张恭庆泛函分析(上册)答案

合集下载

泛函分析答案泛函分析解答(张恭庆)(1)

泛函分析答案泛函分析解答(张恭庆)(1)

第五章习题第一部分01-151. M 为线性空间X 的子集,证明span( M )是包含M 的最小线性子空间.[证明] 显然span( M )是X 的线性子空间.设N 是X 的线性子空间,且M ⊆ N . 则由span( M )的定义,可直接验证span( M ) ⊆ N . 所以span( M )是包含M 的最小线性子空间.2. 设B 为线性空间X 的子集,证明conv(B ) = {∑=ni i i x a 1| a i ≥ 0,∑=ni i a 1= 1, x i ∈B , n 为自然数}.[证明] 设A = {∑=ni i i x a 1| a i ≥ 0,∑=ni i a 1= 1, x i ∈B , n 为自然数}.首先容易看出A 为包含B 的凸集,设F 也是包含B 的凸集,则显然有A ⊆ F ,故A 为包含B 的最小凸集.3. 证明[a , b ]上的多项式全体P [a , b ]是无限维线性空间,而E = {1, t , t 2, ..., t n , ...}是它的一个基底.[证明] 首先可以直接证明P [a , b ]按通常的函数加法和数乘构成线性空间, 而P [a , b ]中的任一个元素皆可由E 中有限个元素的线性组合表示. 设c 0, c 1, c 2, ..., c m 是m + 1个实数,其中c m ≠ 0,m ≥ 1. 若∑=mn n n t c 0= 0,由代数学基本定理知c 0 = c 1 = c 2 = ... = c m = 0,所以E 中任意有限个元素线性无关,故P [a , b ]是无限维线性空间,而E 是它的一个基底。

4. 在 2中对任意的x = (x 1, x 2)∈ 2,定义|| x ||1 = | x 1 | + | x 2 |,|| x ||2 = (x 12 + x 22)1/2,|| x ||∞ = max{ | x 1 |, | x 2 | }.证明它们都是 2中的范数,并画出各自单位球的图形.[证明] 证明是直接的,只要逐条验证范数定义中的条件即可.单位球图形略.5. 设X 为线性赋范空间,L 为它的线性子空间。

张恭庆泛函分析报告上册问题详解

张恭庆泛函分析报告上册问题详解

1.1.51.1.61.1.71.2.21.2.31.2.41.3.31.3.41.3.51.3.71.3.81.3.91.4.11.4.5-61.4.91.4.111.4.121.4.131.4.141.4.151.4.171.5.1证明:(1) (⇒) 若x∈int(E),存在δ > 0,使得Bδ(x) ⊆E.注意到x + x/n→x ( n→∞ ),故存在N ∈+,使得x + x/N ∈Bδ(x) ⊆E.即x/( N/( 1 + N ) ) ∈E.因此P(x) ≤N/( 1 + N ) < 1.(⇐) 若P(x) < 1.则存在a > 1,使得y = a x∈E.因θ∈int(E),故存在δ > 0,使得Bδ(θ) ⊆E.令η = δ(a - 1)/a,∀z∈Bη(x),令w = (a z-y )/(a - 1),则|| w || = || (a z-y )/(a - 1) || = || a z-y ||/(a - 1)= || a z-a x ||/(a - 1) = a || z-x ||/(a - 1) < aη/(a - 1) = δ.故w∈Bδ(θ) ⊆E.故z= ((a -1)w+ y)/a ∈E,因此,Bη(x) ⊆E.所以x∈int(E).(2) 因int(E) = E,故有cl(int(E)) ⊆ cl(E).下面证明相反的包含关系.若x∈cl(E),则∀ε > 0,存在y∈E,使得|| x -y || < ε/2.因ny/(n + 1) →y ( n →∞ ).故存在N ∈+,使得|| Ny/(N + 1) -y || < ε/2.令z = Ny/(N + 1),则z∈E,且P(z) ≤N/(N + 1) < 1,由(1)知z∈int(E).而|| z -x || ≤ || z -y || + || y -x || < ε/2 + ε/2 = ε.故x∈cl(int(E)),因此cl(E) ⊆ cl(int(E))所以cl(int(E)) = cl(E).1.5.3证明:因为C是紧集,所以C是闭集.因为C是紧集,故C的任意子集都列紧.而T(C) C,故T(C)列紧.于是,由Schauder不动点定理,T在C上有一个不动点.[Schauder定理:B*空间中闭凸集C上使T(C)列紧的连续自映射T必有不动点]1.5.41.5.5证明:设C = {x = (x1, x2, ..., x n)∈n | ∑ 1 ≤i ≤n x i = 1,x i ≥ 0 ( i = 1,2, ..., n) }.则C是有界闭集,且是凸集,因此C是紧凸集.因为∀x∈C,x i 不全为0,而a ij> 0,故Ax的各分量也非负但不全为零.∀x∈C,设f (x) = (Ax)/( ∑ 1 ≤i ≤n (Ax)i ),则f (x)∈C.容易验证f : C→C还是连续的.由Brouwer不动点定理,存在f的不动点x0∈C.即f (x0) = x0,也就是(Ax0)/( ∑ 1 ≤i ≤n (Ax0)i ) = x0.令λ= ∑ 1 ≤i ≤n (Ax0)i,则有Ax0 = λ x0.1.5.6证明:设B = { u∈C[0, 1] | ⎰[0, 1]u(x) dx = 1,u(x) ≥ 0 },则B是C[0, 1]中闭凸集.设max (x, y)∈[0, 1]⨯[0, 1]K(x, y) = M,min (x, y)∈[0, 1]⨯[0, 1]K(x, y) = m,⎰[0, 1] (⎰[0, 1]K(x, y) dy) dx = N,max x∈[0, 1] | ⎰[0, 1]K(x, y) dy |= P.令(S u)(x) = (⎰[0, 1]K(x, y) u(y) dy)/(⎰[0, 1] (⎰[0, 1]K(x, y) u(y) dy) dx )则⎰[0, 1] (S u)(x) dx = 1,u(x) ≥ 0;即S u∈B.因此S是从B到B内的映射.∀u, v∈B,|| ⎰[0, 1]K(x, y) u(y) dy -⎰[0, 1]K(x, y) v(y) dy ||= || ⎰[0, 1]K(x, y) (u(y)-v(y)) dy ||= max x∈[0, 1] | ⎰[0, 1]K(x, y) (u(y)-v(y)) dy |≤M· || u -v ||;因此映射u #⎰[0, 1]K(x, y) u(y) dy在B上连续.类似地,映射u #⎰[0, 1] (⎰[0, 1]K(x, y) u(y) dy) dx也在B上连续.所以,S在B上连续.下面证明S(B)列紧.首先,证明S(B)是一致有界集.∀u∈B,|| S u || = || (⎰[0, 1]K(x, y) u(y) dy )/(⎰[0, 1] (⎰[0, 1]K(x, y) u(y) dy) dx )|| = max x∈[0, 1] | ⎰[0, 1]K(x, y) u(y) dy |/(⎰[0, 1] (⎰[0, 1]K(x, y) u(y) dy) dx )≤ (M ·⎰[0, 1]u(y) dy |/(m ⎰[0, 1] (⎰[0, 1]u(y) dy) dx ) = M/m,故S(B)是一致有界集.其次,证明S(B)等度连续.∀u∈B,∀t1, t2∈[0, 1],| (S u)(t1) - (S u)(t2)|= | ⎰[0, 1]K(t1, y) u(y) dy-⎰[0, 1]K(t2, y) u(y) dy |/(⎰[0, 1] (⎰[0, 1]K(x, y) u(y) dy) dx )≤⎰[0, 1] | K(t1, y) -K(t2, y) | u(y) dy /(m⎰[0, 1] (⎰[0, 1]u(y) dy) dx )≤ (1/m) · max y∈[0, 1] | K(t1, y) -K(t2, y) |由K(x, y)在[0, 1]⨯[0, 1]上的一致连续性,∀ε > 0,存在δ> 0,使得∀(x1, y1), (x2, y2)∈[0, 1],只要|| (x1, y1) - (x2, y2) || < δ,就有| K(x1, y1) -K(x2, y2) | < m ε.故只要| t1-t2 | < δ时,y∈[0, 1],都有| K(t1, y) -K(t2, y) | < m ε.此时,| (S u)(t1) - (S u)(t2)| ≤ (1/m) · max y∈[0, 1] | K(t1, y) -K(t2, y) | ≤ (1/m) ·m ε = ε.故S(B)是等度连续的.所以,S(B)是列紧集.根据Schauder不动点定理,S在C上有不动点u0.令λ= (⎰[0, 1] (⎰[0, 1]K(x, y) u0(y) dy) dx.则(S u0)(x) = (⎰[0, 1]K(x, y) u0(y) dy)/λ= (T u0)(x)/λ.因此(T u0)(x)/λ= u0(x),T u0 = λ u0.显然上述的λ和u0满足题目的要求.1.6.1 (极化恒等式)证明:∀x, y∈X,q(x + y) -q(x-y) = a(x + y, x + y) -a(x-y, x-y)= (a(x, x) + a(x, y) + a(y, x) + a(y, y)) - (a(x, x) -a(x, y) -a(y, x) + a(y, y))= 2 (a(x, y) + a(y, x)),将i y代替上式中的y,有q(x + i y) -q(x-i y) = 2 (a(x, i y) + a(i y, x))= 2 (-i a(x, y) + i a( y, x)),将上式两边乘以i,得到i q(x + i y) -i q(x-i y) = 2 ( a(x, y) -a( y, x)),将它与第一式相加即可得到极化恒等式.1.6.2证明:若C[a, b]中范数|| · ||是可由某内积( · , · )诱导出的,则范数|| · ||应满足平行四边形等式.而事实上,C[a, b]中范数|| · ||是不满足平行四边形等式的,因此,不能引进内积( · , · )使其适合上述关系.范数|| · ||是不满足平行四边形等式的具体例子如下:设f(x) = (x–a)/(b–a),g(x) = (b–x)/(b–a),则|| f || = || g || = || f + g || = || f –g || = 1,显然不满足平行四边形等式.1.6.3证明:∀x∈L2[0, T],若|| x || = 1,由Cauchy-Schwarz不等式,有| ⎰[0, T]e- ( T-τ)x(τ) dτ |2≤ (⎰[0, T] (e- ( T-τ))2dτ ) (⎰[0, T] ( x(τ))2dτ )= ⎰[0, T] (e- ( T-τ))2dτ = e- 2T ⎰[0, T]e 2τdτ= (1-e- 2T )/2.因此,该函数的函数值不超过M = ((1-e- 2T )/2)1/2.前面的不等号成为等号的充要条件是存在λ∈,使得x(τ) = λ e- ( T-τ).再注意|| x || = 1,就有⎰[0, T] (λ e- ( T-τ))2dτ= 1.解出λ= ±((1-e- 2T )/2)- 1/2.故当单位球面上的点x(τ) = ±((1-e- 2T )/2)- 1/2 ·e- ( T-τ)时,该函数达到其在单位球面上的最大值((1-e- 2T )/2)1/2.1.6.4证明:若x∈N⊥,则∀y∈N,(x, y) = 0.而M⊆N,故∀y∈M,也有(x, y) = 0.因此x∈M⊥.所以,N⊥⊆M⊥.1.6.51.6.6解:设偶函数集为E,奇函数集为O.显然,每个奇函数都与正交E.故奇函数集O ⊆E⊥.∀f∈E⊥,注意到f总可分解为f = g + h,其中g是奇函数,h是偶函数.因此有0 = ( f, h) = ( g + h, h) = ( g, h) + ( h, h) = ( h, h).故h几乎处处为0.即f = g是奇函数.所以有E⊥⊆O.这样就证明了偶函数集E的正交补E⊥是奇函数集O.1.6.7证明:首先直接验证,∀c∈,S = {e2π i n x| n∈ }是L2[c, c + 1]中的一个正交集.再将其标准化,得到一个规范正交集S1 = {ϕn(x) = d n e2π i n x| n∈ }.其中的d n= || e2π i n x|| (n∈),并且只与n有关,与c的选择无关.(1) 当b–a =1时,根据实分析结论有S⊥ = {θ}.当b–a <1时,若u∈L2[a, b],且u∈S⊥,我们将u延拓成[a, a + 1]上的函数v,使得v(x) = 0 (∀x∈(b, a + 1]).则v∈L2[a, a + 1].同时把S = {e2π i n x| n∈ }也看成L2[a, a + 1]上的函数集.那么,在L2[a, a + 1]中,有v∈S⊥.根据前面的结论,v = θ.因此,在L2[a, b]中就有u = θ.故也有S⊥ = {θ};(2) 分成两个区间[a, b– 1)和[b– 1, b]来看.在[a, b– 1)上取定非零函数u(x) = 1 ( ∀x∈[a, b– 1) ).记p n = ⎰[a, b– 1)u(x)ϕn(x) dx.我们再把u看成是[b– 2, b– 1]上的函数(u在[b– 2, a)上去值为0).那么p n就是u在L2[b– 2, b– 1]上关于正交集S1 = {ϕn(x)| n∈ }的Fourier 系数.由Bessel不等式,∑n∈ | p n |2 < +∞.再用Riesz-Fischer定理,在L2[b– 1, b]中,∑n∈p n ϕn收敛.并且,若令v = -∑n∈p n ϕn,则(v, ϕn)= -p n (∀n∈).设f : [a, b] →为:f(x) = u(x) (当x∈[a, b– 1)),f(x) = v(x) (当x∈[b– 1, b]).则f∈L2[a, b],f≠θ,但( f, ϕn) = ⎰[a, b– 1)f(x)ϕn(x) dx + ⎰[b– 1, b]f(x)ϕn(x) dx= ⎰[a, b– 1)u(x)ϕn(x) dx + ⎰[b– 1, b]v(x)ϕn(x) dx= p n -p n = 0,因此,f∈S1⊥= S⊥,故S⊥≠ {θ}.1.6.8证明:( z n/(2π)1/2, z n/(2π)1/2 ) = (1/i)⎰| z | = 1( z n/(2π)1/2· (z*)n/(2π)1/2 )/z dz= (1/(2πi))⎰| z | = 1z n· (z*)n/z dz = (1/(2πi))⎰| z | = 1 1/z dz = 1.若n > m,则n- m - 1 ≥ 0,从z n -m - 1而解析.( z n/(2π)1/2, z m/(2π)1/2 ) = (1/i)⎰| z | = 1 ( z n/(2π)1/2· (z*)m/(2π)1/2 )/z dz= (1/(2πi))⎰| z | = 1z n· (z*)m/z dz = (1/(2πi))⎰| z | = 1z n -m - 1dz = 0.因此,{ z n/(2π)1/2 }n ≥ 0是正交规范集.1.6.91.6.10证明:容易验证{e n}⋂{ f n}是正交规范集,下面只证明{e n}⋂{ f n}是X的基.∀x∈X,由正交分解定理,存在x关于X0的正交分解x = y + z,其中y∈X0,z∈X0⊥.因{e n}, { f n}分别是X0和X0⊥的正交规范基,故y = ∑ n∈( y, e n ) e n,z = ∑ n∈( z, f n ) f n.因z∈X0⊥,故(x, e n) = ( y + z, e n) = ( y, e n) + ( z, e n) = ( y, e n).因y∈X0,故(x, f n) = ( y + z, f n) = ( y, f n) + ( z, f n) = ( z, f n).故x = y + z = ∑ n∈( y, e n ) e n + ∑ n∈( z, f n ) f n= ∑ n∈( x, e n ) e n + ∑ n∈( x, f n ) f n.因此{e n}⋂{ f n}是X的正交规范基.1.6.11证明:首先,令ϕk (z) = (( k +1 )/π)1/2 z k ( k≥ 0 ),则{ ϕk }k≥ 0是H2(D)中的正交规范基.那么,∀u(z)∈H2(D),设u(z) = ∑k≥ 0 a k z k,则∀k∈,有(u, ϕk) = ⎰D u(z) ·ϕk(z)*dxdy= ⎰D (∑j≥ 0 a j z j) ·ϕk(z)*dxdy= ∑j≥ 0 a j(π/( j +1 ))1/2⎰D (( j +1 )/π)1/2 z j·ϕk(z)*dxdy= ∑j≥ 0 a j(π/( j +1 ))1/2⎰Dϕj(z) ·ϕk(z)*dxdy= ∑j≥ 0 a j(π/( j +1 ))1/2 (ϕj, ϕk)= a k(π/( k +1 ))1/2.即u(z)的关于正交规范基{ ϕk }k≥ 0的Fourier系数为a k(π/( k +1 ))1/2( k≥ 0 ).(1) 如果u(z)的Taylor展开式是u(z) = ∑k≥ 0 b k z k,则u(z)的Fourier系数为b k(π/( k +1 ))1/2( k≥ 0 ).由Bessel不等式,∑k≥ 0| b k(π/( k +1 ))1/2|2≤ || u || < +∞,于是有∑k≥ 0| b k|2/( k +1 ) < +∞.(2) 设u(z), v(z)∈H2(D),并且u(z) = ∑k≥ 0 a k z k,v(z) = ∑k≥ 0 b k z k.则u(z) = ∑k≥ 0 a k(π/( k +1 ))1/2ϕk (z),v(z) = ∑j≥ 0 b j(π/( j +1 ))1/2ϕj (z),(u, v) = ( ∑k≥ 0 a k(π/( k +1 ))1/2ϕk (z), ∑j≥ 0 b j(π/( j +1 ))1/2ϕj (z) )= ∑k≥ 0∑j≥ 0 (a k(π/( k +1 ))1/2ϕk (z), b j(π/( j +1 ))1/2ϕj (z))= ∑k≥ 0∑j≥ 0 (a k(π/( k +1 ))1/2 ·b j*(π/( j +1 ))1/2) (ϕk (z), ϕj (z))= ∑k≥ 0(a k(π/( k +1 ))1/2 ·b k* (π/( k +1 ))1/2) = π∑k≥ 0(a k·b k* )/( k +1 ).(3) 设u(z)∈H2(D),且u(z) = ∑k≥ 0 a k z k.因1/(1 -z) = ∑k≥ 0z k,1/(1 -z)2 = ∑k≥ 0 (k +1) z k,其中| z | < 1.故当| z | < 1时,有1/(1 - | z | )2 = ∑k≥ 0 (k +1) | z | k.根据(2),|| u(z) ||2 = π∑k≥ 0 (a k·a k* )/( k +1 ) = π∑k≥ 0 | a k|2/( k +1 ).|| u ||2/(1 - | z |)2 = (π∑k≥ 0 | a k|2/( k +1 )) · ( ∑k≥ 0 (k +1) | z | k )≥ (π∑k≥ 0 | a k|2/( k +1 ) | z | k) · ( ∑k≥ 0 (k +1) | z | k )≥π( ∑k≥0( | a k|/( k +1 )1/2| z |k/2) · ((k +1)1/2| z |k/2))2 (Cauchy-Schwarz 不等式)= π ( ∑k≥ 0 | a k| · | z | k )2≥π | ∑k≥ 0a k z k |2 = π | u(z)|2,故| u(z) | ≤ || u ||/(π1/2 ( 1 - | z | )).(4) 先介绍复分析中的Weierstrass定理:若{ f n }是区域U ⊆上的解析函数列,且{ f n }在U上内闭一致收敛到f,则f在U上解析.(见龚升《简明复分析》)回到本题.设{ u n }是H2(D)中的基本列.则∀z∈D,由(3)知{ u n(z) }是中的基本列,因此是收敛列.设u n(z) →u(z).对中任意闭集F⊆D,存在0 < r < 1使得F⊆B(0, r) ⊆D.∀ε > 0,存在N∈+,使得∀m, n > N,都有|| u n-u m|| < επ1/2 ( 1 -r ).再由(3),∀z∈F,| u n(z) -u m(z) | ≤ || u n-u m||/(π1/2 ( 1 - | z | )) ≤ || u n-u m||/(π1/2 ( 1 -r )) < ε.令m→∞,则| u n(z) -u(z) | ≤ε.这说明{ u n }在D上内闭一致收敛到u.由前面所说的Weierstrass定理,u在D上解析.把{ u n }看成是L2(D)中的基本列,因L2(D),故{ u n }是L2(D)中的收敛列.设{ u n }在L2(D)中的收敛于v.则v必然与u几乎处处相等.即{ u n }在L2(D)中的收敛于u.因此{ u n }在H2(D)中也是收敛的,且收敛于u.所以,H2(D)完备.1.6.12证明:由Cauchy-Schwarz不等式以及Bessel不等式,∀x, y∈X,有| ∑n≥ 1 (x, e n) · (y, e n)* |2≤ (∑n≥ 1 | (x, e n) |· | (y, e n)* | )2= (∑n≥ 1 | (x, e n) |· | (y, e n) | )2≤(∑n≥ 1 |(x, e n) |2) · (∑n≥ 1 | (y, e n)|2)≤|| x ||2· || y ||2.因此,| ∑n≥ 1 (x, e n) · (y, e n)* | ≤ || x || · || y ||.1.6.13证明:(1) 因范数是连续函数,故C = { x ∈X | || x - x0 || ≤r }是闭集.∀x, y∈C,因|| x - x0 || ≤r,|| x - x0 || ≤r },故∀λ∈[0, 1],|| (λ x + (1-λ) y ) - x0 || = || λ( x-x0 ) + (1-λ) (y - x0)||≤ || λ( x-x0 ) + (1-λ) (y - x0)|| ≤λ|| x-x0 || + (1-λ) || y - x0 || ≤λ r + (1-λ) r = r.所以,C是X中的闭凸集.(2) 当x ∈C时,y = x.显然y是x在C中的最佳逼近元.当x ∈C时,y = x0 + r (x - x0)/|| x - x0 ||.∀z∈C,|| x-y || = || ( x-x0 -r (x - x0)/|| x - x0 ||) ||= || (1 -r/|| x - x0 ||) (x - x0) || = || x - x0 || -r.≤ || x - x0 || - || z - x0 || ≤ || x - z||.因此,y是x在C中的最佳逼近元.1.6.14解:即是求e t在span{1, t, t2}中的最佳逼近元 (按L2[0, 1]范数).将{1, t, t2}正交化为{1, t- 1/2, (t- 1/2)2 - 1/12 } (按L2[0, 1]内积)再标准化为{ϕ0(t), ϕ1(t), ϕ2(t)},则所求的a k= (e t, ϕ k(t)) = ⎰[0, 1]e tϕ k(t) dt,k = 0, 1, 2.1.6.15证明:设g(x) = (x-a) (x-b)2,则g(a) = g (b) = 0,g’(a) = (b-a)2,g’(b) = 0.由Cauchy- Schwarz不等式,我们有(⎰[a, b]| f’’(x) |2 dx)· (⎰[a, b]| g’’(x) |2 dx)≥(⎰[a, b]f’’(x) ·g’’(x) dx )2.因g’’(x) = 3x- (a + 2b),故⎰[a, b] | g’’(x) |2 dx = ⎰[a, b] (3x- (a + 2b))2 dx = (b-a)3;又⎰[a, b]f’’(x) ·g’’(x) dx = ⎰[a, b] (3x- (a + 2b)) ·f’’(x) dx = ⎰[a, b] (3x - (a + 2b))d f’(x)= (3x- (a + 2b)) ·f’(x)| [a, b] - 3⎰[a, b]f’(x) dx = 2(b-a);故(b-a)3 ·⎰[a, b] | f’’(x) |2 dx ≥ (2(b-a))2 = 4(b-a)2.所以⎰[a, b] | f’’(x)|2 dx≥ 4/(b-a).1.6.16 (变分不等式)证明:设f(x)= a(x, x) - Re(u0, x).则f(x) = a(x, x) - Re(u0, x) ≥δ || x ||2 - | (u0, x) |≥δ || x ||2 - || u0 || · || x || ≥- || u0 ||2/(4δ) > -∞.即f在X上有下界,因而f在C有下确界μ = inf x∈C f(x).注意到a(x, y)实际上是X上的一个内积,记它所诱导的范数为|| x ||a = a(x, x)1/2,则|| · ||a与|| · ||是等价范数.因此f(x) = a(x, x) - Re(u0, x) = || x ||a2- Re(u0, x).设C中的点列{ x n }是一个极小化序列,满足μ≤f(x n ) < μ + 1/n ( ∀n∈+ ).则由平行四边形等式,|| x n-x m ||a2 = 2(|| x n ||a2 + || x m ||a2 ) - 4|| (x n + x m)/2||a2= 2( f(x n) + Re(u0, x n) + f(x m) + Re(u0, x m) ) - 4( f((x n + x m)/2) + Re(u0, (x n + x m)/2))= 2( f(x n) + f(x m)) - 4 f((x n + x m)/2) + 2 Re( (u0, x n) + (u0, x m) - (u0, x n + x m) )= 2( f(x n) + f(x m)) - 4 f((x n + x m)/2)≤ 2( μ + 1/n + μ + 1/m ) - 4 μ= 2(1/n + 1/m) → 0 ( m, n→∞ ).因此|| x n-x m ||2≤ (1/δ) || x n-x m ||a2→ 0 ( m, n→∞ ).即{ x n }为X中的基本列.由于X完备,故{ x n }收敛.设x n→x0 ( n→∞ ).则|| x n-x0 ||a2≤M || x n-x0 ||2→ 0 ( m, n→∞ ).而由内积a( · , ·),( · , ·)的连续性,有a( x n , x n) →a( x0 , x0 ),且(u0, x n) → (u0, x0),( n→∞ ).因此f(x n) = a(x n, x n) -Re(u0, x n) →a(x0, x0) -Re(u0, x0) = f(x0),( n→∞).由极限的唯一性,f(x0) = μ = inf x∈C f(x).至此,我们证明了f在C上有最小值.下面说明最小值点是唯一的.若x0, y0都是最小值点,则交错的点列{ x0, y0, x0, y0, x0, ... }是极小化序列.根据前面的证明,这个极小化序列必须是基本列,因此,必然有x0 = y0.所以最小值点是唯一的.最后我们要证明最小点x0∈C满足给出的不等式.∀x∈C,∀t∈[0, 1],有x0 + t ( x - x0)∈C,因此有f(x0 + t ( x - x0)) ≥f(x0).即|| x0 + t ( x - x0) ||a2- Re(u0, x0 + t ( x - x0)) ≥ || x0 ||a2- Re(u0, x0).展开并整理得到t Re ( 2a(x0, x - x0) - (u0, x - x0) ) ≥-t2 || x - x0 ||a2.故当∀t∈(0, 1],有Re ( 2a(x0, x - x0) - (u0, x - x0) ) ≥-t|| x - x0 ||a2.令t→ 0就得到 Re ( 2a(x0, x - x0) - (u0, x - x0) ) ≥ 0.2.1.22.1.32.1.42.1.52.1.62.1.72.1.82.1.92.2.22.2.52.3.12.3.3-22.3.42.3.52.3.72.3.82.3.92.3.112.3.122.3.132.3.142.4.42.4.52.4.62.4.72.4.82.4.92.4.102.4.112.4.122.4.132.4.142.5.42.5.52.5.7。

《泛函分析》习题解答(不完全版)

《泛函分析》习题解答(不完全版)

第一章 练习题1. 记([,])C a b 是闭区间[,]a b 上连续函数全体构成的集合, 在([,])C a b 上定义距离如下:(,)|()()|,,([,])baf g f x g x dx f g C a b ρ=-∀∈⎰,(1)([,])C a b 按ρ是否完备?(2)(([,]),)C a b ρ的完备化空间是什么? 答:(1) 不完备, 例如对于[,][0,2]a b =以及1,2,n =,定义,01,():1,1 2.n n x x f x x ⎧≤<=⎨≤≤⎩则{()}([0,2])n f x C ⊂在本题所定义的距离的意义下是Cauchy 列, 因为111(,)|()()|110,(,).11n m n m n m f f f x f x dxx dx x dxm n n m ρ=-≤+=+→→∞++⎰⎰⎰另一方面, 点列{()}n f x 并不能在本题所定义的距离的意义下收敛到([0,2])C 中的某个元. 事实上, 在几乎处处收敛的意义下, 我们有0,[0,1)()()1,[1,2].n x f x g x x ∈⎧→=⎨∈⎩因此, 根据Lebesgue 有界收敛定理, 可以得到11100(,)|()()|1|0|0.1n n nnf g f x g x dxx dx x dx n ρ=-=-==→+⎰⎰⎰但()([0,2])g x C ∉.(2) ([,])C a b 的完备化空间是1([,])L a b . 因为(i) 在距离ρ的意义下, ([,])C a b 是1([,])L a b 的稠密子集. 事实上, 任意取定一个1()([,])f x L a b ∈, 需要证明: 对于任意的0ε>, 存在()[,]g x C a b ∈, 使得[,](,)|()()|a b f g f x g x dx ρε=-<⎰.事实上, 首先根据积分的绝对连续性, 存在0δ>, 使得当[,]E a b ⊂, 只要mE δ<, 就有|()|3Ef x dx ε<⎰.因为()f x (Lebesque)可积, 故几乎处处有限, 即10N N mE ∞==,其中{[,]||()|}N E x a b f x N =∈>. 由此可以得到 lim ()0N N m E →∞=(因为{}N E 是渐缩集列并且[,]a b 的测度有限),故存在某个自然数N , 使得N mE δ<且|()|3NE f x dx ε<⎰,因此有|()|f x N ≤,[,]\N x a b E ∈.引入一个新函数定义为(),[,]\():0,,NN f x x a b E f x E ∈⎧=⎨⎩显然对于[,]x a b ∈恒有|()|f x N ≤. 由Lusin 定理, 存在连续函数()(,)g x C ∈-∞+∞和闭集[,]F a b ⊂, 使得([,]\)min{,/3}m a b F N δε<且|()|g x N ≤, 进而()()g x f x ≡,x F ∈.则()g x 限制在[,]a b 即为所求, 因为:[,](,)|()()|a b f g f x g x dx ρ=-⎰([,]\)|()()|a b F Ff xg x dx ⋃=-⎰[,]\|()()||()()|a b FFf xg x dx f x f x dx ≤-+-⎰⎰[,]\\(|()|)|()()||()()|NNa b FF E F E f x N dxf x f x dx f x f x dx⋂≤++-+-⎰⎰⎰[,]\|()|([,]\)a b Ff x dx Nm a b F ≤+⎰\|()|0NNF E F E f x dx dx ⋂++⎰⎰333εεεε<++=.(ii) 1(([,]),)L a b ρ是完备的空间.2. 设(,)X ρ是距离空间,A 是X 的子集,对任意的x X ∈,记(,)inf (,)y Ax A x y ρρ∈=,则(1)(,)x A ρ是x 的连续函数.(2) 若{}n x 是X 中的点列, 使(,)0n x A ρ→,{}n x 是否为Cauchy 列? 为什么? 证:(1) 任意取定12,x x X ∈, 对于任意的y X ∈根据三角不等式, 有1122(,)(,)(,)x y x x x y ρρρ≤+, 2211(,)(,)(,)x y x x x y ρρρ≤+.对两端关于y A ∈取下确界, 可以得到1122inf (,)(,)inf (,)y Ay Ax y x x x y ρρρ∈∈≤+, 2211inf (,)(,)inf (,)y Ay Ax y x x x y ρρρ∈∈≤+. 即1122(,)(,)(,)x A x x x A ρρρ≤+, 2211(,)(,)(,)x A x x x A ρρρ≤+.由此可得1212|(,)(,)|(,)x A x A x x ρρρ-≤.由此容易证明()f x (,)x A ρ=是X 上的连续函数, 实际上, (,)x A ρ还满足Lipschitz 常数等于1的Lipschitz 条件.(2) 答: 未必是Cauchy 列. 例如取X =R , 其中的距离是Euclid 距离. 对于{1,1}A =-, 对于1,2,n =, 定义点列为1(1).n n x n=-+对于点列{}n x ,不难验证,1(,)0n x A nρ=→; 但显然{}n x 不是Cauchy 列. 这里的原因就在于(,)x A ρ不是点到点之间的距离, 而是点到集合的距离, 当这个集合A 含有不止一个点时, (,)x A ρ不再具有点点之间距离的性质. 3. E 是nR 中的Lebesgue 可测集合, 试证()L E ∞按距离(,)esssup |()()|x Ef g f x g x ρ∈=-是不可分空间.证法一:记为方便起见, 设[,]E a b =. 定义[,]1,[,],()()0,(,].a x a f x x x b λλλχλ∈⎧==⎨∈⎩显然()f x λ有界,可测, 因此必属于([,])L a b ∞. 记{()|(,]}A f x a b λλ=∈.则([,])A L a b ∞⊂.既然对于不同的12,[,]a b λλ∈, 1f λ与2f λ不同的部分是正测度集, 容易看出A 的势是ℵ.进而有(不妨设12λλ<)1212121212[,][,]\0[,][,]\0[,][,][,][,]\0(,][,][,]\0(,)infsup |()()|inf sup |()()|inf sup |()()|infsup () 1.E a b x a b EmE E a b x a b E mE a a E a b x a b E mE E a b x a b E mE f f f x f x f x f x x x x λλλλλλλλλλρχχχ⊂∈=⊂∈=⊂∈=⊂∈==-=-=-==我们用反证法证明所需的结论.设([,])L a b ∞是可分的,则其必有可数的稠密子集123{,,,,,}i g g g g ,因此至少有一个i g 属于两个不同的1(,1/3)S f λ和2(,1/3)S f λ.而由三角不等式, 我们有12121(,)(,)(,)112.333i i f f f g g f λλλλρρρ=≤+≤+=这是一个矛盾. 因此([,])L a b ∞不可能是可分的.证法二:既然E 是正测度集,存在0R >使得((0,))0m S R E ⋂>. 不难验证, 存在一列正数1{}i i R ∞=满足:120i R R R R <<<<<<;且1([(0,)\(0,)])0i i m E S R S R +⋂>.对于每一个12(,,,,)i λλλλ=,其中0i λ=或1, 定义1(),[(0,)\(0,)]i i i f x x E S R S R λλ+=∈⋂,1,2,i =. 显然()f x λ有界,可测, 因此必属于()L E ∞. 记{()|{0,1}}A f x λλ=∈N ,其中{0,1}N 表示具有上述性质的λ的全体. 则()A L E ∞⊂.既然对于不同的,λμ∈{0,1}N , (不妨设1(,,,)i λλλ=, 1(,,,)i μμμ=且对于某个i ,0i λ=1i μ=)f λ与f μ不同的部分至少是正测度集1[(0,)\(0,)]i i E S R S R +⋂, 容易看出A 的势与{0,1}N 的势都是连续统的势ℵ.进而有11\0((0,)\(0,))\0((0,)\(0,))\01(,)inf sup |()()|infsup|()()|inf sup|| 1.i i i i F E x E F mF F E x E S R S R FmF i i F E x E S R S R F mF f f f x f x f x f x λμλμλμρλμ++⊂∈=⊂∈⋂=⊂∈⋂=≥=-≥-=-= 我们用反证法证明所需的结论.设()L E ∞是可分的,则其必有可数的稠密子集123{,,,,,}i g g g g , 因此至少有一个j g 属于两个不同的(,1/3)S f λ和(,1/3)S f μ.而由三角不等式, 我们有1(,)(,)(,)11.33j j f f f g g f λμλμρρρ=≤+≤+这是一个矛盾. 因此()L E ∞不可能是可分的. 补充题.证明[,]L a b ∞是不可分空间. 证:记{}[,]()a t K x a t b χ=<<,其中[,]1,,():0,.a t a x t x t x b χ≤≤⎧=⎨<≤⎩显然[,]K L a b ∞⊂, 且只要12,[,]t t a b ∈,12t t ≠, 则有12[,][,],a t a t K χχ∈, 且因为(不妨设12t t <)12(,]t t 的测度为正, 故1212[,][,][,][,][,]||||sup |()()|a t a t a t a t L a b ess x x χχχχ∞-=-1212(,](,]sup |()|1t t x t t x χ∈==.因此, 由(,)a b 是不可数集, 而K 的基数与(,)a b 的基数相同, 故也是不可数集,且K 中任何两个不同元的距离均为1.如果[,]L a b ∞是可分的, 因此有一个可数的稠密子集合{()|1,2,}k A f x k ==, 且11(,)3k k S f K ∞=⊇.但这是荒谬的, 因为上式左端只有可数多个开球, 右端有不可数多个元, 所以至少有K 中的两个不同的12[,][,],a t a t χχ属于同一个开球01(,)3k S f , 由此得到矛盾:121002[,][,][,][,][,][,][,]1||||||||||||112.333a t a t L ab a t k k a t L a b L a b f f χχχχ∞∞∞=-≤-+-<+= 此矛盾表明[,]L a b ∞不可能是可分的.4. 设([,])k C a b 是闭区间[,]a b 上具有k 阶连续导数的函数全体, 定义:()()[,](,)max |()()|,,([,])ki i k x a b i f g f x g x f g C a b ρ∈==-∈∑试证:(1)([,])kC a b 是完备的距离空间; (2)若定义||||(,0)f f ρ=,则(([,]),||||)kC a b ⋅是Banach 空间.证:(1) 这里只证明该距离是完备的. 设1{()}n n f x ∞=是([,])k C a b (0k =时, 0([,])C a b 就理解为[,]C a b )中该距离意义下的Cauchy 列. 因此当,m n →∞时,有()()[,]0(,)max |()()|0ki i m n m n x a b i f f f x f x ρ∈==-→∑.由此容易知道对于每一个0,1,,i k =, ()1{()}i n n f x ∞=是0([,])C a b 中的Cauchy 列. 根据0([,])C a b 的完备性,知()1{()}i n n f x ∞=收敛到0([,])C a b 中的某个元, 记其为()i f x , 则0()([,])i f x C a b ∈, 且()()()i i n f x f x −−→−−→,,0,1,,n i n →∞=,其中“−−→−−→”表示是一致收敛. 如果我们记0()()f x f x =,利用数学分析中函数序列一致收敛的分析性质, 可以得到12()()(),()(),,()().k kf x f x f x f x fx f x '''=== (*)例如, 因为1()()n f x f x −−→−−→', 故 1()()xxn aaf t dt f t dt −−→−−→'⎰⎰, 即1()()()xn n af x f a f t dt −−→−−→-⎰, 又0()()n f x f x −−→−−→及0()()nf a f a −−→−−→, 故 001()()()xaf x f a f t dt -=⎰.求导即可得到01()()f x f x '=, 即 1()()f x f x '=.归纳地可得(*).因此0()()f x f x =([,])kC a b ∈且()[,](,)max |()()|ki i n n x a b i f f f x f x ρ∈==-∑()()[,]max |()()|0ki i n x a b i f x f x ∈==-→∑.即([,])kC a b 是完备的距离空间. (2)证略.7. 证明有限维线性赋范空间是完备的.证:记该有限维(实)线性赋范空间为E , 是n 维的,范数记为||||x ,需要证明(,||||)E ⋅是完备的. 记E 中的一组基为:12,,,n v v v .因此对于任意的x E ∈, 存在唯一一组实数12,,,n x x x , 使得1122n n x x x x =+++v v v ,反之亦然.(i) 我们断言存在一个与x 无关的常数0K >, 使得||||||i x K x ≤, 1,2,,i n =. (*)首先定义一个映射:nf →为: 对于任意的12(,,,)n x x x n∈,121122(,,,):||||||||n n n f x x x x x x x ==+++v v v .则对于任意的,x y E ∈(1122n n y y y y =+++v v v )有1122||||(,,,)n n x y f x y x y x y -=---111||||||||||||n n n x y x y ≤-⋅++-⋅v v2222111()()||||||||n n n x y x y ≤-++-⋅++v v .由此容易知道f 是n R 上的连续函数. 记1B ∂是n R 中的单位球面, 即21121{(,,,)|1}nn k k B x x x x =∂==∑. 则对于任意的11(,,)n x x B ∈∂, 有1(,,)0n f x x >.(事实上, 若有1(,,)0n f x x =则111(,,)||||0n n n f x x x x =++=v v ,因此110n n x x ++=v v , 但12,,,n v v v 线性无关, 故必有120n x x x ====, 此与11(,,)n x x B ∈∂相矛盾. )注意到1B ∂是n R 中的有界闭集(紧子集), 连续函数f 必可在其上达到正的最小值1/0K >.现在我们可以证明式(*). 事实上, 对于任意的x E ∈,存在唯一的一组实数12,,,n x x x , 使得1122n n x x x x =+++v v v , 不失一般性, 可设0x ≠因此,12,,,n x x x 不全为零, 注意到111222111,,,n nnn kkk k k k x x x y B xxx ===⎛⎫ ⎪ ⎪=∈∂ ⎪ ⎪⎝⎭∑∑∑,故111222211111222111()1,,,,nn nnnkkkk k k n nnn kkk k k k x x x f y xxxx x x f K xxx ======+++=⎛⎫ ⎪⎪=≥ ⎪ ⎪⎝⎭∑∑∑∑∑∑v v v或2112211||||nn n kk x x x x xK==+++≥∑v v v .由此容易得出(*)式.(ii) 设()1{}k k x ∞=是E 中的基本列, 这里()()()()1122k k k k n n x x x x =+++v v v ,即()()||||0k l x x -→, 当,k l →∞.利用(*)式便可以得到对于每一个1,2,,i n =, 成立()()()()||||||0k l k l i i x x K x x -≤-→, 当,k l →∞.即()1{}k i k x ∞=是1中的基本列, 因此收敛. 设()(0)k i i x x →, (k →∞,1,2,,i n =).记(0)()(0)(0)1122k n n xx x x =+++v v v , 显然(0)x E ∈. 根据E 中收敛的等价性(即按范数收敛意味着每个分量收敛或即按坐标收敛), 容易得到()(0)||||0k x x -→, 当k →∞.因此(,||||)E ⋅是完备的.9. 设X 为线性赋范空间, 0X 是X 的线性闭子空间. 在X 中定义等价关系为0xy x y X ⇔-∈. 对任意的x X ∈, 以[]x 记x 的等价类, 令0/{[]|}X X x x X =∈.称0/X X 为商空间, 在0/X X 上定义线性运算如下: (i) [][][]x y x y +=+, ,x y X ∈, (ii) [][]x x λλ=, ,x X λ∈∈C .并定义0||[]||inf ||||y X x x y ∈=+.试证: 0/X X 按0||[]||x 也是一个线性赋范空间.证:(一) 0/X X 按照所定义的线性运算是线性空间 (证明略).(二) 0||[]||x 是0/X X 中的范数. 按照定义, 对于每一个 0[]/x X X ∈显然0||[]||inf ||||y X x x y ∈=+是一个确定的数, 因此00||||:/X X ⋅→R 是映射.(i) (非负性) 对于x X ∈, 显然0||[]||inf ||||0y X x x y ∈=+≥.(正定性) 当0[]=[0]=x X 时, 有00||[]||||[0]||inf ||||0y X x y ∈===.反之, 如果我们假设0000||[]||inf ||||0y X x x y ∈=+=, 需要证明 00[]=[0]=x X , 也只需证明00x X ∈. 事实上, 根据下确界的定义, 对每一个自然数1,2,k =, 存在0k y X ∈, 使得00000111||||||[]||inf ||||k y X x y x x y k k k∈+<+=++=, 由此得到一个序列0{}k y X ⊂且||||0k y x ⋅−−−→-.因为0X 是闭子空间因此00x X -∈故00x X ∈, 即00[]=[0]=x X . (ii) (正齐性) 对于,x X λ∈∈C , 如果0λ=, 则000x x X λ==∈, 故0[][0]0[][]x X x x λλ====. 如果0λ≠, 则当y 取遍0X 中的所有元时,yλ也取遍0X 中的所有元, 反之亦然, 因此 00||[]||inf ||||inf ||||||y X y X yx x y x λλλλ∈∈=+=⋅+||inf ||||||inf ||||yy X X yyx x λλλλλ∈∈=+=+||inf ||||||||[]||z X x z x λλ∈=+=⋅,(iii) (三角不等式) 设,x y X ∈. 设0,u v X ∈, 当,u v 取遍0X 中的所有元时, u v +也取遍0X 中的所有元, 反之亦然, 进而, ,u v 的取法是相互独立的, 因此0||[]||inf ||||u X x y x y u ∈+=++,inf ||||u v X x y u v ∈=+++()0,inf ||||||||u v X x u y v ∈≤+++inf ||||inf ||||u X v X x u y v ∈∈=+++00||[]||||||x y =+.也可用下面的证明方法: 对于任意的0ε>, 由下确界的定义, 存在0,u v X εε∈使得0||||||[]||x u x εε+<+, 0||||||[]||y v y εε+<+,因此可以得到0||[]||inf ||||||||u X x y x y u x y u v εε∈+=++≤+++||||||||x u y v εε≤+++ 00||[]||||[]||2x y ε<++.因为0ε>的任意性, 可得0||[]||x y +00||[]||||[]||x y ≤+.10. 设X 为线性赋范空间,1nn x∞=∑收敛, 即1kk nn S x==∑按X 中的范数收敛, 则11nn n n xx ∞∞==≤∑∑.证:记1kk n n S x ==∑.对于有限项之和, 利用三角不等式, 成立111||||kk k nn n n n n S xx x ∞====≤≤∑∑∑. (*)又因为1kk nn S x==∑在范数意义下收敛, 其极限自然可以记为1nn x∞=∑, 即1k n n S x ∞=→∑,再一次利用三角不等式, 可以得到当k →∞时11||||0k nk n n n S xS x ∞∞==-≤-→∑∑,即1||||k nn S x∞=→∑, 因此在(*)式中令k →∞, 可得11nn n n xx ∞∞==≤∑∑.11. 设{0}X ≠为线性赋范空间, 试证X 是Banach 空间当且仅当{|||||1}x X x ∈=是完备的.证:记{|||||1}T x X x =∈=.(必要性) 设X 是Banach 空间, {}n x T ⊂是T 中的Cauchy 列, 即||||1n x =且||||0m n x x -→(当,m n →∞).因为X 是Banach 空间, 故{}n x 收敛, 即存在0x X ∈, 使得||||0n x x ⋅−−→, 由三角不等式容易得到:||||||||||||x y x y -≤-,因此00||||||||||||0n n x x x x -≤-→,知0||||||||n x x →, 故0||||1x =因此0x T ∈, 即T 完备.(充分性) 设T 是完备的, 并设{}n x X ⊂是X 中的Cauchy 列, 即||||0m n x x -→当,m n →∞. 由||||||||||||0m n m n x x x x -≤-→,知{||||}n x 是1中的Cauchy 数列, 因此收敛, 即存在某个数A ∈使得||||n x A →.如果0A =, 显然{}n x 收敛于X 中的零元, 故不妨设0A >. 由此知当n 充分大时, 总有||||0n x >, 不失一般性, 可设对所有的n , 都有||||0n x >. 考虑新的点列:||||nn n x y x =, 显然n y T ∈. 进而 ||||||||||||m n m n m n x xy y x x -=- ||||||||||||||||m m m n m n n n x x x xx x x x ≤-+- 111||||||||||||||||m m n m n n x x x x x x =-+-, 由此易知{}n y T ⊂是T 中的Cauchy 列. 因为T 作为距离空间是完备的, 故{}n y 收敛, 即存在0y T ∈, 使得||||0n y y ⋅−−→. 最后我们断言: ||||0n x Ay ⋅−−→.事实上,0||||||||||||||||n n n n n x Ay x Ay x x x -=- 0||||||||n n n Ay x y x =-00||||||||n n n Ay x y y y x ⎛⎫≤-+-⎪⎝⎭00||||1||||n n n A x y y y x ⎛⎫=-+- ⎪⎝⎭0→.综上可得X 是Banach 空间.15.试证定理4中(f)式定义的(,)x y 的确满足内积分的定义.证明: 即要证明: 对于赋范线性空间(,||||)X ⋅, 如果范数满足平行四边形法则:2222||||||||2(||||||||)x y x y x y ++-=+(*)则由221(,):[||||||||]4x y x y x y =+--R (K =R 时) (f ’)或221(,):[||||||||4x y x y x y =+--C22||||||||]i x iy i x iy ++-- (K =C 时) (f)所定义的确实是内积. (i) 对于x X ∈,221(,)[||||||||4x x x x x x =+--C22||||||||]i x ix i x ix ++--2||||0x =≥,因为|1||1|i i +=-, 并且根据范数的性质2(,)00(,)||||0x x x x x x =⇔==⇔=C C .同理可证(,)0x x ≥R 且(,)00x x x =⇔=R . (ii)首先考虑K =R 时的情形, 对于,,x y z X ∈, 可将(,)(,)x z y z +R R 表示为如下形式: (,)(,)x z y z +R R221[||||||||4x z x z =+--22||||||||]y z y z ++-- ()()22221||||||||||||||||4x z y z x z y z ⎡⎤=+++--+-⎣⎦ 22142222x y x yx y x yz z ⎛⎫+-+-=++++-⎪ ⎪⎝⎭ 22142222x y x y x y x y z z ⎛⎫+-+---++--⎪ ⎪⎝⎭, 再由平行四边形法则222222x y x yx y x yz z +-+-++++-22222x y x y z ⎛⎫+-=++ ⎪ ⎪⎝⎭; 222222x y x yx y x yz z +-+--++--22222x y x y z ⎛⎫+-=-+ ⎪ ⎪⎝⎭. 因此(,)(,)x z y z +R R 221222x y x yz z⎛⎫++=+-- ⎪ ⎪⎝⎭2,2x y z +⎛⎫= ⎪⎝⎭R.进而, 令0y =可以得到(,)x z R 2,2x z ⎛⎫= ⎪⎝⎭R,这里利用了(0,)0z =R . 因为x 是任意的, 故可将x 换为x y +, 即可得到(,)x y z +R 2,2x y z +⎛⎫= ⎪⎝⎭R. 对照上述二式, 即有(,)(,)x z y z +R R =(,)x y z +R .(**)至于K =C 时的情形, 注意到从形式上看(,)=(,)(,)x y x y i x iy +C R R ,利用上述已经证明了的等式(**)不难得到(,)(,)x z y z +C C =(,)x y z +C .(iii) 首先考虑K =R 时的情形, 对于,x z X ∈和任意实数,s t ∈R , 由已经证明的(**)式有(,)(,)sx z tx z +R R =((),)s t x z +R ,可知函数():(,)f t tx z =R 满足如下的函数方程:()()()f s f t f s t +=+.(***)又():(,)f t tx z =R 关于t 是连续的, 因此必有()(1)(,)f t f t t x z ==R .(事实上, 由(***)式对于任意的正整数n 和m , 利用数学归纳法有()()f ns f s s s =+++()()()()f s f s f s nf s =+++=;进而取1s n =, 有11()(1)f f n n=, 因此 1()()(1)n nf nf f m m m==. 又(***)中取0s t ==可得(0)0f =, 取s t =-可得()()f s f s -=-. 因此对于所有的有理数, 均成立()(1)f s sf =.利用()f s 的连续性, 可知对所有的实数也成立. ) 因此得到(,)()(1)(,)tx z f t f t t x z ===R R .至于K =C 时的情形, 注意到由(f)221(,)[||||||||4ix y ix y ix y =+--C 22||||||||]i ix iy i ix iy ++--221[||||||||4ix y ix y =+--22||||||||]i x y i x y ++-- 22221[||||||||4i ix y i ix y =-++-22||||||||]i x y i x y ++-- 22[||||||||4ii x iy i x iy =--++22||||||||]x y x y ++-- (,)i x y =C .由此也容易得到, 对于t ∈C(,)(,)tx z t x z =C C .(iv) 当K =R 时, 容易知道221(,)[||||||||](,)4x y x y x y y x =+--=R R ;而当K =C 时, 直接计算也可得到221(,)[||||||||4x y x y x y =+--C 22||||||||]i x iy i x iy -++-221[||||||||4y x y x =+--22||||||||]i y ix i y ix --++ (,)y x =C .16.设D 是C 中单位开圆盘, 即{|||1}D z z =∈<C . dA 是D 上的面积测度, 2()a L D 定义为22(){|()|}a L D f f Df z dz =<∞⎰在中解析且|. (见课本第六页例4)在2()a L D 中定义内积为,()()Df g f z g z dA =⎰.试证(1)1()n n nz z ϕπ-=(1,2,n =)构成2()a L D 的正交基.(2) 若2()a f L D ∈的Taylor 展开式是0()kk k f z a z∞==∑, 则21kk a k ∞=<∞+∑;(3) 若2()ag L D ∈的展开式是0()kk k g z b z∞==∑, 则0,1k kk a b f g kπ∞==+∑.证:先给出一个预备性结果: 对于2()a f L D ∈,因为()f z 是解析函数, 因此可以展开为幂级数: 0()kk k f z a z∞==∑.由此可以断言:(),()n f z z ϕ=1.n a nπ- (*)事实上,因为()f z 是解析函数,幂级数kk k a z∞=∑在D 中内闭一致收敛, 即对于D 的任意闭子集F ,kk k a z∞=∑在F 上一致收敛. 对于01ε<<, 以下取闭子集F 为:{|||1}D z D z εε=∈≤-.容易知道D ε是D 中的闭子集.对于每一个1,2,n =, 注意到级数10kn k k a z z π-=∑在D ε中仍旧一致收敛, 以下的积分号和求和号可以交换顺序:(),()()()n n Df z z f z z dA ϕϕ=⎰0lim ()()n D f z z dA εεϕ→=⎰100lim kn k D k na z z dA εεπ∞-→==∑⎰10limk n k D k na z z dA εεπ∞-→==∑⎰10lim(cos sin )(cos(1)sin(1))k n k D k na r k i k n i n dAεεθθπθθ∞+-→==+⋅⋅---∑⎰2110lim(cos sin )(cos(1)sin(1))k n k k na d r k i k n i n rdrπεεθθθπθθ∞-+-→==+⋅⋅---∑⎰⎰1210lim(cos sin )(cos(1)sin(1))k n k k na r rdr k i k n i n d επεθθπθθθ∞-+-→==+⋅⋅---∑⎰⎰12110lim2n n na r dr εεππ---→=⎰210(1)lim 22nn n a nεεππ-→-= 1.n a nπ-=因此(*)式得证.(1) 首先证明{}111()n n n n n z z ϕπ∞∞-==⎧⎫⎪⎪=⎨⎬⎪⎪⎩⎭是正交集.事实上, 对于复数(cos sin )z r i θθ=+,根据所给的定义11112(),()(cos sin )(cos sin )m n m n Dm n n m Dz z z z dAmni i r dAϕϕππθθθθππ----+-==+-⎰⎰2(cos(1)sin(1))(cos(1)sin(1))n m Dmnr m i m n i n dAθθπθθ+-=-+-⋅⋅---⎰2120(cos(1)sin(1))(cos(1)sin(1))n m mnd r m i m n i n rdrπθθθπθθ+-=-+-⋅⋅---⎰⎰122(cos(1)(1)sin )(cos(1)sin(1))n m mnrrdr m i m n i n d πθθπθθθ+-=-+-⋅---⎰⎰121,,20,.mm m n mm n ππ⎧==⎪=⎨⎪≠⎩因此{}1()n n z ϕ∞=是正交集. 因为2()a L D 是完备的空间, 故只需再证{}1()n n z ϕ∞=是完备的即可得知其也是正交基. 设有2()a f L D ∈且{}1()()n n f z z ϕ∞=⊥. 因为()f z 是解析函数, 因此可以展开为幂级数:()k k k f z a z ∞==∑.根据(*)式,可以得到,对于每一个1,2,n =,0(),()n f z z ϕ=1.n a nπ-=由此即得10n a -=, (1,2,n =). 所以()0f z ≡. 即{}1()n n z ϕ∞=是完备的, 因此是2()a L D 中的正交基.(2) 既然{}1()n n z ϕ∞=是基,由Parseval 等式可以得到221(),()||||n n f z z f ϕ∞==<∞∑.利用(*)式,上式的左端可以表示为:2122211110(),().1n n n n n n n n f z z a aa nn n ϕπππ∞=∞∞∞--======+∑∑∑∑由此可得所预期的结论. (3) 对于0()kk k f z a z∞==∑和0()kk k g z b z∞==∑, 有10()()1kk k f z a z k πϕ∞+==+∑和10()()1kk k g z b z k πϕ∞+==+∑,利用内积的连续性和(*)式,10,(),()1kk k f g a z g z k πϕ∞+==+∑10(),()1kk k a z g z k πϕ∞+==+∑10(),()1kk k a g z z k πϕ∞+==+∑11kk k a b k k ππ∞=⎛⎫= ⎪++⎝⎭∑0.1k kk a b k π∞==+∑18.设H 是内积空间,{}n e 是H 中的正交集, 求证:1(,)(,)||||||||nnn x e y e x y ∞=≤⋅∑, (,x y H ∀∈).证: 对于任意的正整数k , 由Cauchy 不等式和Bessel 不等式可以得到22111(,)(,)(,)(,)kkkn n n n n n n x e y e x e y e ===≤⋅∑∑∑2211(,)(,)n n n n x e y e ∞∞==≤⋅∑∑||||||||x y ≤⋅,由k 的任意性, 知正项级数1(,)(,)nnn x e y e ∞=∑收敛, 因此级数1(,)(,)nnn x e y e ∞=∑绝对收敛,并且11(,)(,)(,)(,)||||||||nnnnn n x e y e x e y e x y ∞∞==≤≤⋅∑∑.19.试证2sin nt π⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭构成2([0,])L π的正交基, 但不是2([,])L ππ-的正交基. 证:(1) 首先证明{}112()sin n n n t nt ϕπ∞∞==⎧⎫⎪⎪=⎨⎬⎪⎪⎩⎭是2([0,])L π中的正交集. 事实上,[]022(),()sin sin 2cos()cos()2m n t t mtntdtm n t m n t dtππϕϕπππ==-+--⎰⎰1()1,,0,.m n m n ππ⎧--==⎪=⎨⎪≠⎩因此{}1()n n t ϕ∞=是2([0,])L π中的正交集. 同理, 也容易证明{}1()n n t ϕ∞=还是2([,])L ππ-中的正交集.(2) 因为2([0,])L π是完备的空间, 故只需再证{}1()n n t ϕ∞=是完备的即可得知其也是正交基.设有2([0,])f L π∈且{}1()()n n f t t ϕ∞=⊥. 将()f t 做奇延拓成为()f t :(),[0,],():(),[,0).f t t f t f t t ππ∈⎧=⎨--∈-⎩则()f t ∈2([,])L ππ-. 注意到对于1,2,n =, 利用{}1()()n n f t t ϕ∞=⊥,,()sin n f f t ntdt ππϕ-=⋅⎰()sin ()sin f t ntdt f t ntdt ππ-=⋅+⋅⎰⎰()sin ()sin f t ntdt f t ntdt ππ-=--⋅+⋅⎰⎰()sin ()sin f t ntdt f t ntdt ππ-=--⋅+⋅⎰⎰00()sin ()()sin f s n s ds f t ntdt ππ=-⋅-+⋅⎰⎰2()sin 0f t ntdt π=⋅=⎰.设{}{}00()cos n n n t nt ψ∞∞===,对于0,1,2,n =,利用()f t 是奇函数, 可得,()cos 0n f f t ntdt ππψ-=⋅=⎰.因此{}{}()10()()()n n n n f t t t ϕψ∞∞==⊥⋃.进而也容易得到()f t ⊥1cos sin cos sin ,,,,,,2t tnt ntπππππ⎧⎫⎨⎬⎩⎭. 又已经知道与{}{}{}{}1010()()sin )cos n n n n n n t t t nt ϕψ∞∞∞∞====⋃=⋃仅相差一个常数因子的三角函数系1cos sin cos sin ,,,,,,2t tnt ntπππππ⎧⎫⎨⎬⎩⎭是2([,])L ππ-中的正交基, 因此()0f t =, a.e. [,]t ππ∈-,即有()0f t =, a.e. [0,]t π∈.因此{}1()n n t ϕ∞=是2([0,])L π中的正交基.(3) 注意到2sin nt π⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭在2([,])L ππ-中不是完备的, 例如对于恒等于常数1的函数2()1([,])f t L ππ≡∈-是非零元, 但对于1,2,n =,,1sin 0n f ntdt ππϕ-=⋅=⎰.因此, 2sin nt π⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭虽然是2([,])L ππ-的正交集, 但不是正交基.24. 试给出1([,])C a b 中列紧集的判别条件. 证:设子集1([,])A C a b ⊂且0x 是[,]a b 中一个数. 记{()|()}A f x f x A ''=∈及0{()|()}B f x f x A =∈.则A 是1([,])C a b 中的列紧集的充分必要条件是 (i) A '在([,])C a b 中有界; (ii) B 是R 中的有界集;(iii) A '是([,])C a b 中等度连续的集合.[充分性] 设1([,])A C a b ⊂满足条件(i), (ii)和(iii). 根据1([,])C a b 中范数的定义: 对于1([,])f C a b ∈,1([,])[,][,]:max |()|max |()|C a b x a b x a b ff x f x ∈∈'=+,容易看出,1([,])([,])C a b C a b k k f f f f −−−−→⇔−−−−→且([,])C a b k f f ''−−−−→因此只需证明A 和A '分别是([,])C a b 中的列紧集即可, 根据Arzela-Ascoli 定理, 这也只需证明A 和A '分别在([,])C a b 中有界且等度连续即可. 事实上, A '在([,])C a b 中有界性和等度连续已由所给条件得到保证(即(i)和(iii)). 还需证明A 在([,])C a b 中的有界性和等度连续性. 记A '在([,])C a b 中的一个界为A M ',B 作为R 中的有界集, 一个界纪为B M .对于任意的[,]x a b ∈, 利用中值定理, 有0000|()||()()||()||()()||()|().A B f x f x f x f x f x x f x M b a M ξ'≤-+'=-+≤-+ 此即表明[,]m a x |()|()A B x a b f x Mb a M '∈≤-+, 所以A 在([,])C a b 中有界,且界为()A B M b a M '-+. 进而对于,[,]x y a b ∈|()()||()()|||.A f x f y f x y M x y ξ''-=-≤-由此易知A 具有等度连续性.[必要性] 设A 是1([,])C a b 中的列紧集, 即对于A 的任何点列1{()}n n f x ∞=, 1{()}n n f x ∞=在1([,])C a b 中的范数(距离)1([,])[,][,]:max |()|max |()|C a b x a b x a b ff x f x ∈∈'=+意义下都有收敛的子列1{()}k n k f x ∞=. 因此, 1{()}n n f x ∞=和1{()}n n f x ∞='分别在([,])C a b 中有收敛的子列的1{()}k n k f x ∞=和1{()}k n k f x ∞='. 这表明, 根据Arzela- Ascoli 定理, A 和A '均是([,])C a b 中的列紧集, 因此A 和A '均在([,])C a b 中有界且等度连续, 因此得到(i)和(iii). 由A 的有界性, 可以知道集合0{()|()}B f x f x A =∈对于任意的0x [,]a b ∈都是R 中的有界集, 因此得到(ii). 26. 设(,)X ρ是紧距离空间,映射:f X X →满足1212((),())(,)f x f x x x ρρ<. (12x x ≠)则(1) f 是否有唯一的不动点? (2) f 是否为压缩映射?解答: (1) f 存在唯一的不动点, 证明如下: (存在性) 定义映射:h X →R 为()(,())h x x f x ρ=.由所给条件知此映射是连续的, 而X 是紧空间表明此映射能在X 中取得上下确界. 因此存在y X ∈, 使得()(,())inf ()x Xh y y f y h x ρ∈==.断言()inf ()0x Xh y h x ∈==,则y 是f 的不动点:()y f y =. 若不然, ()0h y >, 则在所给的条件中取()x f y =有(())((),(()))(,())()h f y f y f f y y f y h y ρρ=<=,此与y 达到()h x 的下确界相矛盾.(唯一性) 若还有z X ∈使得()z f z =但z y ≠. 仍由所给的条件, 有0(,)((),())(,)z y f z f y z y ρρρ<=<.这是个矛盾. 故必有z y =.(2) f 可以不是压缩映射. 反例如下:[反例1] 记[0,1]X =, 其中距离定义为两点之间的Euclid 距离: ,x y X ∀∈,(,):||x y x y ρ=-.因为X 是R 的闭子集, 因此是完备的, 显然也是紧的. 定义映射:T X X →为: 对于x X ∈,():1x T x x=+. 显然T 是自映射, 且有唯一的不动点0.对于任意的,x y X ∈, 设x y ≠, 则,x y 中至少有一个不为零, 由此容易得到||(,)11(1)(1)x y x y Tx Ty x y x y ρ-=-=++++ ||x y <-(,)x y ρ=.所以T 满足所需的条件, 但T 不是压缩映射, 因为,[0,1],[0,1](,)1supsup 1(,)(1)(1)x y x y x yx yTx Ty x y x y ρρ∈∈≠≠==++.因此不存在常数[0,1)α∈, 使得对于所有的,x y X ∈,(,)(,)Tx Ty x y ραρ≤.[反例2] 记1{0}1,2,X n n ⎧⎫=⋃=⎨⎬⎩⎭, 其中距离定义为两点之间的Euclid 距离: ,x y X ∀∈, (,):||x y x y ρ=-.因为X 是R 的闭子集, 因此是完备的, 显然也是紧的. 定义映射:T X X →为: 对于x X ∈,11,,():10,0,x T x n n x ⎧=⎪=+⎨⎪=⎩显然T 是自映射, 且有唯一的不动点0.对于任意的,x y X ∈, 设x y ≠, 如果,\{0}x y X ∈, 则有正整数,m n , m n ≠, 使得11,x y n m==, 且11||(,)11(1)(1)m n Tx Ty n m n m ρ-=-=++++ ||m n nm -<11(,)x y n mρ=-=; 如果,x y 中有一个为零, 例如0x =, 也有11(,)011Tx Ty m m ρ=-=++1m<(,)x y ρ=. 所以T 满足所需的条件, 但T 不是压缩映射, 因为例如对于 11,x y n m==, 当,m n →∞时, 成立11(,)11111(,)(1)(1)Tx Ty mnn m x y n m n mρρ-++==→++-,即不存在[0,1)α∈, 使得(,)(,)Tx Ty x y ραρ≤..补充题. 设二元函数(,)([,][,])g x y C a b a b ∈⨯,A 是([,])C a b 中的一个有界集, 记():(,)()()ba A F x g x y f y dy f x A ⎧⎫⎪⎪==∈⎨⎬⎪⎪⎩⎭⎰.(i) 证明A 是([,])C a b 中的列紧集;(ii) 问当A 还是([,])C a b 中的闭集时, A 是不是紧集?证:(i) 因为(,)([,][,])g x y C a b a b ∈⨯, 不难得知A ⊆ ([,])C a b . 根据Arzela-Ascoli 定理, 只需再证明A 在([,])C a b 中有界且等度连续即可.(a) A 在([,])C a b 中有界, 即A 作为由连续函数组成的集合是一致有界的. 事实上, 如果记A 的一个界为M , |(,)|g x y 在[,][,]a b a b ⨯上的最大值为K , 则对于任意取定的()F x A ∈, 有某个()f x A ∈, 使得()(,)()baF x g x y f y dy =⎰, 由此得知|()|(,)()baF x g x y f y dy =⎰|(,)()|bag x y f y dy ≤⎰max |(,)|max |()|ba xb a y ba a y bg x y f y dy ≤≤≤≤≤≤≤⎰[,]||||bC a b af Kdy =⎰[,]||||()C a b f K b a ≤- ()KM b a ≤-.因此A 是([,])C a b 中有界集, 且A 的一个界为()KM b a -.(b) A 在([,])C a b 中等度连续. 对于()F x A ∈,有某个()f x A ∈, 使得()(,)()baF x g x y f y dy =⎰. 因为(,)([,][,])g x y C a b a b ∈⨯, 因此在[,][,]a b a b ⨯上一致连续, 故对于任意的0ε>,存在0δ>, 当,[,]x x a b '∈且||x x δ'-<时, 有|(,)(,)|g x y g x y ε'-< ([,]y a b ∀∈),由此可以得到|()()|(,)()(,)()bbaaF x F x g x y f y dy g x y f y dy ''-=-⎰⎰[(,)(,)]()bag x y g x y f y dy '=-⎰|(,)(,)||()|ba g x y g x y f y dy '≤-⎰max |()||(,)(,)|ba y ba f y g x y g x y dy ≤≤'≤-⎰[,]|||||(,)(,)|bC a b af g x y g x y dy '=-⎰()M b a ε≤-. 由此易知A 具有等度连续性.(ii) 当A 还是([,])C a b 中的闭集时, A 未必是紧集! 反例可以构造如下: 考虑([0,1])C 中的集合{|1,2,}k A x k ==,显然A 是([0,1])C 中的有界集, 一个界可以取为1.可以断言A 是([0,1])C 中的闭集, 因为对于任意的,klx x A ∈, 不妨设l k >, 则[0,1][0,1]max ||k lk l C x x x x x ∈-=-1k l k l kl kl kk k k k l l l l ---⎛⎫⎛⎫⎛⎫⎡⎤=-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 对于任意固定的k , 当l 趋于无穷大时, 右端项趋向于1, 由此容易知道, 作为([0,1])C 中的子点列, 集合A 不是Cauchy 列, 因此不可能在([0,1])C 中有收敛的子列, 故集合A 没有聚点, 因此是([0,1])C 中的闭集.定义(,)1K x y =,显然(,)([0,1][0,1])K x y C ∈⨯. 对于上述的集合A , 不难计算{}11()|1,2,|1,2,1k A F x x dx k k k ⎧⎫=====⎨⎬+⎩⎭⎰ 显然, A 是([0,1])C 中列紧集,唯一的聚点是零函数,但零函数不在A 中,因此不是闭集. 补充题. 设A 是([,])C a b 中的一个有界集, 记():()()xa B F x f t dt f x A ⎧⎫⎪⎪==∈⎨⎬⎪⎪⎩⎭⎰.证明B 是([,])C a b 中的列紧集.证:根据Arzela-Ascoli 定理, 需证明B 在([,])C a b 中有界且等度连续即可.(i) B 在([,])C a b 中有界, 即B 作为由函数组成的集合是一致有界的. 事实上, 如果记A 的界为M ,则对于任意取定的()F xB ∈, 有某个()f t A ∈, 使得()()xaF x f t dt =⎰, 由此得知|()|()|()|xxaaF x f t dt f t dt =≤⎰⎰[,]max |()|||||x xC a b a t baaf t dt f dt ≤≤≤=⎰⎰[,]||||()()C a b f b a M b a ≤-≤-.因此B 是([,])C a b 中有界集, 且B 的界为()M b a -.(ii) B 在([,])C a b 中等度连续. 对于()F x B ∈,有某个()f t A ∈, 使得()()xaF x f t dt =⎰.对于,[,]x x a b ∈|()()|()()xxaaF x F x f t dt f t dt -=-⎰⎰()|()|xxxxf t dt f t dt =≤⎰⎰[,]max |()|||||xxC a b a t bxxf t dt f dt ≤≤≤=⎰⎰||M x x ≤-. 由此易知B 具有等度连续性.补充题.证明课本20页定理8:对于距离空间(,)X ρ中的任何集合G , G '与G 均是闭集. 证:(i) 根据闭集的定义, 仅需证明()G G '''⊆.事实上, 设()y G ''∈, 则对于任意的0ε>((,)\{})S y y G ε'⋂≠∅.设((,)\{})x S y y G ε'∈⋂, 根据极限点的定义, 对于min{(,),(,)}0x y x y δρερ=->,有((,)\{})S x x G δ⋂≠∅.又(,)(,)S x S y δε⊆,因此有((,)\{})((,)\{})S y y G S x x G εδ⋂⊇⋂≠∅.注意到0ε>的任意性, 即可得到y G '∈. 因此G '是闭集. (ii) 需证明的是G G '⊆. 因为G G G '=⋃, 又()A B A B '''⋃⊆⋃,(*)故由(i)中已经证明了的结果, 有()G G G G G G G '''''''=⋃⊆⋃⊆⊆,因此G 是闭集.如下证明(*): 设y A B ''∉⋃, 则y A '∉, 且 y B '∉.由前者知存在某个00ε>, 使得0((,)\{})S y y A ε⋂=∅;由后者知存在某个10ε>, 使得1((,)\{})S y y B ε⋂=∅.取001min{,}δεε=, 则00δ>, 且0((,)\{})()S y y A B δ⋂⋃=∅,所以()y A B '∉⋃, 即(*)得证.。

泛函分析 答案(张恭庆)2.4节

泛函分析 答案(张恭庆)2.4节

= ( 1) , 但 (
) &
1
.
M i = span x j ,
1 j n j&i
{ }
di =
( xi , M i ) ,
d i > 0,
7
" fi =1 f fi = d i ' i ' fi x j = 0 ( j & i ) , # f i ( Mi ) = 0 ' f i ( xi ) = d i ' $ f i ( xi ) = 1. 2.4.8 M 是极大线性子空间的充分且 必要条件是, M 是线性真子空间, 并且 x0 X M 有 X = x0 | R1 (M .
须对
n
1
{
}
k f ( xk ) = f
n
xk
!
f
k =1
k
xk
M
k =1
k
xk .
若所说的不等式成立,设 E = span { xn , n 1} ,
x=
定义
n
k =1
k
xk
E,
,
j
2
,
,
n
K , 有
n j =1 j
f0 ( x ) =
特别是 假设,
n k =1 k
Ck ,
并由充分性
|
( )
j =1
= inf + f ( x ) df ( y ) , . y B( ,1) = f ( x ) d ( x ) sup f ( y )
y B ( ,1)
x = ( 4 ,5 ) 到通过原点的直线(即 含有零点的超平面) H0 f = { x = ( 4 ,5 ) | f ( x ) = 4 + 05 = 0}

张恭庆++泛函分析上册答案

张恭庆++泛函分析上册答案
—数 计 院—张 秀 洲 张恭庆泛函分析题 张恭庆泛函分析题—
课后习题解答与辅导



二 0 0 九 年 三 月 一 十 日
-1-
—数 计 院—张 秀 洲 张恭庆泛函分析题 张恭庆泛函分析题—
-2-
—数 计 院—张 秀 洲 张恭庆泛函分析题 张恭庆泛函分析题—
1.1.5
-3-
—数 计 院—张 秀 洲 张恭庆泛函分析题 张恭庆泛函分析题—
1.4.9
1.4.11
1.4.12
- 16 -
—数 计 院—张 秀 洲 张恭庆泛函分析题 张恭庆泛函分析题—
1.4.13
1.4.14
- 17 -
—数 计 院—张 秀 洲 张恭庆泛函分析题 张恭庆泛函分析题—
1.4.15
1.4.17
- 18 -
—数 计 院—张 秀 洲 张恭庆泛函分析题 张恭庆泛函分析题—
- 19 -
—数 计 院—张 秀 洲 张恭庆泛函分析题 张恭庆泛函分析题—
1.5.1 证明:(1) (��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

泛函分析 答案(张恭庆)1[1].3

泛函分析 答案(张恭庆)1[1].3

1
C
,当
t1, t2
|x t1
x t2 |
C t1, t2 注 .
续的.
注 C t1, t2
t1, t2
t1, t2
1
C
1, c 0, 取
0 ,求
时, 所以 E 是等度连
C
6
2
集,求证
x1 其中
F1, x2
F 2 , 使得 F 1, F 2
x1, x2 ,
F1, F2
def inf
x F1,y F2
x, y .
证明 记 d
F1, F2 ,
x
F1, y
F2.
n
N, xn
F1, yn
F2,
d
xn, yn
d
1 n
设 xnk
x1
F 1, 相应的 ynk
ynk 未必收敛,
F 2, 序列

m
A 可以取出收敛子序列
mk
. 因为
S 中的收敛与按坐标收敛等价, 所以点列
m 中的每一
m
个点 ( 固定 m ) 的坐标序列 n
n 1, 2,
也可以从其任意无穷子集中取出收敛子
序列 , 而坐标序列构成数集,要从其任意无穷子集中取出收
敛子序列显然应该要求它们有界.
为了证明充分性, 根据习题 1.3.1, 只要构造 A 的列紧的
t
a, b
|F x |
x f t dt
a
b a
|f
t
|dt
M0 b a
F E . 即 E 一致有界.
|F x2 F x1 | 0,
x2 f t dt
x1
M0 ,

张恭庆泛函分析答案(民大考试重点版)

张恭庆泛函分析答案(民大考试重点版)

1.1.61.1.71.2.21.2.31.2.41.3.3 1.3.5 1.3.81.3.91.5.3证明:因为C是紧集,所以C是闭集.因为C是紧集,故C的任意子集都列紧.而T(C) C,故T(C)列紧.于是,由Schauder不动点定理,T在C上有一个不动点.[Schauder定理:B*空间中闭凸集C上使T(C)列紧的连续自映射T必有不动点] 答案21.5.6证明:设B = { u∈C[0, 1] | ⎰[0, 1]u(x) dx = 1,u(x) ≥ 0 },则B是C[0, 1]中闭凸集.设max (x, y)∈[0, 1]⨯[0, 1]K(x, y) = M,min (x, y)∈[0, 1]⨯[0, 1]K(x, y) = m,⎰[0, 1] (⎰[0, 1]K(x, y) dy) dx = N,max x∈[0, 1] | ⎰[0, 1]K(x, y) dy |= P.令(S u)(x) = (⎰[0, 1]K(x, y) u(y) dy)/(⎰[0, 1] (⎰[0, 1]K(x, y) u(y) dy) dx )则⎰[0, 1] (S u)(x) dx = 1,u(x) ≥ 0;即S u∈B.因此S是从B到B内的映射.∀u, v∈B,|| ⎰[0, 1]K(x, y) u(y) dy -⎰[0, 1]K(x, y) v(y) dy ||= || ⎰[0, 1]K(x, y) (u(y)-v(y)) dy ||= max x∈[0, 1] | ⎰[0, 1]K(x, y) (u(y)-v(y)) dy |≤M · || u -v ||;因此映射u #⎰[0, 1]K(x, y) u(y) dy在B上连续.类似地,映射u #⎰[0, 1] (⎰[0, 1]K(x, y) u(y) dy) dx也在B上连续.所以,S在B上连续.下面证明S(B)列紧.首先,证明S(B)是一致有界集.∀u∈B,|| S u || = || (⎰[0, 1]K(x, y) u(y) dy )/(⎰[0, 1] (⎰[0, 1]K(x, y) u(y) dy) dx )||= max x∈[0, 1] | ⎰[0, 1]K(x, y) u(y) dy |/(⎰[0, 1] (⎰[0, 1]K(x, y) u(y) dy) dx )≤ (M ·⎰[0, 1]u(y) dy |/(m ⎰[0, 1] (⎰[0, 1]u(y) dy) dx ) = M/m,故S(B)是一致有界集.其次,证明S(B)等度连续.∀u∈B,∀t1, t2∈[0, 1],| (S u)(t1) - (S u)(t2)|= | ⎰[0, 1]K(t1, y) u(y) dy-⎰[0, 1]K(t2, y) u(y) dy |/(⎰[0, 1] (⎰[0, 1]K(x, y) u(y) dy) dx )≤⎰[0, 1] | K(t1, y) -K(t2, y) | u(y) dy /(m⎰[0, 1] (⎰[0, 1]u(y) dy) dx )≤ (1/m) · max y∈[0, 1] | K(t1, y) -K(t2, y) |由K(x, y)在[0, 1]⨯[0, 1]上的一致连续性,∀ε > 0,存在δ> 0,使得∀(x1, y1), (x2, y2)∈[0, 1],只要|| (x1, y1) - (x2, y2) || < δ,就有| K(x1, y1) -K(x2, y2) | < m ε.故只要| t1-t2 | < δ时,y∈[0, 1],都有| K(t1, y) -K(t2, y) | < m ε.此时,| (S u)(t1) - (S u)(t2)| ≤ (1/m) · max y∈[0, 1] | K(t1, y) -K(t2, y) |≤ (1/m) ·m ε = ε.故S(B)是等度连续的.所以,S(B)是列紧集.根据Schauder不动点定理,S在C上有不动点u0.令λ= (⎰[0, 1] (⎰[0, 1]K(x, y) u0(y) dy) dx.则(S u0)(x) = (⎰[0, 1]K(x, y) u0(y) dy)/λ= (T u0)(x)/λ.因此(T u0)(x)/λ= u0(x),T u0 = λ u0.显然上述的λ和u0满足题目的要求.答案二1.6.1 (极化恒等式)证明:∀x, y∈X,q(x + y) -q(x-y) = a(x + y, x + y) -a(x-y, x-y) = (a(x, x) + a(x, y) + a(y, x) + a(y, y)) - (a(x, x) -a(x, y) -a(y, x) + a(y, y))= 2 (a(x, y) + a(y, x)),将i y代替上式中的y,有q(x + i y) -q(x-i y) = 2 (a(x, i y) + a(i y, x))= 2 (-i a(x, y) + i a( y, x)),将上式两边乘以i,得到i q(x + i y) -i q(x-i y) = 2 ( a(x, y) -a( y, x)),将它与第一式相加即可得到极化恒等式.1.6.2证明:若C[a, b]中范数|| · ||是可由某内积( · , · )诱导出的,则范数|| · ||应满足平行四边形等式.而事实上,C[a, b]中范数|| · ||是不满足平行四边形等式的,因此,不能引进内积( · , · )使其适合上述关系.范数|| · ||是不满足平行四边形等式的具体例子如下:设f(x) = (x–a)/(b–a),g(x) = (b–x)/(b–a),则|| f || = || g || = || f + g || = || f –g || = 1,显然不满足平行四边形等式.2.1.2 2.1.32.1.42.3.12.3.52.3.72.3.92.4.42.4.52.4.62.4.72.4.10 2.4.112.4.1359-61。

泛函分析答案泛函分析解答(张恭庆)

泛函分析答案泛函分析解答(张恭庆)

第五章习题第一部分01-151. M 为线性空间X 的子集,证明span( M )是包含M 的最小线性子空间.[证明] 显然span( M )是X 的线性子空间.设N 是X 的线性子空间,且M ⊆ N . 则由span( M )的定义,可直接验证span( M ) ⊆ N . 所以span( M )是包含M 的最小线性子空间.2. 设B 为线性空间X 的子集,证明conv(B ) = {∑=ni i i x a 1| a i ≥ 0,∑=ni ia1= 1, x i ∈B , n 为自然数}.[证明] 设A = {∑=ni i i x a 1| a i ≥ 0,∑=ni ia1= 1, x i ∈B , n 为自然数}.首先容易看出A 为包含B 的凸集,设F 也是包含B 的凸集,则显然有A ⊆ F ,故A 为包含B 的最小凸集.3. 证明[a , b ]上的多项式全体P [a , b ]是无限维线性空间,而E = {1, t , t 2, ..., t n , ...}是它的一个基底.[证明] 首先可以直接证明P [a , b ]按通常的函数加法和数乘构成线性空间, 而P [a , b ]中的任一个元素皆可由E 中有限个元素的线性组合表示. 设c 0, c 1, c 2, ..., c m 是m + 1个实数,其中c m ≠ 0,m ≥ 1. 若∑=mn n n t c 0= 0,由代数学基本定理知c 0 = c 1 = c 2 = ... = c m = 0,所以E 中任意有限个元素线性无关,故P [a , b ]是无限维线性空间,而E 是它的一个基底。

4. 在2中对任意的x = (x 1, x 2)∈2,定义|| x ||1 = | x 1 | + | x 2 |,|| x ||2 = (x 12 + x 22)1/2,|| x ||∞ = max{ | x 1 |, | x 2 | }.证明它们都是2中的范数,并画出各自单位球的图形.[证明] 证明是直接的,只要逐条验证范数定义中的条件即可.单位球图形略.5. 设X 为线性赋范空间,L 为它的线性子空间。

泛函分析答案泛函分析解答(张恭庆).doc

泛函分析答案泛函分析解答(张恭庆).doc

精 品 资 料第五章习题第一部分01-151. M 为线性空间X 的子集,证明span( M )是包含M 的最小线性子空间.[证明] 显然span( M )是X 的线性子空间.设N 是X 的线性子空间,且M ⊆ N . 则由span( M )的定义,可直接验证span( M ) ⊆ N . 所以span( M )是包含M 的最小线性子空间.2. 设B 为线性空间X 的子集,证明conv(B ) = {∑=ni i i x a 1| a i ≥ 0,∑=ni ia1= 1, x i ∈B , n 为自然数}.[证明] 设A = {∑=ni i i x a 1| a i ≥ 0,∑=ni ia1= 1, x i ∈B , n 为自然数}.首先容易看出A 为包含B 的凸集,设F 也是包含B 的凸集,则显然有A ⊆ F ,故A 为包含B 的最小凸集.3. 证明[a , b ]上的多项式全体P [a , b ]是无限维线性空间,而E = {1, t , t 2, ..., t n , ...}是它的一个基底.[证明] 首先可以直接证明P [a , b ]按通常的函数加法和数乘构成线性空间, 而P [a , b ]中的任一个元素皆可由E 中有限个元素的线性组合表示. 设c 0, c 1, c 2, ..., c m 是m + 1个实数,其中c m ≠ 0,m ≥ 1. 若∑=mn n n t c 0= 0,由代数学基本定理知c 0 = c 1 = c 2 = ... = c m = 0,所以E 中任意有限个元素线性无关,故P [a , b ]是无限维线性空间,而E 是它的一个基底。

4. 在2中对任意的x = (x 1, x 2)∈2,定义|| x ||1 = | x 1 | + | x 2 |,|| x ||2 = (x 12 + x 22)1/2,|| x ||∞ = max{ | x 1 |, | x 2 | }.证明它们都是2中的范数,并画出各自单位球的图形.[证明] 证明是直接的,只要逐条验证范数定义中的条件即可.单位球图形略.5. 设X 为线性赋范空间,L 为它的线性子空间。

泛函分析解答(张恭庆)2.3

泛函分析解答(张恭庆)2.3
5
A 闭算子
(2) 如果 A 连续,又 Y 完 备, 那么根据定理 2.3.12 (B.L.T), A 能一地延拓到 D 上成为连续线性算子
A, A |D = A,
A = A.
本题
还有一个条件 A 是闭算子, 下面证明 D 闭. 设 xn D, xn x . 则有 Axn = Axn Ax , 于是因为 A 是闭算子, 所以
( R ( A) ) = { } .
| ( Ax , x ) | m
x
2
x= ,
xn
x0
H
yn = Axn
Ax0
R ( A) .
m
x
2
| ( Ax , x ) |
x
Ax
Ax
m
x
所以
A 是单射.
3
R ( A ) 是闭的. R ( A ) = R ( A ) = H 即 A 是满射 . 所以根据Banach定理, A 1 L( H ). 2.3.4 设 X ,Y 是线性赋范空间,
1
U ( ,1) X X0 中的开单位球. 下面证明 U ( ,1) = B ( ,1) . x B ( ,1) x <1 [ x] x < 1
x = [ x ] U ( ,1) B ( ,1) U ( ,1) 反之, [ x ] U ( ,1) [ x ] < 1 x [ x ] , 使得 x < 1 x B ( ,1) , [ x ] = x . U ( ,1) B ( ,1) 2.3.2 设 X ,Y 是Banach空间. U L( X ,Y ) , 设方程 Ux = y 对每 一个 y Y 有解 x X , 并且 m > 0 ,使得 Ux m x , x X . 求证: U 有连续逆 U 1 ,并且

泛函分析上册答案

泛函分析上册答案

1.1.51.1.61.1.71.2.21.2.31.2.41.3.31.3.41.3.51.3.71.3.81.3.91.4.11.4.5-61.4.91.4.111.4.121.4.131.4.141.4.151.4.171.5.1证明:(1) (⇒) 若x∈int(E),存在δ > 0,使得Bδ(x) ⊆E.注意到x + x/n→x ( n→∞ ),故存在N ∈+,使得x + x/N ∈Bδ(x) ⊆E.即x/( N/( 1 + N ) ) ∈E.因此P(x) ≤N/( 1 + N ) < 1.(⇐) 若P(x) < 1.则存在a > 1,使得y = a x∈E.因θ∈int(E),故存在δ > 0,使得Bδ(θ) ⊆E.令η = δ(a - 1)/a,∀z∈Bη(x),令w = (a z-y )/(a - 1),则|| w || = || (a z-y )/(a - 1) || = || a z-y ||/(a - 1)= || a z-a x ||/(a - 1) = a || z-x ||/(a - 1) < aη/(a - 1) = δ.故w∈Bδ(θ) ⊆E.故z = ((a - 1)w + y )/a ∈E,因此,Bη(x) ⊆E.所以x∈int(E).(2) 因int(E) = E,故有cl(int(E)) ⊆ cl(E).下面证明相反的包含关系.若x∈cl(E),则∀ε > 0,存在y∈E,使得|| x -y || < ε/2.因ny/(n + 1) →y ( n →∞ ).故存在N ∈+,使得|| Ny/(N + 1) -y || < ε/2.令z = Ny/(N + 1),则z∈E,且P(z) ≤N/(N + 1) < 1,由(1)知z∈int(E).而|| z -x || ≤ || z -y || + || y -x || < ε/2 + ε/2 = ε.故x∈cl(int(E)),因此cl(E) ⊆ cl(int(E))所以cl(int(E)) = cl(E).1.5.3证明:因为C是紧集,所以C是闭集.因为C是紧集,故C的任意子集都列紧.而T(C) C,故T(C)列紧.于是,由Schauder不动点定理,T在C上有一个不动点.[Schauder定理:B*空间中闭凸集C上使T(C)列紧的连续自映射T必有不动点] 1.5.41.5.5证明:设C = {x = (x1, x2, ..., x n)∈n | ∑ 1 ≤i ≤n x i = 1,x i ≥ 0 ( i = 1, 2, ..., n) }.则C是有界闭集,且是凸集,因此C是紧凸集.因为∀x∈C,x i 不全为0,而a ij> 0,故Ax的各分量也非负但不全为零.∀x∈C,设f (x) = (Ax)/( ∑ 1 ≤i ≤n (Ax)i ),则f (x)∈C.容易验证f : C→C还是连续的.由Brouwer不动点定理,存在f的不动点x0∈C.即f (x0) = x0,也就是(Ax0)/( ∑ 1 ≤i ≤n (Ax0)i ) = x0.令λ= ∑ 1 ≤i ≤n (Ax0)i,则有Ax0 = λ x0.1.5.6证明:设B = { u∈C[0, 1] | ⎰[0, 1]u(x) dx = 1,u(x) ≥ 0 },则B是C[0, 1]中闭凸集.设max (x, y)∈[0, 1]⨯[0, 1]K(x, y) = M,min (x, y)∈[0, 1]⨯[0, 1]K(x, y) = m,⎰[0, 1] (⎰[0, 1]K(x, y) dy) dx = N,max x∈[0, 1] | ⎰[0, 1]K(x, y) dy |= P.令(S u)(x) = (⎰[0, 1]K(x, y) u(y) dy)/(⎰[0, 1] (⎰[0, 1]K(x, y) u(y) dy) dx )则⎰[0, 1] (S u)(x) dx = 1,u(x) ≥ 0;即S u∈B.因此S是从B到B内的映射.∀u, v∈B,|| ⎰[0, 1]K(x, y) u(y) dy -⎰[0, 1]K(x, y) v(y) dy ||= || ⎰[0, 1]K(x, y) (u(y)-v(y)) dy ||= max x∈[0, 1] | ⎰[0, 1]K(x, y) (u(y)-v(y)) dy |≤M · || u -v ||;因此映射u #⎰[0, 1]K(x, y) u(y) dy在B上连续.类似地,映射u #⎰[0, 1] (⎰[0, 1]K(x, y) u(y) dy) dx也在B上连续.所以,S在B上连续.下面证明S(B)列紧.首先,证明S(B)是一致有界集.∀u∈B,|| S u || = || (⎰[0, 1]K(x, y) u(y) dy )/(⎰[0, 1] (⎰[0, 1]K(x, y) u(y) dy) dx )||= max x∈[0, 1] | ⎰[0, 1]K(x, y) u(y) dy |/(⎰[0, 1] (⎰[0, 1]K(x, y) u(y) dy) dx )≤ (M ·⎰[0, 1]u(y) dy |/(m ⎰[0, 1] (⎰[0, 1]u(y) dy) dx ) = M/m,故S(B)是一致有界集.其次,证明S(B)等度连续.∀u∈B,∀t1, t2∈[0, 1],| (S u)(t1) - (S u)(t2)|= | ⎰[0, 1]K(t1, y) u(y) dy-⎰[0, 1]K(t2, y) u(y) dy |/(⎰[0, 1] (⎰[0, 1]K(x, y) u(y) dy) dx )≤⎰[0, 1] | K(t1, y) -K(t2, y) | u(y) dy /(m⎰[0, 1] (⎰[0, 1]u(y) dy) dx )≤ (1/m) · max y∈[0, 1] | K(t1, y) -K(t2, y) |由K(x, y)在[0, 1]⨯[0, 1]上的一致连续性,∀ε > 0,存在δ> 0,使得∀(x1, y1), (x2, y2)∈[0, 1],只要|| (x1, y1) - (x2, y2) || < δ,就有| K(x1, y1) -K(x2, y2) | < m ε.故只要| t1-t2 | < δ时,y∈[0, 1],都有| K(t1, y) -K(t2, y) | < m ε.此时,| (S u)(t1) - (S u)(t2)| ≤ (1/m) · max y∈[0, 1] | K(t1, y) -K(t2, y) |≤ (1/m) ·m ε = ε.故S(B)是等度连续的.所以,S(B)是列紧集.根据Schauder不动点定理,S在C上有不动点u0.令λ= (⎰[0, 1] (⎰[0, 1]K(x, y) u0(y) dy) dx.则(S u0)(x) = (⎰[0, 1]K(x, y) u0(y) dy)/λ= (T u0)(x)/λ.因此(T u0)(x)/λ= u0(x),T u0 = λ u0.显然上述的λ和u0满足题目的要求.1.6.1 (极化恒等式)证明:∀x, y∈X,q(x + y) -q(x-y) = a(x + y, x + y) -a(x-y, x-y) = (a(x, x) + a(x, y) + a(y, x) + a(y, y)) - (a(x, x) -a(x, y) -a(y, x) + a(y, y))= 2 (a(x, y) + a(y, x)),将i y代替上式中的y,有q(x + i y) -q(x-i y) = 2 (a(x, i y) + a(i y, x))= 2 (-i a(x, y) + i a( y, x)),将上式两边乘以i,得到i q(x + i y) -i q(x-i y) = 2 ( a(x, y) -a( y, x)),将它与第一式相加即可得到极化恒等式.1.6.2证明:若C[a, b]中范数|| · ||是可由某内积( · , · )诱导出的,则范数|| · ||应满足平行四边形等式.而事实上,C[a, b]中范数|| · ||是不满足平行四边形等式的,因此,不能引进内积( · , · )使其适合上述关系.范数|| · ||是不满足平行四边形等式的具体例子如下:设f(x) = (x–a)/(b–a),g(x) = (b–x)/(b–a),则|| f || = || g || = || f + g || = || f –g || = 1,显然不满足平行四边形等式.1.6.3证明:∀x∈L2[0, T],若|| x || = 1,由Cauchy-Schwarz不等式,有| ⎰[0, T]e- ( T-τ)x(τ) dτ|2≤ (⎰[0, T] (e- ( T-τ))2dτ) (⎰[0, T] ( x(τ))2dτ)= ⎰[0, T] (e- ( T-τ))2dτ = e- 2T ⎰[0, T]e 2τdτ= (1-e- 2T )/2.因此,该函数的函数值不超过M = ((1-e- 2T )/2)1/2.前面的不等号成为等号的充要条件是存在λ∈,使得x(τ) = λ e- ( T-τ).再注意|| x || = 1,就有⎰[0, T] (λ e- ( T-τ))2dτ= 1.解出λ= ±((1-e- 2T )/2)- 1/2.故当单位球面上的点x(τ) = ±((1-e- 2T )/2)- 1/2 ·e- ( T-τ)时,该函数达到其在单位球面上的最大值((1-e- 2T )/2)1/2.1.6.4证明:若x∈N⊥,则∀y∈N,(x, y) = 0.而M⊆N,故∀y∈M,也有(x, y) = 0.因此x∈M⊥.所以,N⊥⊆M⊥.1.6.51.6.6解:设偶函数集为E,奇函数集为O.显然,每个奇函数都与正交E.故奇函数集O ⊆E⊥.∀f∈E⊥,注意到f总可分解为f = g + h,其中g是奇函数,h是偶函数.因此有0 = ( f, h) = ( g + h, h) = ( g, h) + ( h, h) = ( h, h).故h几乎处处为0.即f = g是奇函数.所以有E⊥⊆O.这样就证明了偶函数集E的正交补E⊥是奇函数集O.1.6.7证明:首先直接验证,∀c∈,S = {e2π i n x| n∈ }是L2[c, c + 1]中的一个正交集.再将其标准化,得到一个规范正交集S1 = {ϕn(x) = d n e2π i n x| n∈ }.其中的d n= || e2π i n x|| (n∈),并且只与n有关,与c的选择无关.(1) 当b–a =1时,根据实分析结论有S⊥ = {θ}.当b–a <1时,若u∈L2[a, b],且u∈S⊥,我们将u延拓成[a, a + 1]上的函数v,使得v(x) = 0 (∀x∈(b, a + 1]).则v∈L2[a, a + 1].同时把S = {e2π i n x| n∈ }也看成L2[a, a + 1]上的函数集.那么,在L2[a, a + 1]中,有v∈S⊥.根据前面的结论,v = θ.因此,在L2[a, b]中就有u = θ.故也有S⊥ = {θ};(2) 分成两个区间[a, b– 1)和[b– 1, b]来看.在[a, b– 1)上取定非零函数u(x) = 1 ( ∀x∈[a, b– 1) ).记p n = ⎰[a, b– 1)u(x)ϕn(x) dx.我们再把u看成是[b– 2, b– 1]上的函数(u在[b– 2, a)上去值为0).那么p n就是u在L2[b– 2, b– 1]上关于正交集S1 = {ϕn(x)| n∈ }的Fourier系数.由Bessel不等式,∑n∈ | p n |2 < +∞.再用Riesz-Fischer定理,在L2[b– 1, b]中,∑n∈p n ϕn收敛.并且,若令v = -∑n∈p n ϕn,则(v, ϕn)= -p n (∀n∈).设f : [a, b] →为:f(x) = u(x) (当x∈[a, b– 1)),f(x) = v(x) (当x∈[b– 1, b]).则f∈L2[a, b],f≠θ,但( f, ϕn) = ⎰[a, b– 1)f(x)ϕn(x) dx + ⎰[b– 1, b]f(x)ϕn(x) dx= ⎰[a, b– 1)u(x)ϕn(x) dx + ⎰[b– 1, b]v(x)ϕn(x) dx= p n -p n = 0,因此,f∈S1⊥= S⊥,故S⊥≠ {θ}.1.6.8证明:( z n/(2π)1/2, z n/(2π)1/2 ) = (1/i)⎰| z | = 1 ( z n/(2π)1/2 · (z*)n/(2π)1/2 )/z dz= (1/(2πi))⎰| z | = 1z n· (z*)n/z dz = (1/(2πi))⎰| z | = 1 1/z dz = 1.若n > m,则n- m - 1 ≥ 0,从z n -m - 1而解析.( z n/(2π)1/2, z m/(2π)1/2 ) = (1/i)⎰| z | = 1 ( z n/(2π)1/2 · (z*)m/(2π)1/2 )/z dz= (1/(2πi))⎰| z | = 1z n· (z*)m/z dz = (1/(2πi))⎰| z | = 1z n -m - 1dz = 0.因此,{ z n/(2π)1/2 }n ≥ 0是正交规范集.1.6.91.6.10证明:容易验证{e n}⋂{ f n}是正交规范集,下面只证明{e n}⋂{ f n}是X的基.∀x∈X,由正交分解定理,存在x关于X0的正交分解x = y + z,其中y∈X0,z∈X0⊥.因{e n}, { f n}分别是X0和X0⊥的正交规范基,故y = ∑ n∈( y, e n ) e n,z = ∑ n∈( z, f n ) f n.因z∈X0⊥,故(x, e n) = ( y + z, e n) = ( y, e n) + ( z, e n) = ( y, e n).因y∈X0,故(x, f n) = ( y + z, f n) = ( y, f n) + ( z, f n) = ( z, f n).故x = y + z = ∑ n∈( y, e n ) e n + ∑ n∈( z, f n ) f n= ∑ n∈( x, e n ) e n + ∑ n∈( x, f n ) f n.因此{e n}⋂{ f n}是X的正交规范基.1.6.11证明:首先,令ϕk (z) = (( k +1 )/π)1/2 z k ( k≥ 0 ),则{ ϕk }k≥ 0是H2(D)中的正交规范基.那么,∀u(z)∈H2(D),设u(z) = ∑k≥ 0 a k z k,则∀k∈,有(u, ϕk) = ⎰D u(z) ·ϕk(z)*dxdy= ⎰D (∑j≥ 0 a j z j) ·ϕk(z)*dxdy= ∑j≥ 0 a j(π/( j +1 ))1/2⎰D (( j +1 )/π)1/2 z j ·ϕk(z)*dxdy= ∑j≥ 0 a j(π/( j +1 ))1/2⎰Dϕj(z) ·ϕk(z)*dxdy= ∑j≥ 0 a j(π/( j +1 ))1/2 (ϕj, ϕk)= a k(π/( k +1 ))1/2.即u(z)的关于正交规范基{ ϕk }k≥ 0的Fourier系数为a k(π/( k +1 ))1/2( k≥ 0 ).(1) 如果u(z)的Taylor展开式是u(z) = ∑k≥ 0 b k z k,则u(z)的Fourier系数为b k(π/( k +1 ))1/2( k≥ 0 ).由Bessel不等式,∑k≥ 0| b k(π/( k +1 ))1/2|2≤ || u || < +∞,于是有∑k≥ 0| b k|2/( k +1 ) < +∞.(2) 设u(z), v(z)∈H2(D),并且u(z) = ∑k≥ 0 a k z k,v(z) = ∑k≥ 0 b k z k.则u(z) = ∑k≥ 0 a k(π/( k +1 ))1/2ϕk (z),v(z) = ∑j≥ 0 b j(π/( j +1 ))1/2ϕj (z),(u, v) = ( ∑k≥ 0 a k(π/( k +1 ))1/2ϕk (z), ∑j≥ 0 b j(π/( j +1 ))1/2ϕj (z) )= ∑k≥ 0∑j≥ 0 (a k(π/( k +1 ))1/2ϕk (z), b j(π/( j +1 ))1/2ϕj (z))= ∑k≥ 0∑j≥ 0 (a k(π/( k +1 ))1/2 ·b j*(π/( j +1 ))1/2) (ϕk (z), ϕj (z))= ∑k≥ 0 (a k(π/( k +1 ))1/2 ·b k* (π/( k +1 ))1/2) = π∑k≥ 0 (a k·b k* )/( k +1 ).(3) 设u(z)∈H2(D),且u(z) = ∑k≥ 0 a k z k.因1/(1 -z) = ∑k≥ 0z k,1/(1 -z)2 = ∑k≥ 0 (k +1) z k,其中| z | < 1.故当| z | < 1时,有1/(1 - | z | )2 = ∑k≥ 0 (k +1) | z | k.根据(2),|| u(z) ||2 = π∑k≥ 0 (a k·a k* )/( k +1 ) = π∑k≥ 0 | a k|2/( k +1 ).|| u ||2/(1 - | z |)2 = (π∑k≥ 0 | a k|2/( k +1 )) · ( ∑k≥ 0 (k +1) | z | k )≥ (π∑k≥ 0 | a k|2/( k +1 ) | z | k) · ( ∑k≥ 0 (k +1) | z | k )≥π ( ∑k≥ 0 ( | a k|/( k +1 )1/2 | z | k/2) · ((k +1)1/2 | z | k/2))2 (Cauchy-Schwarz不等式)= π ( ∑k≥ 0 | a k| · | z | k )2≥π | ∑k≥ 0a k z k |2 = π | u(z)|2,故| u(z) | ≤ || u ||/(π1/2 ( 1 - | z | )).(4) 先介绍复分析中的Weierstrass定理:若{ f n }是区域U ⊆上的解析函数列,且{ f n }在U上内闭一致收敛到f,则f在U上解析.(见龚升《简明复分析》)回到本题.设{ u n }是H2(D)中的基本列.则∀z∈D,由(3)知{ u n(z) }是中的基本列,因此是收敛列.设u n(z) →u(z).对中任意闭集F⊆D,存在0 < r < 1使得F⊆B(0, r) ⊆D.∀ε > 0,存在N∈+,使得∀m, n > N,都有|| u n-u m|| < επ1/2 ( 1 -r ).再由(3),∀z∈F,| u n(z) -u m(z) | ≤ || u n-u m||/(π1/2 ( 1 - | z | )) ≤ || u n-u m||/(π1/2 ( 1 -r )) < ε.令m→∞,则| u n(z) -u(z) | ≤ε.这说明{ u n }在D上内闭一致收敛到u.由前面所说的Weierstrass定理,u在D上解析.把{ u n }看成是L2(D)中的基本列,因L2(D),故{ u n }是L2(D)中的收敛列.设{ u n }在L2(D)中的收敛于v.则v必然与u几乎处处相等.即{ u n }在L2(D)中的收敛于u.因此{ u n }在H2(D)中也是收敛的,且收敛于u.所以,H2(D)完备.1.6.12证明:由Cauchy-Schwarz不等式以及Bessel不等式,∀x, y∈X,有| ∑n≥ 1 (x, e n) · (y, e n)* |2≤ (∑n≥ 1 | (x, e n) |· | (y, e n)* | )2= (∑n≥ 1 | (x, e n) |· | (y, e n) | )2≤ (∑n≥ 1 |(x, e n) |2) · (∑n≥ 1 | (y, e n)|2)≤ || x ||2 · || y ||2.因此,| ∑n≥ 1 (x, e n) · (y, e n)* | ≤ || x || · || y ||.1.6.13证明:(1) 因范数是连续函数,故C = { x ∈X | || x - x0 || ≤r }是闭集.∀x, y∈C,因|| x - x0 || ≤r,|| x - x0 || ≤r },故∀λ∈[0, 1],|| (λ x + (1-λ) y ) - x0 || = || λ( x-x0 ) + (1-λ) (y - x0)||≤ || λ( x-x0 ) + (1-λ) (y - x0)|| ≤λ|| x-x0 || + (1-λ) || y - x0 || ≤λ r + (1-λ) r = r.所以,C是X中的闭凸集.(2) 当x ∈C时,y = x.显然y是x在C中的最佳逼近元.当x ∈C时,y = x0 + r (x - x0)/|| x - x0 ||.∀z∈C,|| x-y || = || ( x-x0 -r (x - x0)/|| x - x0 ||) ||= || (1 -r/|| x - x0 ||) (x - x0) || = || x - x0 || -r.≤ || x - x0 || - || z - x0 || ≤ || x - z||.因此,y是x在C中的最佳逼近元.1.6.14解:即是求e t在span{1, t, t2}中的最佳逼近元(按L2[0, 1]范数).将{1, t, t2}正交化为{1, t- 1/2, (t- 1/2)2 - 1/12 } (按L2[0, 1]内积)再标准化为{ϕ0(t), ϕ1(t), ϕ2(t)},则所求的a k= (e t, ϕ k(t)) = ⎰[0, 1]e tϕ k(t) dt,k = 0, 1, 2.1.6.15证明:设g(x) = (x-a) (x-b)2,则g(a) = g (b) = 0,g’(a) = (b-a)2,g’(b) = 0.由Cauchy- Schwarz不等式,我们有(⎰[a, b] | f’’(x) |2 dx)· (⎰[a, b] | g’’(x) |2 dx)≥ (⎰[a, b]f’’(x) ·g’’(x) dx )2.因g’’(x) = 3x- (a + 2b),故⎰[a, b] | g’’(x) |2 dx = ⎰[a, b] (3x- (a + 2b))2 dx = (b-a)3;又⎰[a, b]f’’(x) ·g’’(x) dx = ⎰[a, b] (3x- (a + 2b)) ·f’’(x) dx = ⎰[a, b] (3x- (a + 2b))d f’(x)= (3x- (a + 2b)) ·f’(x)| [a, b] - 3⎰[a, b]f’(x) dx = 2(b-a);故(b-a)3 ·⎰[a, b] | f’’(x) |2 dx ≥ (2(b-a))2 = 4(b-a)2.所以⎰[a, b] | f’’(x)|2 dx≥ 4/(b-a).1.6.16 (变分不等式)证明:设f(x)= a(x, x) - Re(u0, x).则f(x) = a(x, x) - Re(u0, x) ≥δ || x ||2 - | (u0, x) |≥δ || x ||2 - || u0 || · || x || ≥- || u0 ||2/(4δ) > -∞.即f在X上有下界,因而f在C有下确界μ = inf x∈C f(x).注意到a(x, y)实际上是X上的一个内积,记它所诱导的范数为|| x ||a = a(x, x)1/2,则|| · ||a与|| · ||是等价范数.因此f(x) = a(x, x) - Re(u0, x) = || x ||a2- Re(u0, x).设C中的点列{ x n }是一个极小化序列,满足μ≤f(x n ) < μ + 1/n ( ∀n∈+ ).则由平行四边形等式,|| x n-x m ||a2 = 2(|| x n ||a2 + || x m ||a2 ) - 4|| (x n + x m)/2||a2= 2( f(x n) + Re(u0, x n) + f(x m) + Re(u0, x m) ) - 4( f((x n + x m)/2) + Re(u0, (x n + x m)/2))= 2( f(x n) + f(x m)) - 4 f((x n + x m)/2) + 2 Re( (u0, x n) + (u0, x m) - (u0, x n + x m) )= 2( f(x n) + f(x m)) - 4 f((x n + x m)/2)≤ 2( μ + 1/n + μ + 1/m ) - 4 μ= 2(1/n + 1/m) → 0 ( m, n→∞ ).因此|| x n-x m ||2≤ (1/δ) || x n-x m ||a2→ 0 ( m, n→∞ ).即{ x n }为X中的基本列.由于X完备,故{ x n }收敛.设x n→x0 ( n→∞ ).则|| x n-x0 ||a2≤M || x n-x0 ||2→ 0 ( m, n→∞ ).而由内积a( · , ·),( · , ·)的连续性,有a( x n , x n) →a( x0 , x0 ),且(u0, x n) → (u0, x0),( n→∞ ).因此f(x n) = a(x n, x n) - Re(u0, x n) →a(x0, x0) - Re(u0, x0) = f(x0),( n→∞ ).由极限的唯一性,f(x0) = μ = inf x∈C f(x).至此,我们证明了f在C上有最小值.下面说明最小值点是唯一的.若x0, y0都是最小值点,则交错的点列{ x0, y0, x0, y0, x0, ... }是极小化序列.根据前面的证明,这个极小化序列必须是基本列,因此,必然有x0 = y0.所以最小值点是唯一的.最后我们要证明最小点x0∈C满足给出的不等式.∀x∈C,∀t∈[0, 1],有x0 + t ( x - x0)∈C,因此有f(x0 + t ( x - x0)) ≥f(x0).即|| x0 + t ( x - x0) ||a2- Re(u0, x0 + t ( x - x0)) ≥ || x0 ||a2- Re(u0, x0).展开并整理得到t Re ( 2a(x0, x - x0) - (u0, x - x0) ) ≥-t2 || x - x0 ||a2.故当∀t∈(0, 1],有Re ( 2a(x0, x - x0) - (u0, x - x0) ) ≥-t|| x - x0 ||a2.令t→ 0就得到Re ( 2a(x0, x - x0) - (u0, x - x0) ) ≥ 0.2.1.22.1.32.1.42.1.52.1.62.1.72.1.82.1.92.2.22.2.52.3.12.3.3-22.3.42.3.52.3.72.3.82.3.92.3.112.3.122.3.132.3.142.4.42.4.52.4.62.4.72.4.82.4.92.4.102.4.112.4.122.4.132.4.142.5.42.5.52.5.72.5.82.5.102.5.12。

张恭庆 泛函分析资料报告上册问题详解

张恭庆  泛函分析资料报告上册问题详解

1.1.51.1.61.1.71.2.21.2.31.2.41.3.31.3.41.3.51.3.71.3.81.3.91.4.11.4.5-61.4.91.4.111.4.121.4.131.4.141.4.151.4.171.5.1证明:(1) (⇒) 若x∈int(E),存在δ > 0,使得Bδ(x) ⊆E.注意到x + x/n→x ( n→∞ ),故存在N ∈+,使得x + x/N ∈Bδ(x) ⊆E.即x/( N/( 1 + N ) ) ∈E.因此P(x) ≤N/( 1 + N ) < 1.(⇐) 若P(x) < 1.则存在a > 1,使得y = a x∈E.因θ∈int(E),故存在δ > 0,使得Bδ(θ) ⊆E.令η = δ(a - 1)/a,∀z∈Bη(x),令w = (a z-y )/(a - 1),则|| w || = || (a z-y )/(a - 1) || = || a z-y ||/(a - 1)= || a z-a x ||/(a - 1) = a || z-x ||/(a - 1) < aη/(a - 1) = δ.故w∈Bδ(θ) ⊆E.故z = ((a - 1)w + y )/a ∈E,因此,Bη(x) ⊆E.所以x∈int(E).(2) 因int(E) = E,故有cl(int(E)) ⊆ cl(E).下面证明相反的包含关系.若x∈cl(E),则∀ε > 0,存在y∈E,使得|| x -y || < ε/2.因ny/(n + 1) →y ( n →∞ ).故存在N ∈+,使得|| Ny/(N + 1) -y || < ε/2.令z = Ny/(N + 1),则z∈E,且P(z) ≤N/(N + 1) < 1,由(1)知z∈int(E).而|| z -x || ≤ || z -y || + || y -x || < ε/2 + ε/2 = ε.故x∈cl(int(E)),因此cl(E) ⊆ cl(int(E))所以cl(int(E)) = cl(E).1.5.3证明:因为C是紧集,所以C是闭集.因为C是紧集,故C的任意子集都列紧.而T(C) C,故T(C)列紧.于是,由Schauder不动点定理,T在C上有一个不动点.[Schauder定理:B*空间中闭凸集C上使T(C)列紧的连续自映射T必有不动点] 1.5.41.5.5证明:设C = {x = (x1, x2, ..., x n)∈n | ∑ 1 ≤i ≤n x i = 1,x i ≥ 0 ( i = 1, 2, ..., n) }.则C是有界闭集,且是凸集,因此C是紧凸集.因为∀x∈C,x i 不全为0,而a ij> 0,故Ax的各分量也非负但不全为零.∀x∈C,设f (x) = (Ax)/( ∑ 1 ≤i ≤n (Ax)i ),则f (x)∈C.容易验证f : C→C还是连续的.由Brouwer不动点定理,存在f的不动点x0∈C.即f (x0) = x0,也就是(Ax0)/( ∑ 1 ≤i ≤n (Ax0)i ) = x0.令λ= ∑ 1 ≤i ≤n (Ax0)i,则有Ax0 = λ x0.1.5.6证明:设B = { u∈C[0, 1] | ⎰[0, 1]u(x) dx = 1,u(x) ≥ 0 },则B是C[0, 1]中闭凸集.设max (x, y)∈[0, 1]⨯[0, 1]K(x, y) = M,min (x, y)∈[0, 1]⨯[0, 1]K(x, y) = m,⎰[0, 1] (⎰[0, 1]K(x, y) dy) dx = N,max x∈[0, 1] | ⎰[0, 1]K(x, y) dy |= P.令(S u)(x) = (⎰[0, 1]K(x, y) u(y) dy)/(⎰[0, 1] (⎰[0, 1]K(x, y) u(y) dy) dx )则⎰[0, 1] (S u)(x) dx = 1,u(x) ≥ 0;即S u∈B.因此S是从B到B的映射.∀u, v∈B,|| ⎰[0, 1]K(x, y) u(y) dy -⎰[0, 1]K(x, y) v(y) dy ||= || ⎰[0, 1]K(x, y) (u(y)-v(y)) dy ||= max x∈[0, 1] | ⎰[0, 1]K(x, y) (u(y)-v(y)) dy |≤M · || u -v ||;因此映射u #⎰[0, 1]K(x, y) u(y) dy在B上连续.类似地,映射u #⎰[0, 1] (⎰[0, 1]K(x, y) u(y) dy) dx也在B上连续.所以,S在B上连续.下面证明S(B)列紧.首先,证明S(B)是一致有界集.∀u∈B,|| S u || = || (⎰[0, 1]K(x, y) u(y) dy )/(⎰[0, 1] (⎰[0, 1]K(x, y) u(y) dy) dx )||= max x∈[0, 1] | ⎰[0, 1]K(x, y) u(y) dy |/(⎰[0, 1] (⎰[0, 1]K(x, y) u(y) dy) dx )≤ (M ·⎰[0, 1]u(y) dy |/(m ⎰[0, 1] (⎰[0, 1]u(y) dy) dx ) = M/m,故S(B)是一致有界集.其次,证明S(B)等度连续.∀u∈B,∀t1, t2∈[0, 1],| (S u)(t1) - (S u)(t2)|= | ⎰[0, 1]K(t1, y) u(y) dy-⎰[0, 1]K(t2, y) u(y) dy |/(⎰[0, 1] (⎰[0, 1]K(x, y) u(y) dy) dx )≤⎰[0, 1] | K(t1, y) -K(t2, y) | u(y) dy /(m⎰[0, 1] (⎰[0, 1]u(y) dy) dx )≤ (1/m) · max y∈[0, 1] | K(t1, y) -K(t2, y) |由K(x, y)在[0, 1]⨯[0, 1]上的一致连续性,∀ε > 0,存在δ> 0,使得∀(x1, y1), (x2, y2)∈[0, 1],只要|| (x1, y1) - (x2, y2) || < δ,就有| K(x1, y1) -K(x2, y2) | < m ε.故只要| t1-t2 | < δ时,y∈[0, 1],都有| K(t1, y) -K(t2, y) | < m ε.此时,| (S u)(t1) - (S u)(t2)| ≤ (1/m) · max y∈[0, 1] | K(t1, y) -K(t2, y) |≤ (1/m) ·m ε = ε.故S(B)是等度连续的.所以,S(B)是列紧集.根据Schauder不动点定理,S在C上有不动点u0.令λ= (⎰[0, 1] (⎰[0, 1]K(x, y) u0(y) dy) dx.则(S u0)(x) = (⎰[0, 1]K(x, y) u0(y) dy)/λ= (T u0)(x)/λ.因此(T u0)(x)/λ= u0(x),T u0 = λ u0.显然上述的λ和u0满足题目的要求.1.6.1 (极化恒等式)证明:∀x, y∈X,q(x + y) -q(x-y) = a(x + y, x + y) -a(x-y, x-y) = (a(x, x) + a(x, y) + a(y, x) + a(y, y)) - (a(x, x) -a(x, y) -a(y, x) + a(y, y))= 2 (a(x, y) + a(y, x)),将i y代替上式中的y,有q(x + i y) -q(x-i y) = 2 (a(x, i y) + a(i y, x))= 2 (-i a(x, y) + i a( y, x)),将上式两边乘以i,得到i q(x + i y) -i q(x-i y) = 2 ( a(x, y) -a( y, x)),将它与第一式相加即可得到极化恒等式.1.6.2证明:若C[a, b]中数|| · ||是可由某积( · , · )诱导出的,则数|| · ||应满足平行四边形等式.而事实上,C[a, b]中数|| · ||是不满足平行四边形等式的,因此,不能引进积( · , · )使其适合上述关系.数|| · ||是不满足平行四边形等式的具体例子如下:设f(x) = (x–a)/(b–a),g(x) = (b–x)/(b–a),则|| f || = || g || = || f + g || = || f –g || = 1,显然不满足平行四边形等式.1.6.3证明:∀x∈L2[0, T],若|| x || = 1,由Cauchy-Schwarz不等式,有| ⎰[0, T]e- ( T-τ)x(τ) dτ|2≤ (⎰[0, T] (e- ( T-τ))2dτ) (⎰[0, T] ( x(τ))2dτ)= ⎰[0, T] (e- ( T-τ))2dτ = e- 2T ⎰[0, T]e 2τdτ= (1-e- 2T )/2.因此,该函数的函数值不超过M = ((1-e- 2T )/2)1/2.前面的不等号成为等号的充要条件是存在λ∈,使得x(τ) = λ e- ( T-τ).再注意|| x || = 1,就有⎰[0, T] (λ e- ( T-τ))2dτ= 1.解出λ= ±((1-e- 2T )/2)- 1/2.故当单位球面上的点x(τ) = ±((1-e- 2T )/2)- 1/2 ·e- ( T-τ)时,该函数达到其在单位球面上的最大值((1-e- 2T )/2)1/2.1.6.4证明:若x∈N⊥,则∀y∈N,(x, y) = 0.而M⊆N,故∀y∈M,也有(x, y) = 0.因此x∈M⊥.所以,N⊥⊆M⊥.1.6.51.6.6解:设偶函数集为E,奇函数集为O.显然,每个奇函数都与正交E.故奇函数集O ⊆E⊥.∀f∈E⊥,注意到f总可分解为f = g + h,其中g是奇函数,h是偶函数.因此有0 = ( f, h) = ( g + h, h) = ( g, h) + ( h, h) = ( h, h).故h几乎处处为0.即f = g是奇函数.所以有E⊥⊆O.这样就证明了偶函数集E的正交补E⊥是奇函数集O.1.6.7证明:首先直接验证,∀c∈,S = {e2π i n x| n∈ }是L2[c, c + 1]中的一个正交集.再将其标准化,得到一个规正交集S1 = {ϕn(x) = d n e2π i n x| n∈ }.其中的d n= || e2π i n x|| (n∈),并且只与n有关,与c的选择无关.(1) 当b–a =1时,根据实分析结论有S⊥ = {θ}.当b–a <1时,若u∈L2[a, b],且u∈S⊥,我们将u延拓成[a, a + 1]上的函数v,使得v(x) = 0 (∀x∈(b, a + 1]).则v∈L2[a, a + 1].同时把S = {e2π i n x| n∈ }也看成L2[a, a + 1]上的函数集.那么,在L2[a, a + 1]中,有v∈S⊥.根据前面的结论,v = θ.因此,在L2[a, b]中就有u = θ.故也有S⊥ = {θ};(2) 分成两个区间[a, b– 1)和[b– 1, b]来看.在[a, b– 1)上取定非零函数u(x) = 1 ( ∀x∈[a, b– 1) ).记p n = ⎰[a, b– 1)u(x)ϕn(x) dx.我们再把u看成是[b– 2, b– 1]上的函数(u在[b– 2, a)上去值为0).那么p n就是u在L2[b– 2, b– 1]上关于正交集S1 = {ϕn(x)| n∈ }的Fourier系数.由Bessel不等式,∑n∈ | p n |2 < +∞.再用Riesz-Fischer定理,在L2[b– 1, b]中,∑n∈p n ϕn收敛.并且,若令v = -∑n∈p n ϕn,则(v, ϕn)= -p n (∀n∈).设f : [a, b] →为:f(x) = u(x) (当x∈[a, b– 1)),f(x) = v(x) (当x∈[b– 1, b]).则f∈L2[a, b],f≠θ,但( f, ϕn) = ⎰[a, b– 1)f(x)ϕn(x) dx + ⎰[b– 1, b]f(x)ϕn(x) dx= ⎰[a, b– 1)u(x)ϕn(x) dx + ⎰[b– 1, b]v(x)ϕn(x) dx= p n -p n = 0,因此,f∈S1⊥= S⊥,故S⊥≠ {θ}.1.6.8证明:( z n/(2π)1/2, z n/(2π)1/2 ) = (1/i)⎰| z | = 1 ( z n/(2π)1/2 · (z*)n/(2π)1/2 )/z dz= (1/(2πi))⎰| z | = 1z n· (z*)n/z dz = (1/(2πi))⎰| z | = 1 1/z dz = 1.若n > m,则n- m - 1 ≥ 0,从z n -m - 1而解析.( z n/(2π)1/2, z m/(2π)1/2 ) = (1/i)⎰| z | = 1 ( z n/(2π)1/2 · (z*)m/(2π)1/2 )/z dz= (1/(2πi))⎰| z | = 1z n· (z*)m/z dz = (1/(2πi))⎰| z | = 1z n -m - 1dz = 0.因此,{ z n/(2π)1/2 }n ≥ 0是正交规集.1.6.91.6.10证明:容易验证{e n}⋂{ f n}是正交规集,下面只证明{e n}⋂{ f n}是X的基.∀x∈X,由正交分解定理,存在x关于X0的正交分解x = y + z,其中y∈X0,z∈X0⊥.因{e n}, { f n}分别是X0和X0⊥的正交规基,故y = ∑ n∈( y, e n ) e n,z = ∑ n∈( z, f n ) f n.因z∈X0⊥,故(x, e n) = ( y + z, e n) = ( y, e n) + ( z, e n) = ( y, e n).因y∈X0,故(x, f n) = ( y + z, f n) = ( y, f n) + ( z, f n) = ( z, f n).故x = y + z = ∑ n∈( y, e n ) e n + ∑ n∈( z, f n ) f n= ∑ n∈( x, e n ) e n + ∑ n∈( x, f n ) f n.因此{e n}⋂{ f n}是X的正交规基.1.6.11证明:首先,令ϕk (z) = (( k +1 )/π)1/2 z k ( k≥ 0 ),则{ ϕk }k≥ 0是H2(D)中的正交规基.那么,∀u(z)∈H2(D),设u(z) = ∑k≥ 0 a k z k,则∀k∈,有(u, ϕk) = ⎰D u(z) ·ϕk(z)*dxdy= ⎰D (∑j≥ 0 a j z j) ·ϕk(z)*dxdy= ∑j≥ 0 a j(π/( j +1 ))1/2⎰D (( j +1 )/π)1/2 z j ·ϕk(z)*dxdy= ∑j≥ 0 a j(π/( j +1 ))1/2⎰Dϕj(z) ·ϕk(z)*dxdy= ∑j≥ 0 a j(π/( j +1 ))1/2 (ϕj, ϕk)= a k(π/( k +1 ))1/2.即u(z)的关于正交规基{ ϕk }k≥ 0的Fourier系数为a k(π/( k +1 ))1/2( k≥ 0 ).(1) 如果u(z)的Taylor展开式是u(z) = ∑k≥ 0 b k z k,则u(z)的Fourier系数为b k(π/( k +1 ))1/2( k≥ 0 ).由Bessel不等式,∑k≥ 0| b k(π/( k +1 ))1/2|2≤ || u || < +∞,于是有∑k≥ 0| b k|2/( k +1 ) < +∞.(2) 设u(z), v(z)∈H2(D),并且u(z) = ∑k≥ 0 a k z k,v(z) = ∑k≥ 0 b k z k.则u(z) = ∑k≥ 0 a k(π/( k +1 ))1/2ϕk (z),v(z) = ∑j≥ 0 b j(π/( j +1 ))1/2ϕj (z),(u, v) = ( ∑k≥ 0 a k(π/( k +1 ))1/2ϕk (z), ∑j≥ 0 b j(π/( j +1 ))1/2ϕj (z) )= ∑k≥ 0∑j≥ 0 (a k(π/( k +1 ))1/2ϕk (z), b j(π/( j +1 ))1/2ϕj (z))= ∑k≥ 0∑j≥ 0 (a k(π/( k +1 ))1/2 ·b j*(π/( j +1 ))1/2) (ϕk (z), ϕj (z))= ∑k≥ 0 (a k(π/( k +1 ))1/2 ·b k* (π/( k +1 ))1/2) = π∑k≥ 0 (a k·b k* )/( k +1 ).(3) 设u(z)∈H2(D),且u(z) = ∑k≥ 0 a k z k.因1/(1 -z) = ∑k≥ 0z k,1/(1 -z)2 = ∑k≥ 0 (k +1) z k,其中| z | < 1.故当| z | < 1时,有1/(1 - | z | )2 = ∑k≥ 0 (k +1) | z | k.根据(2),|| u(z) ||2 = π∑k≥ 0 (a k·a k* )/( k +1 ) = π∑k≥ 0 | a k|2/( k +1 ).|| u ||2/(1 - | z |)2 = (π∑k≥ 0 | a k|2/( k +1 )) · ( ∑k≥ 0 (k +1) | z | k )≥ (π∑k≥ 0 | a k|2/( k +1 ) | z | k) · ( ∑k≥ 0 (k +1) | z | k )≥π ( ∑k≥ 0 ( | a k|/( k +1 )1/2 | z | k/2) · ((k +1)1/2 | z | k/2))2 (Cauchy-Schwarz不等式)= π ( ∑k≥ 0 | a k| · | z | k )2≥π | ∑k≥ 0a k z k |2 = π | u(z)|2,故| u(z) | ≤ || u ||/(π1/2 ( 1 - | z | )).(4) 先介绍复分析中的Weierstrass定理:若{ f n }是区域U ⊆上的解析函数列,且{ f n }在U上闭一致收敛到f,则f在U上解析.(见龚升《简明复分析》)回到本题.设{ u n }是H2(D)中的基本列.则∀z∈D,由(3)知{ u n(z) }是中的基本列,因此是收敛列.设u n(z) →u(z).对中任意闭集F⊆D,存在0 < r < 1使得F⊆B(0, r) ⊆D.∀ε > 0,存在N∈+,使得∀m, n > N,都有|| u n-u m|| < επ1/2 ( 1 -r ).再由(3),∀z∈F,| u n(z) -u m(z) | ≤ || u n-u m||/(π1/2 ( 1 - | z | )) ≤ || u n-u m||/(π1/2 ( 1 -r )) < ε.令m→∞,则| u n(z) -u(z) | ≤ε.这说明{ u n }在D上闭一致收敛到u.由前面所说的Weierstrass定理,u在D上解析.把{ u n }看成是L2(D)中的基本列,因L2(D),故{ u n }是L2(D)中的收敛列.设{ u n }在L2(D)中的收敛于v.则v必然与u几乎处处相等.即{ u n }在L2(D)中的收敛于u.因此{ u n }在H2(D)中也是收敛的,且收敛于u.所以,H2(D)完备.1.6.12证明:由Cauchy-Schwarz不等式以及Bessel不等式,∀x, y∈X,有| ∑n≥ 1 (x, e n) · (y, e n)* |2≤ (∑n≥ 1 | (x, e n) |· | (y, e n)* | )2= (∑n≥ 1 | (x, e n) |· | (y, e n) | )2≤ (∑n≥ 1 |(x, e n) |2) · (∑n≥ 1 | (y, e n)|2)≤ || x ||2 · || y ||2.因此,| ∑n≥ 1 (x, e n) · (y, e n)* | ≤ || x || · || y ||.1.6.13证明:(1) 因数是连续函数,故C = { x ∈X | || x - x0 || ≤r }是闭集.∀x, y∈C,因|| x - x0 || ≤r,|| x - x0 || ≤r },故∀λ∈[0, 1],|| (λ x + (1-λ) y ) - x0 || = || λ( x-x0 ) + (1-λ) (y - x0)||≤ || λ( x-x0 ) + (1-λ) (y - x0)|| ≤λ|| x-x0 || + (1-λ) || y - x0 || ≤λ r + (1-λ) r = r.所以,C是X中的闭凸集.(2) 当x ∈C时,y = x.显然y是x在C中的最佳逼近元.当x ∈C时,y = x0 + r (x - x0)/|| x - x0 ||.∀z∈C,|| x-y || = || ( x-x0 -r (x - x0)/|| x - x0 ||) ||= || (1 -r/|| x - x0 ||) (x - x0) || = || x - x0 || -r.≤ || x - x0 || - || z - x0 || ≤ || x - z||.因此,y是x在C中的最佳逼近元.1.6.14解:即是求e t在span{1, t, t2}中的最佳逼近元(按L2[0, 1]数).将{1, t, t2}正交化为{1, t- 1/2, (t- 1/2)2 - 1/12 } (按L2[0, 1]积)再标准化为{ϕ0(t), ϕ1(t), ϕ2(t)},则所求的a k= (e t, ϕ k(t)) = ⎰[0, 1]e tϕ k(t) dt,k = 0, 1, 2.1.6.15证明:设g(x) = (x-a) (x-b)2,则g(a) = g (b) = 0,g’(a) = (b-a)2,g’(b) = 0.由Cauchy- Schwarz不等式,我们有(⎰[a, b] | f’’(x) |2 dx)· (⎰[a, b] | g’’(x) |2 dx)≥ (⎰[a, b]f’’(x) ·g’’(x) dx )2.因g’’(x) = 3x- (a + 2b),故⎰[a, b] | g’’(x) |2 dx = ⎰[a, b] (3x- (a + 2b))2 dx = (b-a)3;又⎰[a, b]f’’(x) ·g’’(x) dx = ⎰[a, b] (3x- (a + 2b)) ·f’’(x) dx = ⎰[a, b] (3x- (a + 2b))d f’(x)= (3x- (a + 2b)) ·f’(x)| [a, b] - 3⎰[a, b]f’(x) dx = 2(b-a);故(b-a)3 ·⎰[a, b] | f’’(x) |2 dx ≥ (2(b-a))2 = 4(b-a)2.所以⎰[a, b] | f’’(x)|2 dx≥ 4/(b-a).1.6.16 (变分不等式)证明:设f(x)= a(x, x) - Re(u0, x).则f(x) = a(x, x) - Re(u0, x) ≥δ || x ||2 - | (u0, x) |≥δ || x ||2 - || u0 || · || x || ≥- || u0 ||2/(4δ) > -∞.即f在X上有下界,因而f在C有下确界μ = inf x∈C f(x).注意到a(x, y)实际上是X上的一个积,记它所诱导的数为|| x ||a = a(x, x)1/2,则|| · ||a与|| · ||是等价数.因此f(x) = a(x, x) - Re(u0, x) = || x ||a2- Re(u0, x).设C中的点列{ x n }是一个极小化序列,满足μ≤f(x n ) < μ + 1/n ( ∀n∈+ ).则由平行四边形等式,|| x n-x m ||a2 = 2(|| x n ||a2 + || x m ||a2 ) - 4|| (x n + x m)/2||a2= 2( f(x n) + Re(u0, x n) + f(x m) + Re(u0, x m) ) - 4( f((x n + x m)/2) + Re(u0, (x n + x m)/2))= 2( f(x n) + f(x m)) - 4 f((x n + x m)/2) + 2 Re( (u0, x n) + (u0, x m) - (u0, x n + x m) )= 2( f(x n) + f(x m)) - 4 f((x n + x m)/2)≤ 2( μ + 1/n + μ + 1/m ) - 4 μ= 2(1/n + 1/m) → 0 ( m, n→∞ ).因此|| x n-x m ||2≤ (1/δ) || x n-x m ||a2→ 0 ( m, n→∞ ).即{ x n }为X中的基本列.由于X完备,故{ x n }收敛.设x n→x0 ( n→∞ ).则|| x n-x0 ||a2≤M || x n-x0 ||2→ 0 ( m, n→∞ ).而由积a( · , ·),( · , ·)的连续性,有a( x n , x n) →a( x0 , x0 ),且(u0, x n) → (u0, x0),( n→∞ ).因此f(x n) = a(x n, x n) - Re(u0, x n) →a(x0, x0) - Re(u0, x0) = f(x0),( n→∞ ).由极限的唯一性,f(x0) = μ = inf x∈C f(x).至此,我们证明了f在C上有最小值.下面说明最小值点是唯一的.若x0, y0都是最小值点,则交错的点列{ x0, y0, x0, y0, x0, ... }是极小化序列.根据前面的证明,这个极小化序列必须是基本列,因此,必然有x0 = y0.所以最小值点是唯一的.最后我们要证明最小点x0∈C满足给出的不等式.∀x∈C,∀t∈[0, 1],有x0 + t ( x - x0)∈C,因此有f(x0 + t ( x - x0)) ≥f(x0).即|| x0 + t ( x - x0) ||a2- Re(u0, x0 + t ( x - x0)) ≥ || x0 ||a2- Re(u0, x0).展开并整理得到t Re ( 2a(x0, x - x0) - (u0, x - x0) ) ≥-t2 || x - x0 ||a2.故当∀t∈(0, 1],有Re ( 2a(x0, x - x0) - (u0, x - x0) ) ≥-t|| x - x0 ||a2.令t→ 0就得到Re ( 2a(x0, x - x0) - (u0, x - x0) ) ≥ 0.2.1.22.1.32.1.42.1.52.1.62.1.72.1.82.1.92.2.22.2.52.3.12.3.3-22.3.42.3.52.3.72.3.82.3.92.3.112.3.122.3.132.3.142.4.42.4.52.4.62.4.72.4.82.4.92.4.102.4.112.4.122.4.132.4.142.5.42.5.52.5.72.5.82.5.102.5.12。

泛函分析讲义张恭庆答案

泛函分析讲义张恭庆答案

泛函分析讲义张恭庆答案【篇一:《泛函分析》课程标准】>英文名称:functional analysis课程编号:407012010 适用专业:数学与应用数学学分数:4一、课程性质泛函分析属于数学一级科下的基础数学二级学科,在数学与应用数学专业培养方案中学科专业教育平台中专业方向课程系列的一门限选课程。

二、课程理念1、培育理性精神,提高数学文化素养基础数学研究数学本身的内在规律,是整个数学学科的基础,它在数学学科其他领域、物理学、工程及社会科学中都有着广泛的应用。

《泛函分析》课程是数学与应用数学本科学生的专业课程之一,是数学分析、高等代数、实变函数等基础课程的后继课程,是研究生学习的基础,。

它不仅在数学学科占有十分重要的地位,而且在其他学科领域也有广泛的应用,掌握泛函分析的方法对学生更好地理解基础课程的理论将有很大的益处。

该课程培养学生的抽象思维能力、逻辑推理能力,体现知识、能力和素质的统一,符合应用型人才培养的目标要求。

2、良好的学习状态,提高综合解题能力本课程面对的是数学与应用数学专业四年级的学生。

学生刚刚结束教育实习,准备考研的学生进入紧张复习阶段,另一部分学生开始准备找工作。

《泛函分析》这门课内容比较抽象,课时又少,所以,如何让学生安保持良好的学习状态,是本门课要面对的一个重要问题,也是学生要面对的一个具体问题。

需要师生共同努力去正确面对才能顺利完成本门课的教学任务。

为学习研究生课程和现代数学打下必要的基础;进一步提高学生的数学素养。

3、内容由浅入深本课程的框架结构是根据教学对象和教学任务来安排的:“度量空间”泛函分析的基本概念之一,十分重要。

首先,引入度量空间的概念,并在引入度量的基础上定义了度量空间中的极限、稠密集、可分空间、连续映照、柯西点列、完备度量空间,对于一般的度量空间,给出了度量空间的完备化定理,并证明了压缩映照原理。

然后,在度量空间上定义线性运算并引入范数,就得到线性赋范空间以及巴拿赫空间。

泛函分析解答(张恭庆)第四章

泛函分析解答(张恭庆)第四章

泛函分析解答(张恭庆)第四章第四章习题1. 在 1中令ρ1(x , y ) = (x - y )2,ρ2(x , y ) = | x - y |1/2,,问ρ1, ρ2是否为 1上的距离? [解] 显然ρ1, ρ2满足距离空间定义中的非负性和对称性.但ρ1不满足三角不等式:取点x = -1, y = 0, z = 1,则ρ1(x , z ) = 4 > 2 = ρ1(x , y ) + ρ1(y , z ),所以ρ1不是 1上的距离。

而?x , y , z ∈ 1,ρ2(x , y ) = ||||2||||||||||y z z x y z z x y z z x y x -?-+-+-≤-+-≤- ||||)||||(2y z z x y z z x -+-=-+-==ρ2(x , z ) + ρ2(z , y );所以ρ2是 1上的距离.2. 设(X , ρ)是距离空间,令ρ1(x , y ) = n y x ),(ρ,?x , y ∈X .证明(X , ρ1)也是距离空间.[证明] 显然ρ1满足距离空间定义中的非负性和对称性,故只需证明ρ1满足三角不等式即可.实际上?x , y , z ∈X ,n n y z z x y x y x ),(),(),(),(1ρρρρ+≤=n n n n n y z z x n z y x M y z z x )),(),((),,,(),(),(ρρρρ+=++≤),(),(),(),(11y z z x y z z x n n ρρρρ+=+=.3. 设(X , ρ)是距离空间,证明| ρ(x , z ) - ρ(y , z ) | ≤ ρ(x , y ),?x , y , z ∈X ;| ρ(x , y ) - ρ(z , w ) | ≤ ρ(x , z ) + ρ(y , w ),?x , y , z , w ∈X . [证明] ?x , y , z , w ∈X ,由三角不等式有- ρ(x , y ) ≤ ρ(x , z ) - ρ(y , z ) ≤ ρ(x , y ),故第一个不等式成立.由第一个不等式可直接推出第二个不等式:| ρ(x , y ) - ρ(z , w ) | ≤ | ρ(x , y ) - ρ(y , z ) | + | ρ(y , z ) - ρ(z , w ) | ≤ ρ(x , z ) + ρ(y , w ).4. 用Cauchy 不等式证明(| ζ1 | + | ζ1 | + ... + | ζn | )2 ≤ n (| ζ1|2 + | ζ1 |2 + ... + | ζn |2 ). [证明] 在P159中的Cauchy 不等式中令a i = | ζi |,b i = 1,?i = 1, 2, ..., n 即可.5. 用图形表示C [a , b ]上的S (x 0, 1). [注] 我不明白此题意义,建议不做.6. 设(X , d )是距离空间,A ? X ,int(A )表示A 的全体内点所组成的集合.证明int(A )是开集.[证明] 若A = ?,则int(A ) = ?,结论显然成立.若A ≠ ?,则?x ∈ A ,?r > 0使得S (x , r ) ? A .对?y ∈ S (x , r ),令s = r - d (x , y ),则s > 0,并且S (y , s ) ? S (x , r ) ? A ;所以y ∈ int(A ).故S (x , r ) ? int(A ),从而int(A )是开集.7. 设(X , d )是距离空间,A ? X ,A ≠ ?.证明:A 是开集当且仅当A 是开球的并. [证明] 若A 是开球的并,由于开球是开集,所以A 是开集.若A 是开集,?x ∈A ,存在r (x ) > 0,使得S (x , r (x )) ? A .显然A = x ∈A S (x , r (x )).8. 举例说明对于一般的距离空间X ,并不是总有),(),(r x S r x S =,?x ∈X ,r > 0. [例] 设X = {a , b },定义d : X ? X 为d (a , a ) = d (b , b ) = 0,d (a , b ) = 1.则(X , d )是距离空间.当r = 1时,不论x 为a 还是b ,总有),(}{),(r x S X x r x S =≠=.9. 设(X , d )是距离空间,X B A ?,.证明:B A B A ?=?,B A BA . [证明] 由于A A ?,B B ?,故B A B A .由于A 和B 都是闭集,所以B A ?也是闭集,所以B A B A .另一方面,由B A B A ??,,得B A B A ??,,所以B A B A ;这样就证明了第一个等式.由B A B A ,??得B A B A ,??,所以B A B A 。

泛函分析讲义张恭庆答案

泛函分析讲义张恭庆答案

泛函分析讲义张恭庆答案【篇一:《泛函分析》课程标准】>英文名称:functional analysis课程编号:407012010 适用专业:数学与应用数学学分数:4一、课程性质泛函分析属于数学一级科下的基础数学二级学科,在数学与应用数学专业培养方案中学科专业教育平台中专业方向课程系列的一门限选课程。

二、课程理念1、培育理性精神,提高数学文化素养基础数学研究数学本身的内在规律,是整个数学学科的基础,它在数学学科其他领域、物理学、工程及社会科学中都有着广泛的应用。

《泛函分析》课程是数学与应用数学本科学生的专业课程之一,是数学分析、高等代数、实变函数等基础课程的后继课程,是研究生学习的基础,。

它不仅在数学学科占有十分重要的地位,而且在其他学科领域也有广泛的应用,掌握泛函分析的方法对学生更好地理解基础课程的理论将有很大的益处。

该课程培养学生的抽象思维能力、逻辑推理能力,体现知识、能力和素质的统一,符合应用型人才培养的目标要求。

2、良好的学习状态,提高综合解题能力本课程面对的是数学与应用数学专业四年级的学生。

学生刚刚结束教育实习,准备考研的学生进入紧张复习阶段,另一部分学生开始准备找工作。

《泛函分析》这门课内容比较抽象,课时又少,所以,如何让学生安保持良好的学习状态,是本门课要面对的一个重要问题,也是学生要面对的一个具体问题。

需要师生共同努力去正确面对才能顺利完成本门课的教学任务。

为学习研究生课程和现代数学打下必要的基础;进一步提高学生的数学素养。

3、内容由浅入深本课程的框架结构是根据教学对象和教学任务来安排的:“度量空间”泛函分析的基本概念之一,十分重要。

首先,引入度量空间的概念,并在引入度量的基础上定义了度量空间中的极限、稠密集、可分空间、连续映照、柯西点列、完备度量空间,对于一般的度量空间,给出了度量空间的完备化定理,并证明了压缩映照原理。

然后,在度量空间上定义线性运算并引入范数,就得到线性赋范空间以及巴拿赫空间。

泛函分析解答(张恭庆)1.3

泛函分析解答(张恭庆)1.3

t
a, b
|F x |
x f t dt
a
b a
|f
t
|dt
M0 b a
F E . 即 E 一致有界.
|F x2 F x1 | 0,
x2 f t dt
x1
M0 ,
x2 |f t |dt
x1
M 0|x2 x1 |
3
|x2 x1 |
|F x2
即 E 等度连续.
F x1 |
F E.
1.3.5 设 M 是 C a, b 中的有界集,求证集合
0, 0, , 1, 0,
i
j
j
0, 0, , 1, 0, , 1,
j i.
i
ei, ej
1
eik
ejk 2
2
2 j i.
k1
由此可见, ek k 1 与其任意子列都不收敛, 从而
ek k 1 不是列紧的, 根据Hausdorff定理, 也就不完全有界.
1.3.4 设 X, 是度量空间, F 1 , F 2 是它的两个紧子
0
inf f tnຫໍສະໝຸດ 0,n10
0, 1 .
1.3.3 在度量空间中求证:完全有界的集合是有界的, 并且通 过考虑
2 的子集
1
ek k 1, ek 0, 0, , 1, 0,
k
来说明一个集合可以是有界但不完全有界.
证 设 M 是完全有界集, 那么
0,
M的
有限的
网. 特别对
1 ,设
n
M
B xk, 1
N
x1 , x2 , , xn , 则有
是元素为 1, 2, , n 的 n 维空间中的子集, 由假设

张恭庆--泛函分析上册答案

张恭庆--泛函分析上册答案

张恭庆--泛函分析上册答案1.1.71.2.21.2.31.2.41.3.31.3.41.3.51.3.71.3.81.3.91.4.11.4.5-61.4.91.4.111.4.121.4.131.4.141.4.151.4.171.5.1证明:(1) (⇒) 若x∈int(E),存在δ> 0,使得Bδ(x) ⊆E.注意到x + x/n→x ( n→∞ ),故存在N ∈+,使得x + x/N ∈Bδ(x) ⊆E.即x/( N/( 1 + N ) ) ∈E.因此P(x) ≤N/( 1 + N ) < 1.(⇐) 若P(x) < 1.则存在a > 1,使得y= a x∈E.因θ∈int(E),故存在δ > 0,使得Bδ(θ) ⊆E.令η = δ(a - 1)/a,∀z∈Bη(x),令w = (a z-y )/(a - 1),则|| w || = || (a z-y )/(a - 1) || = || a z-y ||/(a -1)= || a z-a x ||/(a - 1) = a || z-x ||/(a - 1) < aη/(a - 1) = δ.故w∈Bδ(θ) ⊆E.故z = ((a - 1)w + y )/a ∈E,因此,Bη(x) ⊆E.所以x∈int(E).(2) 因int(E) = E,故有cl(int(E)) ⊆ cl(E).下面证明相反的包含关系.若x∈cl(E),则∀ε > 0,存在y∈E,使得|| x -y || < ε/2.因ny/(n + 1) →y ( n →∞ ).故存在N ∈+,使得|| Ny/(N + 1) -y || < ε/2.令z = Ny/(N + 1),则z∈E,且P(z) ≤N/(N + 1) < 1,由(1)知z∈int(E).而|| z -x || ≤ || z -y || + || y -x || < ε/2 + ε/2 = ε.故x∈cl(int(E)),因此cl(E) ⊆cl(int(E))所以cl(int(E)) = cl(E).1.5.3证明:因为C是紧集,所以C是闭集.因为C是紧集,故C的任意子集都列紧.而T(C) ⊆C,故T(C)列紧.于是,由Schauder不动点定理,T在C上有一个不动点.[Schauder定理:B*空间中闭凸集C上使T(C)列紧的连续自映射T必有不动点]1.5.41.5.5证明:设C = {x = (x1, x2, ..., x n)∈n | ∑ 1 ≤i x i = 1,x i ≥ 0 ( i = 1, 2, ..., n) }.≤n则C是有界闭集,且是凸集,因此C是紧凸集.因为∀x∈C,x i 不全为0,而a ij> 0,故Ax的各分量也非负但不全为零.∀x∈C,设f (x) = (Ax)/( ∑ 1 ≤i ≤n (Ax)i ),则f (x)∈C.容易验证f : C→C还是连续的.由Brouwer不动点定理,存在f的不动点x0∈C.即f (x0) = x0,也就是(Ax0)/( ∑ 1 ≤i ≤n (Ax0)i ) = x0.令λ= ∑ 1 ≤i ≤n (Ax0)i,则有Ax0 = λ x0.1.5.6证明:设B = { u∈C[0, 1] | ⎰[0, 1]u(x) dx = 1,u(x) ≥ 0 },则B是C[0, 1]中闭凸集.设max (x, y)∈[0, 1]⨯[0, 1]K(x, y) = M,min (x, y)∈[0, K(x, y) = m,1]⨯[0, 1]⎰[0, 1] (⎰[0, 1]K(x, y) dy) dx = N,max x∈[0, 1] | ⎰[0, 1] K(x, y) dy |= P.令(S u)(x) = (⎰[0, 1]K(x, y) u(y) dy)/(⎰[0, 1] (⎰[0, 1] K(x, y) u(y) dy) dx )则⎰[0, 1] (S u)(x) dx = 1,u(x) ≥ 0;即S u∈B.因此S是从B到B内的映射.∀u, v∈B,|| ⎰[0, 1]K(x, y) u(y) dy -⎰[0, 1]K(x, y) v(y) dy ||= || ⎰[0, 1]K(x, y) (u(y)-v(y)) dy ||= max x∈[0, 1] | ⎰[0, 1]K(x, y) (u(y)-v(y)) dy |≤M · || u -v ||;因此映射u #⎰[0, 1]K(x, y) u(y) dy在B上连续.类似地,映射u #⎰[0, 1] (⎰[0, 1]K(x, y) u(y) dy) dx 也在B上连续.所以,S在B上连续.下面证明S(B)列紧.首先,证明S(B)是一致有界集.∀u∈B,|| S u || = || (⎰[0, 1]K(x, y) u(y) dy )/(⎰[0, 1] (⎰[0, 1] K(x, y) u(y) dy) dx )||= max x∈[0, 1] | ⎰[0, 1]K(x, y) u(y) dy |/(⎰[0, 1] (⎰[0, 1] K(x, y) u(y) dy) dx )≤ (M ·⎰[0, 1]u(y) dy |/(m ⎰[0, 1] (⎰[0, 1]u(y) dy) dx ) = M/m,故S(B)是一致有界集.其次,证明S(B)等度连续.∀u∈B,∀t1, t2∈[0, 1],| (S u)(t1) - (S u)(t2)|= | ⎰[0, 1]K(t1, y) u(y) dy-⎰[0, 1]K(t2, y) u(y) dy |/(⎰[0, 1] (⎰[0, 1]K(x, y) u(y) dy) dx )≤⎰[0, 1] | K(t1, y) -K(t2, y) | u(y) dy /(m⎰[0, 1] (⎰[0, 1] u(y) dy) dx )≤ (1/m) · max y∈[0, 1] | K(t1, y) -K(t2, y) |由K(x, y)在[0, 1]⨯[0, 1]上的一致连续性,∀ε > 0,存在δ> 0,使得∀(x1, y1), (x2, y2)∈[0, 1],只要|| (x1, y1) - (x2, y2) || < δ,就有| K(x1, y1) -K(x2, y2) | < m ε.故只要| t1-t2 | < δ时,y∈[0, 1],都有| K(t1, y) -K(t2, y) | < m ε.此时,| (S u)(t1) - (S u)(t2)| ≤ (1/m) · max y∈[0, 1] | K(t1, y) -K(t2, y) |≤ (1/m) ·m ε = ε.故S(B)是等度连续的.所以,S(B)是列紧集.根据Schauder不动点定理,S在C上有不动点u0.令λ= (⎰[0, 1] (⎰[0, 1]K(x, y) u0(y) dy) dx.则(S u0)(x) = (⎰[0, 1]K(x, y) u0(y) dy)/λ= (T u0)(x)/λ.因此(T u0)(x)/λ= u0(x),T u0 = λ u0.显然上述的λ和u0满足题目的要求.1.6.1 (极化恒等式)证明:∀x, y∈X,q(x + y) -q(x-y)= a(x + y, x + y) -a(x-y, x-y)= (a(x, x) + a(x, y) + a(y, x) + a(y, y)) - (a(x, x) -a(x, y) -a(y, x) + a(y, y))= 2 (a(x, y) + a(y, x)),将i y代替上式中的y,有q(x + i y) -q(x-i y) = 2 (a(x, i y) + a(i y, x))= 2 (-i a(x, y) + i a( y, x)),将上式两边乘以i,得到i q(x + i y) -i q(x-i y) = 2 ( a(x, y) -a( y, x)),将它与第一式相加即可得到极化恒等式.1.6.2证明:若C[a, b]中范数|| · ||是可由某内积( · , · )诱导出的,则范数|| · ||应满足平行四边形等式.而事实上,C[a, b]中范数|| · ||是不满足平行四边形等式的,因此,不能引进内积( ·, ·)使其适合上述关系.范数|| ·||是不满足平行四边形等式的具体例子如下:设f(x) = (x–a)/(b–a),g(x) = (b–x)/(b–a),则|| f || = || g || = || f + g || = || f –g || = 1,显然不满足平行四边形等式.1.6.3证明:∀x∈L2[0, T],若|| x || = 1,由Cauchy-Schwarz不等式,有| ⎰[0, T]e- ( T-τ)x(τ) dτ|2≤ (⎰[0, T] (e- ( T-τ))2dτ) (⎰[0, T] ( x(τ))2dτ)= ⎰[0, T] (e- ( T-τ))2dτ = e- 2T ⎰[0, T]e 2τdτ= (1-e-2T )/2.因此,该函数的函数值不超过M= ((1-e-2T )/2)1/2.前面的不等号成为等号的充要条件是存在λ∈,使得x(τ) = λ e- ( T-τ).再注意|| x || = 1,就有⎰[0, T] (λ e- ( T-τ))2dτ= 1.解出λ= ±((1-e- 2T )/2)- 1/2.故当单位球面上的点x(τ) = ±((1-e- 2T )/2)-1/2 ·e- ( T-τ)时,该函数达到其在单位球面上的最大值((1-e-2T )/2)1/2.1.6.4证明:若x∈N⊥,则∀y∈N,(x, y) = 0.而M⊆N,故∀y∈M,也有(x, y) = 0.因此x∈M⊥.所以,N⊥⊆M⊥.1.6.51.6.6解:设偶函数集为E,奇函数集为O.显然,每个奇函数都与正交E.故奇函数集O ⊆E⊥.∀f∈E⊥,注意到f总可分解为f = g + h,其中g是奇函数,h是偶函数.因此有0 = ( f, h) = ( g + h, h) = ( g, h) + ( h, h) = ( h, h).故h几乎处处为0.即f = g是奇函数.所以有E⊥⊆O.这样就证明了偶函数集E的正交补E⊥是奇函数集O.1.6.7证明:首先直接验证,∀c∈,S= {e2π i n x| n∈ }是L2[c, c + 1]中的一个正交集.再将其标准化,得到一个规范正交集S1= {ϕn(x) = d n e2π i n x| n∈ }.其中的d n= || e2π i n x|| (n∈),并且只与n有关,与c的选择无关.(1) 当b–a=1时,根据实分析结论有S⊥={θ}.当b–a <1时,若u∈L2[a, b],且u∈S⊥,我们将u延拓成[a, a + 1]上的函数v,使得v(x) = 0 (∀x∈(b, a + 1]).则v∈L2[a, a + 1].同时把S = {e2π i n x| n∈ }也看成L2[a, a + 1]上的函数集.那么,在L2[a, a + 1]中,有v∈S⊥.根据前面的结论,v = θ.因此,在L2[a, b]中就有u = θ.故也有S⊥ = {θ};(2) 分成两个区间[a, b– 1)和[b– 1, b]来看.在[a, b– 1)上取定非零函数u(x) = 1 ( ∀x∈[a, b– 1) ).记p n = ⎰[a, b– 1)u(x)ϕn(x) dx.我们再把u看成是[b– 2, b– 1]上的函数(u在[b– 2, a)上去值为0).那么p n就是u在L2[b– 2, b– 1]上关于正交集S1 = {ϕn(x)| n∈ }的Fourier系数.由Bessel不等式,∑n∈ | p n |2 < +∞.再用Riesz-Fischer定理,在L2[b– 1, b]中,∑n∈p n ϕn收敛.并且,若令v = -∑n∈p n ϕn,则(v, ϕn)= -p n (∀n∈).设f : [a, b] →为:f(x) = u(x) (当x∈[a, b–1)),f(x) = v(x) (当x∈[b– 1, b]).则f∈L2[a, b],f≠θ,但( f, ϕn) = ⎰[a, b–1)f(x)ϕn(x) dx+ ⎰[b–1, b] f(x)ϕn(x) dx= ⎰[a, b– 1)u(x)ϕn(x) dx + ⎰[b– 1, b]v(x)ϕn(x) dx= p n -p n = 0,因此,f∈S1⊥= S⊥,故S⊥≠ {θ}.1.6.8证明:( z n/(2π)1/2, z n/(2π)1/2 ) = (1/i)⎰| z | = 1 ( z n/(2π)1/2 · (z*)n/(2π)1/2 )/z dz= (1/(2πi))⎰| z | = 1z n·(z*)n/z dz = (1/(2πi))⎰| z | = 1 1/z dz = 1.若n > m,则n- m - 1 ≥ 0,从z n -m - 1而解析.( z n/(2π)1/2, z m/(2π)1/2 ) = (1/i)⎰| z | = 1 ( z n/(2π)1/2 · (z*)m/(2π)1/2 )/z dz= (1/(2πi))⎰| z | = 1z n· (z*)m/z dz = (1/(2πi))⎰| z | = 1 z n -m - 1dz = 0.因此,{ z n/(2π)1/2 }n ≥ 0是正交规范集.1.6.91.6.10证明:容易验证{e n}⋂{ f n}是正交规范集,下面只证明{e n}⋂{ f n}是X的基.∀x∈X,由正交分解定理,存在x关于X0的正交分解x = y + z,其中y∈X0,z∈X0⊥.因{e n}, { f n}分别是X0和X0⊥的正交规范基,故y = ∑ n∈( y, e n ) e n,z = ∑ n∈( z, f n ) f n.因z∈X0⊥,故(x, e n) = ( y + z, e n) = ( y, e n) + ( z, e n) = ( y, e n).因y∈X0,故(x, f n) = ( y + z, f n) = ( y, f n) + ( z, f n) = ( z, f n).故x = y + z = ∑ n∈( y, e n ) e n + ∑ n∈( z, f n ) f n= ∑ n∈( x, e n)e n+ ∑ n∈( x, f n)f n.因此{e n}⋂{ f n}是X的正交规范基.1.6.11证明:首先,令ϕk (z) = (( k +1 )/π)1/2 z k ( k ≥ 0 ),则{ ϕk }k≥ 0是H2(D)中的正交规范基.那么,∀u(z)∈H2(D),设u(z) = ∑k≥ 0 a k z k,则∀k∈,有(u, ϕk) = ⎰D u(z) ·ϕk(z)*dxdy= ⎰D (∑j≥ 0 a j z j) ·ϕk(z)*dxdy= ∑j≥ 0 a j(π/( j +1 ))1/2⎰D(( j +1 )/π)1/2 z j·ϕ(z)*dxdyk= ∑j≥ 0 a j(π/( j +1 ))1/2⎰Dϕj(z) ·ϕk(z)*dxdy= ∑j≥ 0 a j(π/( j +1 ))1/2 (ϕj, ϕk)= a k(π/( k +1 ))1/2.即u(z)的关于正交规范基{ ϕk }k≥ 0的Fourier 系数为a k(π/( k +1 ))1/2( k≥ 0 ).(1) 如果u(z)的Taylor展开式是u(z) = ∑k≥ 0 bz k,k则u(z)的Fourier系数为b k(π/( k +1 ))1/2( k≥0 ).由Bessel不等式,∑k≥ 0| b k(π/( k +1 ))1/2|2≤ || u || < +∞,于是有∑k≥ 0| b k|2/( k +1 ) < +∞.(2) 设u(z), v(z)∈H2(D),并且u(z) = ∑k≥ 0 a k zk,v(z) = ∑k≥ 0 b k z k.则u(z) = ∑k≥ 0 a k(π/( k +1 ))1/2ϕk (z),v(z) = ∑b j(π/( j +1 ))1/2ϕj (z),j≥ 0(u, v) = ( ∑k≥ 0 a k(π/( k +1 ))1/2ϕk (z), ∑j≥ 0 b j (π/( j +1 ))1/2ϕj (z) )= ∑k≥ 0∑j≥ 0(a k(π/( k +1 ))1/2ϕk (z), b j(π/( j +1 ))1/2ϕj (z))= ∑k≥ 0∑j≥ 0 (a k(π/( k +1 ))1/2 ·b j*(π/( j +1 ))1/2) (ϕk (z), ϕj (z))= ∑k≥ 0 (a k(π/( k +1 ))1/2 ·b k* (π/( k +1 ))1/2) = π∑k≥ 0 (a k·b k* )/( k +1 ).(3) 设u(z)∈H2(D),且u(z) = ∑k≥ 0 a k z k.因1/(1 -z) = ∑k≥ 0z k,1/(1 -z)2 = ∑k≥ 0 (k +1) z k,其中| z | < 1.故当| z | < 1时,有1/(1 - | z | )2 = ∑k≥ 0 (k +1) | z | k.根据(2),|| u(z) ||2 = π∑k≥ 0 (a k·a k* )/( k +1 ) = π∑k≥ 0 | a k|2/( k +1 ).|| u ||2/(1 - | z |)2 = (π∑k≥ 0 | a k|2/( k +1 )) · ( ∑ (k +1) | z | k )k≥ 0≥ (π∑k≥ 0 | a k|2/( k +1 ) | z | k) · ( ∑k≥ 0 (k +1) | z | k )≥π ( ∑k≥ 0 ( | a k|/( k +1 )1/2 | z | k/2) · ((k +1)1/2 | z | k/2))2 (Cauchy-Schwarz不等式)= π ( ∑k≥ 0 | a k| · | z | k )2≥π | ∑k≥ 0a k z k |2 = π | u(z)|2,故| u(z) | ≤ || u ||/(π1/2 ( 1 - | z | )).(4) 先介绍复分析中的Weierstrass定理:若{ f n }是区域U ⊆上的解析函数列,且{ f n }在U上内闭一致收敛到f,则f在U上解析.(见龚升《简明复分析》)回到本题.设{ u n }是H2(D)中的基本列.则∀z∈D,由(3)知{ u n(z) }是中的基本列,因此是收敛列.设u n(z) →u(z).对中任意闭集F⊆D,存在0 < r < 1使得F ⊆B(0, r) ⊆D.∀ε > 0,存在N∈+,使得∀m, n > N,都有|| u n-u m|| < επ1/2 ( 1 -r ).再由(3),∀z∈F,| u n(z) -u m(z) | ≤ || u n-u m||/(π1/2 ( 1 - | z | )) ≤|| u n-u m||/(π1/2 ( 1 -r )) < ε.令m→∞,则| u n(z) -u(z) | ≤ε.这说明{ u n }在D上内闭一致收敛到u.由前面所说的Weierstrass定理,u在D上解析.把{ u n }看成是L2(D)中的基本列,因L2(D),故{ u n }是L2(D)中的收敛列.设{ u n }在L2(D)中的收敛于v.则v必然与u几乎处处相等.即{ u n }在L2(D)中的收敛于u.因此{ u n }在H2(D)中也是收敛的,且收敛于u.所以,H2(D)完备.1.6.12证明:由Cauchy-Schwarz不等式以及Bessel不等式,∀x, y∈X,有| ∑n≥ 1 (x, e n) · (y, e n)* |2≤ (∑n≥ 1 | (x, e n) |· | (y, e n)* | )2= (∑n≥ 1 | (x, e n) |· | (y, e n) | )2≤ (∑n≥ 1 |(x, e n) |2) · (∑n≥ 1 | (y, e n)|2)≤ || x ||2 · || y ||2.因此,| ∑n≥ 1 (x, e n) · (y, e n)* | ≤ || x || · || y ||.1.6.13证明:(1) 因范数是连续函数,故C = { x∈X | || x - x0 || ≤r }是闭集.∀x, y∈C,因|| x - x0 || ≤r,|| x - x0 || ≤r },故∀λ∈[0, 1],|| (λ x + (1-λ) y ) - x0 || = || λ( x-x0 ) + (1-λ) (y - x0)||≤ || λ( x-x0 ) + (1-λ) (y - x0)|| ≤λ|| x-x0 || + (1-λ) || y - x0 || ≤λ r + (1-λ) r = r.所以,C是X中的闭凸集.(2) 当x ∈C时,y = x.显然y是x在C中的最佳逼近元.当x ∈C时,y = x0 + r (x - x0)/|| x - x0 ||.∀z∈C,|| x-y || = || ( x-x0 -r (x - x0)/|| x - x0 ||) ||= || (1 -r/|| x - x0 ||) (x - x0) || = || x - x0 || -r.≤|| x - x0 || - || z - x0 || ≤ || x - z||.因此,y是x在C中的最佳逼近元.1.6.14解:即是求e t在span{1, t, t2}中的最佳逼近元(按L2[0, 1]范数).将{1, t, t2}正交化为{1, t-1/2, (t-1/2)2 -1/12 } (按L2[0, 1]内积)再标准化为{ϕ0(t), ϕ1(t), ϕ2(t)},则所求的a k= (e t, ϕ k(t)) = ⎰[0, 1]e tϕ k(t) dt,k = 0, 1, 2.1.6.15证明:设g(x) = (x-a) (x-b)2,则g(a) =g (b) = 0,g’(a) = (b-a)2,g’(b) = 0.由Cauchy- Schwarz不等式,我们有(⎰[a, b] | f’’(x) |2 dx)· (⎰[a, b] | g’’(x) |2 dx)≥ (⎰[a, b]f’’(x) ·g’’(x) dx )2.因g’’(x) = 3x- (a + 2b),故⎰[a, b] | g’’(x) |2 dx = ⎰[a, b] (3x- (a + 2b))2 dx = (b-a)3;又⎰[a, b]f’’(x) ·g’’(x) dx = ⎰[a, b](3x-(a+ 2b)) ·f’’(x) dx = ⎰[a, b] (3x- (a + 2b))d f’(x)= (3x- (a + 2b)) ·f’(x)| [a, b] - 3⎰[a, b]f’(x) dx = 2(b-a);故(b-a)3 ·⎰[a, b] | f’’(x) |2 dx ≥ (2(b-a))2 = 4(b -a)2.所以⎰[a, b] | f’’(x)|2 dx≥ 4/(b-a).1.6.16 (变分不等式)证明:设f(x)= a(x, x) -Re(u0, x).则f(x) = a(x, x) - Re(u0, x) ≥δ || x ||2 - | (u0, x) |≥δ || x ||2 - || u0 || · || x || ≥- || u0 ||2/(4δ) > -∞.即f在X上有下界,因而f在C有下确界μ = inf x∈C f(x).注意到a(x, y)实际上是X上的一个内积,记它所诱导的范数为|| x||a= a(x, x)1/2,则|| · ||a与|| · ||是等价范数.因此f(x) = a(x, x) - Re(u0, x) = || x ||a2- Re(u0, x).设C中的点列{ x n }是一个极小化序列,满足μ≤f(x n ) < μ + 1/n ( ∀n∈+ ).则由平行四边形等式,|| x n-x m ||a2 = 2(|| x n ||a2 + || x m ||a2 ) - 4|| (x n + x m)/2||a2= 2( f(x n) + Re(u0, x n) + f(x m) + Re(u0, x m) ) -4( f((x n + x m)/2) + Re(u0, (x n + x m)/2))= 2( f(x n) + f(x m)) -4 f((x n+ x m)/2) + 2 Re( (u0, x n) + (u0, x m) - (u0, x n + x m) )= 2( f(x n) + f(x m)) - 4 f((x n + x m)/2)≤ 2( μ + 1/n + μ + 1/m ) - 4 μ= 2(1/n + 1/m) → 0 ( m, n→∞ ).因此|| x n-x m ||2≤ (1/δ) || x n-x m ||a2→ 0 ( m,n→∞ ).即{ x n }为X中的基本列.由于X完备,故{ x n }收敛.设x n→x0 ( n→∞ ).则|| x n-x0 ||a2≤M || x n-x0 ||2→ 0 ( m, n→∞ ).而由内积a( · , ·),( · , ·)的连续性,有a( x n , x n) →a( x0 , x0 ),且(u0, x n) → (u0, x0),( n→∞ ).因此f(x n) = a(x n, x n) - Re(u0, x n) →a(x0, x0) -Re(u0, x0) = f(x0),( n→∞ ).由极限的唯一性,f(x0) = μ = inf x∈C f(x).至此,我们证明了f在C上有最小值.下面说明最小值点是唯一的.若x0, y0都是最小值点,则交错的点列{ x0, y0, x0, y0, x0, ... }是极小化序列.根据前面的证明,这个极小化序列必须是基本列,因此,必然有x0= y0.所以最小值点是唯一的.最后我们要证明最小点x0∈C满足给出的不等式.∀x∈C,∀t∈[0, 1],有x0 + t ( x - x0)∈C,因此有f(x0 + t ( x - x0)) ≥f(x0).即|| x0 + t ( x - x0) ||a2- Re(u0, x0 + t ( x - x0)) ≥ || x0 ||a2- Re(u0, x0).展开并整理得到t Re ( 2a(x0, x - x0) - (u0, x -x0) ) ≥-t2 || x - x0 ||a2.故当∀t∈(0, 1],有Re ( 2a(x0, x - x0) - (u0, x -x0) ) ≥-t|| x - x0 ||a2.令t→ 0就得到Re ( 2a(x0, x - x0) - (u0, x -x0) ) ≥ 0.。

泛函分析 答案(张恭庆)2.6节

泛函分析 答案(张恭庆)2.6节

xn = x
2
2
A
2
1.
便是相应的特征向量. 反之, 设 x l2 . 则
n
又 x 0 = (0,1,0, ,0, Ax 0 = (1,0, ,0, Ax A " x = 1,
0 0
Ax = x,
x
) ) A =1
,

x = A n x = ( xn+1 ,xn + 2 ,
)
n
0
11
12
<1
(3)
j=1
y j = x1
x k +1
x k + 1 = x1
k
j=1
y j,

13
y = {1 j} j=1
l2 ,

但是 y
k j= 1
R (I A) .
1 j
利用这个公式,我们可以从 y
事实上,按
x k + 1 = x1
,
求得
14
的 x = { xk }k =1 , 使得 xk . 2 故 x l . 于是 1 c ( A). 对于适合 ,可以 = 1 的一般 化归 = 1 情形.事实上,
)
l
xk
xk 1 =
!0
( j > N + 1) ( k N).
(j
N)
8
xk
xk 1 = 0
(k
> N + 1)
x k = x N +1
k
N y 1 =. ( I
A) x xk
k 1 1
k
=
k
k
k 1
y k = xk
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1.51.1.61.1.71.2.21.2.31.2.41.3.31.3.41.3.51.3.71.3.81.3.91.4.11.4.5-61.4.91.4.111.4.121.4.131.4.141.4.151.4.171.5.1证明:(1) (⇒) 若x∈int(E),存在δ > 0,使得Bδ(x) ⊆E.注意到x + x/n→x ( n→∞ ),故存在N ∈+,使得x + x/N ∈Bδ(x) ⊆E.即x/( N/( 1 + N ) ) ∈E.因此P(x) ≤N/( 1 + N ) < 1.(⇐) 若P(x) < 1.则存在a > 1,使得y = a x∈E.因θ∈int(E),故存在δ > 0,使得Bδ(θ) ⊆E.令η = δ(a - 1)/a,∀z∈Bη(x),令w = (a z-y )/(a - 1),则|| w || = || (a z-y )/(a - 1) || = || a z-y ||/(a - 1)= || a z-a x ||/(a - 1) = a || z-x ||/(a - 1) < aη/(a - 1) = δ.故w∈Bδ(θ) ⊆E.故z= ((a -1)w+ y)/a ∈E,因此,Bη(x) ⊆E.所以x∈int(E).(2) 因int(E) = E,故有cl(int(E)) ⊆ cl(E).下面证明相反的包含关系.若x∈cl(E),则∀ε > 0,存在y∈E,使得|| x -y || < ε/2.因ny/(n + 1) →y ( n →∞ ).故存在N ∈+,使得|| Ny/(N + 1) -y || < ε/2.令z = Ny/(N + 1),则z∈E,且P(z) ≤N/(N + 1) < 1,由(1)知z∈int(E).而|| z -x || ≤ || z -y || + || y -x || < ε/2 + ε/2 = ε.故x∈cl(int(E)),因此cl(E) ⊆ cl(int(E))所以cl(int(E)) = cl(E).1.5.3证明:因为C是紧集,所以C是闭集.因为C是紧集,故C的任意子集都列紧.而T(C) C,故T(C)列紧.于是,由Schauder不动点定理,T在C上有一个不动点.[Schauder定理:B*空间中闭凸集C上使T(C)列紧的连续自映射T必有不动点] 1.5.41.5.5证明:设C = {x = (x1, x2, ..., x n)∈n | ∑ 1 ≤i ≤n x i = 1,x i ≥ 0 ( i = 1,2, ..., n) }.则C是有界闭集,且是凸集,因此C是紧凸集.因为∀x∈C,x i 不全为0,而a ij> 0,故Ax的各分量也非负但不全为零.∀x∈C,设f (x) = (Ax)/( ∑ 1 ≤i ≤n (Ax)i ),则f (x)∈C.容易验证f : C→C还是连续的.由Brouwer不动点定理,存在f的不动点x0∈C.即f (x0) = x0,也就是(Ax0)/( ∑ 1 ≤i ≤n (Ax0)i ) = x0.令λ= ∑ 1 ≤i ≤n (Ax0)i,则有Ax0 = λ x0.1.5.6证明:设B = { u∈C[0, 1] | ⎰[0, 1]u(x) dx = 1,u(x) ≥ 0 },则B是C[0, 1]中闭凸集.设max (x, y)∈[0, 1]⨯[0, 1]K(x, y) = M,min (x, y)∈[0, 1]⨯[0, 1]K(x, y) = m,⎰[0, 1] (⎰[0, 1]K(x, y) dy) dx = N,max x∈[0, 1] | ⎰[0, 1]K(x, y) dy |= P.令(S u)(x) = (⎰[0, 1]K(x, y) u(y) dy)/(⎰[0, 1] (⎰[0, 1]K(x, y) u(y) dy) dx )则⎰[0, 1] (S u)(x) dx = 1,u(x) ≥ 0;即S u∈B.因此S是从B到B的映射.∀u, v∈B,|| ⎰[0, 1]K(x, y) u(y) dy -⎰[0, 1]K(x, y) v(y) dy ||= || ⎰[0, 1]K(x, y) (u(y)-v(y)) dy ||= max x∈[0, 1] | ⎰[0, 1]K(x, y) (u(y)-v(y)) dy |≤M· || u -v ||;因此映射u #⎰[0, 1]K(x, y) u(y) dy在B上连续.类似地,映射u #⎰[0, 1] (⎰[0, 1]K(x, y) u(y) dy) dx也在B上连续.所以,S在B上连续.下面证明S(B)列紧.首先,证明S(B)是一致有界集.∀u∈B,|| S u || = || (⎰[0, 1]K(x, y) u(y) dy )/(⎰[0, 1] (⎰[0, 1]K(x, y) u(y) dy) dx )|| = max x∈[0, 1] | ⎰[0, 1]K(x, y) u(y) dy |/(⎰[0, 1] (⎰[0, 1]K(x, y) u(y) dy) dx )≤ (M ·⎰[0, 1]u(y) dy |/(m ⎰[0, 1] (⎰[0, 1]u(y) dy) dx ) = M/m,故S(B)是一致有界集.其次,证明S(B)等度连续.∀u∈B,∀t1, t2∈[0, 1],| (S u)(t1) - (S u)(t2)|= | ⎰[0, 1]K(t1, y) u(y) dy-⎰[0, 1]K(t2, y) u(y) dy |/(⎰[0, 1] (⎰[0, 1]K(x, y) u(y) dy) dx )≤⎰[0, 1] | K(t1, y) -K(t2, y) | u(y) dy /(m⎰[0, 1] (⎰[0, 1]u(y) dy) dx )≤ (1/m) · max y∈[0, 1] | K(t1, y) -K(t2, y) |由K(x, y)在[0, 1]⨯[0, 1]上的一致连续性,∀ε > 0,存在δ> 0,使得∀(x1, y1), (x2, y2)∈[0, 1],只要|| (x1, y1) - (x2, y2) || < δ,就有| K(x1, y1) -K(x2, y2) | < m ε.故只要| t1-t2 | < δ时,y∈[0, 1],都有| K(t1, y) -K(t2, y) | < m ε.此时,| (S u)(t1) - (S u)(t2)| ≤ (1/m) · max y∈[0, 1] | K(t1, y) -K(t2, y) | ≤ (1/m) ·m ε = ε.故S(B)是等度连续的.所以,S(B)是列紧集.根据Schauder不动点定理,S在C上有不动点u0.令λ= (⎰[0, 1] (⎰[0, 1]K(x, y) u0(y) dy) dx.则(S u0)(x) = (⎰[0, 1]K(x, y) u0(y) dy)/λ= (T u0)(x)/λ.因此(T u0)(x)/λ= u0(x),T u0 = λ u0.显然上述的λ和u0满足题目的要求.1.6.1 (极化恒等式)证明:∀x, y∈X,q(x + y) -q(x-y) = a(x + y, x + y) -a(x-y, x-y)= (a(x, x) + a(x, y) + a(y, x) + a(y, y)) - (a(x, x) -a(x, y) -a(y, x) + a(y, y))= 2 (a(x, y) + a(y, x)),将i y代替上式中的y,有q(x + i y) -q(x-i y) = 2 (a(x, i y) + a(i y, x))= 2 (-i a(x, y) + i a( y, x)),将上式两边乘以i,得到i q(x + i y) -i q(x-i y) = 2 ( a(x, y) -a( y, x)),将它与第一式相加即可得到极化恒等式.1.6.2证明:若C[a, b]中数|| · ||是可由某积( · , · )诱导出的,则数|| · ||应满足平行四边形等式.而事实上,C[a, b]中数|| · ||是不满足平行四边形等式的,因此,不能引进积( · , · )使其适合上述关系.数|| · ||是不满足平行四边形等式的具体例子如下:设f(x) = (x–a)/(b–a),g(x) = (b–x)/(b–a),则|| f || = || g || = || f + g || = || f –g || = 1,显然不满足平行四边形等式.1.6.3证明:∀x∈L2[0, T],若|| x || = 1,由Cauchy-Schwarz不等式,有| ⎰[0, T]e- ( T-τ)x(τ) dτ |2≤ (⎰[0, T] (e- ( T-τ))2dτ ) (⎰[0, T] ( x(τ))2dτ )= ⎰[0, T] (e- ( T-τ))2dτ = e- 2T ⎰[0, T]e 2τdτ= (1-e- 2T )/2.因此,该函数的函数值不超过M = ((1-e- 2T )/2)1/2.前面的不等号成为等号的充要条件是存在λ∈,使得x(τ) = λ e- ( T-τ).再注意|| x || = 1,就有⎰[0, T] (λ e- ( T-τ))2dτ= 1.解出λ= ±((1-e- 2T )/2)- 1/2.故当单位球面上的点x(τ) = ±((1-e- 2T )/2)- 1/2 ·e- ( T-τ)时,该函数达到其在单位球面上的最大值((1-e- 2T )/2)1/2.1.6.4证明:若x∈N⊥,则∀y∈N,(x, y) = 0.而M⊆N,故∀y∈M,也有(x, y) = 0.因此x∈M⊥.所以,N⊥⊆M⊥.1.6.51.6.6解:设偶函数集为E,奇函数集为O.显然,每个奇函数都与正交E.故奇函数集O ⊆E⊥.∀f∈E⊥,注意到f总可分解为f = g + h,其中g是奇函数,h是偶函数.因此有0 = ( f, h) = ( g + h, h) = ( g, h) + ( h, h) = ( h, h).故h几乎处处为0.即f = g是奇函数.所以有E⊥⊆O.这样就证明了偶函数集E的正交补E⊥是奇函数集O.1.6.7证明:首先直接验证,∀c∈,S = {e2π i n x| n∈ }是L2[c, c + 1]中的一个正交集.再将其标准化,得到一个规正交集S1 = {ϕn(x) = d n e2π i n x| n∈ }.其中的d n= || e2π i n x|| (n∈),并且只与n有关,与c的选择无关.(1) 当b–a =1时,根据实分析结论有S⊥ = {θ}.当b–a <1时,若u∈L2[a, b],且u∈S⊥,我们将u延拓成[a, a + 1]上的函数v,使得v(x) = 0 (∀x∈(b, a + 1]).则v∈L2[a, a + 1].同时把S = {e2π i n x| n∈ }也看成L2[a, a + 1]上的函数集.那么,在L2[a, a + 1]中,有v∈S⊥.根据前面的结论,v = θ.因此,在L2[a, b]中就有u = θ.故也有S⊥ = {θ};(2) 分成两个区间[a, b– 1)和[b– 1, b]来看.在[a, b– 1)上取定非零函数u(x) = 1 ( ∀x∈[a, b– 1) ).记p n = ⎰[a, b– 1)u(x)ϕn(x) dx.我们再把u看成是[b– 2, b– 1]上的函数(u在[b– 2, a)上去值为0).那么p n就是u在L2[b– 2, b– 1]上关于正交集S1 = {ϕn(x)| n∈ }的Fourier 系数.由Bessel不等式,∑n∈ | p n |2 < +∞.再用Riesz-Fischer定理,在L2[b– 1, b]中,∑n∈p n ϕn收敛.并且,若令v = -∑n∈p n ϕn,则(v, ϕn)= -p n (∀n∈).设f : [a, b] →为:f(x) = u(x) (当x∈[a, b– 1)),f(x) = v(x) (当x∈[b– 1, b]).则f∈L2[a, b],f≠θ,但( f, ϕn) = ⎰[a, b– 1)f(x)ϕn(x) dx + ⎰[b– 1, b]f(x)ϕn(x) dx= ⎰[a, b– 1)u(x)ϕn(x) dx + ⎰[b– 1, b]v(x)ϕn(x) dx= p n -p n = 0,因此,f∈S1⊥= S⊥,故S⊥≠ {θ}.1.6.8证明:( z n/(2π)1/2, z n/(2π)1/2 ) = (1/i)⎰| z | = 1( z n/(2π)1/2·(z*)n/(2π)1/2 )/z dz= (1/(2πi))⎰| z | = 1z n· (z*)n/z dz = (1/(2πi))⎰| z | = 1 1/z dz = 1.若n > m,则n- m - 1 ≥ 0,从z n -m - 1而解析.( z n/(2π)1/2, z m/(2π)1/2 ) = (1/i)⎰| z | = 1 ( z n/(2π)1/2· (z*)m/(2π)1/2 )/z dz= (1/(2πi))⎰| z | = 1z n· (z*)m/z dz = (1/(2πi))⎰| z | = 1z n -m - 1dz = 0.因此,{ z n/(2π)1/2 }n ≥ 0是正交规集.1.6.91.6.10证明:容易验证{e n}⋂{ f n}是正交规集,下面只证明{e n}⋂{ f n}是X的基.∀x∈X,由正交分解定理,存在x关于X0的正交分解x = y + z,其中y∈X0,z∈X0⊥.因{e n}, { f n}分别是X0和X0⊥的正交规基,故y = ∑ n∈( y, e n ) e n,z = ∑ n∈( z, f n ) f n.因z∈X0⊥,故(x, e n) = ( y + z, e n) = ( y, e n) + ( z, e n) = ( y, e n).因y∈X0,故(x, f n) = ( y + z, f n) = ( y, f n) + ( z, f n) = ( z, f n).故x = y + z = ∑ n∈( y, e n ) e n + ∑ n∈( z, f n ) f n= ∑ n∈( x, e n ) e n + ∑ n∈( x, f n ) f n.因此{e n}⋂{ f n}是X的正交规基.1.6.11证明:首先,令ϕk (z) = (( k +1 )/π)1/2 z k ( k≥ 0 ),则{ ϕk }k≥ 0是H2(D)中的正交规基.那么,∀u(z)∈H2(D),设u(z) = ∑k≥ 0 a k z k,则∀k∈,有(u, ϕk) = ⎰D u(z) ·ϕk(z)*dxdy= ⎰D (∑j≥ 0 a j z j) ·ϕk(z)*dxdy= ∑j≥ 0 a j(π/( j +1 ))1/2⎰D (( j +1 )/π)1/2 z j·ϕk(z)*dxdy= ∑j≥ 0 a j(π/( j +1 ))1/2⎰Dϕj(z) ·ϕk(z)*dxdy= ∑j≥ 0 a j(π/( j +1 ))1/2 (ϕj, ϕk)= a k(π/( k +1 ))1/2.即u(z)的关于正交规基{ ϕk }k≥ 0的Fourier系数为a k(π/( k +1 ))1/2( k≥ 0 ).(1) 如果u(z)的Taylor展开式是u(z) = ∑k≥ 0 b k z k,则u(z)的Fourier系数为b k(π/( k +1 ))1/2( k≥ 0 ).由Bessel不等式,∑k≥ 0| b k(π/( k +1 ))1/2|2≤ || u || < +∞,于是有∑k≥ 0| b k|2/( k +1 ) < +∞.(2) 设u(z), v(z)∈H2(D),并且u(z) = ∑k≥ 0 a k z k,v(z) = ∑k≥ 0 b k z k.则u(z) = ∑k≥ 0 a k(π/( k +1 ))1/2ϕk (z),v(z) = ∑j≥ 0 b j(π/( j +1 ))1/2ϕj (z),(u, v) = ( ∑k≥ 0 a k(π/( k +1 ))1/2ϕk (z), ∑j≥ 0 b j(π/( j +1 ))1/2ϕj (z) )= ∑k≥ 0∑j≥ 0 (a k(π/( k +1 ))1/2ϕk (z), b j(π/( j +1 ))1/2ϕj (z))= ∑k≥ 0∑j≥ 0 (a k(π/( k +1 ))1/2 ·b j*(π/( j +1 ))1/2) (ϕk (z), ϕj (z))= ∑k≥ 0(a k(π/( k +1 ))1/2 ·b k* (π/( k +1 ))1/2) = π∑k≥ 0(a k·b k* )/( k +1 ).(3) 设u(z)∈H2(D),且u(z) = ∑k≥ 0 a k z k.因1/(1 -z) = ∑k≥ 0z k,1/(1 -z)2 = ∑k≥ 0 (k +1) z k,其中| z | < 1.故当| z | < 1时,有1/(1 - | z | )2 = ∑k≥ 0 (k +1) | z | k.根据(2),|| u(z) ||2 = π∑k≥ 0 (a k·a k* )/( k +1 ) = π∑k≥ 0 | a k|2/( k +1 ).|| u ||2/(1 - | z |)2 = (π∑k≥ 0 | a k|2/( k +1 )) · ( ∑k≥ 0 (k +1) | z | k )≥ (π∑k≥ 0 | a k|2/( k +1 ) | z | k) · ( ∑k≥ 0 (k +1) | z | k )≥π( ∑k≥ 0( | a k|/( k +1 )1/2| z | k/2) ·((k +1)1/2| z | k/2))2 (Cauchy-Schwarz 不等式)= π ( ∑k≥ 0 | a k| · | z | k )2≥π | ∑k≥ 0a k z k |2 = π | u(z)|2,故| u(z) | ≤ || u ||/(π1/2 ( 1 - | z | )).(4) 先介绍复分析中的Weierstrass定理:若{ f n }是区域U ⊆上的解析函数列,且{ f n }在U上闭一致收敛到f,则f在U上解析.(见龚升《简明复分析》)回到本题.设{ u n }是H2(D)中的基本列.则∀z∈D,由(3)知{ u n(z) }是中的基本列,因此是收敛列.设u n(z) →u(z).对中任意闭集F⊆D,存在0 < r < 1使得F⊆B(0, r) ⊆D.∀ε > 0,存在N∈+,使得∀m, n > N,都有|| u n-u m|| < επ1/2 ( 1 -r ).再由(3),∀z∈F,| u n(z) -u m(z) | ≤ || u n-u m||/(π1/2 ( 1 - | z | )) ≤ || u n-u m||/(π1/2 ( 1 -r )) < ε.令m→∞,则| u n(z) -u(z) | ≤ε.这说明{ u n }在D上闭一致收敛到u.由前面所说的Weierstrass定理,u在D上解析.把{ u n }看成是L2(D)中的基本列,因L2(D),故{ u n }是L2(D)中的收敛列.设{ u n }在L2(D)中的收敛于v.则v必然与u几乎处处相等.即{ u n }在L2(D)中的收敛于u.因此{ u n }在H2(D)中也是收敛的,且收敛于u.所以,H2(D)完备.1.6.12证明:由Cauchy-Schwarz不等式以及Bessel不等式,∀x, y∈X,有| ∑n≥ 1 (x, e n) · (y, e n)* |2≤ (∑n≥ 1 | (x, e n) |· | (y, e n)* | )2= (∑n≥ 1 | (x, e n) |·| (y, e n) | )2≤(∑n≥ 1 |(x, e n) |2) ·(∑n≥ 1 | (y, e n)|2)≤|| x ||2· || y ||2.因此,| ∑n≥ 1 (x, e n) · (y, e n)* | ≤ || x || · || y ||.1.6.13证明:(1) 因数是连续函数,故C = { x ∈X | || x - x0 || ≤r }是闭集.∀x, y∈C,因|| x - x0 || ≤r,|| x - x0 || ≤r },故∀λ∈[0, 1],|| (λ x + (1-λ) y ) - x0 || = || λ( x-x0 ) + (1-λ) (y - x0)||≤ || λ( x-x0 ) + (1-λ) (y - x0)|| ≤λ|| x-x0 || + (1-λ) || y - x0 || ≤λ r + (1-λ) r = r.所以,C是X中的闭凸集.(2) 当x ∈C时,y = x.显然y是x在C中的最佳逼近元.当x ∈C时,y = x0 + r (x - x0)/|| x - x0 ||.∀z∈C,|| x-y || = || ( x-x0 -r (x - x0)/|| x - x0 ||) ||= || (1 -r/|| x - x0 ||) (x - x0) || = || x - x0 || -r.≤ || x - x0 || - || z - x0 || ≤ || x - z||.因此,y是x在C中的最佳逼近元.1.6.14解:即是求e t在span{1, t, t2}中的最佳逼近元 (按L2[0, 1]数).将{1, t, t2}正交化为{1, t- 1/2, (t- 1/2)2 - 1/12 } (按L2[0, 1]积)再标准化为{ϕ0(t), ϕ1(t), ϕ2(t)},则所求的a k= (e t, ϕ k(t)) = ⎰[0, 1]e tϕ k(t) dt,k = 0, 1, 2.1.6.15证明:设g(x) = (x-a) (x-b)2,则g(a) = g (b) = 0,g’(a) = (b-a)2,g’(b) = 0.由Cauchy- Schwarz不等式,我们有(⎰[a, b] | f’’(x) |2 dx)· (⎰[a, b] | g’’(x) |2 dx)≥ (⎰[a, b]f’’(x) ·g’’(x) dx )2.因g’’(x) = 3x- (a + 2b),故⎰[a, b] | g’’(x) |2 dx = ⎰[a, b] (3x- (a + 2b))2 dx = (b-a)3;又⎰[a, b]f’’(x) ·g’’(x) dx = ⎰[a, b](3x-(a+ 2b)) ·f’’(x) dx = ⎰[a, b](3x - (a + 2b))d f’(x)= (3x- (a + 2b)) ·f’(x)| [a, b] - 3⎰[a, b]f’(x) dx = 2(b-a);故(b-a)3 ·⎰[a, b] | f’’(x) |2 dx ≥ (2(b-a))2 = 4(b-a)2.所以⎰[a, b] | f’’(x)|2 dx≥ 4/(b-a).1.6.16 (变分不等式)证明:设f(x)= a(x, x) - Re(u0, x).则f(x) = a(x, x) - Re(u0, x) ≥δ || x ||2 - | (u0, x) |≥δ || x ||2 - || u0 || · || x || ≥- || u0 ||2/(4δ) > -∞.即f在X上有下界,因而f在C有下确界μ = inf x∈C f(x).注意到a(x, y)实际上是X上的一个积,记它所诱导的数为|| x ||a = a(x, x)1/2,则|| · ||a与|| · ||是等价数.因此f(x) = a(x, x) - Re(u0, x) = || x ||a2- Re(u0, x).设C中的点列{ x n }是一个极小化序列,满足μ≤f(x n ) < μ + 1/n ( ∀n∈+ ).则由平行四边形等式,|| x n-x m ||a2 = 2(|| x n ||a2 + || x m ||a2 ) - 4|| (x n + x m)/2||a2= 2( f(x n) + Re(u0, x n) + f(x m) + Re(u0, x m) ) - 4( f((x n + x m)/2) + Re(u0, (x n + x m)/2))= 2( f(x n) + f(x m)) - 4 f((x n + x m)/2) + 2 Re( (u0, x n) + (u0, x m) - (u0, x n + x m) )= 2( f(x n) + f(x m)) - 4 f((x n + x m)/2)≤ 2( μ + 1/n + μ + 1/m ) - 4 μ= 2(1/n + 1/m) → 0 ( m, n→∞ ).因此|| x n-x m ||2≤ (1/δ) || x n-x m ||a2→ 0 ( m, n→∞ ).即{ x n }为X中的基本列.由于X完备,故{ x n }收敛.设x n→x0 ( n→∞ ).则|| x n-x0 ||a2≤M || x n-x0 ||2→ 0 ( m, n→∞ ).而由积a( · , ·),( · , ·)的连续性,有a( x n , x n) →a( x0 , x0 ),且(u0, x n) → (u0, x0),( n→∞ ).因此f(x n) = a(x n, x n) -Re(u0, x n) →a(x0, x0) -Re(u0, x0) = f(x0),( n→∞).由极限的唯一性,f(x0) = μ = inf x∈C f(x).至此,我们证明了f在C上有最小值.下面说明最小值点是唯一的.若x0, y0都是最小值点,则交错的点列{ x0, y0, x0, y0, x0, ... }是极小化序列.根据前面的证明,这个极小化序列必须是基本列,因此,必然有x0 = y0.所以最小值点是唯一的.最后我们要证明最小点x0∈C满足给出的不等式.∀x∈C,∀t∈[0, 1],有x0 + t ( x - x0)∈C,因此有f(x0 + t ( x - x0)) ≥f(x0).即|| x0 + t ( x - x0) ||a2- Re(u0, x0 + t ( x - x0)) ≥ || x0 ||a2- Re(u0, x0).展开并整理得到t Re ( 2a(x0, x - x0) - (u0, x - x0) ) ≥-t2 || x - x0 ||a2.故当∀t∈(0, 1],有Re ( 2a(x0, x - x0) - (u0, x - x0) ) ≥-t|| x - x0 ||a2.令t→ 0就得到 Re ( 2a(x0, x - x0) - (u0, x - x0) ) ≥ 0.2.1.22.1.32.1.42.1.52.1.62.1.72.1.82.1.92.2.22.2.52.3.12.3.3-22.3.42.3.52.3.72.3.82.3.92.3.112.3.122.3.132.3.142.4.42.4.52.4.62.4.72.4.82.4.92.4.102.4.112.4.122.4.132.4.142.5.42.5.52.5.7。

相关文档
最新文档