f x x x =⋅的定义域为1,44⎡⎤⎢⎥⎣⎦.(1)若2log t x =,求t 的取值范围;(2)求()y f x =的最大值与最小值,并求出最值时对应的x 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】∵ 集合{}124A ,,=,{}2|40B x x x m =-+=,{}1A B ⋂= ∴1x =是方程240x x m -+=的解,即140m -+= ∴3m =∴{}{}{}22|40|43013B x x x m x x x =-+==-+==,,故选C2.A解析:A 【解析】 【分析】由指数式与对数式的转化,结合换底公式和对数的运算,即可求解. 【详解】由题意3225,5225a b==根据指数式与对数式的转化可得35log 225,log 225a b == 由换底公式可得lg 2252lg15lg 2252lg15,lg 3lg 3lg 5lg 5a b ====由对数运算化简可得11lg 3lg 52lg152lg15a b +=+ lg3lg52lg15+=lg1512lg152== 故选:A 【点睛】本题考查了指数式与对数式的转化,对数的运算及换底公式的应用,属于中档题.3.C解析:C 【解析】 【分析】先证明c<0,a>0,b>0,再证明b>1,a<1,即得解. 【详解】 由题得21log 3c =2log 10<=,a>0,b>0. 0.30log 3log 1,22 1.a b πππ====所以b a c >>.故答案为C 【点睛】(1)本题主要考查指数函数对数函数的单调性,考查实数大小的比较,意在考查学生对这些知识的掌握水平和分析推理能力.(2)实数比较大小,一般先和“0”比,再和“±1”比.4.A解析:A 【解析】 【分析】由函数y =f (x +1)是定义域为R 的偶函数,可知f (x )的对称轴x =1,再利用函数的单调性,即可求出不等式的解集. 【详解】由函数y =f (x +1)是定义域为R 的偶函数,可知f (x )的对称轴x =1,且在[1,+∞)上单调递增,所以不等式f (2x+1)<1=f (3)⇔ |2x+1﹣1|)<|3﹣1|, 即|2x |<2⇔|x |<1,解得-11x << 所以所求不等式的解集为:()1,1-. 故选A . 【点睛】本题考查了函数的平移及函数的奇偶性与单调性的应用,考查了含绝对值的不等式的求解,属于综合题.5.B解析:B 【解析】 【分析】利用换元法求函数解析式,注意换元后自变量范围变化. 【详解】2t =,则2t ≥,所以()()()()2224t 251,2,f t t t t =-+-+=+≥即()21f x x =+ ()2x ≥.【点睛】本题考查函数解析式,考查基本求解能力.注意换元后自变量范围变化.6.B解析:B 【解析】 【分析】通过函数在2x =处函数有意义,在2x =-处函数无意义,可排除A 、D ;通过判断当1x >时,函数的单调性可排除C ,即可得结果. 【详解】当2x =时,110x x -=>,函数有意义,可排除A ;当2x =-时,1302x x -=-<,函数无意义,可排除D ;又∵当1x >时,函数1y x x=-单调递增,结合对数函数的单调性可得函数()1ln f x x x ⎛⎫=- ⎪⎝⎭单调递增,可排除C ; 故选:B. 【点睛】本题主要考查函数的图象,考查同学们对函数基础知识的把握程度以及数形结合与分类讨论的思维能力,属于中档题.7.B解析:B 【解析】由()f x 的解析式知仅有两个零点32x =-与0x =,而A 中有三个零点,所以排除A ,又()2232xx x f x e-++'=,由()0f x '=知函数有两个极值点,排除C ,D ,故选B . 8.A解析:A【解析】 【分析】根据函数f (x )=ax 2+bx +a ﹣2b 是定义在[a ﹣3,2a ]上的偶函数,即可求出a ,b ,从而得出f (x )的解析式,进而求出f (a )+f (b )的值. 【详解】∵f (x )=ax 2+bx +a ﹣2b 是定义在[a ﹣3,2a ]上的偶函数;∴0320b a a =⎧⎨-+=⎩;∴a =1,b =0; ∴f (x )=x 2+2;∴f (a )+f (b )=f (1)+f (0)=3+2=5. 故选:A . 【点睛】本题考查偶函数的定义,偶函数定义域的对称性,已知函数求值的方法.9.C解析:C 【解析】x ⩽1时,f (x )=−(x −1)2+1⩽1, x >1时,()()21,10a af x x f x x x=++'=-在(1,+∞)恒成立, 故a ⩽x 2在(1,+∞)恒成立, 故a ⩽1,而1+a +1⩾1,即a ⩾−1, 综上,a ∈[−1,1], 本题选择C 选项.点睛:利用单调性求参数的一般方法:一是求出函数的单调区间,然后使所给区间是这个单调区间的子区间,建立关于参数的不等式组即可求得参数范围;二是直接利用函数单调性的定义:作差、变形,由f (x 1)-f (x 2)的符号确定参数的范围,另外也可分离参数转化为不等式恒成立问题.10.A解析:A 【解析】 由奇函数满足()32f x f x ⎛⎫-=⎪⎝⎭可知该函数是周期为3T =的奇函数, 由递推关系可得:112,21n n n n S a n S a n +-=+=+-, 两式做差有:1221n n n a a a -=--,即()()1121n n a a --=-, 即数列{}1n a -构成首项为112a -=-,公比为2q的等比数列,故:()1122,21n n n n a a --=-⨯∴=-+,综上有:()()()()()552131223f a f f f f =-+=-==--=,()()()()66216300f a f f f =-+=-==,则:()()563f a f a +=. 本题选择A 选项.11.B解析:B 【解析】 【分析】利用函数的单调性,判断指数函数底数的取值范围,以及一次函数的单调性,及端点处函数值的大小关系列出不等式求解即可 【详解】解:函数6(3)3,7(),7x a x x f x a x ---⎧=⎨>⎩单调递增,()301373a a a a⎧->⎪∴>⎨⎪-⨯-≤⎩解得934a ≤<所以实数a 的取值范围是9,34⎡⎫⎪⎢⎣⎭. 故选:B . 【点睛】本题考查分段函数的应用,指数函数的性质,考查学生的计算能力,属于中档题.12.C解析:C 【解析】 【分析】根据函数的周期性以及分段函数的表达式,结合对数的运算法则,代入即可得到结论. 【详解】2222log 4log 7log 83=<<=,20log 721∴<-<,()()2log 72227log 7log 7224f f -∴=-==. 故选:C . 【点睛】本题主要考查函数值的计算,根据分段函数的表达式以及函数的周期性进行转化是解决本题的关键.二、填空题13.4【解析】【分析】根据分段函数的解析式当时令则解得当时做出函数的图像即可求解【详解】当时令则解得当时令得作出函数的图像由图像可知与有两个交点与有一个交点则的零点的个数为4故答案为:4【点睛】本题考查解析:4 【解析】 【分析】根据分段函数的解析式当0x ≤时,令()3f x =,则2413x x --+=,解得22x =-±,当0x >时,()31xf x =>,1x =,做出函数()f x ,1,22,22y y y ==-+=--的图像,即可求解.【详解】241,0()3,0x x x x f x x ⎧--+≤=⎨>⎩,∴当0x ≤时,()()2241255f x x x x =--+=-++≤,令()3f x =,则2413x x --+=, 解得22x =-±,1220,4223,-<-+<-<--<-当0x >时,()31xf x =>,令()3f x =得1x =,作出函数()f x,1,22y y y ==-=--由图像可知,()f x 与1y =有两个交点,与2y =-+ 则(())3f f x =的零点的个数为4. 故答案为:4 【点睛】本题考查了分段函数的零点个数,考查了数形结合的思想,属于基础题.14.【解析】试题分析:由于函数的值域是故当时满足当时由所以所以所以实数的取值范围考点:对数函数的性质及函数的值域【方法点晴】本题以分段为背景主要考查了对数的图象与性质及函数的值域问题解答时要牢记对数函数 解析:(]1,2【解析】试题分析:由于函数()()6,2{0,13log ,2a x x f x a a x x -+≤=>≠+>的值域是[)4,+∞,故当2x ≤时,满足()64f x x =-≥,当2x >时,由()3log 4a f x x =+≥,所以log 1a x ≥,所以log 2112a a ≥⇒<<,所以实数a 的取值范围12a <≤. 考点:对数函数的性质及函数的值域.【方法点晴】本题以分段为背景主要考查了对数的图象与性质及函数的值域问题,解答时要牢记对数函数的单调性及对数函数的特殊点的应用是解答的关键,属于基础题,着重考查了分类讨论的思想方法的应用,本题的解答中,当2x >时,由()4f x ≥,得log 1a x ≥,即log 21a ≥,即可求解实数a 的取值范围.15.【解析】当x<0时-x>0∴f(-x)=+1又f(-x)=-f(x)∴f(x)=故填解析:1【解析】当x <0时,-x >0,∴f (-x )=1,又f (-x )=-f (x ),∴f (x )=1,故填1.16.【解析】【分析】先判断函数的单调性和奇偶性根据单调性和奇偶性化简题目所给不等式利用一次函数的性质求得的取值范围【详解】由于故函数为奇函数而为上的增函数故由有所以即将主变量看成()表示一条直线在上纵坐解析:11,2⎛⎫- ⎪⎝⎭【解析】 【分析】先判断函数()f x 的单调性和奇偶性,根据单调性和奇偶性化简题目所给不等式,利用一次函数的性质,求得x 的取值范围.【详解】由于()()f x f x -=-故函数为奇函数,而()1xx f x e e=-为R 上的增函数,故由(2)()0f kx f x -+<,有()()()2f kx f x f x -<-=-,所以2kx x -<-,即20xk x +-<,将主变量看成k ([3,3]k ∈-),表示一条直线在[]3,3-上纵坐标恒小于零,则有320320x x x x -+-<⎧⎨+-<⎩,解得112x -<<.所以填11,2⎛⎫- ⎪⎝⎭.【点睛】本小题主要考查函数的单调性和奇偶性的运用,考查化归与转化的数学思想方法,考查一元一次不等式组的解法,属于中档题.17.【解析】【分析】由有两个零点可得有两个零点即与的图象有两个交点则函数在定义域内不能是单调函数结合函数图象可求的范围【详解】有两个零点有两个零点即与的图象有两个交点由可得或①当时函数的图象如图所示此时 解析:()(),01,-∞⋃+∞【解析】 【分析】由()()g x f x b =-有两个零点可得()f x b =有两个零点,即()y f x =与y b =的图象有两个交点,则函数在定义域内不能是单调函数,结合函数图象可求a 的范围 【详解】()()g x f x b =-有两个零点,()f x b ∴=有两个零点,即()y f x =与y b =的图象有两个交点,由32x x =可得,0x =或1x =①当1a >时,函数()f x 的图象如图所示,此时存在b ,满足题意,故1a >满足题意②当1a =时,由于函数()f x 在定义域R 上单调递增,故不符合题意 ③当01a <<时,函数()f x 单调递增,故不符合题意④0a =时,()f x 单调递增,故不符合题意⑤当0a <时,函数()y f x =的图象如图所示,此时存在b 使得,()y f x =与y b =有两个交点综上可得,0a <或1a > 故答案为:()(),01,-∞⋃+∞ 【点睛】本题考察了函数的零点问题,渗透了转化思想,数形结合、分类讨论的数学思想.18.y =a (1+b )x (x∈N*)【解析】【分析】根据条件计算第一年产量第二年产量…根据规律得到答案【详解】设年产量经过x 年增加到y 件第一年为y =a (1+b )第二年为y =a (1+b )(1+b )=a (1+解析:y =a (1+b %)x (x ∈N *)【解析】 【分析】根据条件计算第一年产量,第二年产量…根据规律得到答案. 【详解】设年产量经过x 年增加到y 件, 第一年为 y =a (1+b %)第二年为 y =a (1+b %)(1+b %)=a (1+b %)2, 第三年为 y =a (1+b %)(1+b %)(1+b %)=a (1+b %)3, …∴y =a (1+b %)x (x ∈N *). 故答案为:y =a (1+b %)x (x ∈N *) 【点睛】本题考查了指数型函数的应用,意在考查学生的应用能力.19.【解析】【分析】根据判断出函数在上为增函数由此列不等式组解不等式组求得的取值范围【详解】由于对任意的时都有所以函数在上为增函数所以解得故答案为:【点睛】本小题主要考查根据函数的单调性求参数的取值范围 解析:[1,0)-【解析】 【分析】 根据()()12120f x f x x x ->-判断出函数在R 上为增函数,由此列不等式组,解不等式组求得a 的取值范围.【详解】由于对任意的12,x x R ∈,12x x ≠时,都有()()12120f x f x x x ->-,所以函数在R 上为增函数,所以1210124a a a a ->⎧⎪<⎨⎪-≤+⎩,解得10a -≤<.故答案为:[)1,0-. 【点睛】本小题主要考查根据函数的单调性求参数的取值范围,考查指数函数的单调性,考查分式型函数的单调性,属于基础题.20.【解析】试题分析:当时由于定义在上的奇函数则;因为时则若时令若时令因则的零点集合为考点:奇函数的定义与利用奇函数求解析式;2函数的零点;3分段函数分段处理原则; 解析:【解析】 试题分析:当时,,由于()f x 定义在R 上的奇函数,则;因为0x ≥时,,则若时,令若时,令,因,则,的零点集合为考点:奇函数的定义与利用奇函数求解析式;2.函数的零点;3.分段函数分段处理原则;三、解答题21.(1)(),0-∞;(2)()0,1;(3)21,log 3⎛⎫⎛⎫-∞ ⎪ ⎪⎝⎭⎝⎭.【解析】 【分析】(1)由a x -1>0,得a x >1 下面分类讨论:当a >1时,x >0;当0<a <1时,x <0即可求得f (x )的定义域(2)根据函数的单调性解答即可;(3)令()()()2221log 12log 21x xx g x f x ⎛⎫-=-+= ⎪+⎝⎭,[]1,3x ∈可知()g x 在[1,3]上是单调增函数,只需求出最小值即可. 【详解】本题考查恒成立问题.(1)当12a =时,()121log 12x f x ⎛⎫=- ⎪⎝⎭,故:1102x ->,解得:0x <,故函数()f x 的定义域为(),0-∞;(2)由题意知,()()log 1xa f x a =-(1a >),定义域为()0,x ∈+∞,用定义法易知()f x 为()0,x ∈+∞上的增函数,由()()1f x f <,知:01x x >⎧⎨<⎩,∴()0,1x ∈.(3)设()()()2221log 12log 21x xx g x f x ⎛⎫-=-+= ⎪+⎝⎭,[]1,3x ∈,设21212121x x xt -==-++,[]1,3x ∈, 故[]213,9x+∈,2171,2139x t ⎡⎤=-∈⎢⎥+⎣⎦,故:()min 211log 33g x g ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭, 又∵()()2log 12xf x m -+>对任意实数[]1,3x ∈恒成立,故:()min 21log 3m g x ⎛⎫<= ⎪⎝⎭.【点睛】本题主要考查对数函数有关的定义域、单调性、值域的问题,属于中档题.22.(1)(,6][6,+)∞∞--;(2)3(,)4∞-. 【解析】 【分析】(1)首先求函数的对称轴22a x -=-,令242a --≥或 222a --≤-,求实数a 的取值范围;(2)不等式等价于21x x m ++>恒成立,令()21g x x x =++,转化为()min g x m >,[]1,1x ∈-恒成立,求m 的取值范围. 【详解】解:(1)函数()f x 的对称轴为22a x -=-, 又函数()f x 在[]2,4-上是单调函数,242a -∴-≥或 222a --≤-, 解得6a ≤-或6a ≥.∴实数a 的取值范围为(,6][6,)-∞-+∞;(2)当5a =,[]1,1x ∈-时,()24f x m x >+-恒成立,即21x x m ++>恒成立, 令()21g x x x =++,()min g x m >恒成立,函数()g x 的对称轴[]11,12x =-∈-,∴()min 1324g x g ⎛⎫=-= ⎪⎝⎭,即34m >, m ∴的范围为3(,)4-∞.【点睛】本题考查二次函数单调性,恒成立的的综合问题,属于基础题型.23.(1)2,3a b =-=;(2) 当104a <≤时,5212a b a --≤≤-;当1142a <<时,21b a -≤≤-.【解析】 【分析】(1)求得二次函数的对称轴,根据对称轴和区间的位置关系,分类讨论,待定系数即可求得,a b ;(2)对参数a 进行分类讨论,利用对勾函数的单调性,求得函数的最值,即可容易求得参数范围. 【详解】(1)由题可知2y ax bx =+是开口向下,对称轴为02ba->的二次函数, 当22ba-≥时,二次函数在区间[]0,2上单调递增,故可得0min y =显然不符合题意,故舍去; 当122b a ≤-<,二次函数在0,2b a ⎛⎫- ⎪⎝⎭单调递增,在,22b a ⎛⎫- ⎪⎝⎭单调递减,且当0x =时,取得最小值,故0min y =,不符合题意,故舍去; 当012b a <-<时,二次函数在2x =处取得最小值,在2bx a=-时取得最大值. 则422a b +=-;29228b b a b a a ⎛⎫⎛⎫⨯-+⨯-= ⎪ ⎪⎝⎭⎝⎭,整理得292b a -=;则24990b b --=,解得3b =或34b =-(舍), 故可得2a =-.综上所述:2,3a b =-=.(2)由题可知()21f x ax bx =++,因为()2f x x≤对任意[]1,2x ∈恒成立,即12ax b x++≤对任意[]1,2x ∈恒成立, 即122ax b x-≤++≤对任意[]1,2x ∈恒成立, 令()1g x ax b x=++,则()2max g x ≤,且()2min g x ≥-.因为12a <<> 2≥,即104a <≤时, ()g x 在区间[]1,2单调递减,故()()11max g x g a b ==++,()()1222min g x g a b ==++ 则112,222a b a b ++≤++≥-, 解得51,22b a b a ≤-≥--. 此时,()5721022a a a ⎛⎫----=--< ⎪⎝⎭,也即5212a a --<-, 故5212a b a --≤≤-.2<<,即1142a<<时,()g x在⎛⎝单调递减,在2⎫⎪⎭单调递增.()2ming x g b==≥-,即2b≥-又因为()11g a b=++,()1222g a b=++,则()()11202g g a-=-+>,故()g x的最大值为()11g a b=++,则12a b++≤,解得1b a≤-,此时()())2213140a a---=-=-<,故可得21b a-≤≤-.综上所述:当14a<≤时,5212a b a--≤≤-;当1142a<<时,21b a-≤≤-.【点睛】本题考查二次函数动轴定区间问题的处理,以及由恒成立问题求参数范围,涉及对勾函数的单调性,属综合中档题.24.(1)2;(2)(]1,3.【解析】【分析】(1)设0x<,可得0x->,求出()f x-的表达式,利用奇函数的定义可得出函数()y f x=在0x<时的解析式,由此可求出实数m的值;(2)作出函数()y f x=的图象,可得出函数()y f x=的单调递增区间为[]1,1-,于是可得出[][]1,21,1a--⊆-,进而得出关于实数a的不等式组,解出即可.【详解】(1)()222,00,0,0x x xf x xx mx x⎧-+>⎪==⎨⎪+<⎩为奇函数,当0x<时,0x->,则()()()2222f x x x x x-=--+⨯-=--,则()()22f x f x x x =--=+,2m ∴=;(2)由(1)可得()222,00,02,0x x x f x x x x x ⎧-+>⎪==⎨⎪+<⎩,作出函数()y f x =如下图所示:由图象可知,函数()y f x =的单调递增区间为[]1,1-, 由题意可得[][]1,21,1a --⊆-,则121a -<-≤,解得13a .因此,实数a 的取值范围是(]1,3. 【点睛】本题考查奇函数解析式的求解,同时也考查了利用函数在区间上的单调性求参数,考查运算求解能力,属于中等题.25.(Ⅰ)12;(Ⅱ)12. 【解析】试题分析:(1)根据对数运算法则log ,lg lg lg ,ma a m m n mn =+= 化简求值(2)根据指数运算法则01(),1,m n mn mm a a a a a-===,化简求值 试题解析:(Ⅰ)原式()3111log 3lg 254222222=+⨯-=+-=. (Ⅱ)原式1223233343441112292992⎛⎫⨯⨯- ⎪⎝⎭⎛⎫⎛⎫=--+=--+= ⎪ ⎪⎝⎭⎝⎭. 26.(1)[]22-,;(2)2x =,最小值14-,4x =,最大值12 .【解析】试题分析:(1)根据定义域为1,44⎡⎤⎢⎥⎣⎦,利用对数函数的单调性确定函数2log t x =的取值范围;(2)根据对数的运算法则化简函数()()()()()2222log 4log 221f x x x log x log x =⋅=++利用换元法将函数()y f x =转化为关于t 的一元二次函数,利用二次函数的性质求函数的最值. 试题解析:(1)的取值范围为区间][221log ,log 42,24⎡⎤=-⎢⎥⎣⎦(2)记()()()()()()()22log 2log 12122y f x x x t t g t t ==++=++=-≤≤.∵()23124y g t t ⎛⎫==+- ⎪⎝⎭在区间32,2⎡⎤--⎢⎥⎣⎦是减函数,在区间3,22⎡⎤-⎢⎥⎣⎦是增函数 ∴当23log 2t x ==-即3222x -==时,()y f x =有最小值231424f g ⎛⎛⎫=-=- ⎪ ⎝⎭⎝⎭; 当2log 2t x ==即224x ==时,()y f x =有最大值()()4212f g ==.。

【必考题】高一数学上期中试卷(附答案)

【必考题】高一数学上期中试卷(附答案)

【必考题】高一数学上期中试卷(附答案)一、选择题1.已知集合{}220A x x x =-->,则A =RA .{}12x x -<< B .{}12x x -≤≤ C .}{}{|12x x x x <-⋃D .}{}{|1|2x x x x ≤-⋃≥2.设常数a ∈R ,集合A={x|(x ﹣1)(x ﹣a )≥0},B={x|x≥a ﹣1},若A ∪B=R ,则a 的取值范围为( ) A .(﹣∞,2)B .(﹣∞,2]C .(2,+∞)D .[2,+∞)3.在下列区间中,函数()43xf x e x =+-的零点所在的区间为( ) A .1,04⎛⎫-⎪⎝⎭B .10,4⎛⎫ ⎪⎝⎭C .11,42⎛⎫⎪⎝⎭D .13,24⎛⎫⎪⎝⎭4.函数()ln f x x x =的图像大致是( )A .B .C .D .5.已知函数()25,1,,1,x ax x f x a x x⎧---≤⎪=⎨>⎪⎩是R 上的增函数,则a 的取值范围是( )A .30a -≤<B .0a <C .2a ≤-D .32a --≤≤6.设()f x 是定义在R 上的偶函数,且当0x ≥时,()21,0122,1xx x f x x ⎧-+≤<=⎨-≥⎩,若对任意的[],1x m m ∈+,不等式()()1f x f x m -≤+恒成立,则实数m 的最大值是( ) A .1-B .13-C .12-D .137.若函数()(),1231,1x a x f x a x x ⎧>⎪=⎨-+≤⎪⎩是R 上的减函数,则实数a 的取值范围是( )A .2,13⎛⎫⎪⎝⎭B .3,14⎡⎫⎪⎢⎣⎭C .23,34⎛⎤⎥⎝⎦D .2,3⎛⎫+∞⎪⎝⎭8.已知0.6log 0.5a =,ln0.5b =,0.50.6c =,则( )A .a c b >>B .a b c >>C .c a b >>D .c b a >>9.设函数3()f x x x =+ ,. 若当02πθ<<时,不等式(sin )(1)0f m f m θ+-> 恒成立,则实数m 的取值范围是( ) A .1(,1]2B .1(,1)2C .[1,)+∞D .(,1]-∞10.函数()111f x x =--的图象是( ) A . B .C .D .11.设x 、y 、z 为正数,且235x y z ==,则 A .2x <3y <5z B .5z <2x <3y C .3y <5z <2xD .3y <2x <5z12.定义在R 上的奇函数()f x 满足()1(2)f x f x +=-,且在()0,1上()3xf x =,则()3log 54f =( )A .32B .23-C .23D .32-二、填空题13.已知()2x a x af x ++-=,g(x)=ax+1 ,其中0a >,若()f x 与()g x 的图象有两个不同的交点,则a 的取值范围是______________.14.函数f(x)为奇函数,且x>0时,f(x)x +1,则当x<0时,f(x)=________.15.已知函数2,()24,x x mf x x mx m x m ⎧≤=⎨-+>⎩其中0m >,若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是________________. 16.已知函数1)4f x x +=-,则()f x 的解析式为_________. 17.10343383log 27()()161255---+=__________.18.函数()()log 2a f x ax =-在[]0,1上是x 的减函数,则实数a 的取值范围是______. 19.2017年国庆期间,一个小朋友买了一个体积为a 的彩色大气球,放在自己房间内,由于气球密封不好,经过t 天后气球体积变为kt V a e -=⋅.若经过25天后,气球体积变为原来的23,则至少经过__________天后,气球体积小于原来的13. (lg30.477,lg 20.301≈≈,结果保留整数)20.关于函数()f x =__________.①()f x 的定义域为[)(]1,00,1-;②()f x 的值域为()1,1-;③()f x 的图象关于原点对称;④()f x 在定义域上是增函数.三、解答题21.已知3a ≥,函数F (x )=min{2|x−1|,x 2−2ax+4a−2},其中min{p ,q}={,.p p q q p q ,,≤> (Ⅰ)求使得等式F (x )=x 2−2ax+4a−2成立的x 的取值范围; (Ⅱ)(ⅰ)求F (x )的最小值m (a ); (ⅱ)求F (x )在区间[0,6]上的最大值M (a ).22.若()f x 是定义在(0,)+∞上的函数,且满足()()()x f f x f y y=-, 当1x >时,()0f x >. (1)判断并证明函数的单调性;(2)若(2)1f =,解不等式1(3)()2f x f x+-<. 23.已知幂函数2242()(22)m m f x m m x -+=--在(0,)+∞上单调递减.(1)求m 的值并写出()f x 的解析式;(2)试判断是否存在0a >,使得函数()(21)1()ag x a x f x =--+在[1,2]-上的值域为 [4,11]-?若存在,求出a 的值;若不存在,请说明理由.24.已知函数()2(0,)af x x x a R x=+≠∈. (1)判断()f x 的奇偶性;(2)若()f x 在[)2,+∞是增函数,求实数a 的范围.25.设()()()log 1log (30,1)a a f x x x a a =++->≠,且()12f =. (1)求a 的值及()f x 的定义域;(2)求()f x 在区间30,2⎡⎤⎢⎥⎣⎦上的最大值.26.某厂生产某产品的年固定成本为250万元,每生产千件,需另投入成本(万元),若年产量不足千件,的图象是如图的抛物线,此时的解集为,且的最小值是,若年产量不小于千件,,每千件商品售价为50万元,通过市场分析,该厂生产的商品能全部售完.(1)写出年利润(万元)关于年产量(千件)的函数解析式;(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】分析:首先利用一元二次不等式的解法,求出220x x -->的解集,从而求得集合A ,之后根据集合补集中元素的特征,求得结果. 详解:解不等式220x x -->得12x x -或, 所以{}|12A x x x =<->或,所以可以求得{}|12R C A x x =-≤≤,故选B.点睛:该题考查的是有关一元二次不等式的解法以及集合的补集的求解问题,在解题的过程中,需要明确一元二次不等式的解集的形式以及补集中元素的特征,从而求得结果.2.B解析:B 【解析】 试题分析:当时,,此时成立,当时,,当时,,即,当时,,当时,恒成立,所以a 的取值范围为,故选B.考点:集合的关系3.C解析:C 【解析】 【分析】先判断函数()f x 在R 上单调递增,由104102f f ⎧⎛⎫< ⎪⎪⎪⎝⎭⎨⎛⎫⎪> ⎪⎪⎝⎭⎩,利用零点存在定理可得结果.【详解】因为函数()43xf x e x =+-在R 上连续单调递增,且114411221143204411431022f e e f e e ⎧⎛⎫=+⨯-=-<⎪ ⎪⎪⎝⎭⎨⎛⎫⎪=+⨯-=-> ⎪⎪⎝⎭⎩, 所以函数的零点在区间11,42⎛⎫⎪⎝⎭内,故选C. 【点睛】本题主要考查零点存在定理的应用,属于简单题.应用零点存在定理解题时,要注意两点:(1)函数是否为单调函数;(2)函数是否连续.4.A解析:A 【解析】 【分析】从图象来看图象关于原点对称或y 轴对称,所以分析奇偶性,然后再用特殊值确定. 【详解】因为函数()ln f x x x =是奇函数,排除C ,D 又因为2x = 时()0f x >,排除B 故选:A 【点睛】本题主要考查了函数的图象的判断,还考查了数形结合的思想,属于基础题.5.D解析:D 【解析】 【分析】根据分段函数的单调性特点,两段函数在各自的定义域内均单调递增,同时要考虑端点处的函数值. 【详解】要使函数在R 上为增函数,须有()f x 在(,1]-∞上递增,在(1,)+∞上递增,所以21,20,115,1a a a a ⎧-≥⎪⎪<⎨⎪⎪--⨯-≤⎩,解得32a --≤≤.故选D. 【点睛】本题考查利用分段函数的单调性求参数的取值范围,考查数形结合思想、函数与方程思想的灵活运用,求解时不漏掉端点处函数值的考虑.6.B解析:B 【解析】 【分析】由题意,函数()f x 在[0,)+∞上单调递减,又由函数()f x 是定义上的偶函数,得到函数()f x 在(,0)-∞单调递增,把不等式(1)()f x f x m -≤+转化为1x x m -≤+,即可求解. 【详解】易知函数()f x 在[)0,+∞上单调递减, 又函数()f x 是定义在R 上的偶函数, 所以函数()f x 在(),0-∞上单调递增, 则由()()1f x f x m -≤+,得1x x m -≥+,即()()221x x m -≥+,即()()22210g x m x m =++-≤在[],1x m m ∈+上恒成立,则()()()()()()3110121310g m m m g m m m ⎧=-+≤⎪⎨+=++≤⎪⎩,解得113m -≤≤-, 即m 的最大值为13-. 【点睛】本题主要考查了函数的基本性质的应用,其中解答中利用函数的基本性质,把不等式转化为1x x m -≤+ 求解是解答的关键,着重考查了分析问题和解答问题的能力,以及推理与运算能力,属于中档试题.7.C解析:C 【解析】 【分析】由题意结合分段函数的解析式分类讨论即可求得实数a 的取值范围. 【详解】当1x >时,x a 为减函数,则01a <<,当1x ≤时,一次函数()231a x -+为减函数,则230a -<,解得:23a >, 且在1x =处,有:()12311a a -⨯+≥,解得:34a ≤, 综上可得,实数a 的取值范围是23,34⎛⎤ ⎥⎝⎦. 本题选择C 选项. 【点睛】对于分段函数的单调性,有两种基本的判断方法:一保证各段上同增(减)时,要注意上、下段间端点值间的大小关系;二是画出这个分段函数的图象,结合函数图象、性质进行直观的判断.8.A解析:A 【解析】由0.50.6log 0.51,ln 0.50,00.61><<<,所以1,0,01a b c ><<<,所以a c b >>,故选A .9.D解析:D 【解析】 【分析】 【详解】易得()f x 是奇函数,2()310()f x x f x '=+>⇒在R 上是增函数,不等式(sin )(1)0f m f m θ+-> 恒成立. 可得11(sin )(1)sin 1,0sin 111sin 1sin f m f m m m m m θθθθθ>-⇒>-⇒<<<⇒⇒≤--, 故选D.10.B解析:B 【解析】 【分析】 把函数1y x=先向右平移一个单位,再关于x 轴对称,再向上平移一个单位即可. 【详解】 把1y x = 的图象向右平移一个单位得到11y x =-的图象, 把11y x =-的图象关于x 轴对称得到11y x =--的图象, 把11y x =--的图象向上平移一个单位得到()111f x x =--的图象, 故选:B . 【点睛】本题主要考查函数图象的平移,对称,以及学生的作图能力,属于中档题.11.D解析:D 【解析】令235(1)x y zk k ===>,则2log x k =,3log =y k ,5log =z k∴22lg lg 3lg 913lg 23lg lg8x k y k =⋅=>,则23x y >, 22lg lg5lg 2515lg 25lg lg32x k z k =⋅=<,则25x z <,故选D. 点睛:对于连等问题,常规的方法是令该连等为同一个常数,再用这个常数表示出对应的,,x y z ,通过作差或作商进行比较大小.对数运算要记住对数运算中常见的运算法则,尤其是换底公式以及0与1的对数表示.12.D解析:D 【解析】 【分析】由题意结合函数的性质整理计算即可求得最终结果. 【详解】由题意可得:()354f log =()3log 23f +, 则()354f log =()31log 21f -+,且()()331log 21log 21f f +=--, 由于()3log 211,0-∈-,故()()31log 2333log 211log 232f f --=--=-=-,据此可得:()()3312log 21log 213f f +=-=-,()354f log =32-.本题选择D 选项. 【点睛】本题主要考查函数的奇偶性,函数的周期性及其应用等知识,意在考查学生的转化能力和计算求解能力.二、填空题13.(01)【解析】结合与的图象可得点睛:数形结合是数学解题中常用的思想方法数形结合的思想可以使某些抽象的数学问题直观化生动化能够变抽象思维为形象思维有助于把握数学问题的本质在运用数形结合思想分析和解决解析:(0,1), 【解析】(),,2x x a x a x af x a x a ≥++-⎧==⎨<⎩, 结合()f x 与()g x 的图象可得()0,1.a ∈点睛:数形结合是数学解题中常用的思想方法,数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质. 在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念及其几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围14.【解析】当x<0时-x>0∴f(-x)=+1又f(-x)=-f(x)∴f(x)=故填 解析:1x -【解析】当x <0时,-x >0,∴f (-x )=x -1,又f (-x )=-f (x ),∴f (x )=1x -,故填1x ---.15.【解析】试题分析:由题意画出函数图象如下图所示要满足存在实数b 使得关于x 的方程f (x )=b 有三个不同的根则解得故m 的取值范围是【考点】分段函数函数图象【名师点睛】本题主要考查二次函数的图象与性质函数解析:()3+∞,【解析】试题分析:由题意画出函数图象如下图所示,要满足存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则24m m m -<,解得3m >,故m 的取值范围是(3,)+∞.【考点】分段函数,函数图象【名师点睛】本题主要考查二次函数的图象与性质、函数与方程、分段函数的概念.解答本题,关键在于能利用数形结合思想,通过对函数图象的分析,转化得到代数不等式.本题能较好地考查考生数形结合思想、转化与化归思想、基本运算求解能力等.16.【解析】【分析】利用换元法求解析式即可【详解】令则故故答案为【点睛】本题考查函数解析式的求法换元法是常见方法注意新元的范围是易错点 解析:2()23(1)f x x x x =--≥【解析】 【分析】利用换元法求解析式即可 【详解】 令11t x =≥,则()21x t =-故()()214f t t =--=223(1)t t t --≥ 故答案为2()23(1)f x x x x =--≥ 【点睛】本题考查函数解析式的求法,换元法是常见方法,注意新元的范围是易错点17.【解析】18.【解析】【分析】首先保证真数位置在上恒成立得到的范围要求再分和进行讨论由复合函数的单调性得到关于的不等式得到答案【详解】函数所以真数位置上的在上恒成立由一次函数保号性可知当时外层函数为减函数要使为减 解析:()1,2【解析】 【分析】首先保证真数位置20ax ->在[]0,1x ∈上恒成立,得到a 的范围要求,再分01a <<和1a >进行讨论,由复合函数的单调性,得到关于a 的不等式,得到答案.【详解】函数()()log 2a f x ax =-,所以真数位置上的20ax ->在[]0,1x ∈上恒成立, 由一次函数保号性可知,2a <,当01a <<时,外层函数log a y t =为减函数,要使()()log 2a f x ax =-为减函数,则2t ax =-为增函数, 所以0a ->,即0a <,所以a ∈∅, 当1a >时,外层函数log a y t =为增函数,要使()()log 2a f x ax =-为减函数,则2t ax =-为减函数, 所以0a -<,即0a >,所以1a >, 综上可得a 的范围为()1,2. 故答案为()1,2. 【点睛】本题考查由复合函数的单调性,求参数的范围,属于中档题.19.68【解析】由题意得经过天后气球体积变为经过25天后气球体积变为原来的即则设天后体积变为原来的即即则两式相除可得即所以天点睛:本题主要考查了指数函数的综合问题考查了指数运算的综合应用求解本题的关键是解析:68 【解析】由题意得,经过t 天后气球体积变为kt V a e -=⋅,经过25天后,气球体积变为原来的23, 即25252233kk a ea e --⋅=⇒=,则225ln 3k -=, 设t 天后体积变为原来的13,即13kt V a e a -=⋅=,即13kte -=,则1ln 3kt -=两式相除可得2ln2531ln3k kt -=-,即2lg25lg 2lg30.3010.477130.3681lg30.4771lg 3t --===≈--, 所以68t ≈天点睛:本题主要考查了指数函数的综合问题,考查了指数运算的综合应用,求解本题的关键是先待定t 的值,建立方程,在比较已知条件,得出关于t 的方程,求解t 的值,本题解法比较巧妙,充分考虑了题设条件的特征,对观察判断能力要求较高,解题时根据题设条件选择恰当的方法可以降低运算量,试题有一定的难度,属于中档试题.20.①②③【解析】【分析】由被开方式非负和分母不为0解不等式可得f (x )的定义域可判断①;化简f (x )讨论0<x≤1﹣1≤x <0分别求得f (x )的范围求并集可得f (x )的值域可判断②;由f (﹣1)=f (解析:①②③ 【解析】 【分析】由被开方式非负和分母不为0,解不等式可得f (x )的定义域,可判断①;化简f (x ),讨论0<x ≤1,﹣1≤x <0,分别求得f (x )的范围,求并集可得f (x )的值域,可判断②;由f (﹣1)=f (1)=0,f(x)不是增函数,可判断④;由奇偶性的定义得f (x )为奇函数,可判断③. 【详解】①,由240110x x x ⎧-≥⎪⎨--≠⎪⎩,解得﹣1≤x ≤1且x ≠0,可得函数()11f x x =--的定义域为[﹣1,0)∪(0,1],故①正确;②,由①可得f (x,即f (x,当0<x ≤1可得f (x1,0];当﹣1≤x <0可得f (x[0,1).可得f (x )的值域为(﹣1,1),故②正确;③,由f (x)=﹣||x x 的定义域为[﹣1,0)∪(0,1],关于原点对称,f (﹣x)=|x x=﹣f (x ),则f (x )为奇函数,即有f (x )的图象关于原点对称,故③正确.④,由f (﹣1)=f (1)=0,则f (x )在定义域上不是增函数,故④错误; 故答案为:①②③ 【点睛】本题考查函数的性质和应用,主要是定义域和值域的求法、单调性的判断和图象的特征,考查定义法和分类讨论思想,以及化简运算能力和推理能力,属于中档题.三、解答题21.(Ⅰ)[]2,2a .(Ⅱ)(ⅰ)()20,32{42,2a m a a a a ≤≤=-+->.(ⅱ)()348,34{2,4a a a a -≤<M =≥.【解析】试题分析:(Ⅰ)分别对1x ≤和1x >两种情况讨论()F x ,进而可得使得等式()2242F x x ax a =-+-成立的x 的取值范围;(Ⅱ)(Ⅰ)先求函数()21f x x =-,()2242g x x ax a =-+-的最小值,再根据()F x 的定义可得()F x 的最小值()m a ;(Ⅱ)分别对02x ≤≤和26x ≤≤两种情况讨论()F x 的最大值,进而可得()F x 在区间[]0,6上的最大值()M a .试题解析:(Ⅰ)由于3a ≥,故当1x ≤时,()()()22242212120x ax a x x a x -+---=+-->,当1x >时,()()()22422122xax a x x x a -+---=--.所以,使得等式()2242F x x ax a =-+-成立的x 的取值范围为[]2,2a . (Ⅱ)(ⅰ)设函数()21f x x =-,()2242g x x ax a =-+-, 则()()min 10f x f ==,()()2min 42g x g a a a ==-+-,所以,由()F x 的定义知()()(){}min 1,m a f g a =,即()20,32{42,2a m a a a a ≤≤+=-+-> (ⅱ)当02x ≤≤时,()()()(){}()max 0,222F x f x f f F ≤≤==,当26x ≤≤时,()()()(){}{}()(){}max 2,6max 2,348max 2,6F x g x g g a F F ≤≤=-=. 所以,()348,34{2,4a a M a a -≤<=≥.【考点】函数的单调性与最值,分段函数,不等式.【思路点睛】(Ⅰ)根据x 的取值范围化简()F x ,即可得使得等式()2242F x x ax a =-+-成立的x 的取值范围;(Ⅱ)(Ⅰ)先求函数()f x 和()g x 的最小值,再根据()F x 的定义可得()m a ;(Ⅱ)根据x 的取值范围求出()F x 的最大值,进而可得()M a .22.(1)增函数,证明见解析;(2){|01}x x << 【解析】 试题分析:(1)由题意结合所给的抽象函数关系可由120x x >>时有()()120f x f x ->,即()f x 在定义域内为增函数;(2)原问题等价于x 的不等式组(3)43010x x x x⎧⎪+<⎪+>⎨⎪⎪>⎩,求解不等式组可得01x <<.试题解析: (1)增函数证明:令12,x x y x ==,且120x x >>,则121x x > 由题意知:1122()()()x f f x f x x =- 又∵当x >1时,()0f x > ∴12()0x f x > ∴()()120f x f x -> ∴()f x 在定义域内为增函数(2)令x =4,y =2 由题意知:4()(4)(2)2f f f =- ∴()()422122f f ==⨯=()13()((3))(4)f x f f x x f x+-=+<又∵()f x 是增函数,可得(3)43010x x x x⎧⎪+<⎪+>⎨⎪⎪>⎩ ∴01x <<.点睛:抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数.由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一.抽象性较强,灵活性大,解抽象函数重要的一点要抓住函数中的某些性质,通过局部性质或图象的局部特征,利用常规数学思想方法(如化归法、数形结合法等),这样就能突破“抽象”带来的困难,做到胸有成竹.另外还要通过对题目的特征进行观察、分析、类比和联想,寻找具体的函数模型,再由具体函数模型的图象和性质来指导我们解决抽象函数问题的方法. 23.(1)1()f x x -=;(2)存在,6a =. 【解析】 【分析】(1)由幂函数的定义和单调性,可得关于m 的方程与不等式;(2)由(1)得1()f x x -=,从而得到()(1)1g x a x =-+,再对1a -的取值进行分类讨论.【详解】(1)因为幂函数2242()(22)mm f x m m x -+=--在(0,)+∞上单调递减,所以22221,420,m m m m ⎧--=⎨-+<⎩解得:3m =或1m =-(舍去),所以1()f x x -=.(2)由(1)得1()f x x -=,所以()(1)1g x a x =-+,假设存在0a >使得命题成立,则当10a ->时,即1a >,()g x 在[1,2]-单调递增,所以(1)4,114,6(2)11,22111,g a a g a -=--+=-⎧⎧⇒⇒=⎨⎨=-+=⎩⎩; 当10a -=,即1a =,()1g x =显然不成立;当10a -<,即1a <,()g x 在[1,2]-单调递减,所以(1)11,1111,(2)4,2214,g a g a -=-+=⎧⎧⇒⎨⎨=--+=-⎩⎩a 无解; 综上所述:存在6a =使命题成立. 【点睛】本题考查幂函数的概念及解析式、已知一次函数的定义域、值域求参数的取值范围,考查逻辑推理能力和运算求解能力,同时注意分类讨论思想的运用,讨论时要以一次函数的单调性为分类标准. 24.(1)当时,为偶函数,当时,既不是奇函数,也不是偶函数,;(2)(16]-∞,.【解析】 【分析】 【详解】 (1)当时,,对任意(0)(0)x ∈-∞+∞,,,,为偶函数.当时,2()(00)af x x a x x=+≠≠,, 取,得(1)(1)20(1)(1)20f f f f a -+=≠--=-≠,,(1)(1)(1)(1)f f f f ∴-≠--≠,,函数既不是奇函数,也不是偶函数.(2)设122x x ≤<,,要使函数在[2)x ∈+∞,上为增函数,必须恒成立.121204x x x x -<>,,即恒成立. 又,.的取值范围是(16]-∞,.25.(1)2a =,定义域为()1,3-;(2)2 【解析】 【分析】(1)由()12f =,可求得a 的值,结合对数的性质,可求出()f x 的定义域;(2)先求得()f x 在区间30,2⎡⎤⎢⎥⎣⎦上的单调性,进而可求得函数的最大值.【详解】(1)()1log 2log l 242og a a a f =+==,解得2a =. 故()()22log 1)g 3(lo f x x x =++-, 则1030x x +>⎧⎨->⎩,解得13x ,故()f x 的定义域为()1,3-.(2)函数()()()()()222log 1log 3log 31f x x x x x =++-=-+,定义域为()1,3-,()130,2,3⎡⎤⊆⎥-⎢⎣⎦,由函数2log y x =在()0,∞+上单调递增,函数()()31y x x =-+在[)0,1上单调递增,在31,2⎡⎤⎢⎥⎣⎦上单调递减,可得函数()f x 在[)0,1上单调递增,在31,2⎡⎤⎢⎥⎣⎦上单调递减. 故()f x 在区间30,2⎡⎤⎢⎥⎣⎦上的最大值为()21log 42f ==.【点睛】本题考查了函数的定义域,考查了函数的单调性与最值,考查了学生的计算求解能力,属于基础题.26.(1) ;(2) 当年产量千件时,该厂在这一商品的生产中所获利润最大为万元.【解析】 【分析】(1)由题可知,利润=售价-成本,分别对年产量不足件,以及年产量不小于件计算,代入不同区间的解析式,化简求得;(2)分别计算年产量不足件,以及年产量不小于件的利润,当年产量不足80件时,由配方法解得利润的最大值为950万元,当年产量不小于件时,由均值不等式解得利润最大值为1000万元,故年产量为件时,利润最大为万元.【详解】(1)当时,;当时,,所以().(2)当时,此时,当时,取得最大值万元.当时,此时,当时,即时,取得最大值万元,,所以年产量为件时,利润最大为万元.考点:•配方法求最值 均值不等式。

【必考题】高一数学上期中试题(含答案)

【必考题】高一数学上期中试题(含答案)

【必考题】高一数学上期中试题(含答案)一、选择题1.设常数a ∈R ,集合A={x|(x ﹣1)(x ﹣a )≥0},B={x|x≥a ﹣1},若A ∪B=R ,则a 的取值范围为( ) A .(﹣∞,2)B .(﹣∞,2]C .(2,+∞)D .[2,+∞)2.关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数 ②f (x )在区间(2π,π)单调递增 ③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④ B .②④ C .①④ D .①③3.1()xf x e x=-的零点所在的区间是( ) A .1(0,)2B .1(,1)2C .3(1,)2D .3(,2)24.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=( )A .50-B .0C .2D .505.设x ∈R ,若函数f (x )为单调递增函数,且对任意实数x ,都有f (f (x )-e x)=e +1(e 是自然对数的底数),则f (ln1.5)的值等于( ) A .5.5 B .4.5C .3.5D .2.56.函数sin21cos xy x=-的部分图像大致为A .B .C .D .7.已知()lg(10)lg(10)f x x x =++-,则()f x 是( ) A .偶函数,且在(0,10)是增函数 B .奇函数,且在(0,10)是增函数 C .偶函数,且在(0,10)是减函数D .奇函数,且在(0,10)是减函数8.若函数6(3)3,7(),7x a x x f x a x ---≤⎧=⎨>⎩单调递增,则实数a 的取值范围是( )A .9,34⎛⎫⎪⎝⎭B .9,34⎡⎫⎪⎢⎣⎭C .()1,3D .()2,39.设0.60.3a =,0.30.6b =,0.30.3c =,则a ,b ,c 的大小关系为( ) A .b a c <<B .a c b <<C .b c a <<D .c b a <<10.方程 4log 7x x += 的解所在区间是( ) A .(1,2)B .(3,4)C .(5,6)D .(6,7)11.函数()(1)f x x x =-在[,]m n 上的最小值为14-,最大值为2,则n m -的最大值为( ) A .52B .5222+C .32D .212.设函数3()f x x x =+ ,. 若当02πθ<<时,不等式(sin )(1)0f m f m θ+-> 恒成立,则实数m 的取值范围是( ) A .1(,1]2B .1(,1)2C .[1,)+∞D .(,1]-∞二、填空题13.函数()22()log 23f x x x =+-的单调递减区间是______.14.已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当x ∈[-3,0]时,f (x )=6-x ,则f (919)=________.15.已知函数()()212log 22f x mx m x m ⎡⎤=+-+-⎣⎦,若()f x 有最大值或最小值,则m的取值范围为______.16.某企业去年的年产量为a ,计划从今年起,每年的年产量比上年增加b ﹪,则第x ()x N *∈年的年产量为y =______. 17.已知312ab += ,则933a b a⋅=__________. 18.若点12,2⎛⎫ ⎪⎝⎭)既在()2ax b f x +=图象上,又在其反函数的图象上,则a b +=____19.若关于的方程有三个不相等的实数根,则实数的值为_______.20.已知函数42()(0)f x x ax bx c c =+++<,若函数是偶函数,且4((0))f f c c =+,则函数()f x 的零点共有________个.三、解答题21.设集合A ={x ∈R|x 2+4x =0},B ={x ∈R|x 2+2(a +1)x +a 2-1=0,a ∈R },若B ⊆A ,求实数a 的值.22.已知集合{|3A x x =≤-或2}x ≥,{|15}B x x =<<,{|12}C x m x m =-≤≤(1)求AB ,()RC A B ⋃;(2)若B C C ⋂=,求实数m 的取值范围. 23.已知函数f (x )=log a (x+1)-log a (1-x ),a>0且a ≠1. (1)求f (x )的定义域;(2)判断f (x )的奇偶性并予以证明; (3)当a>1时,求使f (x )>0的解集.24.某厂生产某产品的年固定成本为250万元,每生产千件,需另投入成本(万元),若年产量不足千件,的图象是如图的抛物线,此时的解集为,且的最小值是,若年产量不小于千件,,每千件商品售价为50万元,通过市场分析,该厂生产的商品能全部售完.(1)写出年利润(万元)关于年产量(千件)的函数解析式;(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?25.某辆汽车以x 千米/小时的速度在高速公路上匀速行驶(考虑到高速公路行车安全要求60120)x 时,每小时的油耗(所需要的汽油量)为14500()5x k x-+升,其中k 为常数,且60100k .(1)若汽车以120千米/小时的速度行驶时,每小时的油耗为11.5升,欲使每小时的油耗不超过9升,求x 的取值范围;(2)求该汽车行驶100千米的油耗的最小值. 26.计算下列各式的值:(1)()1110232710223π20.25927--⎛⎫⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭.(2)()221log 3lg5ln e 2lg2lg5lg2-++++⋅.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B【解析】 试题分析:当时,,此时成立,当时,,当时,,即,当时,,当时,恒成立,所以a 的取值范围为,故选B.考点:集合的关系2.C解析:C 【解析】 【分析】化简函数()sin sin f x x x =+,研究它的性质从而得出正确答案. 【详解】()()()()sin sin sin sin ,f x x x x x f x f x -=-+-=+=∴为偶函数,故①正确.当2x ππ<<时,()2sin f x x =,它在区间,2π⎛⎫π ⎪⎝⎭单调递减,故②错误.当0x π≤≤时,()2sin f x x =,它有两个零点:0,π;当0x π-≤<时,()()sin sin 2sin f x x x x =--=-,它有一个零点:π-,故()f x 在[],-ππ有3个零点:0-π,,π,故③错误.当[]()2,2x k k k *∈ππ+π∈N时,()2sin f x x =;当[]()2,22x k k k *∈π+ππ+π∈N 时,()sin sin 0f x x x =-=,又()f x 为偶函数,()f x ∴的最大值为2,故④正确.综上所述,①④ 正确,故选C .【点睛】画出函数()sin sin f x x x =+的图象,由图象可得①④正确,故选C .3.B解析:B 【解析】 函数f (x )=e x ﹣1x 是(0,+∞)上的增函数,再根据f (12)e 2<0,f (1)=e ﹣1>0,可得f (12)f (1)<0,∴函数f (x )=e x ﹣1x 的零点所在的区间是(12,1),故点睛:判定函数的零点所在区间,只需计算区间端点处的函数值,并判断是否异号,只要异号,则区间内至少有一个零点存在.4.C解析:C 【解析】分析:先根据奇函数性质以及对称性确定函数周期,再根据周期以及对应函数值求结果. 详解:因为()f x 是定义域为(,)-∞+∞的奇函数,且(1)(1)f x f x -=+, 所以(1)(1)(3)(1)(1)4f x f x f x f x f x T +=--∴+=-+=-∴=, 因此(1)(2)(3)(50)12[(1)(2)(3)(4)](1)(2)f f f f f f f f f f ++++=+++++,因为(3)(1)(4)(2)f f f f =-=-,,所以(1)(2)(3)(4)0f f f f +++=,(2)(2)(2)(2)0f f f f =-=-∴=,从而(1)(2)(3)(50)(1)2f f f f f ++++==,选C.点睛:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.5.D解析:D 【解析】 【分析】利用换元法 将函数转化为f (t )=e+1,根据函数的对应关系求出t 的值,即可求出函数f (x )的表达式,即可得到结论 【详解】 设t=f (x )-e x ,则f (x )=e x +t ,则条件等价为f (t )=e+1, 令x=t ,则f (t )=e t +t=e+1, ∵函数f (x )为单调递增函数, ∴t=1, ∴f (x )=e x +1,即f (ln5)=e ln1.5+1=1.5+1=2.5, 故选:D . 【点睛】本题主要考查函数值的计算,利用换元法求出函数的解析式是解决本题的关键.6.C解析:C 【解析】 由题意知,函数sin 21cos xy x=-为奇函数,故排除B ;当πx =时,0y =,故排除D ;当1x =时,sin 201cos 2y =>-,故排除A .故选C .点睛:函数图像问题首先关注定义域,从图像的对称性,分析函数的奇偶性,根据函数的奇偶性排除部分选择项,从图像的最高点、最低点,分析函数的最值、极值,利用特值检验,较难的需要研究单调性、极值等,从图像的走向趋势,分析函数的单调性、周期性等.7.C解析:C 【解析】 【分析】先判断函数的定义域关于原点对称,再由奇偶性的定义判断奇偶性,根据复合函数的单调判断其单调性,从而可得结论. 【详解】由100100x x +>⎧⎨->⎩,得(10,10)x ∈-, 故函数()f x 的定义域为()10,10-,关于原点对称,又()()lg 10lg(10)()f x x x f x -=-++=,故函数()f x 为偶函数, 而()()2lg(10)lg(10)lg 100f x x x x=++-=-,因为函数2100y x =-在()0,10上单调递减,lg y x =在()0,∞+上单调递增, 故函数()f x 在()0,10上单调递减,故选C. 【点睛】本题主要考查函数的奇偶性与单调性,属于中档题. 判断函数的奇偶性首先要看函数的定义域是否关于原点对称,如果不对称,既不是奇函数又不是偶函数,如果对称常见方法有:(1)直接法, ()()f x f x -=±(正为偶函数,负为减函数);(2)和差法,()()0f x f x -±=(和为零奇函数,差为零偶函数);(3)作商法,()()1f x f x -=±(1 为偶函数,1- 为奇函数) .8.B解析:B 【解析】 【分析】利用函数的单调性,判断指数函数底数的取值范围,以及一次函数的单调性,及端点处函数值的大小关系列出不等式求解即可 【详解】解:函数6(3)3,7(),7x a x x f x a x ---⎧=⎨>⎩单调递增,()301373a a a a⎧->⎪∴>⎨⎪-⨯-≤⎩解得934a ≤<所以实数a 的取值范围是9,34⎡⎫⎪⎢⎣⎭. 故选:B . 【点睛】本题考查分段函数的应用,指数函数的性质,考查学生的计算能力,属于中档题.9.B解析:B 【解析】 【分析】根据指数函数的单调性得出0.60.30.30.3<,而根据幂函数的单调性得出0.30.30.30.6<,从而得出a ,b ,c 的大小关系. 【详解】 解:0.3x y =在定义域上单调递减,且0.360.<,0.60.30.30.3∴<,又0.3y x∴=在定义域上单调递增,且0.360.<,0.30.30.30.6∴<, 0.60.30.30.30.30.6∴<<,a cb ∴<<故选:B . 【点睛】考查指数函数和幂函数的单调性,以及增函数和减函数的定义.10.C解析:C 【解析】 【分析】令函数4()log 7xf x x =+-,则函数()f x 是()0,∞+上的单调增函数,且是连续函数,根据(5)(6)0f f ⋅<,可得函数4()log 7xf x x =+-的零点所在的区间为()5,6,由此可得方程4log 7x x +=的解所在区间. 【详解】令函数4()log 7xf x x =+-,则函数()f x 是()0,∞+上的单调增函数,且是连续函数.∵(5)0f <,(6)0>f ∴(5)(6)0f f ⋅<∴故函数4()log 7xf x x =+-的零点所在的区间为()5,6∴方程4log 7x x +=的解所在区间是()5,6 故选C. 【点睛】零点存在性定理:利用定理不仅要函数在区间[,]a b 上是连续不断的曲线,且()()0f a f b ⋅<,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.11.B解析:B 【解析】 【分析】根据二次函数的图象和性质,求出最大值和最小值对应的x 的取值,然后利用数形结合即可得到结论. 【详解】当x≥0时,f (x )=x (|x|﹣1)=x 2﹣x=(x ﹣12)2﹣1144≥-, 当x <0时,f (x )=x (|x|﹣1)=﹣x 2﹣x=﹣(x+12)2+14, 作出函数f (x )的图象如图:当x≥0时,由f (x )=x 2﹣x=2,解得x=2. 当x=12时,f (12)=14-. 当x <0时,由f (x )=)=﹣x 2﹣x=14-.即4x 2+4x ﹣1=0,解得x=424-±=⨯=,∴此时, ∵[m,n]上的最小值为14-,最大值为2,∴n=212m ≤≤,∴n﹣m 的最大值为2﹣12--=522+, 故选:B .【点睛】本题主要考查函数最值的应用,利用二次函数的图象和性质是解决本题的关键,利用数形结合是解决本题的基本数学思想.12.D解析:D 【解析】 【分析】 【详解】易得()f x 是奇函数,2()310()f x x f x '=+>⇒在R 上是增函数,不等式(sin )(1)0f m f m θ+-> 恒成立. 可得11(sin )(1)sin 1,0sin 111sin 1sin f m f m m m m m θθθθθ>-⇒>-⇒<<<⇒⇒≤--, 故选D.二、填空题13.【解析】设()因为是增函数要求原函数的递减区间只需求()的递减区间由二次函数知故填解析:()-3∞-,【解析】设2log y t =,223t x x =+-,(0t >)因为2log y t =是增函数,要求原函数的递减区间,只需求223t x x =+-(0t >)的递减区间,由二次函数知(,3)x ∈-∞-,故填(,3)x ∈-∞-.14.6【解析】【分析】先求函数周期再根据周期以及偶函数性质化简再代入求值【详解】由f(x+4)=f(x-2)可知是周期函数且所以【点睛】本题考查函数周期及其应用考查基本求解能力解析:6 【解析】 【分析】先求函数周期,再根据周期以及偶函数性质化简()()9191f f =-,再代入求值. 【详解】由f (x +4)=f (x -2)可知,()f x 是周期函数,且6T =,所以()()()919615311f f f =⨯+=()16f =-=.【点睛】本题考查函数周期及其应用,考查基本求解能力.15.或【解析】【分析】分类讨论的范围利用对数函数二次函数的性质进一步求出的范围【详解】解:∵函数若有最大值或最小值则函数有最大值或最小值且取最值时当时由于没有最值故也没有最值不满足题意当时函数有最小值没解析:{|2m m >或2}3m <- 【解析】 【分析】分类讨论m 的范围,利用对数函数、二次函数的性质,进一步求出m 的范围. 【详解】解:∵函数()()212log 22f x mx m x m ⎡⎤=+-+-⎣⎦,若()f x 有最大值或最小值,则函数2(2)2y mx m x m =+-+-有最大值或最小值,且y 取最值时,0y >.当0m =时,22y x =--,由于y 没有最值,故()f x 也没有最值,不满足题意. 当0m >时,函数y 有最小值,没有最大值,()f x 有最大值,没有最小值.故y 的最小值为24(2)(2)4m m m m ---,且 24(2)(2)04m m m m--->,求得 2m >;当0m <时,函数y 有最大值,没有最小值,()f x 有最小值,没有最大值.故y 的最大值为24(2)(2)4m m m m ---,且 24(2)(2)04m m m m--->,求得23m <-. 综上,m 的取值范围为{|2m m >或2}3m <-. 故答案为:{|2m m >或2}3m <-.本题主要考查复合函数的单调性,二次函数、对数函数的性质,二次函数的最值,属于中档题.16.y=a(1+b)x(x∈N*)【解析】【分析】根据条件计算第一年产量第二年产量…根据规律得到答案【详解】设年产量经过x年增加到y件第一年为y =a(1+b)第二年为y=a(1+b)(1+b)=a(1+解析:y=a(1+b%)x(x∈N*)【解析】【分析】根据条件计算第一年产量,第二年产量…根据规律得到答案.【详解】设年产量经过x年增加到y件,第一年为y=a(1+b%)第二年为y=a(1+b%)(1+b%)=a(1+b%)2,第三年为y=a(1+b%)(1+b%)(1+b%)=a(1+b%)3,…∴y=a(1+b%)x(x∈N*).故答案为:y=a(1+b%)x(x∈N*)【点睛】本题考查了指数型函数的应用,意在考查学生的应用能力.17.3【解析】【分析】首先化简所给的指数式然后结合题意求解其值即可【详解】由题意可得:【点睛】本题主要考查指数幂的运算法则整体数学思想等知识意在考查学生的转化能力和计算求解能力解析:3【解析】【分析】首先化简所给的指数式,然后结合题意求解其值即可.【详解】1321223333a ba b a a b+-+====.【点睛】本题主要考查指数幂的运算法则,整体数学思想等知识,意在考查学生的转化能力和计算求解能力.18.【解析】【分析】由点在函数的反函数的图象上可得点在函数的图象上把点与分别代入函数可得关于的方程组从而可得结果【详解】点在函数的反函数的图象上根据反函数与原函数的对称关系点在函数的图象上把点与分别代入解析:13【分析】 由点12,2⎛⎫ ⎪⎝⎭在函数2ax by +=的反函数的图象上,可得点1,22⎛⎫ ⎪⎝⎭在函数2ax b y +=的图象上,把点12,2⎛⎫ ⎪⎝⎭与1,22⎛⎫ ⎪⎝⎭分别代入函数2ax by +=,可得关于,a b 的方程组,从而可得结果.【详解】 点12,2⎛⎫ ⎪⎝⎭在函数2ax by +=的反函数的图象上, 根据反函数与原函数的对称关系,∴点1,22⎛⎫ ⎪⎝⎭在函数2ax b y +=的图象上,把点12,2⎛⎫ ⎪⎝⎭与1,22⎛⎫ ⎪⎝⎭分别代入函数2ax by +=可得, 21a b +=-,①112a b +=,② 解得45,33a b =-=,13a b +=,故答案为13. 【点睛】本题主要考查反函数的定义与性质,意在考查灵活应用所学知识解答问题的能力,属于中档题.19.3【解析】令fx=x2-2x-2则由题意可得函数y=fx 与函数y=m 的图象有三个公共点画出函数fx=x2-2x-2的图象如图所示结合图象可得要使两函数的图象有三个公共点则m=3答案:3解析:3 【解析】 令,则由题意可得函数与函数的图象有三个公共点.画出函数的图象如图所示,结合图象可得,要使两函数的图象有三个公共点,则.20.2【解析】因为是偶函数则解得又所以故令所以故有2个零点点睛:本题涉及函数零点方程图像等概念和知识综合性较强属于中档题一般讨论函数零点个数问题都要转化为方程根的个数问题或两个函数图像交点的个数问题本题解析:2 【解析】因为()42(0)f x x ax bx c c =+++<是偶函数,则()()f x f x -=,解得0b =,又()()4240()f f f c c ac c c c ==++=+,所以0a =,故4()f x x c =+,令4()0f x x c =+=,40x c =->,所以x =2个零点.点睛:本题涉及函数零点,方程,图像等概念和知识,综合性较强,属于中档题.一般讨论函数零点个数问题,都要转化为方程根的个数问题或两个函数图像交点的个数问题,本题由于涉及函数为初等函数,可以考虑方程来解决,转化为方程根的个数,同时注意偶函数性质在本题中的应用.三、解答题21.a ≤-1或a =1. 【解析】 【分析】先解方程得集合A ,再由 B ⊆A 得B 为A 子集,根据子集四种情况分类讨论,解出实数a 的值.注意对结果要验证 【详解】解 ∵A ={0,-4},B ⊆A ,于是可分为以下几种情况. (1)当A =B 时,B ={0,-4}, ∴由根与系数的关系,得22(1)410a a -+=-⎧⎨-=⎩解得a =1. (2)当B ≠A 时,又可分为两种情况. ①当B ≠∅时,即B ={0}或B ={-4}, 当x =0时,有a =±1; 当x =-4时,有a =7或a =1. 又由Δ=4(a +1)2-4(a 2-1)=0, 解得a =-1,此时B ={0}满足条件; ②当B =∅时,Δ=4(a +1)2-4(a 2-1)<0, 解得a <-1.综合(1)(2)知,所求实数a 的取值为a ≤-1或a =1. 22.(1) {|25}A B x x =≤< (){|35}R C A B x x ⋃=-<< (2) 5(,1)(2,)2-∞-【解析】试题分析:(1)根据集合的交集的概念得到{|25}A B x x ⋂=≤<,{|32}R C A x x =-<<,进而得到结果;(2)∵B C C ⋂= ∴C B ⊆,分情况列出表达式即可. 解析:(1){|25}A B x x ⋂=≤<{|32}R C A x x =-<< (){|35}R C A B x x ⋃=-<<(2)∵B C C ⋂= ∴C B ⊆Ⅰ)当C =∅时,∴12m m ->即1m <-Ⅱ)当C ≠∅时,∴121125m m m m -≤⎧⎪->⎨⎪<⎩∴522m <<综上所述:m 的取值范围是()5,12,2⎛⎫-∞-⋃ ⎪⎝⎭23.(1){}11x x -<<(2)函数()f x 为奇函数,证明见解析(3){}01x x << 【解析】 【分析】(1)根据题意,求函数定义域结合对数函数真数大于零得到关于x 的不等式组,求解即可得出答案。

2024-2025学年高一上学期期中模拟考试数学试题(苏教版2019,必修第一册第1-5章)含解析

2024-2025学年高一上学期期中模拟考试数学试题(苏教版2019,必修第一册第1-5章)含解析

2024-2025学年高一数学上学期期中模拟卷(苏教版2019)(时间:120分钟满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:苏教版2019必修第一册第1章~第5章。

5.难度系数:0.65。

第一部分(选择题共58分)一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{}()14,2,5A x x B =-<<=,则()R B A = ð()A .(]1,2-B .()1,2-C .()[),45,-∞⋃+∞D .()[),15,-∞-+∞ 【答案】A【解析】()2,5B =,则R (,2][5,)B =-∞+∞ ð,则()(]R 1,2B A =- ð.故选:A.2.已知集合{}{}2,,42,A xx k k B x x k k ==∈==+∈Z Z ∣∣.设:,:p x A q x B ∈∈,下列说法正确的是()A .p 是q 的充分不必要条件B .p 是q 的必要不充分条件C .p 是q 的充要条件D .p 是q 的既不充分也不必要条件【答案】B【解析】由(){}221,B xx k k ==+∈Z ∣,{}2,A x x k k ==∈Z ∣,故B 为A 的真子集,又:,:p x A q x B ∈∈,故p 是q 的必要不充分条件.故选:B.3.,,,a b c b c ∈>R ,下列不等式恒成立的是()A .22a b a c +>+B .22a b a c +>+C .22ab ac >D .22a b a c>【答案】B【解析】对于A ,若0c b <<,则22b c <,选项不成立,故A 错误;对于B ,因为b c >,故22a b a c +>+,故B 成立,对于C 、D ,若0a =,则选项不成立,故C 、D 错误;故选:B.4.已知实数a 满足14a a -+=,则22a a -+的值为()A .14B .16C .12D .18【答案】A【解析】因为()212212a a a a a a ---=+++⋅,所以()22211216214a a a a a a ---+=+-⋅=-=.故选:A.5.早在西元前6世纪,毕达哥拉斯学派已经知道算术中项,几何中项以及调和中项,毕达哥拉斯学派哲学家阿契塔在《论音乐》中定义了上述三类中项,其中算术中项,几何中项的定义与今天大致相同.若221a b +=,则()()2121a b++的最大值为()A .916B .2516C .94D .254【答案】C【解析】因为()()212122221a b a b a b++=⋅+++,又221a b +=,所以()()22292121222(224a b aba b+++=⋅+≤+=,当且仅当1222ab==,即1a b ==-时取等号,故选:C6.已知函数()25,1,1x ax x f x a x x⎧-+≤⎪=⎨>⎪⎩满足对任意实数12x x ≠,都有()()21210f x f x x x -<-成立,则a 的取值范围是()A .(]0,3B .[)2,+∞C .()0,∞+D .[]2,3【答案】D【解析】因为函数()f x 满足对任意实数12x x ≠,都有2121()()0f x f x x x -<-成立,不妨假设12x x <,则210x x ->,可得()()210f x f x -<,即()()12f x f x >,可知函数()f x 在R 上递减,则1206a a a a ⎧≥⎪⎪>⎨⎪-+≥⎪⎩,解得23a ≤≤,所以a 的取值范围是[]2,3.故选:D.7.已知函数()221x f x x x =-+,且()()1220f x f x ++<,则()A .120x x +<B .120x x +>C .1210x x -+>D .1220x x ++<【答案】A【解析】由函数单调性性质得:y x x =,21x y =+在R 上单调递增,所以()221x f x x x =-+在R 上单调递增,令函数222121()||1||||21212121x x x x x x g x x x x x x x +-=-+=-+=+++++,则2112()||||()2121x xxx g x x x x x g x -----=-+=-+=-++,所以()()0g x g x +-=,则函数()g x 为奇函数,且在R 上单调递增,故()()()()12121212200f x f x g x g x x x x x ++<⇔<-⇔<-⇔+<.故选:A .8.已知关于x 的不等式20(,,)ax bx c a b c ++>∈R 的解集为(4,1)-,则29c a b++的取值范围为()A .[)6,-+∞B .(,6)-∞C .(6,)-+∞D .(],6∞--【答案】D【解析】由不等式20(,,)ax bx c a b c ++>∈R 的解集为(4,1)-,可知1和4-是方程20ax bx c ++=的两个实数根,且0a <,由韦达定理可得4141b ac a ⎧-+=-⎪⎪⎨⎪-⨯=⎪⎩,即可得3,4b a c a ==-,所以()222499169994463444a c a a a a b a a a a a -+++⎛⎫===+=--+≤-=- ⎪++-⎝⎭.当且仅当944a a -=-时,即34a =-时等号成立,即可得(]29,6c a b∞+∈--+.故选:D二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.若集合{1,1,3,5}M =-,集合{3,1,5}N =-,则正确的结论是()A .,x N x M ∀∈∈B .,x N x M ∃∈∈C .{1,5}M N ⋂=D .{1,5}M N = 【答案】BC【解析】对于A ,3N -∈,但是3M -∉,A 错误,对于B ,1N ∈,1M ∈,B 正确,对于CD ,{1,1,3,5}{3,1,5}{1,5}M N =--= ,{1,1,3,5}{3,1,5}{3,1,1,3,5}M N =--=-- ,C 正确,D 错误.故选:BC .10.已知0a >,0b >,且2a b +=,则()A .222a b +≥B .22log log 0a b +≤C .1244a b -<<D .20a b ->【答案】ABC【解析】对于A ,有()()()()2222222222111122222222a b a ab b a ab b a b a b a b ⎡⎤+=+++-+=++-≥+=⋅=⎣⎦,当且仅当a b =时取等号,故A 正确;对于B ,0a >,0b >,有()22112144ab a b ≤+=⋅=,当且仅当a b =时取等号,故1ab ≤,从而()2222log log log log 10a b ab +=≤=,故B 正确;对于C ,由,0a b >,知0ab >,所以()()()()()()222222222042224ab a ab b a ab b a b a b a b a b <=++--+=+--=--=--,故()24a b -<,从而22a b -<-<,所以22122244a b --=<<=,故C 正确;对于D ,由于当1a b ==时,有,0a b >,2a b +=,但2110a b -=-=,故D 错误.故选:ABC.11.对于任意的表示不超过x 的最大整数.十八世纪,[]y x =被“数学王子”高斯采用,因此得名为高斯函数,人们更习惯称为“取整函数”.下列说法正确的是()A .函数[]()y x x =∈R 为奇函数B .函数[]y x =的值域为ZC .对于任意的,x y +∈R ,不等式[][][]x y x y +≤+恒成立D .不等式[]2[]430x x -+<的解集为{}23x x ≤<【答案】BCD【解析】对于A ,当01x ≤<时,[]0y x ==,当10x -<<,[]1y x ==-,所以[]()y x x =∈R 不是奇函数,所以A 错误,对于B ,因为[]x 表示不超过x 的最大整数,所以当x ∈R 时,[]Z x ∈,所以函数[]y x =的值域为Z ,所以B 正确,对于C ,因为,x y +∈R 时,[][],x x y y ≤≤,所以[][][][][]x y x y x y x y ⎡⎤+=+≤+≤+⎣⎦,所以C 正确,对于D ,由[]2[]430x x -+<,得[]13x <<,因为[]x 表示不超过x 的最大整数,所以23x ≤<,所以D 正确.故选:BCD第二部分(非选择题共92分)三、填空题:本题共3小题,每小题5分,共15分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【必考题】高一数学上期中模拟试卷(及答案)一、选择题1.设常数a ∈R ,集合A={x|(x ﹣1)(x ﹣a )≥0},B={x|x≥a ﹣1},若A ∪B=R ,则a 的取值范围为( ) A .(﹣∞,2)B .(﹣∞,2]C .(2,+∞)D .[2,+∞)2.关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数 ②f (x )在区间(2π,π)单调递增 ③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④B .②④C .①④D .①③3.设()f x 是定义在R 上的偶函数,且当0x ≥时,()21,0122,1xx x f x x ⎧-+≤<=⎨-≥⎩,若对任意的[],1x m m ∈+,不等式()()1f x f x m -≤+恒成立,则实数m 的最大值是( ) A .1-B .13-C .12-D .134.函数()sin lg f x x x =-的零点个数为( ) A .0B .1C .2D .35.设函数22,()6,x x x af x ax x a⎧--≥⎪=⎨-<⎪⎩是定义在R 上的增函数,则实数a 取值范围( )A .[)2,+∞B .[]0,3C .[]2,3D .[]2,46.设奇函数()f x 在[1,1]-上是增函数,且(1)1f -=-,若函数2()21f x t at ≤-+对所有的[1,1]x ∈-都成立,当[1,1]a ∈-时,则t 的取值范围是( ) A .1122t -≤≤ B .22t -≤≤C .12t ≥或12t ≤-或0t = D .2t ≥或2t ≤-或0t =7.函数2()ln(28)f x x x =--的单调递增区间是 A .(,2)-∞- B .(,1)-∞ C .(1,)+∞D .(4,)+∞8.若0.23log 2,lg0.2,2a b c ===,则,,a b c 的大小关系为A .c b a <<B . b a c <<C . a b c <<D .b c a <<9.函数f(x)=23x x +的零点所在的一个区间是 A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2)10.函数()f x 的图象如图所示,则它的解析式可能是( )A .()212xx f x -= B .()()21xf x x =-C .()ln f x x =D .()1xf x xe =-11.设a =2535⎛⎫ ⎪⎝⎭,b =3525⎛⎫ ⎪⎝⎭ ,c =2525⎛⎫ ⎪⎝⎭,则a ,b ,c 的大小关系是( )A .a>c>bB .a>b>cC .c>a>bD .b>c>a12.函数2xy x =⋅的图象是( )A .B .C .D .二、填空题13.函数()f x =的定义域是______. 14.若函数()f x 满足()3298f x x +=+,则()f x 的解析式是_________. 15.已知2a=5b=m ,且11a b+=1,则m =____. 16.已知()32,,x x af x x x a⎧≤=⎨>⎩,若存在实数b ,使函数()()g x f x b =-有两个零点,则a的取值范围是________. 17.如果函数221xx y a a =+-(0a >,且1a ≠)在[]1,1-上的最大值是14,那么a 的值为__________.18.已知函数()log ,03,40a x x f x x x >⎧=⎨+-≤<⎩,其中0a >且1a ≠,若函数()f x 的图象上有且只有一对点关于y 轴对称,则a 的取值范围是__________.19.已知函数(12)(1)()4(1)x a x f x ax x⎧-<⎪=⎨+≥⎪⎩,且对任意的12,x x R ∈,12x x ≠时,都有()()12120f x f x x x ->-,则a 的取值范围是________20.已知函数()266,34,x x f x x ⎧-+=⎨+⎩ 00x x ≥<,若互不相等的实数1x ,2x ,3x 满足()()()123f x f x f x ==,则123x x x ++的取值范围是__________. 三、解答题21.已知函数()f x 对任意的实数m ,n 都有()()()1f m n f m f n +=+-,且当0x >时,有()1f x >.(1)求()0f ;(2)求证:()f x 在R 上为增函数;(3)若()12f =,且关于x 的不等式()()223f ax f x x -+-<对任意的[)1,x ∈+∞恒成立,求实数a 的取值范围.22.若()f x 是定义在(0,)+∞上的函数,且满足()()()xf f x f y y=-, 当1x >时,()0f x >. (1)判断并证明函数的单调性;(2)若(2)1f =,解不等式1(3)()2f x f x+-<.23.已知函数21()(,,)ax f x a b c Z bx c+=∈+是奇函数,且(1)2,(2)3f f =<(1)求a ,b ,c 的值;(2)判断函数()f x 在[1,)+∞上的单调性,并用定义证明你的结论; (3)解关于t 的不等式:2(1)(3)0f t f t --++>. 24.一种放射性元素,最初的质量为500g ,按每年10﹪衰减. (Ⅰ)求t 年后,这种放射性元素质量ω的表达式;(Ⅱ)由求出的函数表达式,求这种放射性元素的半衰期(剩留量为原来的一半所需要的时间).(精确到0.1;参考数据:)25.已知幂函数2242()(22)m m f x m m x -+=--在(0,)+∞上单调递减.(1)求m 的值并写出()f x 的解析式;(2)试判断是否存在0a >,使得函数()(21)1()ag x a x f x =--+在[1,2]-上的值域为 [4,11]-?若存在,求出a 的值;若不存在,请说明理由.26.设集合222{|40},{|2(1)10}A x x x B x x a x a =+==+++-=,若A ∩B=B ,求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 试题分析:当时,,此时成立,当时,,当时,,即,当时,,当时,恒成立,所以a 的取值范围为,故选B.考点:集合的关系2.C解析:C 【解析】 【分析】化简函数()sin sin f x x x =+,研究它的性质从而得出正确答案. 【详解】()()()()sin sin sin sin ,f x x x x x f x f x -=-+-=+=∴为偶函数,故①正确.当2x ππ<<时,()2sin f x x =,它在区间,2π⎛⎫π ⎪⎝⎭单调递减,故②错误.当0x π≤≤时,()2sin f x x =,它有两个零点:0,π;当0x π-≤<时,()()sin sin 2sin f x x x x =--=-,它有一个零点:π-,故()f x 在[],-ππ有3个零点:0-π,,π,故③错误.当[]()2,2x k k k *∈ππ+π∈N时,()2sin f x x =;当[]()2,22x k k k *∈π+ππ+π∈N 时,()sin sin 0f x x x =-=,又()f x 为偶函数,()f x ∴的最大值为2,故④正确.综上所述,①④ 正确,故选C .【点睛】画出函数()sin sin f x x x =+的图象,由图象可得①④正确,故选C .3.B解析:B 【解析】 【分析】由题意,函数()f x 在[0,)+∞上单调递减,又由函数()f x 是定义上的偶函数,得到函数()f x 在(,0)-∞单调递增,把不等式(1)()f x f x m -≤+转化为1x x m -≤+,即可求解. 【详解】易知函数()f x 在[)0,+∞上单调递减, 又函数()f x 是定义在R 上的偶函数, 所以函数()f x 在(),0-∞上单调递增, 则由()()1f x f x m -≤+,得1x x m -≥+,即()()221x x m -≥+,即()()22210g x m x m =++-≤在[],1x m m ∈+上恒成立,则()()()()()()3110121310g m m m g m m m ⎧=-+≤⎪⎨+=++≤⎪⎩,解得113m -≤≤-, 即m 的最大值为13-. 【点睛】本题主要考查了函数的基本性质的应用,其中解答中利用函数的基本性质,把不等式转化为1x x m -≤+ 求解是解答的关键,着重考查了分析问题和解答问题的能力,以及推理与运算能力,属于中档试题.4.D解析:D 【解析】 【分析】画出函数图像,根据函数图像得到答案. 【详解】如图所示:画出函数sin y x =和lg y x =的图像,共有3个交点. 当10x >时,lg 1sin x x >≥,故不存在交点. 故选:D .【点睛】本题考查了函数的零点问题,画出函数图像是解题的关键.5.D解析:D 【解析】 【分析】画出函数22y x x =--的图象,结合图象及题意分析可得所求范围. 【详解】画出函数22y x x =--的图象如下图所示,结合图象可得,要使函数()22,,6,,x x x a x ax x a ⎧--≥⎪=⎨-<⎪⎩是在R 上的增函数,需满足22226a a a a ≥⎧⎨--≥-⎩,解得24x ≤≤. 所以实数a 取值范围是[]2,4. 故选D . 【点睛】解答本题的关键有两个:(1)画出函数的图象,结合图象求解,增强了解题的直观性和形象性;(2)讨论函数在实数集上的单调性时,除了考虑每个段上的单调性之外,还要考虑在分界点处的函数值的大小关系.6.D解析:D 【解析】试题分析:奇函数()f x 在[]1,1-上是增函数, 且()11f -=-,在[]1,1-最大值是21,121t at ∴≤-+,当0t ≠时, 则220t at -≥成立, 又[]1,1a ∈-,令()[]22,1,1r a ta t a =-+∈-, 当0t >时,()r a 是减函数, 故令()10r ≥解得2t ≥, 当0t <时,()r a 是增函数, 故令()10r -≥,解得2t ≤-,综上知,2t ≥或2t ≤-或0t =,故选D. 考点:1、函数的奇偶性与单调性能;2、不等式恒成立问题.【方法点晴】本题主要考查函数的奇偶性与单调性能、不等式恒成立问题,属于难题.不等式恒成立问题常见方法:①分离参数()a f x ≤恒成立(min ()a f x ≤即可)或()a f x ≥恒成立(max ()a f x ≥即可);②数形结合(()y f x =图象在yg x 上方即可);③讨论最值min ()0f x ≥或max ()0f x ≤恒成立;④讨论参数.本题是利用方法①求得t 的范围.7.D解析:D 【解析】由228x x -->0得:x ∈(−∞,−2)∪(4,+∞),令t =228x x --,则y =ln t ,∵x ∈(−∞,−2)时,t =228x x --为减函数; x ∈(4,+∞)时,t =228x x --为增函数; y =ln t 为增函数,故函数f (x )=ln(228x x --)的单调递增区间是(4,+∞), 故选D.点睛:形如()()y f g x =的函数为()y g x =,() y f x =的复合函数,() y g x =为内层函数,()y f x =为外层函数. 当内层函数()y g x =单增,外层函数()y f x =单增时,函数()()y f g x =也单增; 当内层函数()y g x =单增,外层函数()y f x =单减时,函数()()y f g x =也单减; 当内层函数()y g x =单减,外层函数()y f x =单增时,函数()()y f g x =也单减; 当内层函数()y g x =单减,外层函数()y f x =单减时,函数()()y f g x =也单增.简称为“同增异减”.8.B解析:B 【解析】 【分析】由对数函数的单调性以及指数函数的单调性,将数据与0或1作比较,即可容易判断. 【详解】由指数函数与对数函数的性质可知,a =()3log 20,1,b ∈=lg0.20,c <=0.221>,所以b a c <<,故选:B. 【点睛】本题考查利用指数函数和对数函数的单调性比较大小,属基础题.9.B解析:B 【解析】试题分析:因为函数f(x)=2x +3x 在其定义域内是递增的,那么根据f(-1)=153022-=-<,f (0)=1+0=1>0,那么函数的零点存在性定理可知,函数的零点的区间为(-1,0),选B . 考点:本试题主要考查了函数零点的问题的运用.点评:解决该试题的关键是利用零点存在性定理,根据区间端点值的乘积小于零,得到函数的零点的区间.10.B解析:B【解析】 【分析】根据定义域排除C ,求出()1f 的值,可以排除D ,考虑()100f -排除A . 【详解】根据函数图象得定义域为R ,所以C 不合题意;D 选项,计算()11f e =-,不符合函数图象;对于A 选项, ()10010099992f -=⨯与函数图象不一致;B 选项符合函数图象特征.故选:B 【点睛】此题考查根据函数图象选择合适的解析式,主要利用函数性质分析,常见方法为排除法.11.A解析:A 【解析】试题分析:∵函数2()5xy =是减函数,∴c b >;又函数25y x =在(0,)+∞上是增函数,故a c >.从而选A考点:函数的单调性.12.A解析:A 【解析】 【分析】先根据奇偶性舍去C,D,再根据函数值确定选A. 【详解】因为2xy x =⋅为奇函数,所以舍去C,D; 因为0x >时0y >,所以舍去B ,选A. 【点睛】有关函数图象识别问题的常见题型及解题思路(1)由解析式确定函数图象的判断技巧:(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.(2)由实际情景探究函数图象.关键是将问题转化为熟悉的数学问题求解,要注意实际问题中的定义域问题.二、填空题13.【解析】【分析】由根式内部的代数式大于等于0且分式的分母不等于0联立不等式组求解x 的取值集合得答案【详解】由得且函数的定义域为:;故答案为【点睛】本题考查了函数的定义域及其求法是基础的会考题型解析:[)()1,00,∞-⋃+【解析】 【分析】由根式内部的代数式大于等于0且分式的分母不等于0联立不等式组求解x 的取值集合得答案. 【详解】由{100x x +≥≠,得1x ≥-且0x ≠.∴函数()f x x=的定义域为:[)()1,00,-⋃+∞; 故答案为[)()1,00,-⋃+∞. 【点睛】本题考查了函数的定义域及其求法,是基础的会考题型.14.【解析】【分析】设带入化简得到得到答案【详解】设代入得到故的解析式是故答案为:【点睛】本题考查了利用换元法求函数解析式属于常用方法需要学生熟练掌握解析:()32f x x =+ 【解析】 【分析】设32t x =+,带入化简得到()32f t t =+得到答案. 【详解】()3298f x x +=+,设32t x =+ 代入得到()32f t t =+故()f x 的解析式是() 32f x x =+ 故答案为:()32f x x =+ 【点睛】本题考查了利用换元法求函数解析式,属于常用方法,需要学生熟练掌握.15.10【解析】因为2a=5b=m 所以a=log2mb=log5m 由换底公式可得=logm2+logm5=logm10=1则m=10点睛:(1)在对数运算中先利用幂的运算把底数或真数进行变形化成分数指数解析:10 【解析】因为2a =5b =m ,所以a =log 2m ,b =log 5m , 由换底公式可得11a b+=log m 2+log m 5=log m 10=1,则m =10. 点睛:(1)在对数运算中,先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后再运用对数运算法则化简合并,在运算中要注意化同底或指数与对数互化.(2)熟练地运用对数的三个运算性质并配以代数式的恒等变形是对数计算、化简、证明常用的技巧.16.【解析】【分析】由有两个零点可得有两个零点即与的图象有两个交点则函数在定义域内不能是单调函数结合函数图象可求的范围【详解】有两个零点有两个零点即与的图象有两个交点由可得或①当时函数的图象如图所示此时 解析:()(),01,-∞⋃+∞【解析】 【分析】由()()g x f x b =-有两个零点可得()f x b =有两个零点,即()y f x =与y b =的图象有两个交点,则函数在定义域内不能是单调函数,结合函数图象可求a 的范围 【详解】()()g x f x b =-有两个零点,()f x b ∴=有两个零点,即()y f x =与y b =的图象有两个交点,由32x x =可得,0x =或1x =①当1a >时,函数()f x 的图象如图所示,此时存在b ,满足题意,故1a >满足题意②当1a =时,由于函数()f x 在定义域R 上单调递增,故不符合题意 ③当01a <<时,函数()f x 单调递增,故不符合题意④0a =时,()f x 单调递增,故不符合题意⑤当0a <时,函数()y f x =的图象如图所示,此时存在b 使得,()y f x =与y b =有两个交点综上可得,0a <或1a > 故答案为:()(),01,-∞⋃+∞ 【点睛】本题考察了函数的零点问题,渗透了转化思想,数形结合、分类讨论的数学思想.17.3或【解析】【分析】令换元后函数转化为二次函数由二次函数的性质求得最大值后可得但是要先分类讨论分和求出的取值范围【详解】设则对称轴方程为若则∴当时解得或(舍去)若则∴当时解得或(舍去)答案:3或【点解析:3或13【解析】 【分析】令x t a =,换元后函数转化为二次函数,由二次函数的性质求得最大值后可得a .但是要先分类讨论,分1a >和01a <<求出t 的取值范围. 【详解】设0x t a =>,则221y t t =+-,对称轴方程为1t =-.若1,[1,1]a x >∈-,则1,xt a a a ⎡⎤=∈⎢⎥⎣⎦, ∴当t a =时,2max 2114y a a =+-=,解得3a =或5a =-(舍去).若01a <<,[1,1]x ∈-,则1,xt a a a ⎡⎤=∈⎢⎥⎣⎦∴当1t a =时,2max 112114y a a ⎛⎫=+⨯-= ⎪⎝⎭解得13a =或15a =-(舍去)答案:3或13【点睛】本题考查指数型复合函数的最值,本题函数类型的解题方法是用换元法把函数转化为二次函数求解.注意分类讨论.18.【解析】将在轴左侧的图象关于轴对称到右边与在轴右侧的图象有且只有一个交点当时一定满足当时必须解得综上的取值范围是点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关解析:(0,1)1,4⋃() 【解析】将()f x 在y 轴左侧的图象关于y 轴对称到右边,与()f x 在y 轴右侧的图象有且只有一个交点.当01a <<时一定满足,当1a >时必须log 41a >,解得4a <.综上a 的取值范围是()0,11,4⋃().点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.19.【解析】【分析】根据判断出函数在上为增函数由此列不等式组解不等式组求得的取值范围【详解】由于对任意的时都有所以函数在上为增函数所以解得故答案为:【点睛】本小题主要考查根据函数的单调性求参数的取值范围 解析:[1,0)-【解析】 【分析】 根据()()12120f x f x x x ->-判断出函数在R 上为增函数,由此列不等式组,解不等式组求得a 的取值范围.【详解】由于对任意的12,x x R ∈,12x x ≠时,都有()()12120f x f x x x ->-,所以函数在R 上为增函数,所以1210124a a a a ->⎧⎪<⎨⎪-≤+⎩,解得10a -≤<.故答案为:[)1,0-. 【点睛】本小题主要考查根据函数的单调性求参数的取值范围,考查指数函数的单调性,考查分式型函数的单调性,属于基础题.20.【解析】【分析】画出分段函数的图像由图像结合对称性即可得出【详解】函数的图像如下图所示不妨设则关于直线对称所以且满足则故的取值范围是【点睛】解决本题的关键是要会画分段函数的图像由图像结合对称性经过计解析:11(,6)3【解析】 【分析】画出分段函数的图像,由图像结合对称性即可得出。

相关文档
最新文档