八年级上册几何证明题专项练习
初二上册几何习题
八年级数学(上)几何证明练习题19. 已知:如图,A 、C 、F 、D 在同一直线上,AF =D C ,AB =DE ,BC =EF ,求证:△ABC ≌△DEF .20.如图,已知AB DC AC DB ==,.求证:12∠=∠.21. 已知:如图,AB =AC ,BD ⊥AC ,CE ⊥AB ,垂足分别为D 、E ,BD 、CE 交于点F ,求证:BE =CD .22. (6分) 如图,在△ABC 中,∠ACB=90°,AC=BC ,直线MN 过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E ,求证:AD=CEBCF A CD EFA DBCO12ABCDEMN23.(8分) 如图,AB =CD ,DE ⊥AC ,BF ⊥AC ,E ,F 是垂足,DE BF =. 求证:(1)AF CE =;(2)AB CD ∥.24. (6分) 如图,在四边形ABCD 中,E 是AC 上的一点,∠1=∠2,∠3=∠4, 求证: ∠5=∠6.25. (8分) 如图,四边形ABCD 的对角线AC 与BD 相交于O 点。
∠1=∠2,∠3=∠4 . 求证:(1) ΔABC ≌ ΔADC ; (2) BO=DO .1、已知:在⊿ABC 中,∠A=900,AB=AC ,在BC 上任取一点P ,作PQ ∥AB 交AC 于Q ,作PR ∥CA 交BA 于R ,D 是BC 的中点,求证:⊿RDQ 是等腰直角三角形。
ADECBFCAC AB C D E P 图 ⑴B2、 已知:在⊿ABC 中,∠A=900,AB=AC ,D 是AC 的中点,AE ⊥BD ,AE 延长线交BC 于F ,求证:∠ADB=∠FDC 。
3、 已知:在⊿ABC 中BD 、CE 是高,在BD 、CE 或其延长线上分别截取BM=AC 、CN=AB ,求证:MA ⊥NA 。
4、已知:如图(1),在△ABC 中,BP 、CP 分别平分∠ABC 和∠ACB ,DE 过点P 交AB 于D ,交AC 于E ,且DE ∥BC .求证:DE -DB=EC .5、在Rt △ABC 中,AB =AC ,∠BAC =90°,O 为BC 的中点。
八年级上学期数学期末专题:几何证明综合(原题和解析)
【期末压轴题】专题05:几何证明综合(原卷版)学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列六个命题①有理数与数轴上的点一一对应①两条直线被第三条直线所截,内错角相等①平行于同一条直线的两条直线互相平行;①同一平面内,垂直于同一条直线的两条直线互相平行;①直线外一点到这条直线的垂线段叫做点到直线的距离①如果一个角的两边分别平行于另一个角的两边,那么这两个角相等,其中假命题的个数是()A.2个B.3个C.4个D.5个2.下列几个命题中,真命题有()①两条直线被第三条直线所截,内错角相等;①如果1∠=∠;∠和2∠是对顶角,那么12①一个角的余角一定小于这个角的补角;①三角形的一个外角大于它的任一个内角.A.1个B.2个C.3个D.43.下面说法正确的个数有()x-<-的(1)不等式两边乘(或除以)同一个数,不等号的方向不变;(2)5-是324解;(3)三角形的外角等于与它不相邻的两个内角的和;(4)如果ABC的三个内角满∠=∠-∠,那么ABC一定是直角三角形;(5)三角形的高所在的直线交于一足A C B点,这一点不在三角形内就在三角形外A.1个B.2C.3个D.4个4.下列命题中假命题有()①两条直线被第三条直线所截,同位角相等①如果两条直线都与第三条直线平行,那么这两条直线也互相平行①点到直线的垂线段叫做点到直线的距离①过一点有且只有一条直线与已知直线平行①若两条直线都与第三条直线垂直,则这两条直线互相平行.A.5个B.4个C.3个D.2个5.下列命题为真命题的是( )A .如果0mn =,那么0m =且0n =B .两边分别相等的两个直角三角形全等C .三角形的三条角平分线相交于一点,并且这一点到三个顶点的距离相等D .如果两条直线互相平行,则其中一条直线上任意一点到另一条直线的距离都相等 6.一副三角板如图摆放,点F 是45°角三角板ABC 的斜边的中点,4AC =.当30°角三角板DEF 的直角顶点绕着点F 旋转时,直角边DF ,EF 分别与AC ,BC 相交于点M ,N .在旋转过程中有以下结论:①MF NF =;①四边形CMFN 有可能为正方形;①MN 长度的最小值为2;①四边形CMFN 的面积保持不变:①CMN △面积的最大值为2,其中正确的个数是( )A .2B .3C .4D .57.如图,在Rt ABC △中,90BAC ∠=︒,AB AC =,D 为BC 边上一点,将ABD △绕点A 逆时针旋转90°得到ACE ,点B 、D 的对应点分别为点C 、E ,连接BE ,将AC 平移得到DF (点A 、C 的对应点分别为点D 、F ),连接AF ,若AB =2BD =,则AF 的长为( )A .B .6C .D 8.如图,等腰Rt ABC 中,AB =AC ,①BAC =90°,AD ①BC 于点D ,①ABC 的平分线分别交AC 、AD 于E 、F 两点,M 为EF 的中点,AM 的延长线交BC 于点N ,连接DM ,下列结论:①DF =DN ;①DMN 为等腰三角形;①DM 平分①BMN ;①AE =23EC ;①AE =NC ,其中正确结论有( )A .2个B .3个C .4个D .5个9.如图,凸四边形ABCD 中,90,90,60,3,A C D AD AB ∠=︒∠=︒∠=︒==若点M 、N 分别为边,CD AD 上的动点,则BMN △的周长最小值为( )A .B .C .6D .310.如图,Rt ABC 中,90ACB ∠=︒且CA CB =,D 为ABC 外一点,连接AD ,过D 作DE DA ⊥交BC 于点E ,F 为DE 上一点且DF DA =,连接BF ,CD .将线段CD 绕点C 逆时针旋转90︒到线段CG ,连接DG 分别交BF 、BA 于点M 、N ,连接BG 、CF .下列结论:①BM FM =;①CG =;①BCG AND ∠>∠;①CF AD +>;①若2BG =,BC =CF =2ADFC S =四边形 )A .2个B .3个C .4个D .5个 11.如图,在ABC 中,点E 在边AC 上,EB =EA ,①A =2①CBE ,延长BD 到F ,使DF =DB ,连接CF ,过点C 作CD ①BF 于点D ,BD =16,AC =22,则边BC 的长为( )A .B .C .D .12.如图,把含30°的直角三角板ABC 绕点B 顺时针旋转至如图EBD ,使BC 在BE 上延长AC 交DE 于F ,若AF =4,则AB 的长为( )A.2B .C .D .3二、填空题 13.如图,在平面直角坐标系中,点()6,0A ,点()0,P m ,将线段PA 绕着点P 逆时针旋转90°,得到线段PB ,连接AB ,OB ,则BO BA +的最小值为__________.14.如图,在ABC 中,CA BC =,8AB =,5AC =,点D 是AB 边上的一个动点,点E 与点A 关于直线CD 对称,连接CE ,DE ,AE ,当ADE 是直角三角形时,求AD 的长为_____________.15.如图,已知30B ∠=,45C ∠=,150BDC ∠=,且5BD CD ==,则AB =_________16.如图,在矩形ABCD 中,点E 在线段AD 上,连接BE 、CE ,点F 在线段BE 上,连接CF ,若①EBC =2①ECD ,DE =2,BF =9,tan①EFC =43,则线段CE 的长为______.17.如图,在等腰ABC 中,120ACB ∠=︒,8AC BC ==,D 、E 为边AB 上两个动点,且6DE =,则CDE △周长的最小值是________.18.如图,点D 是等边①ABC 内部的一点,①ADC =120°,AB 2=19,23AD CD =,则线段BD 的长度是 ___.19.如图所示,①AOB =50°,①BOC =30°,OM =11,ON =6.点P 、Q 分别是OA 、OB 上动点,则MQ +PQ +NP 的最小值是 ___.20.①ABC中,①ACB=60°,AC=4,BC=13,以AB为边作等边①ABD,过D作DE①BC 于E,则BE的长为____.三、解答题21.如图,AD与BC交于点O,①AD=BC;①①A=①C;①AB=CD,请以①①①中的两个作为条件,另一个为结论,写出一个真命题,并加以证明.已知:求证:证明:22.如图,在Rt①ABC中,①C=90°,AB=10cm,AC=6cm,动点P从点B出发,沿射线BC以4cm/s的速度运动,设运动时间为t秒.(1)当t= 时,AP平分①ABC的面积.(2)当①ABP为等腰三角形时,求t的值.(3)若点Q是边AB上一点,且QP①BC,垂足为P,请用无刻度的直尺和圆规,作出点P、点Q,使得QA=QP.(4)若点E、F为BC、AB上的动点,求AE+EF的最小值.23.在①ABC中,P是BC边上的一动点,连接AP.(1)如图1,①BAC=90°,AB=AC,①BAP=15°,且PC.求:①ABP的面积.(2)如图2,若①BAC=90°,AB=AC,AP为边作等腰Rt①APE,连接BE,F是BE的中点,连接AF,猜想PE,PB,AF之间有何数量关系?并证明你的结论.(3)如图3,作PD①AB于D,PE①AC于E,若①B=75°,①C=45°,BC=9﹣当DE最小时,请直接写出DE的最小值.24.如图,在Rt ABC中AB=10,BC①AC,P为线段AC上一点,点Q,P关于直线BC对称,QD①AB于点D,DQ与BC交于点E,连结DP,设AP=m.(1)若BC=8,求AC的长,并用含m的代数式表示PQ的长;(2)在(1)的条件下,若AP=PD.求CP的长:(3)连结PE,若①A=60°,PCE与PDE的画积之比为1:2,求m的值.25.定义:如图1,点M、N把线段AB分割成AM、MN和BN,若以AM、MN、BN为边的三角形是一个直角三角形,则称点M ,N 是线段AB 的勾股分割点.(1)已知点M 、N 是线段AB 的勾股分割点,MN AM >,MN BN >,若2AM =,3MN =,则BN =_________;(2)如图,在等腰直角ABC 中,AC BC =,90ACB ∠=︒,M ,、N 为直线AB 上两点,满足45MCN ∠=︒.①如图2,点M 、N 在线段AB 上,求证:点M 、N 是线段AB 的勾股分割点;小林同学在解决第(2)小题时遇到了困难,陈老师对小林说:要证明勾股分割点,则需设法构造直角三角形,你可以把CBN 绕点C 逆时针旋转90°试一试.请根据陈老师的提示完成第(2)小题的证明过程;①如图3,若点M 在线段AB 上,点N 在线段AB 的延长线上,AM =,BN =,求BM 的长.26.如图,在ABC 中,45A ∠=︒.(1)如图1,若AC =2AB =,求ABC 的面积;(2)如图2,D 为ABC 外的一点,连接CD ,BD 且CD CB =,ABD BCD ∠=∠,过点C 作CE AC ⊥交AB 的延长线于点E ,求证:2BD AB +=;(3)如图3,在(2)的条件下,作AP 平分CAE ∠交CE 于点P ,过E 点作EM AP ⊥交AP 的延长线于点M ,点K 为直线AC 上点的一个动点,连接MK ,过M 点作MK MK '⊥,且始终满足MK MK '=,连接AK ',若AC =AK MK ''+取得最小值时()2AK MK ''+的值.27.如图(1),CD 、BE 是①ABC 的两条高,M 为线段BC 的中点.(1)求证:MD =ME .(2)若①ABC =70°,①ACB =42°,求①DME 的度数.(3)若将锐角①ABC 变为钝角①ABC ,如图(2),①BAC =α,请直接写出①DME 的度数.(用含α的式子表示)28.如图,在ABC 中,AB AC =,过点A 作线段AD ,使AB AD =,连接BD ,CD . (1)如图1,当30ABC ∠=︒时,求BDC ∠度数;(2)如图2,求证:11802BDC BAC ∠+∠=︒; (3)如图3,在(1)的条件下,过点D 作DF BC ⊥,垂足为点F ,并反向延长DF 到点E ,使DA DE =,连接AE 交DC 于点M ,若2BD DM ==,求AE 的长.29.如图,已知ABC 是等腰直角三角形,动点P 在斜边AB 所在的直线上,以PC 为直角边作等腰直角PCQ ,其中①PCQ =90°,探究并解决下列问题:(1)如图1,若点P 在线段AB 上时,猜想P A 2,PB 2,PQ 2三者之间的数量关系 ; (2)如图2,若点P 在AB 的延长线上,在(1)中所猜想的P A 2,PB 2,PQ 2三者之间的数量关系仍然成立,请利用图2进行证明;(3)若动点P 满足PA PB =23,求PC AC的值(请利用图3进行探求). 30.在平面直角坐标系中,O 为原点,点()2,0A ,点()0,2B ,把ABO 绕点B 逆时针旋转,得A BO ''△,点A ,O 旋转后的对应点为A ',O ',记旋转角为α.(1)如图①,当点O '落在边AB 上时,求点O '的坐标;(2)如图①,当60α=︒时,求AA '的长及点A '的坐标.【期末压轴题】专题05:几何证明综合(解析版)学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列六个命题①有理数与数轴上的点一一对应①两条直线被第三条直线所截,内错角相等①平行于同一条直线的两条直线互相平行;①同一平面内,垂直于同一条直线的两条直线互相平行;①直线外一点到这条直线的垂线段叫做点到直线的距离①如果一个角的两边分别平行于另一个角的两边,那么这两个角相等,其中假命题的个数是()A.2个B.3个C.4个D.5个【标准答案】C【思路点拨】利用实数的性质、平行线的性质及判定、点到直线的距离等知识分别判断后即可确定答案.【精准解析】解:①实数与数轴上的点一一对应,故原命题错误,是假命题,符合题意;①两条平行直线被第三条直线所截,内错角相等,故原命题错误,是假命题,符合题意;①平行于同一条直线的两条直线互相平行,正确,是真命题,不符合题意;①同一平面内,垂直于同一条直线的两条直线互相平行,正确,是真命题,不符合题意;①直线外一点到这条直线的垂线段的长度叫做点到直线的距离,故原命题错误,是假命题,符合题意;①如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补,故原命题错误,是假命题,符合题意,假命题有4个,故选:C.【名师指导】本题主要考查了命题与定理的知识,解题的关键是了解实数的性质、平行线的性质及判定、点到直线的距离的定义等知识,难度不大.2.下列几个命题中,真命题有()①两条直线被第三条直线所截,内错角相等;①如果1∠=∠;∠和2∠是对顶角,那么12①一个角的余角一定小于这个角的补角;①三角形的一个外角大于它的任一个内角.A.1个B.2个C.3个D.4【标准答案】B【思路点拨】根据平行线的性质对①进行判断;根据对顶角的性质对①进行判断;根据余角与补角的定义对①进行判断;根据三角形外角性质对①进行判断.【精准解析】解:两条平行直线被第三条直线所截,内错角相等,所以①错误;如果①1和①2是对顶角,那么①1=①2,所以①正确;一个角的余角一定小于这个角的补角,所以①正确;三角形的外角大于任何一个与之不相邻的一个内角,所以①错误.故选:B.【名师指导】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.3.下面说法正确的个数有()(1)不等式两边乘(或除以)同一个数,不等号的方向不变;(2)5-是324x-<-的解;(3)三角形的外角等于与它不相邻的两个内角的和;(4)如果ABC的三个内角满足A C B∠=∠-∠,那么ABC一定是直角三角形;(5)三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外A.1个B.2C.3个D.4个【标准答案】C【思路点拨】利用不等式性质2可判断(1);利用解不等式求解可判断(2);利用三角形外角性质可判断(3);利用三角形内角和与条件组成方程组可判断(4);利用直角三角形高所在直线交点可判断(5)即可.【精准解析】解(1)不等式两边乘(或除以)同一个正数,不等号的方向不变,故(1)不正确;(2)324x-<-,移项合并得32x<-,系数化1得23x<-,①5-是324x-<-的解正确,故(2)正确;(3)三角形的外角等于与它不相邻的两个内角的和,故(3)正确;(4)如果ABC 的三个内角满足A C B ∠=∠-∠,又①180A B C ∠+∠+∠=︒①180C B B C ∠-∠+∠+∠=︒解得90C ∠=︒①ABC 一定是直角三角形,故(4)正确;(5)三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外直角三角形的高所在的直线交于一点,在三角形边上,故(5)不正确;①说法正确的个数有3个.故选择C .【名师指导】本题考查不等式的性质,不等式的解法与解,三角形外角性质,直角三角形判定,三角形高所在直线的交点位置,掌握不等式的性质,不等式的解法与解,三角形外角性质,直角三角形判定,三角形高所在直线的交点位置是解题关键.4.下列命题中假命题有( )①两条直线被第三条直线所截,同位角相等①如果两条直线都与第三条直线平行,那么这两条直线也互相平行①点到直线的垂线段叫做点到直线的距离①过一点有且只有一条直线与已知直线平行①若两条直线都与第三条直线垂直,则这两条直线互相平行.A .5个B .4个C .3个D .2个【标准答案】B【思路点拨】根据平行线的性质和判定,点到直线距离定义一一判断即可.【精准解析】解:①两条直线被第三条直线所截,同位角相等,错误,缺少平行的条件;①如果两条直线都与第三条直线平行,那么这两条直线也互相平行,正确;①点到直线的垂线段叫做点到直线的距离,错误,应该是垂线段的长度;①过一点有且只有一条直线与已知直线平行,错误,应该是过直线外一点;①若两条直线都与第三条直线垂直,则这两条直线互相平行,错误,条件是同一平面内.故选B .【名师指导】本题主要考查命题与定理,解决本题的关键是要熟练掌握平行线的性质和判定,点到直线距离定义.5.下列命题为真命题的是( )A .如果0mn =,那么0m =且0n =B .两边分别相等的两个直角三角形全等C .三角形的三条角平分线相交于一点,并且这一点到三个顶点的距离相等D .如果两条直线互相平行,则其中一条直线上任意一点到另一条直线的距离都相等【标准答案】D【思路点拨】分清“或”与“且”的区别,可判断A ,利用全等三角形的判定方法可判断B ,利用角平分线的性质可判断C ,利用平行线间的距离处处相等性质可判断D .【精准解析】A .①0mn =,①m =0或n =0,如果0mn =,那么0m =且0n =不是真命题,故选项A 不正确B. ①有两边对应相等的两个直角三角形全等,①两边分别相等的两个直角三角形全等不是真命题,故选项B 不正确;C. ①三角形的三条角平分线相交于以点,这点到三边的距离相等,①三角形的三条角平分线相交于一点,并且这一点到三个顶点的距离相等不是真命题,故选项C 不正确;D. 如果两条直线互相平行,则其中一条直线上任意一点到另一条直线的距离都相等是真命题,故选项D 正确.故选择D .【名师指导】本题考查真命题,由正确的题设能推出结论正确,是真命题,否则是假命题是解题关键. 6.一副三角板如图摆放,点F 是45°角三角板ABC 的斜边的中点,4AC =.当30°角三角板DEF 的直角顶点绕着点F 旋转时,直角边DF ,EF 分别与AC ,BC 相交于点M ,N .在旋转过程中有以下结论:①MF NF =;①四边形CMFN 有可能为正方形;①MN 长度的最小值为2;①四边形CMFN 的面积保持不变:①CMN △面积的最大值为2,其中正确的个数是( )A .2B .3C .4D .5【标准答案】C【思路点拨】 利用两直角三角形的特殊角、性质及旋转的性质分别判断每一个结论,找到正确的即可.【精准解析】解:①连接CF ,①F 为AB 中点,AC =BC ,①ACB =90°,①AF =BF =CF ,CF ①AB ,①①AFM +①CFM =90°.①①DFE =90°,①CFM +①CFN =90°,①①AFM =①CFN .同理,①①A +①MCF =90°,①MCF +①FCN =90°,①①A =①FCN ,在①AMF 与①CNF 中,AFM CFN AF CFA FCN ∠=∠⎧⎪=⎨⎪∠=∠⎩, ①①AMF ①①CNF (ASA ),①MF =NF .故①正确;①当MF ①AC 时,四边形MFNC 是矩形,此时MA =MF =MC ,根据邻边相等的矩形是正方形可知①正确;①连接MN ,当M 为AC 的中点时,CM =CN ,根据边长为4知CM =CN =2,此时MN最小,最小值为①错误;①当M 、N 分别为AC 、BC 中点时,四边形CDFE 是正方形.①①ADF ①①CEF ,①S ①CEF =S ①AMF①S 四边形CDFE =S ①AFC .故①正确;①由于①MNF 是等腰直角三角形,因此当MF 最小时,FN 也最小;即当DF ①AC 时,MF 最小,此时FN =12AC =2.①MN =当①CMN 面积最大时,此时①MNF 的面积最小.此时S ①CMN =S 四边形CFMN -S ①FMN =S ①AFC -S ①DEF =4-2=2,故①正确.故选:C .【名师指导】此题考查的知识点有等腰直角三角形,全等三角形的判定与性质等知识点,综合性强,难度较大,是一道难题.7.如图,在Rt ABC △中,90BAC ∠=︒,AB AC =,D 为BC 边上一点,将ABD △绕点A逆时针旋转90°得到ACE ,点B 、D 的对应点分别为点C 、E ,连接BE ,将AC 平移得到DF(点A 、C 的对应点分别为点D 、F ),连接AF ,若AB =2BD =,则AF 的长为( )A .B .6C .D【标准答案】A【思路点拨】由旋转的性质可得BD =CE =2,①ACE =①ABD =45°,由勾股定理可求BE ,由“SAS ”可证①ABE ①①DF A ,可得BE =AF .【精准解析】解:(1)①①BAC =90°,AB =AC=①①ABC =①ACB =45°,BC6,①将①ABD 绕点A 逆时针旋转90°得到①ACE ,①BD =CE =2,①ACE =①ABD =45°,AD =AE ,①DAE =90°,①①BCE =90°,①BE①①BAC =①DAE =90°,①①BAC +①DAE =180°,①①BAE +①DAC =180°,①AC 平移得到DF ,①AC =DF =AB ,AC ①DF ,①①ADF +①DAC =180°,①①ADF =①BAE ,在①ABE 和①DF A 中,AB DF BAE ADF AE AD =⎧⎪∠=∠⎨⎪=⎩,①①ABE ①①DF A (SAS ),①BE =AF =故选:A【名师指导】本题考查了旋转的性质,勾股定理,全等三角形的判定和性质等知识,灵活运用性质性质解决问题是本题的关键.8.如图,等腰Rt ABC 中,AB =AC ,①BAC =90°,AD ①BC 于点D ,①ABC 的平分线分别交AC 、AD 于E 、F 两点,M 为EF 的中点,AM 的延长线交BC 于点N ,连接DM ,下列结论:①DF =DN ;①DMN 为等腰三角形;①DM 平分①BMN ;①AE =23EC ;①AE =NC ,其中正确结论有( )A .2个B .3个C .4个D .5个【标准答案】C【思路点拨】 先根据等腰直角三角形的性质得出BD AD =,DBF DAN ∠=∠,BDF ADN ∠=∠,进而证DFB DAN △≌△,即可判断①,再证ABF CAN △≌△,推出CN AF AE ==,即可判断①;根据全等三角形的判定与性质可得M 为AN 的中点,进而可证得12DM AM NM AN ===,由次可判断①,再根据等腰三角形的性质及外角性质可判断①,最后再根据垂直平分线的判定与性质以及直角三角形的勾股定理可判断①.【精准解析】解:90BAC ∠=︒,AC AB =,AD BC ⊥,45ABC C ∴∠=∠=︒,AD BD CD ==,90ADN ADB ∠=∠=︒, 45BAD CAD ∴∠=︒=∠, BE 平分ABC ∠,122.52ABE CBE ABC ∴∠=∠=∠=︒, 9022.567.5BFD AEB ∴∠=∠=︒-︒=︒,67.5AFE BFD AEB ∴∠=∠=∠=︒,AF AE ∴=,又①M 为EF 的中点,①AM BE ⊥,90AMF AME ∴∠=∠=︒,9067.522.5DAN CAN MBN ∴∠=∠=︒-︒=︒=∠,在FBD 和NAD 中,FBD DAN BD ADBDF ADN ∠=∠⎧⎪=⎨⎪∠=∠⎩FBD NAD ∴△≌△(ASA ),DF DN ∴=,故①正确;在AFB △和CNA 中4522.5BAF C AB ACABF CAN ∠=∠=︒⎧⎪=⎨⎪∠=∠=︒⎩AFB CAN ∴△≌△(ASA ),AF CN ∴=,AF AE =,AE CN ∴=,故①正确;在ABM 和NBM 中ABM NBM BM BMAMB NMB ∠=∠⎧⎪=⎨⎪∠=∠⎩ABM NBM ∴△≌△(ASA ),AM NM ∴=,①点M 是AN 的中点,又①90ADN ∠=︒, ①12DM AM NM AN ===,DM NM =, DMN ∴是等腰三角形,故①正确;DM AM =,22.5DAM ADM ∴∠=∠=︒,45DMN DAM ADM ∴∠=∠+∠=︒,9045DMB DMN DMN ∴∠=︒-∠=︒=∠,DM ∴平分BMN ∠,故①正确;如图,连接EN ,①AM NM =,AM BE ⊥,①BE 垂直平分AN ,①EA =EN ,22.5ENA EAN ∴∠=∠=︒,45CEN ENA EAN ∴∠=∠+∠=︒,又①45C ∠=︒,①90ENC ∠=︒,且EN CN =,在Rt ENC 中,22222EC EN CN EN =+=, ①EC ,AE ∴,故①错误, 即正确的有4个,故选:C .【名师指导】本题考查了全等三角形的判定与性质,三角形外角性质,三角形内角和定理,直角三角形斜边上中线性质,等腰三角形的判定与性质,垂直平分线的判定与性质以及勾股定理等相关知识的应用,能熟练运用相关图形的判定与性质是解此题的关键,主要考查学生的推理能力.9.如图,凸四边形ABCD 中,90,90,60,3,A C D AD AB ∠=︒∠=︒∠=︒==M 、N 分别为边,CD AD 上的动点,则BMN △的周长最小值为( )A .B .C .6D .3【标准答案】C【思路点拨】 由轴对称知识作出对称点,连接两对称点,由两点之间线段最短证明B B '''最短,多次用勾股定理求出相关线段的长度,平角的定义及角的和差求出角度的大小,最后计算出BMN ∆的周长最小值为6.【精准解析】解:作点B 关于CD 、AD 的对称点分别为点B '和点B '',连接B B '''交DC 和AD 于点M 和点N ,DB ,连接MB 、NB ;再DC 和AD 上分别取一动点M '和N '(不同于点M 和)N ,连接M B ',MB'',N B '和N B ''',如图1所示:B B M B M N N B ''''''''''<++,B M BM '''=,B N BN ''''=,BM M N BN B B '''''''∴++>,又B B B M MN NB ''''''=++,MB MB '=,NB NB ''=,NB NM BM BM M N BN ''''∴++<++,BMN l NB NM BM ∆∴=++时周长最小;连接DB ,过点B '作B H DB '''⊥于B D ''的延长线于点H ,如图示2所示:在Rt ABD △中,3AD =,AB =∴DB =230∴∠=︒,530∴∠=︒,DB DB ''=,又1260ADC ∠=∠+∠=︒,301∴∠=︒,730∴∠=︒,DB DB '=,1257120B DB '''∴∠=∠+∠+∠+∠=︒,DB DB DB '''===又6180B DB '''∠+∠=︒,660∴∠=︒,HD ∴=3HB '=,在Rt ①B HB '''中,由勾股定理得:6B B '''.6BMN l NB NM BM ∆∴=++=,故选:C .【名师指导】本题综合考查了轴对称-最短路线问题,勾股定理,平角的定义和两点之间线段最短等相关知识点,解题的关键是掌握轴对称-最短路线问题,难点是构建直角三角形求两点之间的长度.10.如图,Rt ABC 中,90ACB ∠=︒且CA CB =,D 为ABC 外一点,连接AD ,过D 作DE DA ⊥交BC 于点E ,F 为DE 上一点且DF DA =,连接BF ,CD .将线段CD 绕点C 逆时针旋转90︒到线段CG ,连接DG 分别交BF 、BA 于点M 、N ,连接BG 、CF .下列结论:①BM FM =;①CG =;①BCG AND ∠>∠;①CF AD +>;①若2BG =,BC =CF =2ADFC S =四边形 )A .2个B .3个C .4个D .5个【标准答案】C【思路点拨】 先证明()BCG ACD SAS △≌△,得到对应边相等,对应角相等,依次得出①正确和①错误,由等腰直角三角形的性质和勾股定理,得出①正确,由三角形的三边关系,可以得出①正确,利用勾股定理逆定理和三角形面积公式即可判定①正确.【精准解析】解:①90ACB ∠=︒,90GCD ∠=︒,①75=∠∠,又①CA CB =且CD CG =,①()BCG ACD SAS △≌△,①BG AD =,2CAD ∠=∠,①=BG AD DF =①=90ADE ∠︒,①=360180CAD CED ACB ADE +∠︒--=︒∠∠∠,①=1CAD ∠∠,①1=2∠∠,①3=1+4=2+4=GBM ∠∠∠∠∠∠,又①=DMF GMB ∠∠,=BG DF ,①()DMF GMB AAS △≌△,①GM DM =,BM FM =,故①正确;①222CD CG DG +=,①()2222CG DM =,CD =①CG ,故①正确;CF AD CF DF CD +=+>,即CF AD +>,故①正确; ①==45CAN CDN ︒∠∠,86NDC =+∠∠∠,85NAC =+∠∠∠,①5=6∠∠,①7=6∠∠,故①错误;如图,连接AF ,若2BG =,BC =CF =①==2BG AD DF =,①2228AF AD DF =+=,即AF①2222AF CF BC AC +==,①AF CF ⊥,①11S =+S 2222ADF AFC ADFC S =⨯⨯+△△四边形①正确; 故选:C ..【名师指导】本题综合考查了全等三角形的判定与性质、勾股定理及其逆定理、等腰直角三角形等内容,解决本题的关键是能正确分析图形中的相等关系,能在相等的边和角中进行转化,能构造直角三角形进行求解等.11.如图,在ABC中,点E在边AC上,EB=EA,①A=2①CBE,延长BD到F,使DF =DB,连接CF,过点C作CD①BF于点D,BD=16,AC=22,则边BC的长为()A.B.C.D.【标准答案】A【思路点拨】过点C作CH AB∥交BF于点H,由此可得①A=①ECH,①EBA=①EHC,再根据EB=EA可得①A=①EBA,进而可得AC=BH=22,结合DF=DB=16可得BF=32,DH=6,FH=10,再利用垂直平分线的性质可得BC=CF,进而可得①F=①CBE,再结合①A=2①CBE,①EHC=①HCF+①F可得CH=FH=10,最后利用勾股定理计算即可求得答案.【精准解析】解:如图,过点C作CH AB∥交BF于点H,①CH AB∥,①①A=①ECH,①EBA=①EHC,①EB=EA,①①A=①EBA,①①ECH=①EHC,①EC=EH,①EC+EA=EH+EB,即AC=BH=22,又①DF=DB=16,①BF=BD+DF=32,DH=BH-BD=6,①FH=BF-BH=32-22=10,①CD①BF,DF=DB,①BC=CF,①①F=①CBE,又①①A=2①CBE,①①EHC=①ECH=2①F,又①①EHC=①HCF+①F,①①HCF+①F=2①F,①①HCF=①F,①CH=FH=10,①在Rt DCH中,CD,8①在Rt BCD中,BC故选:A.【名师指导】本题考查了平行线的性质,等腰三角形的判定,三角形的外角性质,垂直平分线的性质以及勾股定理的应用,根据题意作出正确的辅助线并能熟练运用相关图形的性质是解决本题的关键.12.如图,把含30°的直角三角板ABC 绕点B 顺时针旋转至如图EBD ,使BC 在BE 上延长AC 交DE 于F ,若AF =4,则AB 的长为( )A .2B .C .D .3【标准答案】C【思路点拨】 连接AE ,可证明①ABE 为等边三角形AE =AB ,①AEF 为直角三角形,再结合含30°角的直角三角形的性质和勾股定理可求得AE ,从而得出AB .【精准解析】解:连接AE ,由题意可知,在Rt ①ABC 中,①①BAC =30°,①ACB =90°,①①ABC =60°,根据旋转的性质可知,30BE AB BED BAC =∠=∠=︒,①①ABE 为等边三角形,①AE =AB ,①AEB =60°,①EAF =30°,①①AEF =90°,①122EF AF ==,AB AE == 故选:C .【名师指导】本题考查勾股定理,旋转的性质,含30°角的直角三角形,等边三角形的性质和判定.能正确作出辅助线构筑等边三角形是解题关键.二、填空题13.如图,在平面直角坐标系中,点()6,0A ,点()0,P m ,将线段PA 绕着点P 逆时针旋转90°,得到线段PB ,连接AB ,OB ,则BO BA +的最小值为__________.【标准答案】【思路点拨】过点B 作BC ①y 轴于点C ,作O 关于直线BC 的对称点D ,连接AD ,BD ,由题意易得①BCP ①①POA ,则有PC =OA =6,BC =OP =m ,则有CO =6+m ,DO =12+2m ,由三角不等关系可知AB BD AD +≥,进而问题可求解.【精准解析】解:过点B 作BC ①y 轴于点C ,作O 关于直线BC 的对称点D ,连接AD ,BD ,如图所示:①PA PB ⊥,①90BPC APO ∠+∠=︒,①90PAO APO ∠+∠=︒,①BPC PAO ∠=∠,①90,BCP POA BP PA ∠=∠=︒=,①①BCP ①①POA ,①点()6,0A ,点()0,P m ,①PC =OA =6,BC =OP =m ,①CO =6+m ,由轴对称可知:,OC CD BD OB ==,①DO =12+2m ,由三角不等关系可知AB BD AD +≥,即AB OB AD +≥,①AB +OB 的最小值即为AD 的长,①AD =①当m =0时,AD 最短,为AD故答案为【名师指导】本题主要考查图形与坐标、勾股定理、轴对称的性质及全等三角形的判定与性质,熟练掌握图形与坐标、勾股定理、轴对称的性质及全等三角形的判定与性质是解题的关键. 14.如图,在ABC 中,CA BC =,8AB =,5AC =,点D 是AB 边上的一个动点,点E 与点A 关于直线CD 对称,连接CE ,DE ,AE ,当ADE 是直角三角形时,求AD 的长为_____________.【标准答案】1或7.【思路点拨】根据题意分两种情况:①当点D 在AF 上时;①当点D 在BF 上时;进行讨论即可求解.【精准解析】解:作CF ①AB 于F ,①在①ABC 中,CA BC =,8AB =,5AC =,①AF =4,①3CF =,①如图1,当点D 在AF 上时,①①ADE =90°,①①ADC =①EDC =(360°-90°)÷2=135°.①①CDF =45°.①CF =DF .①AD =AF -DF =AF -CF =4-3=1.①如图2,当点D 在BF 上时,①①ADE =90°,①①CDF =45°.①CF =DF .①AD =AF +DF =AF +CF =4+3=7.故答案为:1或7.【名师指导】本题主要考查勾股定理,等腰三角形的性质以及轴对称的性质,解本题的关键是注意运用数形结合的思想解决问题.15.如图,已知30B ∠=,45C ∠=,150BDC ∠=,且5BD CD ==,则AB =_________【标准答案】【思路点拨】延长CD交AB于E,根据题意可求得①BDE=①B =30°,再根据等腰三角形的判定和三角形外角性质求得BE=DE,①AED=2①B=60°,过E作EF①BD于F,过A作AP①CE于P,利用等腰三角形的性质和含30°角在直角三角形的性质可得BF= 12BD,BE=2EF,AE=2EP,AP= ,根据勾股定理和等腰直角三角形判定分别求出BE、DE、EP,进而求得AE即可解答.求解即可.【精准解析】解:延长CD交AB于E,①①BDC=150°,①B=30°,①①BDE=①B =30°,①BE=DE,①AED=2①B=60°,过E作EF①BD于F,过A作AP①CE于P,则BF= 12BD=52,在Rt①BEF中,①B=30°,①BE=2EF,由勾股定理得:BF2+EF2=BE2,解得:BE= ,即DE,在Rt①APE中,①AED=60°,则①EAP=30°,①AE=2EP,①AP= ,①AP①CE,①C=45°,①①CAP=45°,①CP=AP,①EP+CP=DE+CD,CD=5,①EP+5,解得:EP,①AE=2EP①AB=BE+AE=故答案为:【名师指导】本题考查等腰三角形的判定与性质、含30°角的直角三角形的性质、勾股定理、三角形的外角性质、解一元一次方程等性质,理解题意,添加适当的辅助线,掌握相关知识间的联系与运用是解答的关键.16.如图,在矩形ABCD 中,点E 在线段AD 上,连接BE 、CE ,点F 在线段BE 上,连接CF ,若①EBC =2①ECD ,DE =2,BF =9,tan①EFC =43,则线段CE 的长为______.【标准答案】【思路点拨】过点C 作CH BE ⊥于H ,证明()ABE HCB AAS ≅,得到AB CH CD ==,继而证明t R CDE ≅t ()R CHE HL ,结合已知tan①EFC =43,设4,3AB CH CD x FH x ====,在Rt ABE △中,根据勾股定理得222BE AB AE =+,结合因式法解一元二次方程得到2x =,从而解得8CD =,最后在Rt CDE △中,有应用勾股定理解题即可.【精准解析】解:过点C 作CH BE ⊥于H ,设①ECD =,2EBC αα∠=。
人教版八年级数学上册几何证明习题集
C八年级上册几何证明题题集1、 已知:在⊿ABC 中,AB=AC ,延长AB 到D ,使AB=BD ,E 是AB 的中点。
求证:CD=2CE 。
2、 已知:在⊿ABC 中,作∠FBC=∠ECB=21∠A 。
求证:BE=CF 。
B3、 已知:在⊿ABC 中,∠A=900,AB=AC ,在BC 上任取一点P ,作PQ ∥AB 交AC 于Q ,作PR∥CA 交BA 于R ,D 是BC 的中点,求证:⊿RDQ 是等腰直角三角形。
CB4、 已知:在⊿ABC 中,∠A=900,AB=AC ,D 是AC 的中点,AE ⊥BD ,AE 延长线交BC 于F ,求证:∠ADB=∠FDC 。
ABB DCA B C DE P 图 ⑴5、如图甲,Rt ∆ABC 中,AB=AC ,点D 、E 是线段AC 上两动点,且AD=EC ,AM ⊥BD ,垂足为M ,AM 的延长线交BC 于点N ,直线BD 与直线NE 相交于点F 。
(1)试判断∆DEF 的形状,并加以证明。
(2)如图乙,若点D 、E 是直线AC 上两动点,其他条件不变,试判断∆DEF 的形状,并加以证明。
6、已知:在⊿ABC 中BD 、CE 是高,在BD 、CE 或其延长线上分别截取BM=AC 、CN=AB ,求证:MA ⊥NA 。
7、已知:如图(1),在△ABC 中,BP 、CP 分别平分∠ABC 和∠ACB ,DE 过点P 交AB 于D ,交AC 于E ,且DE ∥BC .求证:DE -DB=EC .①②③图88、△ABC为正三角形,点M是射线BC上任意一点,点N是射线CA上任意一点,且BM=CN,直线BN与AM相交于Q点,就下面给出的三种情况,如图8中的①②③,先用量角器分别测量∠BQM的大小,然后猜测∠BQM等于多少度.并利用图③证明你的结论.9、在Rt△ABC中,AB=AC,∠BAC=90°,O为BC的中点。
(1)写出点O到△ABC的三个顶点A、B、C的距离的大小关系(不要求证明);(2)如果点M、N分别在线段AB、AC上移动,在移动中保持AN=BM,请判断△OMN的形状,并证明你的结论。
八年级上册几何证明题专项练习
八年级上册几许道明题博项训练之阳早格格创做1.如图,△ABC、△CDE均为等腰曲角三角形,∠ACB=∠DCE=90°,面E正在AB上.供证:△CDA≌△CEB.2.如图,BD⊥AC于面D,CE⊥AB于面E,AD=AE.供证:BE=CD.3.如图,已知面B,E,C,F正在一条曲线上,AB=DF,AC=DE,∠A=∠D.(1)供证:AC∥DE;(2)若BF=13,EC=5,供BC的少.4.如图:面C是AE的中面,∠A=∠ECD,AB=CD,供证:∠B=∠D.5.如图,面D是AB上一面,DF接AC于面E,DE=FE,FC∥AB供证:AE=CE.6.如图,BE⊥AC,CD⊥AB,垂脚分别为E,D,BE=CD.供证:AB=AC.7.如图,面A,B,C,D正在共一条曲线上,CE∥DF,EC=BD,AC=FD.供证:AE=FB.8.如图,正在△ABC中,AC=BC,∠C=90°,D是AB的中面,DE⊥DF,面E,F分别正在AC,BC上,供证:DE=DF.9.如图,面A、C、D、B四面共线,且AC=BD,∠A=∠B,∠ADE=∠BCF,供证:DE=CF.10.如图,已知∠CAB=∠DBA,∠CBD=∠DAC.供证:BC=AD.11.如图,面B、E、C、F正在共一条曲线上,AB=DE,AC=DF,BE=CF,供证:AB∥DE.12.如图,AB∥CD,E是CD上一面,BE接AD于面F,EF=BF.供证:AF=DF.13.已知△ABN战△ACM位子如图所示,AB=AC,AD=AE,∠1=∠2.(1)供证:BD=CE;(2)供证:∠M=∠N.14.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂脚分别为D,E.供证:△ACD≌△CBE.15.如图,四边形ABCD中,E面正在AD上,∠BAE=∠BCE=90°,且BC=CE,AB=DE.供证:△ABC≌△DEC.16.如图,正在△ABC中,AB=CB,∠ABC=90°,D为AB延少线上一面,面E正在BC边上,且BE=BD,连结AE、DE、DC.①供证:△ABE≌△CBD;②若∠CAE=30°,供∠BDC的度数.17.如图,正在四边形ABCD中,AD∥BC,E为CD的中面,对接AE、BE,BE⊥AE,延少AE接BC的延少线于面F.供证:(1)FC=AD;(2)AB=BC+AD.18.如图,正在△ABC中,DM、EN分别笔曲仄分AC战BC,接AB于M、N二面,DM取EN相接于面F.(1)若△CMN的周少为15cm,供AB的少;(2)若∠MFN=70°,供∠MCN的度数.19.已知△ABC中,AD是∠BAC的仄分线,AD的笔曲仄分线接BC的延少线于F.供证:∠BAF=∠ACF.20.如图所示,正在Rt△ABC中,∠ACB=90°,AC=BC,D为BC边上的中面,CE⊥AD于面E,BF∥AC接CE的延少线于面F,供证:AB笔曲仄分DF.21.如图:正在△ABC中,∠C=90°,AD是∠BAC的仄分线,DE⊥AB于E,F正在AC上,BD=DF;道明:(1)CF=EB.(2)AB=AF+2EB.22.如图,面E是∠AOB的仄分线上一面,EC⊥OA,ED⊥OB,垂脚分别为C、D.供证:(1)∠ECD=∠EDC;(2)OC=OD;(3)OE是线段CD的笔曲仄分线.23.如图,四边形ABCD中,∠B=90°,AB∥CD,M为BC边上的一面,且AM仄分∠BAD,DM仄分∠ADC.供证:(1)AM⊥DM;(2)M为BC的中面.24.如图,正在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于面E.供证:∠CBE=∠BAD.25.如图,已知AB=AC=AD,且AD∥BC,供证:∠C=2∠D.26.如图,已知△ABC中,AB=AC,BD、CE是下,BD 取CE相接于面O(1)供证:OB=OC;(2)若∠ABC=50°,供∠BOC的度数.27.如图,正在△ABC中,AB=AC,面D、E、F分别正在AB、BC、AC边上,且BE=CF,BD=CE.(1)供证:△DEF是等腰三角形;(2)当∠A=40°时,供∠DEF的度数.28.如图,正在等边三角形ABC中,面D,E分别正在边BC,AC上,且DE∥AB,过面E做EF⊥DE,接BC的延少线于面F.(1)供∠F的度数;(2)若CD=2,供DF的少.29.图1、图2中,面C为线段AB上一面,△ACM取△CBN皆是等边三角形.(1)如图1,线段AN取线段BM是可相等?道明您的论断;(2)如图2,AN取MC接于面E,BM取CN接于面F,商量△CEF的形状,并道明您的论断.30.如图①,△ABC中,AB=AC,∠B、∠C的仄分线接于O面,过O面做EF∥BC接AB、AC于E、F.(1)图中有几个等腰三角形?预测:EF取BE、CF之间有何如的闭系,并道明缘由.(2)如图②,若AB≠AC,其余条件没有变,图中另有等腰三角形吗?如果有,分别指出它们.正在第(1)问中EF 取BE、CF间的闭系还存留吗?(3)如图③,若△ABC中∠B的仄分线BO取三角形中角仄分线CO接于O,过O面做OE∥BC接AB于E,接AC 于F.那时图中另有等腰三角形吗?EF取BE、CF闭系又由.。
八年级上册几何证明题
八年级上册几何证明题一、三角形内角和定理相关证明题。
1. 已知:在△ABC中,∠A = 50°,∠B = 60°,求证:∠C = 70°。
解析:根据三角形内角和定理,三角形内角和为180°。
在△ABC中,因为∠A+∠B +∠C=180°,已知∠A = 50°,∠B = 60°,所以∠C=180°∠A ∠B = 180°-50° 60° = 70°。
2. 如图,在△ABC中,AD是∠BAC的平分线,∠B = 70°,∠C = 30°,求∠ADC的度数。
解析:根据三角形内角和定理,在△ABC中,∠BAC=180°∠B ∠C = 180°-70° 30° = 80°。
因为AD是∠BAC的平分线,所以∠BAD = 1/2∠BAC = 40°。
在△ABD中,根据三角形外角性质,∠ADC = ∠B+∠BAD,所以∠ADC = 70°+40° = 110°。
二、等腰三角形性质证明题。
3. 已知:在等腰△ABC中,AB = AC,∠A = 80°,求∠B和∠C的度数。
解析:因为AB = AC,所以△ABC是等腰三角形,根据等腰三角形两底角相等的性质,设∠B =∠C=x。
根据三角形内角和定理,∠A+∠B +∠C = 180°,即80°+x + x = 180°,2x=180° 80°,2x = 100°,x = 50°,所以∠B =∠C = 50°。
4. 如图,在等腰三角形ABC中,AB = AC,BD⊥AC于点D,求证:∠CBD=(1)/(2)∠A。
解析:设∠A=x。
因为AB = AC,所以∠ABC =∠ACB=(1)/(2)(180° x)=90°-(x)/(2)。
八年级上语文几何证明练习题
八年级上语文几何证明练习题一、选择题1. 直角三角形中,斜边的边长为10,一个锐角的边长为6,则另外一个锐角的边长是_______。
A. 3B. 4C. 8D. 92. 在△ABC 中,∠B = 60°,∠C = 30°,则△ABC 的面积是底边AC长度的_________。
A. 1/4B. 1/3C. 1/2D. 2/33. 设边长为a的正方形的面积是P,边长为b的正方形的面积是Q,当Q = 16P时,边长b与边长a的比是_______。
A. 2:1B. 3:1C. 4:1D. 5:14. 如图所示,四边形ABCD中,∠A=110°,∠B=∠C=105°,则∠D等于_______。
A. 100°B. 105°C. 115°D. 120°5. 如图是一个菱形,已知∠ACB = 40°,则∠ACD 等于_______。
A. 40°B. 50°C. 60°D. 70°二、填空题6. 已知△ABC 中,∠B=60°,BC=3,AC=√19,则BC的【余弦值】为_________。
7. 已知正方形ABCD中,AE=2,AC的垂直平分线与AE相交于点F,则FE的长度为_________。
8. 已知两个角的度数比是2:3,且两个角的差为40°,则较小角的度数为_________。
9. 如图,一辆车从A点向东走,在B处向北转弯,再在C处向西转弯,最后到达D点。
车走过的从A到D的路径为_________。
10. 如图,矩形ABCD中,AO是对角线AC的垂线,AO交BC于点E,若AE=2m,CE=3m,则矩形ABCD的长AC为_________。
三、解答题11. 在△ABC 中,∠ABC = 90°,BC = 3,AB = √10,求 AC的长度。
12. 如图所示,四边形ABCD是一个菱形,且 AD=6cm,BD=8cm,则角 BDC 的度数是多少?13. 如图所示,已知正方形ABCD中AE 是BC的垂直平分线,AF是CD上的一个点,连接FD。
2024年数学八年级几何证明专项练习题1(含答案)
2024年数学八年级几何证明专项练习题1(含答案)试题部分一、选择题:1. 在三角形ABC中,若∠A = 90°,AB = 6cm,BC = 8cm,则AC 的长度为()。
A. 2cmB. 10cmC. 4cmD. 5cm2. 下列哪个条件不能判定两个三角形全等?()A. SASB. ASAC. AASD. AAA3. 在直角坐标系中,点A(2,3)关于原点对称的点是()。
A. (2,3)B. (2,3)C. (2,3)D. (3,2)4. 下列哪个比例式是正确的?()A. 若a∥b,则∠1 = ∠2B. 若a∥b,则∠1 + ∠2 = 180°C. 若a⊥b,则∠1 = 90°D. 若a⊥b,则∠1 + ∠2 = 180°5. 在等腰三角形ABC中,若AB = AC,∠B = 70°,则∠C的度数为()。
A. 70°B. 40°C. 55°D. 110°6. 下列哪个条件可以判定两个角相等?()A. 对顶角B. 邻补角C. 内错角D. 同位角7. 在平行四边形ABCD中,若AD = 8cm,AB = 6cm,则对角线AC 的长度()。
A. 10cmB. 14cmC. 12cmD. 15cm8. 下列哪个图形是轴对称图形?()A. 等腰三角形B. 等边三角形C. 矩形D. 梯形9. 在三角形ABC中,若a = 8cm,b = 10cm,c = 12cm,则三角形ABC是()。
A. 锐角三角形B. 钝角三角形C. 直角三角形D. 不能确定10. 下列哪个条件不能判定两个直线平行?()A. 内错角相等B. 同位角相等C. 同旁内角互补D. 两直线垂直二、判断题:1. 若两个三角形的两边和夹角分别相等,则这两个三角形全等。
()2. 在等腰三角形中,底角相等。
()3. 平行线的同位角相等,内错角相等。
()4. 若两个角的和为180°,则这两个角互为补角。
人教版八年级数学上册几何证明习题集
C八年级上册几何证明题题集1、 已知:在⊿ABC 中,AB=AC ,延长AB 到D ,使AB=BD ,E 是AB 的中点。
求证:CD=2CE 。
2、 已知:在⊿ABC 中,作∠FBC=∠ECB=21∠A 。
求证:BE=CF 。
B3、 已知:在⊿ABC 中,∠A=900,AB=AC ,在BC 上任取一点P ,作PQ ∥AB 交AC 于Q ,作PR∥CA 交BA 于R ,D 是BC 的中点,求证:⊿RDQ 是等腰直角三角形。
CB4、 已知:在⊿ABC 中,∠A=900,AB=AC ,D 是AC 的中点,AE ⊥BD ,AE 延长线交BC 于F ,求证:∠ADB=∠FDC 。
ABB DCA B C DE P 图 ⑴5、如图甲,Rt ∆ABC 中,AB=AC ,点D 、E 是线段AC 上两动点,且AD=EC ,AM ⊥BD ,垂足为M ,AM 的延长线交BC 于点N ,直线BD 与直线NE 相交于点F 。
(1)试判断∆DEF 的形状,并加以证明。
(2)如图乙,若点D 、E 是直线AC 上两动点,其他条件不变,试判断∆DEF 的形状,并加以证明。
6、已知:在⊿ABC 中BD 、CE 是高,在BD 、CE 或其延长线上分别截取BM=AC 、CN=AB ,求证:MA ⊥NA 。
7、已知:如图(1),在△ABC 中,BP 、CP 分别平分∠ABC 和∠ACB ,DE 过点P 交AB 于D ,交AC 于E ,且DE ∥BC .求证:DE -DB=EC .①②③图88、△ABC为正三角形,点M是射线BC上任意一点,点N是射线CA上任意一点,且BM=CN,直线BN与AM相交于Q点,就下面给出的三种情况,如图8中的①②③,先用量角器分别测量∠BQM的大小,然后猜测∠BQM等于多少度.并利用图③证明你的结论.9、在Rt△ABC中,AB=AC,∠BAC=90°,O为BC的中点。
(1)写出点O到△ABC的三个顶点A、B、C的距离的大小关系(不要求证明);(2)如果点M、N分别在线段AB、AC上移动,在移动中保持AN=BM,请判断△OMN的形状,并证明你的结论。
完整八年级上册几何证明题专项练习
八年级上册几何证明题专项练习1 如图,△ ABC △ CDE匀为等腰直角三角形,/ ACB=Z DCE=90,点E在AB上.求证: △ CDA^^ CEB2.如图,BD丄AC于点D, CEL AB于点E, AD=AE求证:BE=CD3.如图,已知点B, E, C, F在一条直线上,AB=DF AC=DE / A=Z D.(1)求证:AC// DE(2 )若BF=13 EC=5 求BC的长./ B=Z D.FC// AB求证:AE=CE&如图,在△ ABC 中,AC=BC / C=90°, D 是 AB 的中点,DEI DF,点 E , F 分别在AC, BC 上,求证:DE=DF AEc F9.如图,点 A C D 、B 四点共线,且 AC=BD Z A=Z B,Z ADE=/ BCF,求证:DE=CF10.如图,已知/ CAB / DBA / CBD / DAC 求证:BC=ADAB=ACCE// DF , EC=BD AC=FD 求证: AE=FBE , D, BE=CD 求证: D 在同一条直线上,AB=DE AC=DF BE=CF 求证:AB// DE.BE交AD于点F, EF=BF 求证:AF=DF13. 已知△ ABN和厶ACM位置如图所示,AB=AC AD=AE /仁/2.(1)求证:BD=CE(2 )求证:/ M=Z N.14. 如图,/ ACB=90 , AC=BC AD丄CE, BE X CE 垂足分别为D, E.15. 如图,四边形ABCD中 , E点在AD上 , / BAE=/ BCE=90 ,且BC=CE AB=DE 求证:△ ABC^A DEC16. 如图,在△ ABC中,AB=CB / ABC=90 , D为AB延长线上一点,点E在BC边上,且BE=BD 连结AE、DE DC.①求证:△ABE^A CBD②若/ CAE=30,求/ BDC的度数.17. 如图,在四边形ABCD中, A D// BC E 为CD的中点,连接AE、BE, BE X AE,延长AE交BC的延长线于点F.求证:(1) FC=AD18. 如图,在△ ABC中, DM EN分别垂直平分AC和BC,交AB于M N两点,DM与EN相交于点F.(1 )若厶CMN勺周长为15cm,求AB的长;(2)若/ MFN=70,求/ MCN勺度数.19. 已知△ ABC中,AD是/ BAC的平分线,AD的垂直平分线交BC的延长线于F.20. 如图所示,在Rt △ ABC中,/ ACB=90 , AC=BC D为BC边上的中点,CEL AD于点E, BF// AC 交CE的延长线于点F,求证:AB垂直平分DF.21. 如图:在△ ABC 中,/ C=90°, AD 是/ BAC的平分线,DE L AB 于E, F 在AC上, BD=DF 说明:(1)CF=EB(2)AB=AF+2EB22. 如图,点E是/ AOB的平分线上一点,EC丄OA ED± OE,垂足分别为C、D. 求证:(1)ZECD=Z EDC(2)OC=OD(3)OE是线段CD的垂直平分线.23. 如图,四边形ABCD中, Z B=90°, AB// CD M为BC边上的一点,且AM平分/ BAD DM 平分/ ADC求证:BE L AC于点E.求证:Z CBE ZBAD(1) AML DMAB=AC AD是BC边上的中线,26. 如图,已知△ ABC中, AB=AC BD CE是高,BD与CE相交于点0(1)求证:OB=OC(2)若/ ABC=50,求/ BOM度数.27. 如图,在△ ABC中, AB=AC 点D E、F 分别在AB BC AC边上,且BE=CF BD=CE(1)求证:△ DEF是等腰三角形;(2)当/ A=40。
初二上几何证明题题专题训练
八年级上册几何题专题训练50题1.如图,已知△EAB≌△DCE,AB,EC分别是两个三角形的最长边,∠A=∠C=35°,∠CDE=100°,∠DEB=10°,求∠AEC的度数.2.如图,点E、A、B、F在同一条直线上,AD与BC交于点O,已知∠CAE=∠DBF,AC=BD.求证:∠C=∠D3.如图,OP平分∠AOB,且OA=OB.(1)写出图中三对你认为全等的三角形(注:不添加任何辅助线);(2)从(1)中任选一个结论进行证明.4.已知:如图,AB=AC,DB=DC,AD的延长线交BC于点E,求证:BE=EC。
5.如图,在△ABC中,AB=AD=DC,∠BAD=28°,求∠B和∠C的度数。
6.如图,B、D、C、E在同一直线上,AB=AC,AD=AE,求证:BD=CE。
7.写出下列命题的逆命题,并判断逆命题的真假.如果是真命题,请给予证明;•如果是假命题,请举反例说明.命题:有两边上的高相等的三角形是等腰三角形.8.如图,在△ABC中,∠ACB=90o,D是AC上的一点,且AD=BC,DE AC于D,∠EAB=90o.求证:AB=AE.9.如图,等边△ABC中,点P在△ABC内,点Q在△ABC外,B,P,Q三点在一条直线上,且∠ABP=∠ACQ,BP=CQ,问△APQ是什么形状的三角形?试证明你的结论.10.如图,△ABC中,∠C=90°,AB的中垂线DE交AB于E,交BC于D,若AB=13,AC=5,则△ACD的周长为多少?11. 如图所示,AC ⊥BC ,AD ⊥BD ,AD =BC ,CE ⊥AB ,DF ⊥AB ,垂足分别是E ,F ,求证:CE =DF.12.如图,已知△ABC 中,∠ACB =90°,AC =BC ,BE ⊥CE ,垂足为E ,AD ⊥CE ,垂足为D.(1)判断直线BE 与AD 的位置关系是____;BE 与AD 之间的距离是线段____的长;(2)若AD =6cm ,BE =2cm ,求BE 与AD 之间的距离及AB 的长. 13.如图,已知△ABC 、△ADE 均为等边三角形,点D 是BC 延长线上一点,连结CE , 求证:BD=CE14.如图,△ABC 中,AB =AC ,∠BAC =120°,AD ⊥AC 交BC •于点D ,求证:•BC =3AD . 15.如图,四边形ABCD 中,∠DAB=∠BCD=90°,M 为BD 中点,N 为AC 中点,求证:MN ⊥AC .16、已知:如图所示,在△ABC 中,∠ABC=45°,CD ⊥AB 于点D ,BE 平分∠ABC ,且BE ⊥AC 于点E ,与CD 相交于点F ,H 是BC 边的中点,连接DH 与BE 相交于点G .(1)求证:BF=A C ;(2)求证:DG=DF .17.如图,点B ,D 在射线AM 上,点C ,E 在射线AN 上,B AE DC且AB=BC=CD=DE ,已知∠EDM=84°,求∠A 的度数.18.如图所示,在△ABC 中,AB=AC ,BD ⊥AC 于点D ,CE ⊥AB 于点E ,BD ,CE 相交于F.求证:AF 平分∠BAC.19.如图所示,△ABC ≌△ADE ,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,求∠DFB 和∠DGB 的度数.20.已知:如图,在△ABC 中,AB=AC ,点D 在边BC 上,DE ⊥AB ,DF ⊥AC ,且DE=DF , 求证:△ABD ≌△ACD21.如图,一张直角三角形的纸片ABC ,两直角边AC=6cm ,BC=8cm .现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且AC 与AE 重合,求CD 的长.22.已知:如图,在△ABC 中,AB=AC ,BD 平分∠ABC ,E 是底边BC 的延长线上的一点且CD=CE.(1)求证:△BDE 是等腰三角形(2)若∠A=36°,求∠ADE 的度数. 23.如图,在△ABC 中,AB=CB ,∠ABC=90°,D 为AB 延长线上一点,点E 在BC 边上且BE=BD ,连结AE 、DE 、DC .(1)求证:AE=CD ;(2)若∠CAE=30°,求∠BDC 的度数.24.如图,在ABC ∆中,点D 在AC 边上,DB=BC ,点E 是CD 的中点,点F 是AB 的中点,则可以得到结论:12EF AB =,请说明理由.25.已知:如图,在ABC ∆中,C ABC ∠=∠,点D 为边AC 上的一个动点,延长AB 至E ,使BE=CD ,连结DE ,交BC 于点P.(1)DP 与PE 相等吗?请说明理由.(2)若60C ∠=︒,AB=12,当DC=_________时,BEP ∆是等腰三角形.(不必说明理由)26.如图,C 为线段BD 上一点(不与点B ,D 重合),在BD 同侧分别作正三角形ABC 和正三角形CDE ,AD 与BE 交于一点F ,AD 与CE 交于点H ,BE 与AC 交于点G 。
八年级数学上册几何专项例题(含答案)
八年级数学上册几何专项例题(含答案)【例一】如图,△ABC中,∠C为直角,∠A=30°,分别以AB、AC 为边在△ABC的外侧作正△ABE与正△ACD,DE与AB交于F。
求证:EF=FD。
证明:过D作DG//AB交EA的延长线于G,可得∠DAG=30°∵∠BAD=30°+60°=90°∴∠ADG=90°∵∠DAG=30°=∠CAB,AD=AC∴Rt△AGD≌Rt△ABC∴AG=AB,∴AG=AE∵DG//AB∴EF//FD【例二】如图,正方形ABCD中,E、F分别为AB、BC的中点,EC和DF相交于G,连接AG,求证:AG=AD。
证明:作DA、CE的延长线交于H∵ABCD是正方形,E是AB的中点∴AE=BE,∠AEH=∠BEC,∠BEC=∠EAH=90°∴△AEH≌△BEC(ASA)∴AH=BC,AD=AH又∵F是BC的中点∴Rt△DFC≌Rt△CEB∴∠DFC=∠CEB∴∠GCF+∠GFC=∠ECB+∠CEB=90°∴∠CGF=90°∴∠DGH=∠CGF=90°∴△DGH是Rt△∵AD=AH∴AG=1/2DH=AD【例三】已知在三角形ABC中,AD是BC边上的中线,E是AD上的一点,且BE=AC,延长BE交AC与F,求证AF=EF证明:如图连接EC,取EC的中点G,AE的中点H,连接DG,HG则:GH=DG∴角1=∠2,而∠1=∠4,∠2=∠3=∠5∴∠4=∠5,∴AF=EF.【例四】如图,四边形ABCD为正方形,DE∥AC,AE=AC,AE 与CD相交于F.求证:CE=CF.顺时针旋转△ADE,到△ABG,连接CG.由于∠ABG=∠ADE=90°+45°=13°从而可得B,G,D在一条直线上,可得△AGB≌△CGB推出AE=AG=AC=GC,可得△AGC为等边三角形。
(完整版)八年级上册几何证明题专项练习
八年级上册几何证明题专项练习1.如图,△ABC、△CDE均为等腰直角三角形,∠ACB=∠DCE=90°,点E在AB上.求证:△CDA≌△CEB.2.如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD.3.如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D.(1)求证:AC∥DE;(2)若BF=13,EC=5,求BC的长.4.如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D.5.如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB求证:AE=CE.6.如图,BE⊥AC,CD⊥AB,垂足分别为E,D,BE=CD.求证:AB=AC.7.如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.8.如图,在△ABC中,AC=BC,∠C=90°,D是AB的中点,DE⊥DF,点E,F分别在AC,BC上,求证:DE=DF.9.如图,点A、C、D、B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF,求证:DE=CF.10.如图,已知∠CAB=∠DBA,∠CBD=∠DAC.求证:BC=AD.11.如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE.12.如图,AB∥CD,E是CD上一点,BE交AD于点F,EF=BF.求证:AF=DF.13.已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.(1)求证:BD=CE;(2)求证:∠M=∠N.14.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E.求证:△ACD≌△CBE.15.如图,四边形ABCD中,E点在AD上,∠BAE=∠BCE=90°,且BC=CE,AB=DE.求证:△ABC≌△DEC.16.如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.①求证:△ABE≌△CBD;②若∠CAE=30°,求∠BDC的度数.17.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.18.如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N两点,DM与EN相交于点F.(1)若△CMN的周长为15cm,求AB的长;(2)若∠MFN=70°,求∠MCN的度数.19.已知△ABC中,AD是∠BAC的平分线,AD的垂直平分线交BC的延长线于F.求证:∠BAF=∠ACF.20.如图所示,在Rt△ABC中,∠ACB=90°,AC=BC,D为BC边上的中点,CE⊥AD于点E,BF∥AC交CE的延长线于点F,求证:AB垂直平分DF.21.如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF;说明:(1)CF=EB.(2)AB=AF+2EB.22.如图,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为C、D.求证:(1)∠ECD=∠EDC;(2)OC=OD;(3)OE是线段CD的垂直平分线.23.如图,四边形ABCD中,∠B=90°,AB∥CD,M为BC边上的一点,且AM平分∠BAD,DM平分∠ADC.求证:(1)AM⊥DM;(2)M为BC的中点.24.如图,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E.求证:∠CBE=∠BAD.25.如图,已知AB=AC=AD,且AD∥BC,求证:∠C=2∠D.26.如图,已知△ABC中,AB=AC,BD、CE是高,BD与CE相交于点O(1)求证:OB=OC;(2)若∠ABC=50°,求∠BOC的度数.27.如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数.28.如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2,求DF的长.29.图1、图2中,点C为线段AB上一点,△ACM与△CBN都是等边三角形.(1)如图1,线段AN与线段BM是否相等?证明你的结论;(2)如图2,AN与MC交于点E,BM与CN交于点F,探究△CEF的形状,并证明你的结论.30.如图①,△ABC中,AB=AC,∠B、∠C的平分线交于O点,过O点作EF∥BC交AB、AC于E、F.(1)图中有几个等腰三角形?猜想:EF与BE、CF之间有怎样的关系,并说明理由.(2)如图②,若AB≠AC,其他条件不变,图中还有等腰三角形吗?如果有,分别指出它们.在第(1)问中EF与BE、CF间的关系还存在吗?(3)如图③,若△ABC中∠B的平分线BO与三角形外角平分线CO交于O,过O点作OE∥BC交AB于E,交AC于F.这时图中还有等腰三角形吗?EF与BE、CF关系又如何?说明你的理由.。
期中真题几何证明40题专练—2023-2024学年八年级数学上册(沪教版)(解析版)
期中真题几何证明40题专练一.解答题(共40小题)1.(2022秋•宝山区校级期中)五边形ABCDE中,AB=AE,AD平分∠CDE,∠B+∠E=180°,求证:BC+DE=CD.【分析】在DC上截取DF=DE,连接AF,先证△ADF≌△ADE,再证△ACF≌△ACB,即可得证结果.【解答】证明:如图,在DC上截取DF=DE,连接AF,∵AD平分∠CDE,∴∠ADF=∠ADE,在△ADF和△ADE中,,∴△ADF≌△ADE(SAS),∴AF=AE,∠FAD=∠EAD,∵AB=AE,∠BAE=∠CAD,∴AB=AF,∠BAC=∠FAC,在△ACF和△ACB中,,∴△ACF≌△ACB(SAS)∴BC=CF,∵CD=CF+DF,∴CD=BC+DE.【点评】本题考查了全等三角形的判定与性质,角平分线的定义,解题的关键是准确作出辅助线构造全等三角形.2.(2022秋•虹口区校级期中)如图,△ABC和△DBC中,∠ACB=∠DBC=90°,E是BC的中点,且ED ⊥AB于点F,且AB=DE.(1)求证:BD=2EC;(2)若BD=10cm,求AC的长.【分析】(1)根据AAS证明△ABC≌△EDB得BD=BC,再根据E是BC的中点,即可得出结论;(2)根据(1)的结论,结合BD=10,即可求出AC的长.【解答】(1)证明:∵ED⊥AB,∠ACB=∠DBC=90°,∴∠BFE=∠DBC=90°,∴∠BEF+∠ABC=∠BDE+∠BEF=90°,∴∠ABC=∠BDE,在△ABC和△EDB中,,∴△ABC≌△EDB(AAS),∴BD=BC,∵E是BC的中点,∴BC=2CE,∴BD=2EC;(2)解:由(1)知,△ABC≌△EDB,∴BE=AC,∵BD=2CE,即BD=2BE,∵BD=10,∴AC=BE=5cm.【点评】本题考查了全等三角形的判定与性质,证明△ABC≌△EDB是解题的关键.3.(2022秋•静安区校级期中)如图,AD是△ABC的高,∠B=2∠C,BD=5,BC=25,求AB的长.【分析】在线段DC上截取DE=BD,连接AE,根据线段垂直平分线的性质得到AB=AE,求得∠B=∠AEB,根据三角形外角的性质得到∠AEB=∠CAE+∠C,求得AE=CE,于是得到结论.【解答】解:如图:在线段DC上截取DE=BD,连接AE,∵AD⊥BC,∴AB=AE,∴∠B=∠AEB,∵∠B=2∠C,∴∠AEB=2∠C,∵∠AEB=∠CAE+∠C,∴∠C=∠CAE,∴AE=CE,∵BD=5,BC=25,∴DE=BD=5,∴AB=AE=CE=BC﹣BD﹣DE=15.【点评】此题主要考查的是等腰三角形的判定和性质,作出辅助线正确构建出等腰三角形是解答此题的关键.4.(2020秋•杨浦区校级期中)如图,在△ABC中,∠ACB=90°,D是AB上一点,且BD=AD=CD,过B作BE⊥CD,分别交AC于点E、交CD于点F.(1)求证:∠A=∠EBC;(2)如果AC=2BC,请猜想BE和CD的数量关系,并证明你的猜想.【分析】(1)证得∠EBC=∠ACD,∠A=∠ACD,则结论可得出;(2)过点D作DG⊥AC于点G,根据ASA证明△DCG≌△EBC,可得出结论.【解答】(1)证明:∵BE⊥CD,∴∠BFC=90°,∴∠EBC+∠BCF=180°﹣∠BFC=90°,∵∠ACB=∠BCF+∠ACD=90°,∴∠EBC=∠ACD,∵AD=CD,∴∠A=∠ACD,∴∠A=∠EBC;(2)解:CD=BE.过点D作DG⊥AC于点G,∵DA=DC,DG⊥AC,∴AC=2CG,∵AC=2BC,∴CG=BC,∵∠DGC=90°,∠ECB=90°,∴∠DGC=∠ECB,在△DGC和△ECB中,,∴△DCG≌△EBC(ASA),∴CD=BE.【点评】此题主要考查了全等三角形的判定与性质,等腰三角形的性质,关键是掌握全等三角形的判定定理.5.(2020秋•徐汇区校级期中)如图,AD∥BC,点E是AB的中点,联结DE并延长交CB的延长线于点F,点G在边BC上,且∠GDF=∠ADF.(1)求证:AD=BF;(2)当点G是FC的中点时,判断△FDC的形状.【分析】(1)由AD与BC平行,利用两直线平行内错角相等,得到一对角相等,再由一对对顶角相等及E 为AB中点得到一对边相等,利用AAS即可得出△ADE≌△BFE,根据全等三角形的性质即可得解;(2)连接EG,根据题意,结合全等三角形的性质得到GE⊥DF,GE是△FDC的中位线,根据三角形中位线的性质即可得出△FDC是直角三角形.【解答】(1)证明:∵AD∥BC,∴∠ADE=∠BFE,∵E为AB的中点,∴AE=BE,在△ADE和△BFE中,,∴△ADE≌△BFE(AAS),∴AD=BF;(2)解:△FDC是直角三角形,理由如下:连接EG,∵∠GDF=∠ADE,∠ADE=∠BFE,∴∠GDF=∠BFE,由(1)△ADE≌△BFE得:DE=FE,即GE为DF上的中线,∴GE⊥DF,∵点G是FC的中点,DE=FE,∴GE∥CD,∴CD⊥DF,∴△FDC是直角三角形.【点评】此题考查了全等三角形的判定与性质,平行线的性质,以及等腰三角形的判定与性质,利用AAS证明△ADE≌△BFE是解本题的关键.6.(2022秋•静安区校级期中)如图,AB=AC,AD=AE,∠BAD=∠CAE,BE与CD相交于点F.求证:(1)∠ADC=∠AEB;(2)FD=FE.【分析】(1)利用AAS证明△ABD≌△ACE即可;(2)连接DE,利用等腰三角形的性质和判定即可证明结论.【解答】证明:(1)∵∠BAD=∠CAE,∴∠BAD+∠EAD=∠CAE+∠DAE,∴∠BAE=∠CAD,在△ABE与△ACD中,,∴△ABE≌△ACD(SAS),∴∠ADC=∠AEB;(2)连接DE,∵AD=AE,∴∠ADE=∠AED,∵∠ADC=∠AEB,∴∠ADC﹣∠ADE=∠AEB﹣∠AED,∴∠FDE=∠FED,∴FD=FE.【点评】本题主要考查了全等三角形的判定与性质,等腰三角形的判定与性质,熟练掌握等腰三角形的性质和判定是解题的关键.7.(2022秋•杨浦区期中)如图,已知AB=AC,∠BEF=∠CFH,BE=CF,M是EH的中点.求证:FM⊥EH.【分析】根据等腰三角形的性质可求∠B=∠C,根据ASA可证△BEF≌△CFH,根据全等三角形的性质可求EF=FH,再根据等腰三角形的性质可证FM⊥EH.【解答】证明:∵AB=AC,∴∠B=∠C,在△BEF与△CFH中,,∴△BEF≌△CFH(ASA),∴EF=FH,∵M是EH的中点,∴FM⊥EH.ASA证明△BEF≌△CFH.8.(2021秋•浦东新区期中)如图,在△ABC中,BD平分∠ABC,∠A=2∠C,求证:BC=AB+AD.【分析】在BC上截取BE=BA,由“SAS”可证△ABD≌△EBD,可得∠BED=∠A,AB=BE,AD=DE,由外角的性质可得∠C=∠EDC,可证EC=ED,即可得结论.【解答】证明:如图,在BC上截取BE=BA,连接DE,∵BD平分∠ABC,∴∠ABD=∠CBD,在△ABD和△EBD中,,∴△ABD≌△EBD(SAS),∴∠BED=∠A,AB=BE,AD=DE,∵∠A=2∠C,∴∠BED=2∠C,∵∠BED=∠C+∠EDC,∴∠C=∠EDC,∴EC=ED,∴BC=BE+EC=AB+AD.【点评】本题考查了全等三角形的判定和性质,添加恰当辅助线构造全等三角形是解题的关键.9.(2021秋•徐汇区校级期中)已知在△ABC中,AB=AC,在边AC上取一点D,以D为顶点,DB为一条边作∠BDF=∠A,点E在AC的延长线上,∠ECF=∠ACB.求证:(1)∠FDC=∠ABD;(2)DB=DF;(3)当点D在AC延长线上时,DB=DF是否依然成立?在备用图中画出图形,并说明理由.【分析】(1)根据角的和差即可得到结论;(2)过D作DG∥BC交AB于G,根据等腰三角形的性质和全等三角形的判定和性质定理即可得到结论;(3)过D作DG∥BC交AB于G,根据平行线的性质得到∠ADG=∠ACB,∠AGD=∠ABC,根据等腰三角形的性质得到∠ABC=∠ACB,根据全等三角形的判定和性质即可得到结论.【解答】(1)证明:∵∠BDC=∠A+∠ABD,即∠BDF+∠FDC=∠A+∠ABD,∵∠BDF=∠A,∴∠FDC=∠ABD;(2)过D作DG∥BC交AB于G,∴∠ADG=∠ACB,∠AGD=∠ABC,∵AB=AC,∴∠ABC=∠ACB,∴∠AGD=∠ADG,∴AD=AG,∴AB﹣AG=AC﹣AD,即BG=DC,∵∠ECF=∠ACB=∠AGD,∴∠DGB=∠FCD,在△GDB与△CFD中,,∴△GDB≌△CFD(ASA),∴DB=DF;(3)仍然成立,如图2,过D作DG∥BC交AB于G,∴∠ADG=∠ACB,∠AGD=∠ABC,∵AB=AC,∴∠ABC=∠ACB,∴∠AGD=∠ADG,∴AD=AG,∴AG﹣AB=AD﹣AC,即BG=DC,∵∠ECF=∠ACB=∠AGD,∴∠DGB=∠FCD,∵∠ACB+∠BCF+∠FCD=180°,∴∠ACB+∠BCF+∠DGB=180°,∵∠DGB=∠ABC.∴∠ACB+∠BCF∠ABC=180°,∵∠A+∠ABC+∠ACB=180°,∴∠A=∠BCF,∵∠BDF=∠A,∴∠BCF=∠BDF,∴∠CBD=∠CFD,∵∠GBD=180°﹣∠ABC﹣∠CBD=180°﹣∠FCD﹣∠CFD=∠FDC,∴∠GBD=∠FDC,在△GDB与△CFD中,,∴△GDB≌△CFD(ASA),∴DB=DF.【点评】本题考查了全等三角形的判定和性质,等腰三角形的判定和性质,平行线的性质,正确的作出辅助线是解题的关键.10.(2022秋•浦东新区期中)如图,已知在△ABC中,AB=AC,点D、E分别在AC、AB上,且AD=AE,点F在BC的延长线上,DB=DF.(1)求证:∠ABD=∠ACE.(2)求证:CE∥DF.【分析】(1)由“SAS”可证△ADB≌△AEC,可得∠ABD=∠ACE;(2)由等腰三角形的性质可得∠=∠F,由外角的性质可得∠ACE=∠CDF,可得结论.【解答】证明:(1)∵△ABC是等边三角形,∴AB=AC,∠ABC=∠ACB=60°,在△ADB和△AEC中,,∴△ADB≌△AEC(SAS),∴∠ABD=∠ACE;(2)∵DB=DF,∴∠DBF=∠F,∵∠ABC=∠ABD+∠DBC,∠ACB=∠F+∠CDF,∴∠ABD=∠CDF,∴∠ACE=∠CDF,∴CE∥DF.【点评】本题考查了全等三角形的判定和性质,等腰三角形的性质,等边三角形的性质,掌握全等三角形的判定方法是本题的关键.11.(2020秋•浦东新区校级期中)已知:如图,点B、F、C、E在同一条直线上,AC∥DF,AC=DF,BF =CE.求证:AB∥DE.【分析】根据线段的和差求出BC=EF,由平行线的性质证得∠ACB=∠DFE,根据SAS定理推出△BAC≌△EDF,根据全等三角形的性质得出∠B=∠E,根据平行线的判定即可证得AB∥DE.【解答】证明:∵BF=CE,∴BF+FC=CE+FC,∴BC=EF,∵AC∥DF,∴∠ACB=∠DFE,在△BAC和△EDF中,,∴△BAC≌△EDF(SAS),∴∠B=∠E,∴AB∥DE.【点评】本题考查了全等三角形的性质和判定,平行线的判定的应用,能推出△BAC和△EDF全等是解此题的关键.12.(2022秋•长宁区校级期中)已知:如图,△ABC中,AD平分∠BAC交BC于点D,CF∥AB且CD平分∠FCA,联结FD并延长交边AB于点E,说明CF=AC﹣AE的理由.【分析】由CF∥AB得∠FCB=∠ABC,由CD平分∠FCA得∠FCB=∠ACB,可得∠ACB=∠ABC,从而得AB =AC,由AD平分∠BAC可得CD=BD,再根据ASA证明△FCD≌△EBD,可得FC=BE,从而可得结论.【解答】解:∵CF∥AB,∴∠FCB=∠ABC,∵CD平分∠FCA,∴∠FCB=∠ACB,∴∠ACB=∠ABC,∴AB=AC,∵AD平分∠BAC,∴CD=BD,在△FCD和△EBD中,,∴△FCD≌△EBD(ASA),∴FC=BE,∵AC=AB=AE+EB=AE+CF,∴CF=AC﹣AE.【点评】本题主要考查了等腰三角形的判定与性质,全等三角形的判定与性质,角平分线的意义等知识,运用ASA证明△FCD≌△EBD是解答本题的关键.13.(2022秋•杨浦区期中)如图1所示,已知点E在直线AB上,点F,G在直线CD上且∠EFG=∠FEG,EF平分∠AEG,如图2所示,H是AB上点E右侧一动点,∠EGH的平分线GQ交FE的延长线于点Q,设∠Q=α,∠EHG=β,(1)若∠HEG=40°,∠QGH=20°,求∠Q的度数;(2)判断:点H在运动过程中,α和β的数量关系是否发生变化?若不变,求出α和β的数量关系;若变化,请说明理由.【分析】(1)先证明,再依据∠HEG=40°,即可得到∠FEG=70°,依据QG平分∠EGH,即可得到∠QGH=∠QGE=20°,根据∠Q=∠FEG﹣∠EGQ进行计算即可;(2)根据∠FEG是△EGQ的外角,∠AEG是△EGH的外角,即可得到∠Q=∠FEG﹣∠EGQ,∠EHG=∠AEG ﹣∠EGH,再根据FE平分∠AEG,GQ平分∠EGH,即可得出,,最后依据∠Q=∠FEG﹣∠EGQ进行计算,即可得到.【解答】解:(1)∵EF平分∠AEG,∴∠AEF=∠GEF,∵∠EFG=∠FEG,∴∠AEF=∠GFE,∴AB∥CD,∵∠HEG=40°,∴,∵QG平分∠EGH,∴∠QGH=∠QGE=20°,∴∠Q=∠FEG﹣∠EGQ=70°﹣20°=50°;(2)点H在运动过程中,α和β的数量关系不发生变化,∵∠FEG是△EGQ的外角,∠AEG是△EGH的外角,∴∠Q=∠FEG﹣∠EGQ,∠EHG=∠AEG﹣∠EGH,又∵FE平分∠AEG,GQ平分∠EGH,∴,,∴∠Q=∠FEG﹣∠EGQ==,即.【点评】本题主要考查了平行线的判定与性质,三角形外角性质的运用,解题的关键是利用三角形的外角性质:三角形的外角等于与它不相邻的两个内角的和.14.(2022秋•宝山区校级期中)如图,在五边形ABCDE中,(1)已知AB=AE,BC=ED,∠B=∠E,F是CD中点,求证:AF⊥CD.(2)已知AB=AE,BC=ED,∠C=∠D,F是CD中点,求证:AF⊥CD.(3)已知∠B=∠E,BC=ED,∠C=∠D,F是CD中点,求证;AF⊥CD.【分析】(1)连接AC,AD,根据全等三角形的判定和性质得出△ABC≌△AED,AC=AD,再由等腰三角形三线合一即可证明;(2)连接BF,EF,BCF≌△EDF,△ABF≌△AEF,∠CFB=∠DFE,∠AFB =∠AFE,结合图形得出∠AFC=∠AFD,即可证明;(3)连接BD,CE交于点G,根据全等三角形的判定和性质得出△BCD≌△EDC,△CGF≌△DGF,∠AFC=∠AFD,结合图形即可证明.【解答】解:(1)如图所示,连接AC,AD,在△ABC与△AED中,,∴△ABC≌△AED(SAS),∴AC=AD,∵F是CD中点,∴AF⊥CD;(2)如图所示,连接BF,EF,∵F是CD中点,∴CF=FD,在△BCF与△EDF中,,∴△BCF≌△EDF(SAS),∴BF=EF,∠CFB=∠DFE在△ABF与△AEF中,,∴△ABF≌△AEF(SSS),∴∠AFB=∠AFE,∴∠AFB+∠CFB=∠DFE+∠AFE,即∠AFC=∠AFD,∵∠AFC+∠AFD=180°,∴∠AFD=90°,∴AF⊥CD;(3)如图所示,连接BD,CE交于点G,∵F是CD中点,∴CF=FD,在△BCD与△EDC中,,∴△BCD≌△EDC(SAS),∴∠CDB=∠DCE,∴CG=DG,在△CGF与△DGF中,,∴△CGF≌△DGF(SAS),∴∠AFC=∠AFD,∵∠AFC+∠AFD=180°,∴∠AFD=90°,∴AF⊥CD.【点评】题目主要考查全等三角形的判定和性质,线段中点的性质及等腰三角形的判定和性质等,理解题15.(2022秋•宝山区校级期中)如图,△ABC和△ABD,AB=AD,点E、F在边BC上,点A、F、D共线,∠BAC=∠AFC,∠EAC=∠FCD,求证:AE=CD.【分析】根据三角形内角和定理得出∠CAD=∠ABC,再由三角形外角的性质及全等三角形的判定和性质即可证明.【解答】证明:∵∠BAC=∠AFC,∴180°﹣∠BAC﹣∠ACB=180°﹣∠AFC﹣∠ACB,即∠CAD=∠ABC,∵∠EAC=∠FCD,∴∠EAC+∠ACB=∠FCD+∠ACB,即∠AEB=∠ACD,在△AEB与△DCA中,,∴△AEB≌△DCA(AAS),∴AE=CD.【点评】题目主要考查全等三角形的判定和性质,三角形内角和定理及外角的性质,熟练掌握全等三角形的判定和性质是解题关键.16.(2022秋•虹口区校级期中)如图,△ABC和△BDE都是等边三角形,且点A、D、E在同一直线上,证明AE=BE+CE.【分析】根据等边三角形的性质,得出∠ABC=∠DBE=60°,AB=CB,BD=BE=DE,再根据角之间的数量关系,得出∠ABD=∠CBE,再根据“边角边”,得出△ABD≌△CBE,再根据全等三角形的性质,得出AD=CE,再根据等量代换,即可得出结论.【解答】证明:∵△ABC和△BDE都是等边三角形,∴∠ABC=∠DBE=60°,AB=CB,BD=BE=DE,∴∠ABC=∠ABD+∠DBC,∠DBE=∠DBC+∠CBE,∴∠ABD=∠CBE,在△ABD和△CBE中,,∴△ABD≌△CBE(SAS),∴AD=CE,∴AE=DE+AD=BE+CE.【点评】本题考查了等边三角形的性质、全等三角形的判定与性质,解本题的关键在熟练掌握相关的性质定理.17.(2022秋•普陀区校级期中)如图,在△ABC中,AD平分∠BAC,E是BC的中点,过点E作FG⊥AD 交AD的延长线于H,交AB于F,交AC的延长线于G.求证:(1)AF=AG;(2)BF=CG.【分析】(1)由FG⊥AD交AD的延长线于H,∠AHF=∠AHG=90°,可根据全等三角形的判定定理“ASA”证明△AHF≌△AHG,得AF=AG;(2)作CL∥AB交FG于点L,则∠AFG=∠CLG,由AF=AG,得∠AFG=∠G,则∠CLG=∠G,得CL=CG,再证明△BEF≌△CEL,得BF=CL,所以BF=CG.【解答】证明:(1)∵AD平分∠BAC,∴∠FAH=∠GAH,∵FG⊥AD交AD的延长线于H,∴∠AHF=∠AHG=90°,在△AHF和△AHG中,,∴△AHF≌△AHG(ASA),∴AF=AG.(2)作CL∥AB交FG于点L,则∠B=∠ECL,∠AFG=∠CLG,∵AF=AG,∴∠AFG=∠G,∴∠CLG=∠G,∴CL=CG,∵E是BC的中点,∴BE=CE,在△BEF和△CEL中,,∴△BEF≌△CEL(ASA),∴BF=CL,∴BF=CG.【点评】此题重点考查全等三角形的判定与性质、等腰三角形的判定与性质、平行线的性质等知识,正确地作出所需要的辅助线构造全等三角形是解题的关键.18.(2022秋•浦东新区期中)如图,已知AB=AC,∠BEF=∠CFH,BE=CF,M是EH的中点.求证:∠EFM=∠HFM.【分析】证明△BEF≌△CFH(ASA),△EFM≌△HFM(SSS)即可求解.【解答】证明:∵AB=AC,∠BEF=∠CFH,BE=CF,∴∠B=∠C,在△BEF和△CFH中,,∴△BEF≌△CFH(ASA),∴EF=FH,∵M是EH的中点,∴EM=HM,FM为公共边,∴△EFM≌△HFM(SSS),∴∠EFM=∠HFM.【点评】本题主要考查全等三角形的判定和性质,掌握三角形全等的判定方法和性质是解题的关键.19.(2017秋•上海期中)如图,在△ABC中,AB=AC,点D、E、F分别在BC、AB、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数.【分析】(1)首先根据条件证明△DBE≌△ECF,根据全等三角形的性质可得DE=FE,进而可得到△DEF是等腰三角形;(2)根据△BDE≌△CEF,可知∠FEC=∠BDE,∠DEF=180°﹣∠BED﹣∠FEC=180°﹣∠DEB﹣∠EDB=∠B即可得出结论,再根据等腰三角形的性质即可得出∠DEF的度数.【解答】(1)证明:∵AB=AC∴∠B=∠C,在△BDE与△CEF中,,∴△BDE≌△CEF(SAS).∴DE=EF,即△DEF是等腰三角形.(2)解:由(1)知△BDE≌△CEF,∴∠BDE=∠CEF∵∠CEF+∠DEF=∠BDE+∠B∴∠DEF=∠B∵AB=AC,∠A=40°∴∠DEF=∠B=70°.【点评】本题考查了全等三角形的判定与性质,等腰三角形的判定与性质,熟知等腰三角形的两个底角相等是解答此题的关键.20.(2022秋•静安区校级期中)已知:如图,AD∥CF,∠A=∠C=90°,DB平分∠ADF,AD+CF=DF.求证:FB平分∠CFD.【分析】在DF上取一点E,使DE=AD,进而利用SAS证明△ADB与△EDB全等,进而证明△FCB与△FEB 全等,进而解答即可.【解答】证明:在DF上取一点E,使DE=AD,∵DB平分∠ADF,∴∠ADB=∠EDB,在△ADB与△EDB中,,∴△ADB≌△EDB(SAS),∴AB=BE,∠BAD=∠BED,AD=DE,∴∠BAD=∠BED=90°,∵AD∥CF,∴∠C=∠A=90°,∵DF=AD+CF,∴EF=DF﹣DE=DF﹣AD=CF,在Rt△BEF与Rt△BCF中,,∴Rt△BEF≌Rt△BCF(HL),∴∠EFB=∠CFB,即FB平分∠CFD.【点评】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.21.(2022秋•静安区校级期中)已知如图,AB=AC,AD=AE,∠BAE=∠CAD,BD与CE相交于点F,求证:FB=FC.【分析】由已知条件证得△ABD≌△ACE,连接BC,要证FB=FC,可利用等式性质来证得.【解答】证明:∵∠BAE=∠CAD(已知),∴∠BAE+∠EAD=∠CAD+∠DAE(等式性质),即∠BAD=∠CAE.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS).∴∠ABD=∠ACE(全等三角形对应角相等),连接BC.∵AB=AC(已知),∴∠ABC=∠ACB(等边对等角).∵∠ABD=∠ACE(已证),∴∠ABC﹣∠ABD=∠ACB﹣∠ACE(等式性质),即∠FBC=∠FCB.∴FB=FC(等角对等边).【点评】本题主要考查了两个三角形的判定和性质,关键是根据SAS证得△ABD≌△ACE.22.(2022秋•闵行区校级期中)如图,已知点A、F、C、D在同一直线上,AB∥DE,AB=DE,AF=CD,求证:BC∥EF.【分析】证△ABC≌△DEF(SAS),得∠BCA=∠EFD,再由平行线的判定即可得出结论.【解答】证明:∵AB∥DE,∴∠A=∠D,∵AF=CD,∴AF+CF=CD+CF,即AC=DF,在△ABC与△DEF中,,∴△ABC≌△DEF(SAS),∴∠BCA=∠EFD,∴BC∥EF.【点评】考查了全等三角形的判定与性质、平行线的判定与性质等知识,熟练掌握平行线的判定与性质,证明三角形全等是解题的关键.23.(2022秋•杨浦区期中)如图,已知△ABC和△CDE都是等边三角形,点D、A、C在同一直线上,延长BA交边DE于点F,联结AE、BD.(1)试说明△ADB≌△F AE的理由;(2)延长EA交BD于点H,求∠DHE的度数.【分析】(1)证△ADF是等边三角形,得AD=FA=DF,∠DFA=60°,再证CD=BF,则AB=FE,然后证∠BAD=∠EFA,进而证△ADB≌△FAE(SAS);(2)由全等三角形的性质得∠ABD=∠FEA,再证∠DHE=∠FEA+∠FAE,即可得出结论.【解答】(1)证明:∵△ABC和△CDE都是等边三角形,∴AB=AC,∠DAF=∠BAC=60CDE=60°,CD=DE,∴△ADF是等边三角形,∴AD=FA=DF,∠DFA=60°,∴AC+AD=AB+FA,即CD=BF,∴BF﹣FA=DE﹣DF,即AB=FE,∵∠BAD=180°﹣∠DAF=180°﹣60°=120°,∠EFA=180°﹣∠DFA=180°﹣60°=120°,∴∠BAD=∠EFA,在△ADB和△FAE中,,∴△ADB≌△FAE(SAS);(2)解:由(1)得:△ADB≌△FAE,∴∠ABD=∠FEA,∵∠DHE=∠ABD+∠BAH,∠FAE=∠BAH,∴∠DHE=∠FEA+∠FAE,∵∠DFA=∠FEA+∠FAE,∴∠DHE=∠DFA=60°.【点评】本题考查了全等三角形的判定与性质、等边三角形的判定与性质等知识,熟练掌握等边三角形的判定与性质,证明三角形全等是解题的关键.24.(2022秋•闵行区期中)如图,点D,E在△ABC的边BC上,AD=AE,BD=CE,求证:∠B=∠C.【分析】方法一:利用全等三角形的性质证明即可.方法二:作AM⊥BC于M.证明AN垂直平分线段BC 即可;【解答】证明方法一:∵AD=AE,∴∠ADE=∠AED,∵∠ADE+∠ADB=∠AED+∠AEC=°,∴∠ADB=∠AEC,在△ABD和△ACE中,∴△ABD≌△ACE(SAS),∴∠B=∠C.证明方法二:作AM⊥BC于M.∵AD=AE,∴DM=EM,∵BD=CE,∴DM+BD=EM+CE,即:BM=CM,又∵AM⊥BC,即AM为BC的垂直平分线,∴AB=AC,∴∠B=∠C.【点评】本题考查全等三角形的判定和性质,等腰三角形的判定和性质,线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.25.(2022秋•普陀区期中)已知:如图,在四边形ABCD中,BC=DC,点E在边AB上,∠EBC=∠EDC.(1)求证:EB=ED.(2)当∠A=90°,求证:∠BED=2∠BDA.【分析】(1)由BC=DC,得出∠CBD=∠CDB,再由∠EBC=∠EDC,推出∠EBD=∠EDB,即可得出结论;(2)由三角形内角和定理得出∠BDA+∠ABD=90°=∠A,再由(1)得∠EBD=∠EDB,则∠BDA+∠EDB=∠A,然后由三角形的外角性质即可得出结论.【解答】证明:(1)∵BC=DC,∴∠CBD=∠CDB,∵∠EBC=∠EDC,∴∠EBC﹣∠CBD=∠EDC﹣∠CDB,即∠EBD=∠EDB,∴EB=ED;(2)∵∠A=90°,∴∠BDA+∠ABD=90°=∠A,由(1)得:∠EBD=∠EDB,∴∠BDA+∠ABD=∠BDA+∠EDB=∠A,∴∠BED=∠A+∠ADE=∠BDA+∠EDB+∠ADE=∠BDA+∠BDA=2∠BDA.【点评】本题考查了等腰三角形的判定与性质、三角形内角和定理、三角形外角的性质等知识,熟练掌握等腰三角形的判定与性质是解题的关键.26.(2021秋•奉贤区校级期中)在△ABC中,AB=AC,点D是直线BC上的一点(不与点B、C重合),以AD为腰右侧作等腰三角形△ADE,且AD=AE,∠BAC=∠DAE,连接CE.(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE=度.(2)设∠BAC=α,∠BCE=β.①点D是在线段BC上移动时,如图2,则α、β之间有怎样的数量关系?试说明理由.②点D是在射线CB上移动时,则α、β之间有怎样的数量关系?试直接写出结论.【分析】(1)证明△BAD≌△CAE,得∠B=∠ACE,即可证明;(2)①与(1)同理证明△BAD≌△CAE,得∠ABD=∠ACE,则∠BAC+∠BCE=∠BAC+∠BCA+∠ACE=∠BAC+∠BCA+∠B=180°;②同理证明△ADB≌△AEC,得∠ABD=∠ACE,由∠ABD=∠BAC+∠ACB,则∠BAC=∠BCE.【解答】解:(1)∵∠BAC=∠DAE,∴∠BAD=∠CAE,在△BAD与△CAE中,,∴△BAD≌△CAE(SAS),∴∠B=∠ACE,∴∠BCE=∠ACB+∠ACE=90°,故答案为:90;(2)①α+β=180°,理由如下:∵∠BAC=∠DAE,∴∠BAD=∠CAE,在△BAD与△CAE中,,∴△BAD≌△CAE(SAS),∴∠ABD=∠ACE,∵∠BAC+∠ABD+∠BCA=180°,∴∠BAC+∠BCE=∠BAC+∠BCA+∠ACE=∠BAC+∠BCA+∠B=180°,∴α+β=180°;②α=β,理由如下:∵∠DAE=∠BAC,∴∠DAB=∠EAC,在△ADB与△AEC中,,∴△ADB≌△AEC(SAS),∴∠ABD=∠ACE,∵∠ABD=∠BAC+∠ACB,∴∠BAC=∠BCE,∴α=β.【点评】本题主要考查了等腰三角形的性质,全等三角形的判定与性质,三角形外角的性质等知识,证明△ADB≌△AEC是解题的关键.27.(2021秋•浦东新区期中)如图,在△ABC中,AD平分∠BAC,DE∥AC,过点E作EF⊥AD于点O,交BC的延长线于F,连接AF,求证:AF=DF.【分析】根据平行线的性质和等腰三角形的判定和性质解答即可.【解答】证明:∵DE∥AC,∴∠EDA=∠DAC,∵AD平分∠BAC,∴∠EAD=∠DAC,∴∠EAD=∠EDA,∴AE=DE,∵EF⊥AD,∴EF垂直且平分AD,∴F在AD的垂直平分线上,∴AF=DF.【点评】此题考查等腰三角形的判定和性质,关键是根据平行线的性质和等腰三角形的判定和性质解答.28.(2020秋•浦东新区期中)如图,已知在△ABC中,AB=AC,D是AB上一点,延长AC至点E,使CE =BD.联结DE交BC于点F,求证:DF=EF.【分析】过点D作DG∥AC交BC于点G,由“AAS”可证△DFG≌△ECF,可得DF=EF.【解答】证明:如图,过点D作DG∥AC交BC于点G,∵AB=AC,∵DG∥AC,∴∠ACB=∠DGB,∠DGF=∠ECF,∴∠ACB=∠DGB=∠B,∴DG=DB,∵CE=BD,∴DG=CE,在△DFG和△EFC中,,∴△DFG≌△EFC(AAS)∴DF=EF.【点评】本题考查了全等三角形的判定和性质、等腰三角形的判定与性质等知识,添加恰当辅助线构造全等三角形是解题的关键.29.(2022秋•奉贤区校级期中)如图,点A、B、C、D在同一直线上,BE∥DF,∠A=∠F,AB=FD.求证:AE=FC.【分析】根据BE∥DF,可得∠ABE=∠D,再利用ASA求证△ABC和△FDC全等即可.【解答】证明:∵BE∥DF,在△ABE和△FDC中,,∴△ABE≌△FDC(ASA),∴AE=FC.【点评】此题主要考查全等三角形的判定与性质和平行线的性质等知识点的理解和掌握,此题的关键是利用平行线的性质求证△ABC和△FDC全等.30.(2020秋•普陀区期中)如图,已知AB=AC,BD=CD,过点D作DE⊥AB交AB的延长线于点E、DF ⊥AC交AC的延长线于点F,垂足分别为点E、F.(1)求证:∠DBE=∠DCF.(2)求证:BE=CF.【分析】(1)连接AD,证△ABD≌△ACD(SSS),得∠ABD=∠ACD,即可得出结论;(2)证△BDE≌△CDF(AAS),即可得出结论.【解答】证明:(1)连接AD,如图:在△ABD和△ACD中,,∴△ABD≌△ACD(SSS),∴∠ABD=∠ACD,∴∠DBE=∠DCF.(2)∵DE⊥AB,DF⊥AC,∴∠E=∠F=90°,由(1)得:∠DBE=∠DCF,在△BDE和△CDF中,,∴△BDE≌△CDF(AAS),∴BE=CF.【点评】本题考查了全等三角形的判定和性质等知识;熟练掌握全等三角形的判定与性质是解题的关键.31.(2017秋•静安区期中)如图,在△ABC中,D为AB的中点,F为BC上一点,DF∥AC,延长FD至E,且DE=DF,联结AE、AF.(1)求证:∠E=∠C;(2)如果DF平分∠AFB,求证:AC⊥AB.【分析】(1)根据SAS证明△AED与△BFD全等,再利用等量代换证明即可;(2)根据角平分线的定义和等腰三角形的性质进行证明即可.【解答】证明:(1)∵D为AB的中点,∴BD=AD,在△AED与△BFD中,,∴△AED≌△BFD(SAS),∴∠E=∠DFB,∵DF∥AC,∴∠C=∠DFB,∴∠C=∠E;(2)∵DF平分∠AFB,∴∠AFD=∠DFB,∵∠E=∠DFB,∴∠AFD=∠AED,∵ED=DF,∴∠DAF+∠AFD=90°,∵EF∥AC,∴∠AFD=∠FAC,∴∠DAF+∠FAC=90°,∴AC⊥AB.【点评】本题考查了全等三角形的判定与性质,关键是根据平行线的性质、全等三角形的判定与性质等知识进行解答.32.(2021秋•浦东新区期中)如图1,在△ABC中,∠A=120°,∠C=20°,BD平分∠ABC,交AC于点D.(1)求证:BD=CD.(2)如图2,若∠BAC的角平分线AE交BC于点E,求证:AB+BE=AC.(3)如图3,若∠BAC的外角平分线AE交CB的延长线于点E,则(2)中的结论是否成立?若成立,给出证明,若不成立,写出正确的结论.【分析】(1)根据∠A=120°,∠C=20°,可得∠ABC的度数,再根据BD平分∠ABC,可得∠DBC=∠C=20°,进而可得结论;(2)如图2,过点E作EF∥BD交AC于点F,证明△ABE≌△AFE,可得BE=EF=FC,进而可得AB+BE=AC;(3)如图3,过点A作AF∥BD交BE于点F,结合(1)和AE是∠BAC的外角平分线,可得FE=AF=AC,进而可得结论BE﹣AB=AC.【解答】(1)证明:∵∠A=120°,∠C=20°,∴∠ABC=180°﹣120°﹣20°=40°,∵BD平分∠ABC,∴∠ABD=∠DBC=ABC=20°,∴∠DBC=∠C=20°,∴BD=CD;(2)证明:如图2,过点E作EF∥BD交AC于点F,∴∠FEC=∠DBC=20°,∴∠FEC=∠C=20°,∴∠AFE=40°,FE=FC,∴∠AFE=∠ABC,∵AE是∠BAC的平分线,∴∠BAE=∠FAE,在△ABE和△AFE中,,∴△ABE≌△AFE(AAS),∴BE=EF,∴BE=EF=FC,∴AB+BE=AF+FC=AC;(3)(2)中的结论不成立,正确的结论是BE﹣AB=AC.理由如下:如图3,过点A作AF∥BD交BE于点F,∴∠AFC=∠DBC=20°,∴∠AFC=∠C=20°,∴AF=AC,∵AE是∠BAC的外角平分线,∴∠EAB=(180°﹣∠ABC)=30°,∵∠ABC=40°,∴∠E=∠ABC﹣∠EAB=10°,∴∠E=∠FAE=10°,∴FE=AF,∴FE=AF=AC,∴BE﹣AB=BE﹣BF=EF=AC.【点评】本题考查了全等三角形的判定与性质,解决本题的关键是掌握全等三角形的判定与性质.33.(2022秋•奉贤区校级期中)(1)已知:如图①,△ABC是等边三角形,AD、CE分别平分∠BAC、∠ACB,AD、CE相交于点F,猜想:线段EF、DF之间有怎样的数量关系?并证明你的猜想.(2)已知:如图②,在△ABC中,∠B=60°,AD、CE分别平分∠BAC、∠ACB,AD、CE相交于点F,猜想:上述(1【分析】(1)证明△EAC≌△DCA(ASA),可得EC=DA,然后根据线段的和差即可得结论;(2)在CA上截取CG=CD,证明△CDF≌△CGF(SAS),可得DF=GF,∠DFC=∠GFC,再证明△AEF≌△AGF(ASA),可得EF=GF,进而可得结论.【解答】解:(1)EF=DF,证明:∵△ABC是等边三角形,∴∠BAC=∠BCA=60°,∵AD、CE分别平分∠BAC、∠ACB,∴∠FAC=BAC,∠FCA=BCA,∴∠FAC=∠FCA,∴FA=FC,在△EAC和△DCA中,,∴△EAC≌△DCA(ASA),∴EC=DA,∵FA=FC,∴EF=DF;(2)EF=DF仍成立,理由如下:如图,在CA上截取CG=CD,在△CDF和△CGF中,,∴△CDF≌△CGF(SAS),∴DF=GF,∠DFC=∠GFC,∵∠DFC=∠FAC+∠FCA=BAC+BCA=60°,∴∠GFC=60°,∠AFE=60°,∴∠AFC=180°﹣(∠FAC+∠FCA)=180°﹣(BAC+BCA)=180°﹣60°=120°,∴∠AFG=120°﹣60°=60°,∴∠AFE=∠AFG,在△AEF和△AGF中,,∴△AEF≌△AGF(ASA),∴EF=GF,∴EF=DF.【点评】本题考查了角平分线的性质,全等三角形的判定与性质,三角形的内角和定理,遇到角平分线,作角平分线上的点到两边的距离构造出全等三角形是解题的关键.34.(2021秋•台江区期中)如图,在△ABE中,AB=AE,AD=AC,∠BAD=∠EAC,BC、DE交于点O.求证:(1)△ABC≌△AED;(2)OB=OE.【分析】(1)利用SAS ABC≌△AED;(2)根据全等三角形的性质得到∠ABC=∠AED,根据等腰三角形的性质得到∠ABE=∠AEB,得到∠OBE=∠OEB,根据等腰三角形的判定定理证明.【解答】证明:(1)∵∠BAD=∠EAC,∴∠BAD+∠DAC=∠EAC+∠DAC,即∠BAC=∠EAD,在△BAC和△EAD中,,∴△BAC和≌EAD;(2)∵△BAC≌△EAD,∴∠ABC=∠AED,∵AB=AE,∴∠ABE=∠AEB,∴∠OBE=∠OEB,∴OB=OE.【点评】本题考查的是全等三角形的判定和性质、等腰三角形的性质,掌握全等三角形的判定定理和性质定理是解题的关键.35.(2022秋•宝山区校级期中)如图,已知在△ABC中,AB=AC,点D、E分别在边AB、AC上,且AD =AE.(1)求证:DE∥BC;(2)如果F是BC延长线上一点,且∠EBC=∠EFC,求证:DE=CF.【分析】(1)根据等腰三角形的性质和三角形内角和证明即可;(2)根据AAS证明△BDE与△EFC全等即可.【解答】证明:(1)∵AB=AC,∴∠ABC=∠ACB,∵AD=AE,∴∠ADE=∠AED,∵∠A=∠A,∴∠ADE=∠ABC,∴DE∥BC;(2)∵∠EBC=∠EFC,∠ABC=∠ACB,∴∠DBE+∠EBC=∠CEF+∠EFC,∴∠DBE=∠CEF,∠DEB=∠EFC,在△BDE与△EFC中,,∴△BDE≌△EFC(AAS),∴DE=CF.【点评】本题考查了等腰三角形的性质的运用,平行线的性质的运用,全等三角形的判定语言性质的运用,解答时证明三角形全等是关键.36.(2022秋•浦东新区期中)已知:如图,AB=DC,AC=BD.求证:∠B=∠C.【分析】连接AD,利用SSS判定△ABD≌△DCA,根据全等三角形的对应角相等即证.【解答】解:如图,连接AD,在△ABD和△DCA中,,∴△ABD≌△DCA(SSS),∴∠B=∠C.【点评】本题考查三角形全等的判定方法和三角形全等的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.37.(2022秋•徐汇区校级期中)已知:如图,在△ABC中,∠ACB=90°,AD为△ABC的外角平分线,交BC的延长线于点D,且∠B=2∠D.求证:AB+AC=CD.【分析】过点D作DE⊥AB,垂足为点E,由“在角的平分线上的点到这个角的两边的距离相等”可知DE=DC,再证明Rt△ACD≌Rt△AED,由此可得AC=AE,在证明BE=DE即可.【解答】证明:过点D作DE⊥AB,垂足为点E,又∵∠ACB=90°(已知),∴DE=DC(在角的平分线上的点到这个角的两边的距离相等).在Rt△ACD和Rt△AED中∴Rt△ACD≌Rt△AED(H.L).∴AC=AE,∠CDA=∠EDA.∵∠B=2∠D(已知),∴∠B=∠BDE.∴BE=DE.又∵AB+AE=BE,∴AB+AC=CD.【点评】本题考查了全等三角形的判定与性质,关键是作辅助线使得AB与AC在同一条直线上才好证AB+AC =CD.38.(2021秋•徐汇区校级期中)如图,AB⊥BC,DC⊥BC,垂足分别是点B、C,点E是线段BC上一点,且AE⊥DE,AE=ED,如果BE=3,AB+BC=11,求AB的长.【分析】求出∠A=∠DEC,∠B=∠C=90°,根据AAS证△ABE≌△ECD,推出AB=CE,求出AB+BC=2AB+BE =11,把BE=3代入求出AB即可.【解答】解:∵AB⊥BC,DC⊥BC,垂足分别是点B、C,∴∠B=∠C=90°.∴∠A+∠AEB=90°,∵AE⊥DE,∴∠AED=90°,∵∠AEB+∠AED+∠DEC=180°,∴∠AEB+∠DEC=90°,∴∠A=∠DEC,∵在△ABE和△ECD中,,∴△ABE≌△ECD(AAS),∴AB=CE,∵BC=BE+CE=BE+AB,∴AB+BC=2AB+BE=11,∵BE=3,∴AB=4.【点评】本题考查了全等三角形的性质和判定,三角形的内角和定理,注意:全等三角形的对应边相等,全等三角形的判定定理有SAS,ASA,AAS,SSS.39.(2022秋•奉贤区校级期中)△ABC为等边三角形,D为AB边上的任意一点.连接CD.(1)在BD的左侧,以BD为一边作等边三角形BDE(尺规作图,保留作图痕迹,不写作法);(2)连接AE,试说明:CD=AE.【分析】(1)可以分别以B、D为圆心,以BD为半径作弧,相交于E;(2)由已知条件,证明△BCD≌△EAB即可.【解答】(1)解:如图:(2)证明:连接AE,如图,∵在△BCD与△BAE中,,∴△BCD≌△BAE(SAS)∴CD=AE.【点评】此题主要考查等边三角形的作法以及性质的运用,还涉及到全等三角形的判定,综合性强.求得三角形全等是正确解答本题的关键.40.(2022秋•静安区校级期中)如图①,点M为锐角三角形ABC内任意一点,连接AM、BM、CM.以AB 为一边向外作等边三角形△ABE,将BM绕点B逆时针旋转60°得到BN,连接EN.(1)求证:△AMB≌△ENB;。
(完整版)初二上几何证明题100题专题训练(可编辑修改word版)
A D P E 八年级上册几何题专题训练 100 题1、 已知:在⊿ABC 中,∠A=900,AB=AC ,在 BC 上任取一点 P ,作 PQ∥AB 交 AC 于 Q ,作 PR∥CA 交 BA 于 R ,D 是 BC的中点,求证:⊿RDQ 是等腰直角三角形。
C2、 已知:在⊿ABC 中,∠A=900,AB=AC ,D 是 AC 的中点,AE⊥BD,AE 延长线交 BC 于 F ,求证:∠ADB=∠FDC。
3、 已知:在⊿ABC 中 BD 、CE 是高,在 BD 、CE 或其延长线上分别截取 BM=AC 、CN=AB ,求证:MA⊥NA。
4、已知:如图(1),在△ABC 中,BP 、CP 分别平分∠ABC 和∠ACB ,DE 过点 P 交 AB 于 D ,交 AC 于 E ,且 DE ∥ BC .求证:DE -DB=EC .BC5、在Rt△ABC 中,AB=AC,∠BAC=90°,O 为BC 的中点。
(1)写出点O 到△ABC 的三个顶点A、B、C 的距离的大小关系(不要求证明);(2)如果点M、N 分别在线段AB、AC 上移动,在移动中保持AN=BM,请判断△OMN 的形状,并证明你的结论。
CNOA M B6、如图,△ABC 为等边三角形,延长BC 到D,延长BA 到E,AE=BD,连结EC、ED,求证:CE=DE7、如图,等腰三角形ABC 中,AB=AC,∠A=90°,BD 平分∠ABC,DE⊥BC 且BC=10,求△DCE 的周长。
8.如图,已知△EAB≌△DCE,AB,EC 分别是两个三角形的最长边,∠A=∠C=35°,∠CDE=100°,∠DEB=10°,求∠AEC的度数.9.如图,点 E、A、B、F 在同一条直线上,AD 与BC 交于点 O, 已知∠CAE=∠DBF,AC=BD.求证:∠C=∠DC DOE B10.如图,OP 平分∠AOB,且OA=OB.(1)写出图中三对你认为全等的三角形(注:不添加任何辅助线);(2)从(1)中任选一个结论进行证明.11.已知:如图,AB=AC,DB=DC,AD 的延长线交 BC 于点E,求证:BE=EC。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(完整word版)八年级上册几何证明题专项练习
亲爱的读者:
本文内容由我和我的同事精心收集整理后编辑发布到文库,发布之前我们对文中内容进行详细的校对,但难免会有错误的地方,如果有错误的地方请您评论区留言,我们予以纠正,如果本文档对您有帮助,请您下载收藏以便随时调用。
下面是本文详细内容。
最后最您生活愉快 ~O(∩_∩)O ~
八年级上册几何证明题专项练习
1.如图,△ABC、△CDE均为等腰直角三角形,∠ACB=∠DCE=90°,点E在AB 上.求证:△CDA≌△CEB.
2.如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD.
3.如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D.(1)求证:AC∥DE;
(2)若BF=13,EC=5,求BC的长.
4.如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D.
5.如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB
求证:AE=CE.
6.如图,BE⊥AC,CD⊥AB,垂足分别为E,D,BE=CD.求证:AB=AC.
7.如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.
8.如图,在△ABC中,AC=BC,∠C=90°,D是AB的中点,DE⊥DF,点E,F 分别在AC,BC上,求证:DE=DF.
9.如图,点A、C、D、B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF,求证:DE=CF.
10.如图,已知∠CAB=∠DBA,∠CBD=∠DAC.
求证:BC=AD.
11.如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE.
12.如图,AB∥CD,E是CD上一点,BE交AD于点F,EF=BF.求证:AF=DF.
13.已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.
(1)求证:BD=CE;
(2)求证:∠M=∠N.
14.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E.
求证:△ACD≌△CBE.
15.如图,四边形ABCD中,E点在AD上,∠BAE=∠BCE=90°,且BC=CE,AB=DE.求证:△ABC≌△DEC.
16.如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.
①求证:△ABE≌△CBD;
②若∠CAE=30°,求∠BDC的度数.
17.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:
(1)FC=AD;
(2)AB=BC+AD.
18.如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N两点,DM与EN相交于点F.
(1)若△CMN的周长为15cm,求AB的长;
(2)若∠MFN=70°,求∠MCN的度数.
19.已知△ABC中,AD是∠BAC的平分线,AD的垂直平分线交BC的延长线于F.求证:∠BAF=∠ACF.
20.如图所示,在Rt△ABC中,∠ACB=90°,AC=BC,D为BC边上的中点,CE ⊥AD于点E,BF∥AC交CE的延长线于点F,求证:AB垂直平分DF.
21.如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF;说明:
(1)CF=EB.
(2)AB=AF+2EB.
22.如图,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为C、D.求证:(1)∠ECD=∠EDC;
(2)OC=OD;
(3)OE是线段CD的垂直平分线.
23.如图,四边形ABCD中,∠B=90°,AB∥CD,M为BC边上的一点,且AM
平分∠BAD,DM平分∠ADC.求证:
(1)AM⊥DM;
(2)M为BC的中点.
24.如图,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E.求证:∠CBE=∠BAD.
25.如图,已知AB=AC=AD,且AD∥BC,求证:∠C=2∠D.
26.如图,已知△ABC中,AB=AC,BD、CE是高,BD与CE相交于点O
(1)求证:OB=OC;
(2)若∠ABC=50°,求∠BOC的度数.
27.如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.
(1)求证:△DEF是等腰三角形;
(2)当∠A=40°时,求∠DEF的度数.
28.如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.
(1)求∠F的度数;
(2)若CD=2,求DF的长.
29.图1、图2中,点C为线段AB上一点,△ACM与△CBN都是等边三角形.(1)如图1,线段AN与线段BM是否相等?证明你的结论;
(2)如图2,AN与MC交于点E,BM与CN交于点F,探究△CEF的形状,并证明你的结论.
30.如图①,△ABC中,AB=AC,∠B、∠C的平分线交于O点,过O点作EF ∥BC交AB、AC于E、F.
(1)图中有几个等腰三角形?猜想:EF与BE、CF之间有怎样的关系,并说明理由.
(2)如图②,若AB≠AC,其他条件不变,图中还有等腰三角形吗?如果有,分别指出它们.在第(1)问中EF与BE、CF间的关系还存在吗?
(3)如图③,若△ABC中∠B的平分线BO与三角形外角平分线CO交于O,过O点作OE∥BC交AB于E,交AC于F.这时图中还有等腰三角形吗?EF与BE、CF关系又如何?说明你的理
由.
结尾处,小编送给大家一段话。
米南德曾说过,“学会学习的人,是非常幸福的人”。
在每个精彩的人生中,学习都是永恒的主题。
作为一名专业文员教职,我更加懂得不断学习的重要性,“人生在勤,不索何获”,只有不断学习才能成就更好的自己。
各行各业从业人员只有不断的学习,掌
握最新的相关知识,才能跟上企业发展的步伐,才能开拓创新适应市场
的需求。
本文档也是由我工作室专业人员编辑,文档中可能会有错误,
如有错误请您纠正,不胜感激!
At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。