MCM美赛算法-蒙特卡罗方法概述
蒙特卡罗算法
![蒙特卡罗算法](https://img.taocdn.com/s3/m/f10eb154168884868762d640.png)
xi 1 6xi mod11, ui+1 xi 1 /11 (a 6, m 11 )
如果令 a 3, x0 1 ,得到序列: 1,3,9,5, 4,1,3,9........ 如果令 a 3, x0 2, 得到序列: 2, 6, 7,10,8, 2, 6.......
14
3. 指数分布 指数分布随机变量X的概率密度为
e x , x 0 f ( x) 0, x 0
指数分布常用来描述寿命问题.
15
二.随机数的生成
1.蒙特卡罗模拟的关键是生成优良的随机数。 2.在计算机实现中,我们是通过确定性的算法生成 随机数,所以这样生成的序列在本质上不是随机 的,只是很好的模仿了随机数的性质(如可以通过 统计检验)。我们通常称之为伪随机数(pseudorandom numbers)。 3.在模拟中,我们需要产生各种概率分布的随机数, 而大多数概率分布的随机数产生均基于均匀分布 U(0,1)的随机数。
2
基本思想很早以前就被人们所发现和 利用。17世纪,人们就知道用事件发 生的“频率”来决定事件的“概率”。 19世纪人们用投针试验的方法来决定π。 高速计算机的出现,使得用数学方法 在计算机上大量模拟这样的试验成为 可能。
3
从Buffon(蒲丰)投针问题谈起
Buffon 投针问题:平面上画很多平行线,间距为 a.向此平面投掷长为 l ( l < a) 的 针,此针与任一平行线相交的概率 p。
Monte Carlo Simulation Methods (蒙特卡罗模拟方法)
主要内容: 一. M-C方法概述. 二. 随机数的生成. 三. 模拟训练. 四. 实验题目.
成信院数学与信息科学系 李胜坤
蒙特卡罗方法(MC)
![蒙特卡罗方法(MC)](https://img.taocdn.com/s3/m/cbc4ecb865ce0508763213c9.png)
蒙特卡罗方法(MC)蒙特卡罗(Monte Carlo)方法:蒙特卡罗(Monte Carlo)方法,又称随机抽样或统计试验方法,属于计算数学的一个分支,它是在本世纪四十年代中期为了适应当时原子能事业的发展而发展起来的。
传统的经验方法由于不能逼近真实的物理过程,很难得到满意的结果,而蒙特卡罗方法由于能够真实地模拟实际物理过程,故解决问题与实际非常符合,可以得到很圆满的结果。
这也是我们采用该方法的原因。
蒙特卡罗方法的基本原理及思想如下:当所要求解的问题是某种事件出现的概率,或者是某个随机变量的期望值时,它们可以通过某种“试验”的方法,得到这种事件出现的频率,或者这个随机变数的平均值,并用它们作为问题的解。
这就是蒙特卡罗方法的基本思想。
蒙特卡罗方法通过抓住事物运动的几何数量和几何特征,利用数学方法来加以模拟,即进行一种数字模拟实验。
它是以一个概率模型为基础,按照这个模型所描绘的过程,通过模拟实验的结果,作为问题的近似解。
可以把蒙特卡罗解题归结为三个主要步骤:构造或描述概率过程;实现从已知概率分布抽样;建立各种估计量。
蒙特卡罗解题三个主要步骤:构造或描述概率过程:对于本身就具有随机性质的问题,如粒子输运问题,主要是正确描述和模拟这个概率过程,对于本来不是随机性质的确定性问题,比如计算定积分,就必须事先构造一个人为的概率过程,它的某些参量正好是所要求问题的解。
即要将不具有随机性质的问题转化为随机性质的问题。
实现从已知概率分布抽样:构造了概率模型以后,由于各种概率模型都可以看作是由各种各样的概率分布构成的,因此产生已知概率分布的随机变量(或随机向量),就成为实现蒙特卡罗方法模拟实验的基本手段,这也是蒙特卡罗方法被称为随机抽样的原因。
最简单、最基本、最重要的一个概率分布是(0,1)上的均匀分布(或称矩形分布)。
随机数就是具有这种均匀分布的随机变量。
随机数序列就是具有这种分布的总体的一个简单子样,也就是一个具有这种分布的相互独立的随机变数序列。
计算物理学_蒙特卡罗方法
![计算物理学_蒙特卡罗方法](https://img.taocdn.com/s3/m/49b1e9b41ed9ad51f11df25f.png)
第八讲蒙特卡罗方法蒙特卡罗(Monte Carlo简称MC)方法又称随机抽样法(Random Sampling)、随机模拟(Random Simulation)或统计试验法(Statistic Testing)。
这个方法的起源可以追溯到十七世纪或更早的年代。
Monte Carlo 是摩纳哥(Monaco)的一个著名城市,位于地中海之滨,以旅游赌博闻名。
Von Neumann 等人把计算机随机模拟方法定名为Monte Carlo方法,显然反映了这种方法带有随机的性质。
简单地说,MC方法是一种利用随机统计规律,进行计算和模拟的方法。
它可用于数值计算,也可用于数字仿真。
在数值计算方面,可用于多重积分、线性代数求解、矩阵求逆以及用于方程求解,包括常微分方程、偏微分方程、本征方程、非齐次线性积分方程和非线性方程等。
在数字仿真方面,常用于核系统临界条件模拟、反应堆模拟以及实验核物理、高能物理、统计物理、真空、地震、生物物理和信息物理等领域。
§8.l蒙特卡罗方法的基础知识8.1.1 基本概念为了对MC方法有一点初步的认识,请先看使用MC方法的几个例子。
蒲丰投针问题:蒲丰(Buffon-法国著名数学家)在1777年发现随机投针的概率与无理数π之间的关系.这个问题是说,若在平面上画有距离为a的平行线束,向平面上投掷长为()<的针,试求针与一平行线相交的概率。
l l a这个问题的解法如下:以M表示落下后针的中点,x表M与最近一平行线的距离,ϕ表针与此线的交角,见上图。
可见,02 0≤≤≤≤/,x a ϕπ这两式决定x ϕ平面上一矩形R ;为了使针与一平行线(这线必定是与针中点M 最近的平行线)相交,充分而且必要条件是2ϕ≤sin lx 这个不等式决定R 中一个子集G 。
因此,我们的问题等价于向R 中均匀分布地掷点而求点落于G 中的概率P.根据概率的几何意义,得222sin ()ld l P a a πϕϕππ==⎰此式提供了求π值的一个方法:可以通过投针事件求得针与平行线相交概率P ,求得π值:2/()l Pa π= (8.1)若投掷次数为m ,针与平行线相交的次数为n ,那么/p n m ≈即 2/()lm an π≈于是,可用投针试验来求无理数π的近似值.下表列举了历史上若干学者投针试验计算π值的结果:射击问题(打靶游戏):设r 表示射击运动员的弹着点到靶心的距离,()g r 表示击中r 处相应的得分数(环数),分布密度函数()f r 表示该运动员的弹着点分布,它反映运动员射击水平。
美赛建模十类算法总结
![美赛建模十类算法总结](https://img.taocdn.com/s3/m/f794c6056c85ec3a87c2c5ab.png)
1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,是比赛时必用的方法)2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现)4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)5、动态规划、回溯搜索、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab 进行处理)1、蒙特卡罗方法(MC)(Monte Carlo):蒙特卡罗(Monte Carlo)方法,或称计算机随机模拟方法,是一种基于“随机数”的计算方法。
蒙特卡罗(Monte Carlo)方法简介
![蒙特卡罗(Monte Carlo)方法简介](https://img.taocdn.com/s3/m/19834efead02de80d5d84072.png)
蒙特卡罗(Monte Carlo)方法简介蒙特卡罗(Monte Carlo)方法简介蒙特卡罗(Monte Carlo)方法,也称为计算机随机模拟方法,是一种基于"随机数"的计算方法。
一起源这一方法源于美国在第二次世界大战进研制原子弹的"曼哈顿计划"。
Monte Carlo方法创始人主要是这四位:Stanislaw Marcin Ulam, Enrico Fermi, John von Neumann(学计算机的肯定都认识这个牛人吧)和Nicholas Metropolis。
Stanislaw Marcin Ulam是波兰裔美籍数学家,早年是研究拓扑的,后因参与曼哈顿工程,兴趣遂转向应用数学,他首先提出用Monte Carlo方法解决计算数学中的一些问题,然后又将其应用到解决链式反应的理论中去,可以说是MC方法的奠基人;Enrico Fermi是个物理大牛,理论和实验同时都是大牛,这在物理界很少见,在“物理大牛的八卦”那篇文章里提到这个人很多次,对于这么牛的人只能是英年早逝了(别说我嘴损啊,上帝都嫉妒!);John von Neumann可以说是计算机界的牛顿吧,太牛了,结果和Fermi一样,被上帝嫉妒了;Nicholas Metropolis,希腊裔美籍数学家,物理学家,计算机科学家,这个人对Monte Carlo方法做的贡献相当大,正式由于他提出的一种什么算法(名字忘了),才使得Monte Carlo方法能够得到如此广泛的应用,这人现在还活着,与前几位牛人不同,Metropolis很专一,他一生主要的贡献就是Monte Carlo方法。
蒙特卡罗方法的名字来源于摩纳哥的一个城市蒙地卡罗,该城市以赌博业闻名,而蒙特•罗方法正是以概率为基础的方法。
与它对应的是确定性算法。
二解决问题的基本思路Monte Carlo方法的基本思想很早以前就被人们所发现和利用。
早在17世纪,人们就知道用事件发生的"频率"来决定事件的"概率"。
马尔科夫链蒙特卡罗算法研究
![马尔科夫链蒙特卡罗算法研究](https://img.taocdn.com/s3/m/2e3d9bbd710abb68a98271fe910ef12d2af9a9d0.png)
马尔科夫链蒙特卡罗算法研究I. 算法简介马尔科夫链蒙特卡罗算法(Markov Chain Monte Carlo,简称MCMC)是一种用于估计复杂概率分布的统计方法。
它将概率问题转化为随机问题,并通过大量的随机样本来模拟目标概率分布。
在MCMC算法中,马尔科夫链(Markov Chain)的状态转移矩阵被用来控制样本生成的路径,从而保证样本能够充分覆盖概率空间。
蒙特卡罗方法(Monte Carlo)则用于对估计值进行采样和计算,通过多次采样和计算得到的平均值来逼近真实值。
II. 算法原理MCMC算法基于马尔科夫链原理,即当前状态只与之前的状态有关,并不受之后状态的影响。
状态转移矩阵则是用来定义状态的转移概率,从而控制样本的生成过程。
在MCMC算法中,我们首先要选择一个初始状态,然后根据状态转移矩阵进行状态转移,得到下一个状态。
状态转移矩阵中的每个元素均为概率(或称转移概率),表示状态从当前转移到下一个的概率。
为了保证算法收敛,马尔科夫链必须是正常态、不可约和遍历的。
正常态:任何状态都有可能到达任何状态;不可约:任何状态都能够到达另外任何状态;遍历:从任意状态开始,有一条无限长的路径可以经过所有状态。
理论上,通过MCMC算法可以生成服从目标概率分布的样本集合,从而得到对目标概率分布的估计值。
III. 算法优缺点优点:1. MCMC算法能够估计复杂的概率分布,如多维分布、非标准分布等;2. MCMC算法对于计算复杂度高的问题具有高效性;3. 采样过程中的细节信息都能够得到有效的利用。
缺点:1. MCMC算法需要人为地定义状态转移矩阵,较难找到合适的概率转移矩阵;2. 实现难度较高,需要对统计学和计算机科学有一定的掌握;3. 采样的效率较低,需要生成大量的样本才能得到准确的结果。
IV. 算法在实际问题中的应用MCMC算法广泛应用于求解各种概率分布问题。
其中,最有代表性的包括以下几个方面:1. 索引问题:对于大规模的概率分布问题,MCMC算法具有天然的优势,特别是在对多维参数的估计中;2. 机器学习问题:MCMC算法在机器学习中有广泛的应用,如贝叶斯网络、聚类算法等;3. 物理模拟问题:MCMC算法在物理模拟领域中具有广泛的应用,如用于求解了分子、晶格等问题。
蒙特卡罗方法
![蒙特卡罗方法](https://img.taocdn.com/s3/m/62f5475d3b3567ec102d8ac4.png)
蒙特卡罗方法一、蒙特卡罗方法概述蒙特·卡罗方法(Monte Carlo method ),也称统计模拟方法,是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类非常重要的数值计算方法。
是指使用随机数(或更常见的伪随机数)来解决很多计算问题的方法。
与它对应的是确定性算法这种方法作为一种独立的方法被提出来,并首先在核武器的试验与研制中得到了应用。
蒙特卡罗方法是一种计算方法,但与一般数值计算方法有很大区别。
它是以概率统计理论为基础的一种方法。
由于蒙特卡罗方法能够比较逼真地描述事物的特点及物理实验过程,解决一些数值方法难以解决的问题,因而该方法的应用领域日趋广泛。
蒙特·卡罗方法在金融工程学,宏观经济学,计算物理学(如粒子输运计算、量子热力学计算、空气动力学计算)等领域应用广泛。
1.历史起源蒙特卡罗方法于20世纪40年代美国在第二次世界大战中研制原子弹的“曼哈顿计划”计划的成员S.M.乌拉姆和J.冯·诺伊曼首先提出。
数学家冯·诺伊曼用驰名世界的赌城—摩纳哥的Monte Carlo —来命名这种方法,为它蒙上了一层神秘色彩。
在这之前,蒙特卡罗方法就已经存在。
1777年,法国Buffon 提出用投针实验的方法求圆周率∏。
这被认为是蒙特卡罗方法的起源。
2. 蒙特卡罗方法的基本思想二十世纪四十年代中期,由于科学技术的发展和电子计算机的发明,蒙特卡罗方法作为一种独立的方法被提出来,并首先在核武器的试验与研制中得到了应用。
但其基本思想并非新颖,人们在生产实践和科学试验中就已发现,并加以利用。
当所求问题的解是某个事件的概率,或者是某个随机变量的数学期望,或者是与概率、数学期望有关的量时,通过某种试验的方法,得出该事件发生的频率,或者该随机变量若干个具体观察值的算术平均值,通过它得到问题的解。
这就是蒙特卡罗方法的基本思想。
当随机变量的取值仅为1或0时,它的数学期望就是某个事件的概率。
(完整版)蒙特卡洛算法详讲
![(完整版)蒙特卡洛算法详讲](https://img.taocdn.com/s3/m/0433944b50e2524de5187ebb.png)
Monte Carlo 法§8.1 概述Monte Carlo 法不同于前面几章所介绍的确定性数值方法,它是用来解决数学和物理问题的非确定性的(概率统计的或随机的)数值方法。
Monte Carlo 方法(MCM ),也称为统计试验方法,是理论物理学两大主要学科的合并:即随机过程的概率统计理论(用于处理布朗运动或随机游动实验)和位势理论,主要是研究均匀介质的稳定状态[1]。
它是用一系列随机数来近似解决问题的一种方法,是通过寻找一个概率统计的相似体并用实验取样过程来获得该相似体的近似解的处理数学问题的一种手段。
运用该近似方法所获得的问题的解in spirit 更接近于物理实验结果,而不是经典数值计算结果。
普遍认为我们当前所应用的MC 技术,其发展约可追溯至1944年,尽管在早些时候仍有许多未解决的实例。
MCM 的发展归功于核武器早期工作期间LosAlamos (美国国家实验室中子散射研究中心)的一批科学家。
Los Alamos 小组的基础工作刺激了一次巨大的学科文化的迸发,并鼓励了MCM 在各种问题中的应用[2]-[4]。
“Monte Carlo ”的名称取自于Monaco (摩纳哥)内以赌博娱乐而闻名的一座城市。
Monte Carlo 方法的应用有两种途径:仿真和取样。
仿真是指提供实际随机现象的数学上的模仿的方法。
一个典型的例子就是对中子进入反应堆屏障的运动进行仿真,用随机游动来模仿中子的锯齿形路径。
取样是指通过研究少量的随机的子集来演绎大量元素的特性的方法。
例如,)(x f 在b x a <<上的平均值可以通过间歇性随机选取的有限个数的点的平均值来进行估计。
这就是数值积分的Monte Carlo 方法。
MCM 已被成功地用于求解微分方程和积分方程,求解本征值,矩阵转置,以及尤其用于计算多重积分。
任何本质上属随机组员的过程或系统的仿真都需要一种产生或获得随机数的方法。
这种仿真的例子在中子随机碰撞,数值统计,队列模型,战略游戏,以及其它竞赛活动中都会出现。
第三章蒙特卡罗方法概述
![第三章蒙特卡罗方法概述](https://img.taocdn.com/s3/m/8defbb4403020740be1e650e52ea551811a6c942.png)
第三章蒙特卡罗方法概述蒙特卡罗方法是一种基于概率统计的数学模拟方法,广泛应用于各个领域,如物理学、工程学、统计学、金融学等。
蒙特卡罗方法的基本思想是通过随机抽样的方法,通过大量的实验模拟系统的行为,从而推导出系统的统计性质。
它的核心理念是“试验多次,取平均值”,即通过进行大量的实验模拟,得到的结果的平均值可以近似于真实值。
蒙特卡罗方法的起源可以追溯到二战时期的原子能研究。
当时科学家们在尝试研究核反应堆的物理过程时,很难通过解析方法得到解决方案。
于是他们将问题建模成概率统计的形式,通过大量的实验模拟来获得结果。
这种方法最初被称为“纯概率模拟”,后来由于其背后的基本思想与蒙特卡罗赌场有些类似而得名为蒙特卡罗方法。
蒙特卡罗方法包括以下几个基本步骤:1.建立模型:首先需要建立一个适当的模型,即用数学方程描述所研究问题的特征。
模型的复杂程度取决于具体问题的复杂程度。
2.随机抽样:根据建立的模型,需要进行随机抽样,生成一系列符合指定分布的随机数。
这些随机数代表了系统的输入或初态。
通常使用伪随机数生成器来生成这些随机数。
3.求解模型:将随机抽样得到的样本代入模型,并通过模型进行求解。
可以使用各种数值计算方法来求解模型,如积分法、差分法、微分方程等。
通过数值计算方法,可以得到模型的输出或末态。
4.统计分析:通过大量的实验模拟,得到了系统的多组输出或末态。
在这些输出或末态中,可以统计得到系统的统计性质,如均值、方差、概率分布等。
蒙特卡罗方法的优势在于它可以处理复杂的非线性问题,以及高维问题。
由于模拟过程完全基于随机抽样,与传统的解析方法相比,蒙特卡罗方法的求解过程更加灵活。
另外,由于蒙特卡罗方法是一种直接模拟的方法,因此对于复杂的系统,可以通过蒙特卡罗方法进行近似求解,避免了复杂内部结构的精确建模过程。
然而,蒙特卡罗方法也存在一些限制。
首先,蒙特卡罗方法通常需要进行大量的实验模拟才能得到准确的结果,从而需要大量的计算时间和计算资源。
蒙特卡洛算法简介
![蒙特卡洛算法简介](https://img.taocdn.com/s3/m/d26f9b10fad6195f312ba6a3.png)
算法简介蒙特·卡罗方法(Monte Carlo method),也称统计模拟方法,是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类非常重要的数值计算方法。
是指使用随机数(或更常见的伪随机数)来解决很多计算问题的方法。
蒙特·卡罗方法的名字来源于摩纳哥的一个城市蒙地卡罗,该城市以赌博业闻名,而蒙特·卡罗方法正是以概率为基础的方法。
与它对应的是确定性算法。
蒙特·卡罗方法在金融工程学,宏观经济学,计算物理学(如粒子输运计算、量子热力学计算、空气动力学计算)等领域应用广泛。
编辑本段背景知识[1946: John von Neumann, Stan Ulam, and Nick Metropolis, all at the Los Alamos Scientific Laboratory, cook up the Metropolis algorithm, also known as the Monte Carlo method.] 1946年,美国拉斯阿莫斯国家实验室的三位科学家John von Neumann,Stan Ulam 和Nick Metropolis共同发明,被称为蒙特卡洛方法。
它的具体定义是:在广场上画一个边长一米的正方形,在正方形内部随意用粉笔画一个不规则的形状,现在要计算这个不规则图形的面积,怎么计算列?蒙特卡洛(Monte Carlo)方法告诉我们,均匀的向该正方形内撒N(N 是一个很大的自然数)个黄豆,随后数数有多少个黄豆在这个不规则几何形状内部,比如说有M个,那么,这个奇怪形状的面积便近似于M/N,N越大,算出来的值便越精确。
在这里我们要假定豆子都在一个平面上,相互之间没有重叠。
蒙特卡洛方法可用于近似计算圆周率:让计算机每次随机生成两个0到1之间的数,看这两个实数是否在单位圆内。
生成一系列随机点,统计单位圆内的点数与总点数,(圆面积和正方形面积之比为PI:1,PI为圆周率),当随机点取得越多(但即使取10的9次方个随机点时,其结果也仅在前4位与圆周率吻合)时,其结果越接近于圆周率。
马尔科夫链蒙特卡罗算法在图像分割中的应用
![马尔科夫链蒙特卡罗算法在图像分割中的应用](https://img.taocdn.com/s3/m/6b67d42c793e0912a21614791711cc7931b778c7.png)
马尔科夫链蒙特卡罗算法在图像分割中的应用图像分割是计算机视觉领域中的一项重要任务。
其主要目的是将图像中不同的区域分离出来,以便进一步的分析和处理。
目前,图像分割算法众多,其中马尔科夫链蒙特卡罗(MCMC)算法因其高效性和准确性而备受关注。
本文将介绍马尔科夫链蒙特卡罗算法在图像分割中的应用。
一、马尔科夫链蒙特卡罗(MCMC)算法简介马尔科夫链蒙特卡罗(MCMC)算法是一种基于蒙特卡罗方法的统计计算算法。
它的主要思想是通过对样本空间进行随机抽样,来估计统计量,比如图像分割中的像素分类。
MCMC算法与蒙特卡罗方法类似,都是通过生成样本代表总体分布来计算总体参数。
但是,与蒙特卡罗方法不同的是,MCMC算法需要构建一个马尔科夫链,使得该链能够收敛到正确的后验概率分布。
二、MCMC算法在图像分割中的应用MCMC算法在图像分割中的应用主要包括以下两方面:1、基于能量函数的图像分割基于能量函数的图像分割是典型的马尔科夫随机场模型。
该模型将图像的每个像素作为一个节点,构建一个无向图,每个节点与其周围的像素都有一条边相连。
这些节点被分为两个或多个簇,每个簇都有一个标签。
这里,我们需要定义一个能量函数(或势函数),该函数考虑了每个像素节点的标签和周围像素节点标签的关系。
我们希望该函数的输出值越小越好。
MCMC算法通过随机选取每个像素点的标签,并计算能量函数值,然后根据概率转移矩阵更新每个节点的标签。
这个过程迭代多次直到收敛。
2、基于Gibbs抽样的图像分割基于Gibbs抽样的图像分割是一种基于贝叶斯分类器的分割方法。
它将每个像素点作为一个分布,根据分布来随机抽取样本。
Gibbs采样是一种基于马尔科夫链的抽样方法。
在这个算法中,为每个像素点定义一个概率分布,然后随机选择一个像素点并根据邻域条件更新其概率分布。
这个过程迭代多次直到收敛。
三、优点和应用MCMC算法在图像分割中的应用具有以下几个优点:1、能够对复杂的图像进行分割,如含有弯曲、疏松等结构的图像。
马尔科夫链蒙特卡罗方法(MCMC)
![马尔科夫链蒙特卡罗方法(MCMC)](https://img.taocdn.com/s3/m/199f599b6aec0975f46527d3240c844769eaa0bd.png)
马尔科夫链蒙特卡罗⽅法(MCMC)⼀.蒙特卡罗法的缺陷通常的蒙特卡罗⽅法可以模拟⽣成满⾜某个分布的随机向量,但是蒙特卡罗⽅法的缺陷就是难以对⾼维分布进⾏模拟。
对于⾼维分布的模拟,最受欢迎的算法当属马尔科夫链蒙特卡罗算法(MCMC),他通过构造⼀条马尔科夫链来分步⽣成随机向量来逼近制定的分布,以达到减⼩运算量的⽬的。
⼆.马尔科夫链⽅法概要马尔科夫链蒙特卡罗⽅法的基本思路就是想办法构造⼀个马尔科夫链,使得其平稳分布是给定的某分布,再逐步⽣模拟该马尔科夫链产⽣随机向量序列。
其基本思路如下。
就像是普通的蒙特卡罗⽅法本质上依赖于概率论中的⼤数定理,蒙特卡罗⽅法的理论⽀撑是具有遍历性的马尔科夫链的⼤数定理。
马尔科夫链蒙特卡罗⽅法的⼤体思路如下:(1)给定某个分布p(x), 构造某个马尔科夫链\lbrace X_{t}\rbrace_{t\in\mathbb{N}}使得p是其平稳分布,且满⾜⼀定的特殊条件;(2)从⼀点x_{0}出发,依照马尔科夫链\lbrace X_{t}\rbrace_{t\in\mathbb{N}}随机⽣成向量序列x_{0},x_{1},...;(3)蒙特卡罗积分估计:计算E_{p}(f)\approx\sum_{t=1}^{N}f(x_{t})三.MCMC的数学基础——马尔科夫链的遍历性,⼤数定理MCMC为什么可以近似计算积分? 其实在数学上这是不太平凡的,下⾯简要介绍⼀下其数学理论依据。
3.1 马尔科夫链与其遍历性, 马尔科夫链的⼤数定理:所谓马尔科夫链通俗的说就是⼀个随机过程,其满⾜,t时刻的状态和t-1之前的状态⽆关。
我们⽤严格的测度论语⾔说就是:定义3.1:定义于概率空间(\Omega,\mathcal{G},P), 取值于\mathcal{Y}\in\mathbb{R}^{K}的随机向量序列\lbraceX_{t}\rbrace_{t\in\mathbb{N}}称为离散时间马尔科夫链(Markov Chain of discrete time)如果其满⾜:对于任意\mathcal{Y}的Borel集B\in \mathcal{B}_{\mathcal{Y}}P(X_{t+1}^{-1}(B)\mid X_{t},...,X_{1})=P(X_{t+1}^{-1}(B)\mid X_{t})进⼀步的,如果\lbrace X_{t}\rbrace_{t\in\mathbb{N}}还满⾜:\begin{equation}P(X_{t+1}^{-1}(B)\mid X_{t})=P(X_{1}^{-1}(B)\mid X_{0})\end{equation}我们称马尔科夫链\lbrace X_{t}\rbrace_{t\in\mathbb{N}}为时间齐次(time homogeneous)的,这时我们定义该马尔科夫链的转移核(transition kernel)$P_{t}: \mathbb{N}\times\mathcal{B}_{\mathcal{Y}}\longrightarrow [0,1]:$P_{t}(y,A)\triangleq P(X_{t}\in A\mid X_{0}=y),对任意t\in\mathbb{N}, 并且我们直接简记P(y,A)=P_{1}(y,A), 对y\in\mathcal{Y}, A\in\mathcal{B}_{\mathcal{Y}}。
马尔可夫链蒙特卡洛算法的详细步骤解析
![马尔可夫链蒙特卡洛算法的详细步骤解析](https://img.taocdn.com/s3/m/6a692741e97101f69e3143323968011ca300f722.png)
马尔可夫链蒙特卡洛算法的详细步骤解析马尔可夫链蒙特卡洛算法(Markov Chain Monte Carlo,MCMC)是一种基于统计的随机模拟算法,用于从复杂的概率分布中抽取样本。
在实际应用中,MCMC算法被广泛用于概率推断、参数估计、贝叶斯统计等问题的求解。
本文将详细解析MCMC算法的步骤及其原理,以便读者能够更好地理解和应用该算法。
1. 马尔可夫链MCMC算法的核心是马尔可夫链。
马尔可夫链是一个随机过程,具有“无记忆”的性质,即未来的状态只依赖于当前的状态,与过去的状态无关。
假设我们要从一个概率分布π(x)中抽取样本,可以构造一个转移核函数Q(x'|x),表示在当前状态为x时,下一个状态为x'的概率。
若满足细致平稳条件,即π(x)Q(x'|x) =π(x')Q(x|x'),则该马尔可夫链的平稳分布即为π(x)。
MCMC算法利用马尔可夫链的平稳分布来抽取样本。
2. Metropolis-Hastings算法Metropolis-Hastings算法是MCMC算法的一种经典实现。
其步骤如下:(1)初始化:选择一个初始状态x(0)。
(2)抽样:根据转移核函数Q(x'|x)抽取候选状态x'。
(3)接受-拒绝:计算接受概率α = min{1, π(x')Q(x|x') /π(x)Q(x'|x)}。
以α为概率接受候选状态x',否则保持当前状态x。
(4)迭代:重复步骤(2)和(3),直到达到设定的抽样次数。
Metropolis-Hastings算法通过接受-拒绝的方式生成符合目标分布π(x)的样本,但其效率较低。
因此,后续提出了各种改进算法,如Gibbs抽样、Hamiltonian Monte Carlo等。
3. Gibbs抽样Gibbs抽样是一种特殊的MCMC算法,适用于多维变量的联合分布抽样。
其步骤如下:(1)初始化:选择一个初始状态x(0)。
马尔可夫链蒙特卡洛算法
![马尔可夫链蒙特卡洛算法](https://img.taocdn.com/s3/m/acc7546c3d1ec5da50e2524de518964bce84d256.png)
马尔可夫链蒙特卡洛算法简介马尔可夫链蒙特卡洛算法(Markov Chain Monte Carlo,MCMC)是一种基于马尔可夫链的随机模拟方法,用于解决概率统计中的各种问题。
它通过从概率分布中采样来近似计算数学期望、方差和其他统计量。
MCMC在统计学、物理学、机器学习等领域都有广泛应用。
马尔可夫链马尔可夫链是一种随机过程,具有无记忆性质。
在一个离散的时间序列中,每个状态的转移只依赖于前一个状态,而与其他状态无关。
这个性质被称为马尔可夫性质。
马尔可夫链可以用一个状态空间和一个转移矩阵来描述。
状态空间是所有可能的状态的集合,转移矩阵则描述了从一个状态转移到另一个状态的概率。
蒙特卡洛方法蒙特卡洛方法是一类基于随机采样的数值计算方法。
它通过生成大量随机样本来近似计算复杂问题的解。
蒙特卡洛方法通常具有简单易实现、适用范围广等优点。
MCMC算法马尔可夫链蒙特卡洛算法是一种基于马尔可夫链的蒙特卡洛方法。
它通过构建一个满足平稳分布的马尔可夫链,然后从该马尔可夫链中采样得到样本,从而近似计算目标分布的统计量。
MCMC算法的核心思想是通过马尔可夫链的状态转移来实现采样。
具体而言,我们需要定义一个接受概率函数,来决定当前状态是否接受转移到下一个状态。
这个接受概率函数通常与目标分布有关,可以通过贝叶斯定理得到。
MCMC算法的步骤如下: 1. 初始化:选择一个初始状态。
2. 迭代:根据当前状态和转移矩阵进行状态转移。
3. 接受:根据接受概率函数决定是否接受新状态。
4. 重复:重复步骤2和步骤3直到达到设定的迭代次数。
在迭代过程中,由于马尔可夫链具有无记忆性质,最终会收敛到平稳分布。
我们可以利用这个性质来近似计算目标分布的统计量。
应用举例MCMC算法在很多领域都有广泛应用。
以下是一些常见的应用举例:贝叶斯统计推断MCMC算法可以用于贝叶斯统计推断,通过从后验分布中采样来近似计算参数的分布。
这对于复杂的概率模型非常有用,因为往往无法直接求解后验分布。
MonteCarlo(蒙特卡洛算法)算法
![MonteCarlo(蒙特卡洛算法)算法](https://img.taocdn.com/s3/m/ed46a3a10875f46527d3240c844769eae109a370.png)
用Monte Carlo 计算定积分
考虑积分
I
x 1exdx,
0
0.
假定随机变量具有密度函数
fX (x) ex,
则
I E( X 1).
用Monte Carlo 计算定积分-
2
2
T
T
Monte Carlo 模拟连续过程的欧式 期权定价-
均匀分布
R=unidrnd(N),-产生1到N间的均匀分布随 机数
R=unidrnd(N,n,m),产生1到N间的均匀分布 随机数矩阵
连续均匀分布
R=unifrnd(A,B) -产生(A,B)间的均匀分布随 机数
R=unifrnd(A,B,m,n)产生(A,B)间的均匀分布 随机数矩阵
Matlab 的随机数函数-
正态分布随机数
R=normrnd(mu,sigma) R=normrnd(mu,sigma,m) R=normrnd(mu,sigma,m,n)
特定分布随机数发生器 R=random(‘name’,A1,A2,A3,m,n)
例
a=random(‘Normal’,0,1,3,2) a=
基本思想和原理
基本思想:当所要求解的问题是某种事件出现 的概率,或者是某个随机变量的期望值时,它 们可以通过某种“试验”的方法,得到这种事 件出现的频率,或者这个随机变数的平均值, 并用它们作为问题的解。
原理:抓住事物运动的几何数量和几何特征, 利用数学方法来加以模拟,即进行一种数字模 拟实验。
实现从已知概率分布抽样
构造了概率模型以后, 按照这个概率分 布抽取随机变量 (或随机向量),这一 般可以直接由软件包调用,或抽取均匀 分布的随机数构造。这样,就成为实现 蒙特卡罗方法模拟实验的基本手段,这 也是蒙特卡罗方法被称为随机抽样的原 因。
马尔科夫链蒙特卡洛方法
![马尔科夫链蒙特卡洛方法](https://img.taocdn.com/s3/m/457b8c3300f69e3143323968011ca300a6c3f6ee.png)
马尔科夫链蒙特卡洛方法马尔科夫链蒙特卡洛方法,简称MCMC(Markov Chain Monte Carlo),是一种通过马尔科夫链来进行数值计算的方法,常用于解决概率统计中的一些难题,如推断、模拟和优化等。
MCMC方法的核心思想是通过构建一个马尔科夫链,使得在平稳状态下,该马尔科夫链的状态服从所需的概率分布。
下面将对MCMC 方法的基本原理和应用进行介绍。
MCMC方法的基本原理如下:首先,我们需要定义一个目标分布,即我们想要进行推断或模拟的概率分布。
然后,通过选择一个合适的转移核,即定义状态转移的概率,构建一个马尔科夫链。
在这个马尔科夫链中,每个状态的转移仅依赖于它的前一个状态,而与其他状态无关。
由于这个马尔科夫链是不可约的、非周期的和可遍历的,所以它具有平稳分布,并有一个唯一的不变分布。
接下来,我们可以通过采样马尔科夫链来近似目标分布。
当马尔科夫链在平稳状态时,采样的值将近似服从目标分布。
MCMC方法的主要优点是它可以处理复杂的分布,无论是多峰分布还是高维分布。
它不需要知道目标分布的具体形式,只需要指定一个可以采样的转移核。
另外,MCMC方法可以通过生成一系列的样本来近似计算目标分布的期望值。
由于马尔科夫链的收敛性质,经过一段时间的迭代后,采样的样本将近似服从目标分布,从而可以计算出期望值。
MCMC方法的应用非常广泛。
其中最为经典的应用是贝叶斯推断。
在贝叶斯推断中,我们需要根据已观测到的数据来估计未观测到的参数的后验分布。
MCMC 方法可以通过采样马尔科夫链来近似计算参数的后验分布。
例如,在线性回归模型中,我们可以使用MCMC方法来估计回归系数的后验分布,从而获得关于回归系数的不确定性信息。
此外,MCMC方法还可以用于模拟和优化等问题。
例如,在物理模拟中,MCMC方法可以用来生成服从给定能量函数分布的样本,从而模拟系统的行为。
在优化问题中,MCMC方法可以用来搜索参数空间,找到使得目标函数最大或最小的参数值。
蒙特卡罗方法的原理介绍
![蒙特卡罗方法的原理介绍](https://img.taocdn.com/s3/m/601b7258cd7931b765ce0508763231126edb77fa.png)
蒙特卡罗方法的原理介绍蒙特卡罗方法是一种基于随机抽样的数值计算方法,广泛应用于各个领域,如物理学、金融学、计算机科学等。
它的原理是通过随机抽样来模拟实验,从而得到近似的结果。
本文将介绍蒙特卡罗方法的原理及其应用。
一、蒙特卡罗方法的原理蒙特卡罗方法的原理可以简单概括为以下几个步骤:1. 定义问题:首先需要明确要解决的问题是什么,例如计算某个函数的积分、求解某个方程的解等。
2. 建立模型:根据问题的特点,建立相应的数学模型。
模型可以是一个函数、一个方程或者一个概率分布等。
3. 随机抽样:通过随机抽样的方法,生成符合模型要求的随机数。
这些随机数可以是服从某个特定分布的随机数,也可以是均匀分布的随机数。
4. 计算结果:利用生成的随机数,根据模型进行计算,得到近似的结果。
通常需要进行多次抽样和计算,以提高结果的准确性。
5. 分析结果:对得到的结果进行统计分析,计算均值、方差等统计量,评估结果的可靠性。
二、蒙特卡罗方法的应用蒙特卡罗方法在各个领域都有广泛的应用,下面以几个具体的例子来介绍。
1. 积分计算:蒙特卡罗方法可以用来计算复杂函数的积分。
通过在函数的定义域内进行随机抽样,计算抽样点的函数值的平均值,再乘以定义域的面积,即可得到函数的积分近似值。
2. 随机模拟:蒙特卡罗方法可以用来模拟随机事件的概率分布。
例如,在金融学中,可以使用蒙特卡罗方法来模拟股票价格的变动,从而评估投资组合的风险。
3. 数值求解:蒙特卡罗方法可以用来求解复杂方程的解。
通过在方程的定义域内进行随机抽样,计算抽样点的函数值,找到满足方程的解的概率分布。
4. 优化问题:蒙特卡罗方法可以用来求解优化问题。
通过在优化问题的定义域内进行随机抽样,计算抽样点的函数值,找到使函数取得最大或最小值的概率分布。
三、蒙特卡罗方法的优缺点蒙特卡罗方法具有以下优点:1. 适用范围广:蒙特卡罗方法可以应用于各种类型的问题,无论是求解数学问题还是模拟实际系统。
蒙特卡罗方法
![蒙特卡罗方法](https://img.taocdn.com/s3/m/9ba1f0279e314332386893a7.png)
蒙特卡罗方法蒙特卡罗(Monte-Carlo ,简写为M-C )方法属于计算数学的一个分支, 它是在二十世纪四十年代中期 为了适应当时原子能事业的发展而发展起来的, 但它与一般计算方法有很大区别, 一般计算方法对于解决多维或因素复杂的问题非常困难, 而蒙特卡罗方法对于解决这方面的问题却比较简单。
因而蒙特卡罗方法在近十年来发展很快,特别是随着快速电子计算机的发展,蒙特卡罗方法得到了迅速发展与广泛应用。
蒙特卡罗方法也称随机抽样技术(Random Sampling Technique )或统计试验方法(Method ofStatistical Test )。
蒙特卡罗是欧洲摩纳哥国的一个重要城市, 以赌博著称。
蒙特卡罗方法是以概率论与数理统计学为基础的,是通过统计试验达到计算某个量的目的。
而赌博时,概率论是一种有力的手段。
所以,以蒙特 卡罗作为方法的名字,原因大概于此。
由于蒙特卡罗方法是利用一连串的随机数来求解问题的,因此求解随机过程,放射性衰变和布朗运动等问题,它是很有效的。
它除了在原子能工业广泛应用外,在物理、化学、地质、石油、线性规划、 计算机研制、计算机模拟试验、解决多体问题等领域中都有不同程度上的应用。
第一节. 蒙持卡罗方法的基本思想、特点及其局限性一、 蒙特卡罗方法的基本思想用下述三个例子,说明蒙特卡罗方法的基本思想。
例1产品合格率的计算 某工厂生产一批产品,其合格率表示是:为了确定合格率,应该检查这批产品的全部,确定其中合格的数目。
但是,由于产品数量多,检查全部 产品花费的代价大。
因此,通常采取抽取部分产品,在这部分产品中确定其合格的数目。
然后用这部分 产品的合格率F (部分产品合格率) 1 - ■ ™N (部分产品的总数)来代替所要计算的合格率 P 。
例如,检查某批产品,当被检查的产品长度介于 13. 60cm —13. 90cm 内时,则认为是合格的,否则是次品。
分别抽取5件,10件,60件,150件,600件,900件,1200件,1800件来检查,其情况如下表和图 20所示。
蒙特卡罗方法的原理介绍
![蒙特卡罗方法的原理介绍](https://img.taocdn.com/s3/m/ddf18bcc82d049649b6648d7c1c708a1294a0a78.png)
蒙特卡罗方法的原理介绍蒙特卡罗方法是一种基于随机数的计算方法,用于解决复杂问题。
它的原理是通过随机抽样和统计分析来获得问题的近似解。
蒙特卡罗方法在各个领域都有广泛的应用,包括物理学、金融学、计算机科学等。
蒙特卡罗方法的核心思想是通过随机抽样来模拟问题的概率分布,然后利用统计分析方法对抽样结果进行处理,从而得到问题的近似解。
具体而言,蒙特卡罗方法包括以下几个步骤:1. 定义问题:首先需要明确问题的数学模型和目标函数。
例如,如果要计算一个复杂函数的积分,可以将其表示为一个概率分布函数。
2. 生成随机数:根据问题的特点和要求,选择合适的随机数生成方法。
常见的随机数生成方法包括线性同余法、拉格朗日插值法等。
3. 抽样:根据生成的随机数,进行抽样。
抽样的方法有很多种,包括简单随机抽样、重要性抽样、马尔可夫链蒙特卡罗等。
4. 计算目标函数:根据抽样结果,计算目标函数的值。
这一步需要根据问题的具体要求进行计算,可以是简单的加减乘除运算,也可以是复杂的数值计算。
5. 统计分析:对抽样结果进行统计分析,得到问题的近似解。
常见的统计分析方法包括均值估计、方差估计、置信区间估计等。
6. 收敛性检验:根据统计分析的结果,判断蒙特卡罗方法是否收敛。
如果结果不满足要求,可以增加抽样次数或改变抽样方法,重新进行计算。
蒙特卡罗方法的优点是可以处理复杂的问题,不受问题的维度和形式限制。
它可以通过增加抽样次数来提高计算精度,同时可以通过并行计算来加速计算过程。
然而,蒙特卡罗方法也存在一些缺点,例如计算速度较慢、收敛性检验困难等。
蒙特卡罗方法的应用非常广泛。
在物理学中,蒙特卡罗方法可以用于模拟粒子的运动轨迹、计算物理量的期望值等。
在金融学中,蒙特卡罗方法可以用于计算期权的价格、风险价值等。
在计算机科学中,蒙特卡罗方法可以用于图像处理、模式识别等。
总之,蒙特卡罗方法是一种基于随机数的计算方法,通过随机抽样和统计分析来获得问题的近似解。