生物脱氮技术
Feammox_一种新型自养生物脱氮技术
Feammox:一种新型自养生物脱氮技术Feammox:一种新型自养生物脱氮技术引言氮是生命体所需的关键元素之一,然而过量的氮排放却对环境产生了严重影响。
传统的氮脱氮技术往往需要高能耗和高维护成本,因此寻找一种低成本高效的氮脱氮技术迫在眉睫。
近年来,一种名为Feammox的自养生物脱氮技术受到了广泛关注,其被认为是一种具有巨大潜力的新型氮脱氮技术。
一、Feammox的特点和原理Feammox是铁氧化异化亚硝酸盐自养生物脱氮技术的简称,其最大的特点是能够在无需硝化作用的情况下直接将氨氮转化为氮气。
Feammox菌根据最新的研究成果被发现存在于不同环境中,例如淡水河流、湖泊、沿海海域等。
Feammox菌具有多种功能基因,包括异化亚硝酸还原酶(Hydroxylamine oxidoreductase)和亚硝态氮转肽酶(Nitrite converting enzyme),它们的相互协作使得Feammox菌能够直接将氨氮转化为氮气。
Feammox是自养生物脱氮技术的一种变体,它不依赖于硝化细菌进行氨氮转化为亚硝酸盐和硝酸盐的除氮过程,而是通过Feammox菌直接将氨氮转化为氮气。
此外,Feammox菌还能直接氧化异化亚硝酸盐(NH2NO2)为硝酸盐(NO3-),这为解决自养生物脱氮过程中的亚硝酸盐积累问题提供了一种新途径。
因此,Feammox既避免了传统脱氮技术中硝化和反硝化两个步骤的需要,也减少了对化学药剂的依赖,为氮脱氮技术带来了更高的效率和低成本。
二、Feammox的应用1. 城市污水处理厂城市污水处理厂是一个大量涉及氮排放的场所,因此在这类场所应用Feammox技术能够显著提高脱氮效率。
传统的污水处理厂中一般需要采用硝化和反硝化工艺来完成脱氮过程,而Feammox技术不仅避免了这两个步骤的需要,还能更高效地将氨氮转化为氮气。
此外,城市污水处理厂一般具有较高的硝酸盐浓度,而Feammox技术还能够将亚硝酸盐高效转化为硝酸盐,进一步降低水体中亚硝酸盐的积累。
污水处理中的生物脱氮技术
通过控制生物反应器的温度、pH值、溶解氧等参数,优化微生物 的生长和代谢环境,提高脱氮效率。
投加营养物质
针对缺乏某些必要营养物质的废水,适当投加必要的营养物质,促 进微生物的生长和代谢,提高脱氮效率。
降低运行成本的研究
优化工艺流程
01
通过改进和优化生物脱氮技术的工艺流程,降低能耗和物耗,
环保可持续
生物脱氮技术是一种环境友好的处理方法,不会产生二次 污染,且微生物资源可循环利用,符合可持续发展的要求 。
降低处理成本
相较于传统的物化处理方法,生物脱氮技术具有较低的运 行成本和较高的处理效率,有助于降低污水处理成本。
对未来研究的建议
深入研究微生物种群
进一步了解参与硝化、反硝化的微生物种群及其代谢机制,有助 于优化生物脱氮工艺,提高脱氮效率。
开发新型生物脱氮技术
针对不同水质、不同处理要求的污水处理场景,开发新型、高效的 生物脱氮技术,以满足不断变化的污水处理需求。
强化实际应用研究
加强生物脱氮技术在污水处理厂的实际应用研究,积累运行数据, 为技术的推广应用提供实践依据。
THANKS
THANK YOU FOR YOUR WATCHING
通过控制反应条件,如溶解氧的浓度和有机物的投加量,可以实现同步硝 化反硝化,提高脱氮效率。
同步硝化反硝化可以简化工艺流程,减少设备和投资成本,因此在污水处 理领域具有广泛的应用前景。
03
生物脱氮技术的主要方法
活性污泥法
总结词
一种常用的生物脱氮技术,通过微生物的作用将污水中的氨氮转化为氮气。
详细描述
活性污泥法利用微生物的硝化作用将污水中的氨氮氧化成硝酸盐或亚硝酸盐, 再通过反硝化作用将硝酸盐或亚硝酸盐还原成氮气,从而达到脱氮的目的。该 方法操作简单,处理效果好,但能耗较高。
工艺方法——生物脱氮除磷技术
工艺方法——生物脱氮除磷技术工艺简介一、传统生物脱氮除磷技术1、传统生物脱氮原理污水经二级生化处理,在好氧条件下去除以BOD5为主的碳源污染物的同时,在氨化细菌的参与下完成脱氨基作用,并在硝化和亚硝化细菌的参与下完成硝化作用;在厌氧或缺氧条件下经反硝化细菌的参与完成反硝化作用。
2、传统生物除磷原理在厌氧条件下,聚磷菌体内的ATP进行水解,放出H3PO4和能量形成ADP;在好氧条件下,聚磷菌有氧呼吸,不断地放出能量,聚磷菌在透膜酶的催化作用下利用能量、通过主动运输从外部摄取H3PO4,其中一部分与ADP结合形成ATP,另一部分合成聚磷酸盐(PHB)储存在细胞内,实现过量吸磷。
通过排除剩余污泥或侧流富集厌氧上清液将磷从系统内排除,在生物除磷过程中,碳源微生物也得到分解。
3、常用工艺及升级改造具有代表性的常用工艺有A/O工艺、A2/O工艺、UCT工艺、SBR 工艺、Bardenpho工艺、生物转盘工艺等,这些工艺都是通过调节工况,利用各阶段的优势菌群,尽可能的消除各影响因素间的干扰,以达到适应各阶段菌群生长条件,实现水处理效果。
近年来随着研究的深入,对常用工艺有了一些改进,目前应用最广泛、水厂升级改造难度较低的是分段进水工艺。
与传统A/O工艺、A2/O工艺、UCT工艺等相比,分段进水工艺可以充分利用碳源并能较好的维持好氧、厌氧(或缺氧)环境,具有脱氮除磷效率高、无需内循环、污泥浓度高、污泥龄长等优点。
分段进水工艺适用于对A/O工艺、A2/O工艺、UCT工艺等的升级改造,通过将生化反应池分隔并使进水按一定比例分段进入各段反应池,以充分利用碳源,解决目前污水处理厂普遍存在的碳源不足和剩余污泥量过大的问题。
分段进水工艺虽然对提高出水水质有较好的效果,但该工艺并不能提高处理能力,当水厂处于超负荷运行时,分段进水改造也不能达到良好的处理效果。
二、新型生物脱氮除磷技术近年来,科学研究发现,生物脱氮除磷过程中出现了超出传统生物脱氮除磷理论的现象,据此提出了一些新的脱氮除磷工艺,如:短程硝化反硝化工艺、同步硝化反硝化工艺、厌氧氨氧化工艺、反硝化除磷工艺。
生物脱氮技术
生物脱氮技术生物脱氮技术是一种有效的方法,用于处理含有高浓度氮污染物的废水和污水。
它通过利用微生物的生物活性,将废水中的氮污染物转化为氮气,从而实现脱氮的目的。
这种技术在环保领域中得到了广泛应用。
本文将详细介绍生物脱氮技术的原理、应用和优势。
一、原理生物脱氮技术基于微生物的代谢活动,通过一系列微生物反应将废水中的氮污染物转化为氮气。
具体来说,生物脱氮技术主要包括硝化和反硝化两个过程。
硝化是指将废水中的氨氮转化为硝态氮的过程。
在硝化过程中,氨氮首先被氧化成亚硝酸盐,然后再被氧化成硝酸盐。
这一过程主要由硝化细菌完成。
硝化细菌通过吸收废水中的氨氮,并在氧气的存在下将其转化为硝酸盐。
反硝化是指将废水中的硝态氮还原为氮气的过程。
在反硝化过程中,硝酸盐首先被还原成亚硝酸盐,然后再被还原成氮气。
这一过程主要由反硝化细菌完成。
反硝化细菌通过吸收废水中的硝酸盐,并在缺氧的环境下将其还原为氮气。
通过硝化和反硝化两个过程,生物脱氮技术可以将废水中的氮污染物转化为氮气,从而实现脱氮的效果。
二、应用生物脱氮技术广泛应用于各种含有高浓度氮污染物的废水和污水处理系统中。
例如,生物脱氮技术可以应用于城市生活污水处理厂和工业废水处理厂。
此外,生物脱氮技术还可以应用于农业废水处理和农田灌溉水质的改善。
在城市生活污水处理厂中,生物脱氮技术可以有效地处理含有高浓度氮污染物的污水。
通过生物脱氮技术,污水中的氮污染物可以被转化为氮气,从而减少了对环境的污染。
此外,生物脱氮技术还可以提高污水处理的效率和降低运营成本。
在工业废水处理厂中,生物脱氮技术可以处理各种含有高浓度氮污染物的废水。
通过生物脱氮技术,废水中的氮污染物可以被转化为氮气,从而降低了对环境的影响。
此外,生物脱氮技术还可以减少废水处理过程中的化学药剂使用量,降低了处理成本。
在农业废水处理和农田灌溉水质改善方面,生物脱氮技术也发挥了重要作用。
通过生物脱氮技术,农业废水中的氮污染物可以被转化为氮气,从而减少了对农田的污染。
生物脱氮机理、影响因素及应用工艺详解
生物脱氮机理、影响因素及应用工艺详解生物脱氮是指在微生物的联合作用下,污水中的有机氮及氨氮经过氨化作用、硝化反应、反硝化反应,最后转化为氮气的过程。
其具有经济、有效、易操作、无二次污染等特,被公认为具有发展前途的方法,关于这方面的技术研究不断有新的成果报道。
一、机理详解1、氨化反应氨化反应是指含氮有机物在氨化功能菌的代谢下,经分解转化为 NH4+的过程。
含氮有机物在有分子氧和无氧的条件下都能被相应的微生物所分解,释放出氨。
2、硝化反应硝化反应由好氧自养型微生物完成,在有氧状态下,利用无机氮为氮源将NH4+化成NO2-,然后再氧化成NO3-的过程。
硝化过程可以分成两个阶段。
第一阶段是由亚硝化菌将氨氮转化为亚硝酸盐(NO2-),第二阶段由硝化菌将亚硝酸盐转化为硝酸盐(NO3-)。
3、反硝化反应反硝化反应是在缺氧状态下,反硝化菌将亚硝酸盐氮、硝酸盐氮还原成气态氮(N2)的过程。
反硝化菌为异养型微生物,多属于兼性细菌,在缺氧状态时,利用硝酸盐中的氧作为电子受体,以有机物(污水中的BOD成分)作为电子供体,提供能量并被氧化稳定。
二、生物脱氮主要影响因素1、温度生物硝化反应的适宜温度范围为20~30℃,15℃以下硝化反应速率下降,5℃时基本停止。
反硝化适宜的温度范围为20~40℃,15℃以下反硝化反应速率下降。
实际中观察到,生物膜反硝化过程受温度的影响比悬浮污泥法小,此外,流化床反硝化温度的敏感性比生物转盘和悬浮污泥的小得多。
2、溶解氧硝化反应过程是以分子氧作为电子终受体的,因此,只有当分子氧(溶解氧)存在时才能发生硝化反应。
为满足正常的硝化效果,在活性污泥工艺运行过程中,DO值至少要保持在2mg/L以上,一般为2~3mg/L。
当DO值较低时,硝化反应过程将受到限制,甚至停止。
反硝化与硝化在溶解氧的需求方面是一个对立的过程。
传统的反硝化过程需要在严格意义上的缺氧环境下才能发生,这是因为DO与NO3-都能作为电子受体,存在竞争行为。
简述生物脱氮和生物除磷的基本原理和过程
生物脱氮和生物除磷是水环境治理中常见的技术手段,其基本原理和过程对于水质净化具有重要意义。
下文将分别对生物脱氮和生物除磷的基本原理和过程进行简要阐述,以便更好地理解和应用这两种技术手段。
一、生物脱氮的基本原理和过程1. 基本原理:生物脱氮是指利用生物的作用将水体中的氮气态化合物转化为氮气排放出去的过程。
其主要包括硝化和反硝化两个过程。
2. 过程:1)硝化作用:首先是硝化细菌将水体中的氨氮转化为亚硝酸盐,然后再将亚硝酸盐转化为硝酸盐的过程。
这一过程主要发生在水中砷、锰等微生物和有机物贪婪性好氧微生物的作用下。
2)反硝化作用:反硝化细菌将水中的硝酸盐还原成氮气气体,从而实现氮的脱除。
这一过程主要发生在水中缺氧或厌氧条件下,反硝化细菌在有机物的作用下进行。
二、生物除磷的基本原理和过程1. 基本原理:生物除磷是指利用生物的作用将水体中的磷物质转化为无机磷沉积或有机磷的过程。
其主要包括磷的吸附和磷的沉淀两个过程。
2. 过程:1)磷的吸附:指微生物在生长过程中,通过细胞活性或胞外聚合物等结合机制,将水体中的磷物质吸附到微生物体表面或细胞内,从而减少水体中的磷含量。
这一过程主要发生在水中的底泥、生物膜等介质上。
2)磷的沉淀:指在适当的环境条件下,微生物可以促进水中磷物质的沉淀作用,将磷固定到底泥中,从而减少水体中的可溶性磷含量。
这一过程主要发生在水中的缺氧或厌氧条件下。
生物脱氮和生物除磷是通过利用微生物的作用,将水体中的氮和磷物质转化为氮气或无机磷沉积的技术手段。
其基本原理和过程涉及硝化、反硝化、微生物吸附和微生物沉淀等生物学过程,在水环境治理中具有重要的应用价值。
希望通过本文的介绍,读者对生物脱氮和生物除磷技术有更深入的了解,并能更好地应用于实际的水质净化工作中。
生物脱氮和生物除磷作为水环境治理的重要手段,对于改善水体质量、保护生态环境具有重要意义。
在实际应用中,为了更好地发挥生物脱氮和生物除磷技术的效果,需要结合具体的水体特点和环境条件,采取相应的措施和管理方式,以确保技术的有效运行和水体的稳定净化。
常见脱氮工艺优缺点对比表
常见脱氮工艺优缺点对比表1、常用脱氮工艺简介1、传统生物脱氮传统的生物脱氮技术始于上世纪30年代,真正应用于20世纪70年代。
自Barth三段生物脱氮工艺的开创,A/0工艺、序批式工艺等脱氮工艺相继被提出并应用于工程实际。
三段生物脱氮工艺三段生物脱氮工艺流程如图所示,该工艺是将有机物降解、硝化作用以及反硝化作用三个阶段独立开来,每一阶段后面都有各自独立的沉淀池和污泥回流系统。
第一段曝气池的主要作用是代谢分解有机物,并使有机氮氨化。
第二段硝化池主要进行硝化反应,将氨氮氧化,同时需投加碱度以维持一定的PH值。
第三段是反硝化反应器,硝态氮在缺氧条件下被还原为N2,安装搅拌装置使污泥混合液呈悬碳源以满足悬浮状态,并外加反硝化反应所需的碳源。
A/O生物脱氮工艺A/O生物脱氮工艺如图所示,该工艺将缺氧段置于系统前端,其发生反硝化反应产生的碱度能够少量补充硝化反应之需。
另外,缺氧池中反硝化反应利用原废水中的有机物为碳源可以减少补充碳源的投加甚至不加。
通过内循环将硝化反应产生的硝态氮转移到缺氧池进行反硝化反应,硝态氮中氧作为电子受体,供给反硝化菌的呼吸作用和生命活动,并完成脱氮工序。
在A/0生物脱氮工艺中,硝化液回流比对系统的脱氮效果影响很大。
若回流比控制过低,则无法提供充足的硝态氮进行反应,使硝化作用不完全,进而影响脱氮效果;若控制过高,则导致硝化液与反硝化菌接触时间减短,从而降低脱氮效率。
因此,在实际的运行过程中需要控制适当的硝化液回流比,使系统脱氮效果达到最佳水平。
序批式脱氮工艺(例如CASS)序批式脱氮工艺与A/0工艺相比,其运行方式有所不同,但在脱氮反应机理上基本与A/0生物脱氮工艺一致。
序批式工艺为间歇的运行方式,采用一个独立的反应池替代了传统的由多个具有不同功能的反应区组合而成的A/0生物脱氮反应器。
序批式脱氮工艺以时间的交替方式实现了缺氧/好氧环境,取代了传统空间上的缺氧/好氧,因其具有简单的结构和灵活的操作方式而倍受研究者的关注和研究。
污水处理中的生物脱氮技术应用
城市污水处理
总结词
城市污水处理是生物脱氮技术应用的重 要领域之一,通过生物脱氮技术可以有 效处理城市污水中含有的氮污染物,提 高水质并降低水体富营养化的风险。
VS
详细描述
城市污水中含有一定量的氮污染物,如生 活污水、雨水等。生物脱氮技术通过硝化 和反硝化作用,可以有效去除这些污染物 ,降低水体富营养化的风险,提高水质并 保障城市居民的用水安全。
02
CATALOGUE
生物脱氮技术应用场景
生活污水处理
总结词
生活污水处理是生物脱氮技术的重要应用领域,通过生物脱氮技术可以有效去 除生活污水中含有的氮污染物,达到净化水质的目的。
详细描述
生活污水中含有大量的氮污染物,如氨氮、硝态氮等,这些污染物对人体健康 和生态环境造成危害。生物脱氮技术通过微生物的硝化和反硝化作用,将氮污 染物转化为无害的氮气排出,从而达到净化水质的效果。
03
CATALOGUE
生物脱氮技术应用案例
某生活污水处理厂生物脱氮技术应用
总结词
成功应用、高效去除
详细描述
某生活污水处理厂采用生物脱氮技术,通过合理设计缺氧、好氧反应器,成功实现了对总氮的高效去 除。经过处理后的出水总氮浓度低于排放标准,满足了环保要求。
某工业废水处理厂生物脱氮技术应用
总结词
针对性强、效果显著
04
CATALOGUE
生物脱氮技术的发展趋势和挑战
生物脱氮技术的发展趋势
高效低耗
随着环保要求的提高,生物脱氮 技术正朝着高效、低能耗的方向 发展,以提高脱氮效率并降低运
行成本。
智能化控制
利用现代信息技术和人工智能技术 ,实现生物脱氮过程的智能化控制 ,提高处理效果和稳定性。
4.3生物脱氮除磷技术
NO3-一类的化合态氧也不允许存在,但在聚磷菌吸氧的好氧反
应器内却应保持充足的氧 (2)污泥龄 生物除磷主要是通过排除剩余污泥而去除磷的,因此剩 余活泥多少将对脱磷效果产生影响,一般污泥龄短的系统产 生的剩余污泥量较多,可以取得较高的除磷效果。有报导称 :当污泥龄为30d时,除磷率为40%,污泥龄为17d时,除磷 率为50%,而当污泥龄降至5d时,除磷率高达87%。
(3) 后置缺氧-好氧生物脱氮工艺
可以补充外来碳源,也可以利用活性污泥的 内源呼吸提供电子供体还原硝酸盐,反硝化速率 仅是前置缺氧反硝化速率的1/3-1/8,需较长停留 时间。
进水 二沉池 出水
好氧/ 硝化
缺氧
回流污泥 污泥
二、生物除磷工艺
1.概述 来源:人体排泄物以及合成洗涤剂、牲畜饲养场 及含磷工业废水 危害:促进藻类等浮游生物的繁殖,破坏水体耗 氧和复氧平衡;水质恶化,危害水资源。 包括:有机磷(磷酸甘油酸、磷肌酸)和无机磷( 磷酸盐,聚合磷酸盐) 去除方法: 常规活性污泥法的微生物同化和吸附; 生物强化除磷; 投加化学药剂除磷。
二、生物除磷工艺
72年开创,生物除磷和化学 曝气池:含磷污水进入,还有由除 沉淀池(I):泥水分离, 4.生物除磷工艺 磷池回流的已经释放磷但含有聚磷 除磷相结合,除磷效果好. 含磷污泥沉淀,已除磷的 (2)弗斯特利普除磷工艺(Phostrip): 菌的污泥。使聚磷菌过量摄取磷, 上清液作为处理水排放。 去除有机物(BOD和COD), 可能还 有一定的硝化作用。
聚磷分解形成的无机磷释放回污水中—厌氧释磷。
好氧环境:进入好氧状态后,聚磷菌将贮存于体
内的PHB进行好氧分解并释放出大量能量供聚磷菌增
殖等生理活动,部分供其主动吸收污水中的磷酸盐,
自养反硝化工艺
自养反硝化工艺
自养反硝化工艺是一种生物脱氮技术,其特点在于利用无机碳(如CO32-、HCO3-)作为碳源,以无机物(如S2-、S2O32-、Fe、Fe2+、H2以及NH4+)作为电子供体,将硝酸盐还原为氮气。
整个过程中无需添加有机碳源,从而避免了有机碳源投加过量导致的穿透现象和水COD升高问题。
自养反硝化工艺的核心在于自主研发的耦合生物电子载体、功能菌剂和非碳源依赖型深度脱氮工艺系统。
耦合生物电子载体中,碱度供体均匀分布可以有效平衡脱氮过程的酸碱度,实现生物活性的自维持;多元电子供体的引入,可以有效促进微生物的代谢偶联作用,实现脱氮反应过程的自激活。
此外,自养反硝化技术还包括硫自养反硝化工艺,该工艺利用硫细菌在缺氧或厌氧条件下以无机碳为生长碳源,以单质硫、硫化物、亚硫酸盐、四硫磺酸盐或硫代硫酸盐等作为电子供体将硝酸盐还原为氮气。
该技术能用于市政污水深度脱氮,受污染地表水环境深度净化及硝酸盐污染地下水修复领域。
自养反硝化工艺具有无需曝气、节省占地面积、节约成本、污泥产生率低、滤料费用小、滤池日处理量不发生变化、见效快、可序批式实现无缝衔接等优势。
同时,该工艺还具备一定的同步脱氮除磷能力,适用于各种场景下的污水处理。
因此,自养反硝化工艺是一种具有广阔应用前景的生物脱氮技术。
微生物在污水处理中的应用—废水的生物脱氮除磷技术
废水脱氮
1.微生物脱氮原理 2.生物脱氮的影响 因素 3.生物脱氮工艺及 应用
废水除磷
1.微生物除磷原理 2.典型的除磷工艺
同步脱 氮除磷
1.同步脱氮除磷典 型工艺 2.废水同步脱氮除 磷技术的工程应用
53
1.生物脱氮除磷的原理
在生物脱氮除磷工艺中,厌氧池的主要功能是释放磷, 使污水中的磷浓度升高,溶解性的有机物被微生物细胞吸收 而是无水肿的BOD下降,另外,氨氮因细胞的合成而被去除 一部分,是水中氨氮浓度下降,但硝态氮含量没有变化。
无机氮 N.H,N.O
NH3 铵盐(NH4+) 硝酸盐
7
1.3废水中氮的来源、状态
状态
污染物
有机氮 复杂蛋白质、尿 素、核酸等
无机氮 NH3、铵盐等 硝酸盐等
污染来源
生活污水、农业固体废物 (养殖粪便)和食品加工 等工业废水
农田灌溉、化肥厂等工业 废水
8
1.4水中氮磷的危害
(1)过量氮、磷容易导致水体富营养化; (2)增加水处理成本、降低消毒、脱色等处理效率, (3)增加药剂药剂用量; (4)氨氮消耗水中溶解氧; (5)含氮化合物对人、生物有毒害作用。
小结
废水生物除磷原理 废水生物除磷影响因素 废水生物除磷工艺及应用
废水同步生物脱氮除磷 原理及工艺
主要内容
生物同步脱氮除磷的原理 生物同步脱氮除磷工艺及应用
随着经济的发展,大量含氮、磷物质排入环境,导致水 体污染日益加剧,给水体生态系统和人群健康造成极大的危 害,当磷大与0.01mg/l,氮大于0.1 mg/l,水体开始发生富营 养化。因此,需对废水脱氮除磷,以保护水生生态系统。
40
2.生物除磷原理
因此,在好氧厌氧交替条件下,活性污泥中的聚磷 菌以“厌氧释磷”和“好氧聚磷” 的机制,将磷最终以 剩余污泥的形式排出,彻底去除水中的磷。
《生物脱氮除磷》课件
有机物浓度和泥龄对生物除磷的影响也 较大,适宜的有机物浓度和泥龄需要针 对不同的工艺进行优化。
溶解氧浓度对生物除磷的影响较大,适 宜的溶解氧浓度范围为0.5-3mg/L。
温度对生物除磷的影响较大,适宜的温 度范围为10-30℃。
pH值对生物除磷的影响也较大,适宜的 pH值范围为6.5-8.5。
04 生物脱氮除磷技 术案例分析
温度
温度对生物脱氮效率有显著影 响,适宜的温度范围是20-30℃
。
pH值
pH值对硝化细菌和反硝化细菌 的生长和活性有重要影响,适 宜的pH值范围是7.0-8.0。
溶解氧
溶解氧对硝化反应和反硝化反 应均有影响,适宜的溶解氧浓 度是2-4mg/L。
碳源
碳源的种类和浓度对反硝化反 应有重要影响,常用的碳源有
某污水处理厂生物脱氮除磷运行管理
运行管理要点
为确保生物脱氮除磷工艺的稳定运行,需要定期对工艺参数进行监测与调整,如溶解氧、 pH值、温度等。同时,需要加强设备维护与保养,确保设备的正常运行。
应急处理措施
针对可能出现的异常情况,如污泥膨胀、污泥流失等,制定相应的应急处理措施,确保工 艺的可靠性。
人员培训与安全管理
某污水处理厂生物脱氮除磷效果分析
1 2 3
脱氮效果
通过合理的工艺控制,该污水处理厂的生物脱氮 效率较高,总氮去除率达到85%以上,满足国家 排放标微生物的聚磷作用,有效去除 磷元素,总磷去除率达到90%以上,显著降低水 体富营养化的风险。
经济效益与社会效益
该工艺的运行不仅提高了污水处理效果,减少了 污染物排放,同时也为污水处理厂带来了经济效 益和社会效益。
原理
生物脱氮基于硝化反硝化原理,通过好氧硝化和缺氧反硝化过程实现氮的去除 ;生物除磷则通过聚磷菌在厌氧和好氧环境下的代谢作用实现磷的去除。
生物脱氮新技术研究进展
生物脱氮新技术研究进展随着环境保护意识的不断提高,生物脱氮技术作为一种环保节能的新型污水处理技术,越来越受到人们的。
本文将介绍生物脱氮新技术的研究背景和意义、研究进展、优缺点和发展前景,以期为相关领域的研究提供参考。
生物脱氮是指利用微生物或植物等生物手段,通过硝化和反硝化作用将废水中的氨氮和硝酸盐等含氮化合物转化为无害的氮气,从而达到废水治理和资源化的目的。
生物脱氮技术主要包括活性污泥法、生物膜法、反硝化菌法等。
这些技术均利用微生物菌群进行硝化和反硝化作用,将废水中的氨氮转化为氮气。
近年来,随着生物技术的不断发展,生物脱氮新技术也层出不穷。
下面介绍几种生物脱氮新技术的研究进展。
短程硝化反硝化技术是指在同一个反应器内,通过控制反应条件,使硝化作用和反硝化作用相继进行。
该技术可以大幅度减少反应器体积,提高反应效率,同时还可以降低能耗。
研究结果表明,短程硝化反硝化技术对氨氮和总氮的去除率均高于传统的活性污泥法。
厌氧氨氧化技术是指利用厌氧微生物将氨氮和亚硝酸盐转化为氮气的过程。
该技术的反应条件温和,无需曝气供氧,具有较高的氮去除率和能源利用率。
研究结果表明,厌氧氨氧化技术对高浓度氨氮废水的处理效果较好,但在低浓度氨氮废水处理中可能受到抑制。
悬浮生长植物脱氮技术是指利用水生植物如荷花、水葫芦等吸收废水中的氨氮,并通过植物体内的转化作用将其转化为氮气。
该技术具有投资少、操作简单、无需外加能源等优点,在低浓度氨氮废水中具有较好的处理效果。
研究结果表明,悬浮生长植物脱氮技术可以降低废水中的氨氮浓度,同时还可以改善水体生态环境。
生物脱氮新技术在氨氮和总氮的去除率、反应效率、能源利用率等方面均优于传统活性污泥法等生物脱氮技术。
但是,这些新技术尚存在一些缺点,如短程硝化反硝化技术需要控制精确的反应条件,厌氧氨氧化技术对废水的预处理要求较高,悬浮生长植物脱氮技术仅适用于低浓度氨氮废水的处理。
因此,在实际应用中,需要根据具体情况选择适合的生物脱氮技术。
污水处理中的生物脱氮技术
污水处理中的生物脱氮技术污水处理是保护水资源和环境的重要举措之一。
而生物脱氮技术作为一种高效节能的污水处理方法,已经得到了广泛的应用和研究。
本文将重点介绍污水处理中的生物脱氮技术原理、应用案例以及未来发展趋势。
一、生物脱氮技术原理生物脱氮技术是指利用微生物将废水中的氮化合物转化为气态氮的过程。
常见的脱氮技术包括硝化-反硝化和厌氧反硝化。
其中,硝化过程是将氨氮先转化为亚硝酸盐氮,再通过细菌作用转化为硝酸盐氮。
而反硝化过程则是将硝酸盐氮还原为氮气。
厌氧反硝化技术是针对无氧环境下,通过厌氧细菌将硝酸盐氮还原为氮气。
二、生物脱氮技术的应用案例1. 活性污泥法活性污泥法是一种常见的生物脱氮技术,通过在好氧条件下,利用生物膜中的硝化细菌和反硝化细菌,将废水中的氨氮转化为氮气。
这种技术适用于中小型污水处理厂和城市污水处理厂。
2. 等温厌氧反硝化技术等温厌氧反硝化技术是近年来快速发展的生物脱氮技术之一。
该技术通过通过将反硝化与厌氧条件相结合,在相对温和的条件下提高了反硝化的效率。
这种技术适用于低温环境下的污水处理。
3. 全自动生物脱氮系统全自动生物脱氮系统是一种集成化的生物脱氮技术。
该系统通过自动控制设备,实现了对污水处理过程中关键参数的监测和调控。
这种技术具有稳定性高、运行成本低、操作简便等优点,被广泛应用于大型污水处理厂。
三、生物脱氮技术的发展趋势1. 高效节能随着能源问题的日益凸显,未来的生物脱氮技术将更加注重能源的高效利用。
例如,利用厌氧颗粒污泥技术可以在反硝化过程中产生较低的剩余物,提高能源利用效率。
2. 微生物多样性研究生物脱氮技术中的微生物扮演着重要的角色。
因此,未来的研究将更加关注微生物多样性的研究,进一步优化脱氮效果。
3. 优化污水处理工艺将生物脱氮技术与其他污水处理工艺相结合,可以进一步提高脱氮效果。
例如,与生物脱磷技术相结合,可以实现对污水中氮磷的同步去除,提高污水处理的效率。
总之,生物脱氮技术作为一种高效节能的污水处理方法,持续得到广泛研究和应用。
生物脱氮新技术
生物脱氮新技术★废水物化脱氮技术1.空气吹脱法:利用废水中所含氨氮的实际浓度和平衡浓度之间存在的差异,在碱性条件下用空气吹脱,使废水中的氨氮不断地由液相转移到气相中,达到从废水中去除氨氮目的。
2.折点氯化法:将氯气或次氯酸钠投入污水,将废水中的氨氮氧化成N2的化学脱氮工艺。
可作单独工艺,也可对生物脱氮工艺的出水进行深度处理。
出水可控制氨氮在0.1mg/L。
3.选择性离子交换法:离子交换中固相交换剂和废水中NH4+间进行化学置换反应。
设备简单、易于操作,效率高;离子交换剂用量大,需频繁再生。
对废水预处理要求高,运行成本高。
4.化学沉淀法:投加Mg2+和PO43+,使之与氨氮生成难溶复盐MgNH4PO4·6H2O沉淀物,从而达到脱氮目的。
可以处理各种浓度的氨氮废水,特别是高浓度氨氮废水。
5.化学中和法:浓度大于2%-3%的氨的碱性废水要先考虑回收利用,制成硫铵。
不易回收的可与酸性水或废气(CO、CO2、SO2)中和,若中和后达不到要求,补加化学药剂再中和。
6.乳化液膜分离法:含氨废水以选择透过液膜为分离介质,在液膜两侧通过被选择透过物质(NH3)浓度差和扩散传递为推动力,使透过物质(NH3)进入膜内,达到分离的目的。
第一部分★传统废水生物脱氮过程和原理1.2.3.素矿化。
微生物:细菌、各种霉菌。
硝化作用指微生物将NH4+氧化成NO2-,再进一步氧化成NO3-的过程。
微生物:亚硝化菌:亚硝化单胞菌(Nitrosomonas),将NH4+氧化成NO2-;硝化菌:硝化杆菌(Nitrobacter),将NO2-氧化成NO3-。
(自养型微生物)反硝化作用将NO3-或NO2-还原成N2或N2O的过程。
微生物:硝化菌(异养型微生物)二、影响因素⑴ pH:通常把硝化段运行的pH控制在7.2-8.2,反硝化段pH控制在7.5-9.2 。
⑵温度:硝化反应适宜温度为30~35℃,在此范围反应速率随温度升高而加快。
生物脱氮技术
污水中的氮一般以有机氮、氨氮、亚硝酸盐氰和硝酸盐氮四种形式存在.生活污水中氮的主要存在形态是有机氮和氨氮.通常采用的二级生化处理技术对氮的去除率是比较低的,一般将有机氮化合转化为氨氮,却不能有效地去除氮.污水脱氮,从原理看,可以分为物理法、化学法和生物法三大类.由于生物脱氮一般能够满足有关方面对污水净化的要求,而且价格低廉,产生的二次污染物较易处理,因此生物脱氮方法是当前最活跃的研究与投资开发领域.一、生物脱氮技术生物脱氮技术主要是利用污水中某些细菌的生物氧化与还原作用实现的.生物脱氮工艺从碳源的来源分,可分为外碳源工艺和内碳源工艺;从硝化和反硝化过程在工艺流程中的位置来分,可分为传统工艺和前置反硝化工艺;按照细菌的存在状态不同,可以分为活性污泥法和生物膜法生物脱氮工艺.前者的硝化菌、反硝化菌等微生物处于悬浮态,而后者的各种微生物却附着在生物膜上.1.活性污泥法活性污泥法是一种历史悠久、目前应用最广泛的生物脱氮技术,它有许多种形忒.1活性污泥法传统流程这是一种传统的三级生物脱氮工艺,即有机物的氧化、硝化和反硝化作用分别在不同的构筑物中完成,如下图所示:由于有机物去除、氨氧化和硝酸盐还原依次进行,彼此之间相对独立,并分别设置污泥沉淀及回流系统,系统运行的灵活性比较强,有机物降解菌、硝化菌和反硝化菌的生长环境均较佳,因而反应速度快,脱氮效果也比较好.但是,三级活性污泥法的流程长、构筑物多、附属设备多,因此基建费用高、管理难度大.此外,为了保持硝化所需的稳定pH 值, 往往两要向硝化池加碱,为了保证反硝化阶段有足够的电子受体,需要外加甲醇等碳源,为了除去尾水中剩余的有毒物质甲醇,又必须增设后曝气池,所以运行费用也很高.可以看出,这种工艺的确具有很大的局限性.如果将有机物去除和硝化放在同一个反应器中进行,而将反硝化作用放在另一个反应器中进行,则可以将三级生物脱氮系统简化为两级生物脱氮系统.如下图:与三级生物脱氮流程相比,两级生物脱氮流程的基建费用和占地面积均有所降低,但是仍然需要外加甲醇和碱源.2前置反硝化生物脱氮系统又称缺氧-好氧活性污泥脱氮系统、A/0生物脱氮流程、改良LudMck-Euinger工艺等.前置反硝化是目前使用比较广泛的一种脱氮工艺分建式缺氧好氧活性污泥脱氮系统如下图:.除分建式系统外,本工艺还可以建成合建式装置,即将缺氧和好氧环境放在-个构筑物内,中间以挡板隔开,挡板下端与池内壁之间以一定的缝隙相通,如下图所示:采用合建式装置,对于现有推流式曝气池的改造来说更加方便.与传统的生物脱氰流程相比较,该流程具有如下优势.①由于构筑物数量减少,因而流程得以简化,占地面积减少,且缺氧段消耗原污水中的部分有机物,能够降低好氧段的有机物污泥负荷,不仅容易使硝化菌取得竞争优势,而且降低了曝气充氧的电耗,因而基建费用和运行费用均比较低.②将缺氧段放在好氧段前边,可以起到生物选择器的作用,有利于防止污泥膨胀,改善活性污泥的沉降性能.③反硝化过程能够充分利用原污水中有机物和内源代谢产物作为电子受体,既可以减少或取消外加碳源,从面省去后曝气池,提高处理水水质,又可以保证较高的碳比,有利于反硝化的充分进行.④由于存在内循环,缺氧反硝化产生的碱度能够补偿硝化反应所造成的pH值下降,大大降低了碱投加量.前置反硝化生物脱氮系统也有自己的不足之处.一是处理出水中含有一定浓度的硝酸盐,可能污染受纳水体.第二,由于内回流比限制本工艺的脱氮率一般为70%~80%, 很难达到90%.而且,该工艺对运行管理人员的素质要求比较高.例如,如果系统运行不当,沉淀池内将发生反硝化反应,造成污泥上浮,使处理水恶化.3氧化沟工艺从工艺、流态和构造方面看,氧化沟也非常适合于生物脱氮.①氧化沟的污泥龄通常很长,一般可达15~30d,非常适合于世代时间长、增值缓慢的硝化菌存活与繁殖.②氧化沟往往做成总长达几十米甚至上百米的环行构筑物.由于循环次数多达72次其至360次,混合液沿沟道方向近似于完全混合式.然而由于工艺状况不同,混合液中溶解氧的浓度在不同位置也存在很大差异:在曝气器的附近非常容易出现DO比较高的富氧区,而在远离曝气装置的地方,容易出现DO比较低的缺氧区,使硝化和反硝化能够在同一装置中顺利进行,从而达到生物脱氮的目的.据报道,Carrousel氧化沟、交替工作氧化沟、二次沉淀池交替运行氧化沟、Orbal型氧化沟、曝气-沉淀一体化氧化沟和刺渠型一体化氧化沟等均可以用于脱氮,其脱氮效率可以达到60%-90%,例如,Carrousel氧化沟的脱氮率为90%, Orbal型氧化沟的总氮去除率也以达到85%~90%.氧化沟工艺构造简单,运行稳定,易于管理维护,出水水质好,基建费用和处理成本均较低,对原水水质水量的变化也有很强的适应性,是一种非常有竞争力的生物脱氮技术.2.生物膜法生物膜法是与活性污泥法并列的一种污水处理技术.由于生物污泥的生物固体平均停留时间与污水的水力停留时间无关,世代时间比较长、比增殖速度较小的硝化菌和亚硝化菌都能够很好的繁殖和增殖,因此各种生物膜处理工艺都具有一定的硝化功能,采用适当的运行方式,还能够达到反硝化脱氮的要求.而且,与活性污泥法相比,生物膜法还具有下列优点.①微生物浓度高,处理效率高.据实测,如果折算成曝气池的MLVSS,珥以达到 4060g/L,远远高于活性污泥处理系统.②污泥龄长,产泥量少.由于生物膜上存在的食物链较因此产泥量少,剩余污泥的处理量仅为活性污泥法的一半左右.在生物转盘上还可以生长世代时间较长的硝化菌,因此如果得当,除有效去除有机物外,还能够具有硝化和反硝化脱氮的作用,其工艺流程如下图:该工艺的脱氮原理是:由于降解有机物的好氧氧化菌的生长繁殖优先于硝化菌与亚硝化菌,因此,在前两级转盘上去除有机物的能力较强,而后两级能够产生比较充分的硝化反应,形成硝酸盐氮和亚硝酸盐氮.由于转盘低速旋转的传质作用.这些硝态氮随污水进人处于厌氧状态的淹没式转盘时,与外加甲醇充分接触,进行反硝化脱氮反应.而残留下来的甲醇再经过好氧生物转盘的处理后得到去除.。
短程生物脱氮工艺
短程生物脱氮工艺近年来,随着人口的增加和工业化的快速发展,氮污染成为了严重的环境问题。
氮化物通过农业、工业和生活废水的排放进入水体,对水生生物和生态系统造成了巨大的危害。
为了解决这一问题,科学家们提出了短程生物脱氮工艺,该工艺通过利用微生物来有效地去除水体中的氮污染物,成为了一种具有潜力的治理技术。
短程生物脱氮工艺是一种基于微生物代谢过程的氮污染治理方法。
它利用了厌氧和好氧两个阶段,分别由不同的微生物来完成。
首先,厌氧阶段利用厌氧氨氧化细菌(ANAMMOX)将氨氮和亚硝酸盐氮转化为氮气。
这一过程不需要外源供氧,能够在低氧环境下进行。
然后,在好氧阶段,硝化细菌将剩余的亚硝酸盐氮转化为硝酸盐氮。
这两个阶段的结合使得短程生物脱氮工艺具有高效、节能的特点。
短程生物脱氮工艺的核心是微生物。
厌氧氨氧化细菌和硝化细菌是关键的微生物群落,它们通过相互作用来完成氮的转化过程。
厌氧氨氧化细菌能够在缺氧的环境中将氨氮和亚硝酸盐氮转化为氮气,而硝化细菌则能够将亚硝酸盐氮转化为硝酸盐氮。
这两种细菌的合作使得短程生物脱氮工艺能够高效地去除水体中的氮污染。
除了微生物,短程生物脱氮工艺还需要一定的工艺设施来支持其运行。
这些设施包括反应器、曝气设备和搅拌器等。
反应器是短程生物脱氮工艺的核心装置,它提供了一个适宜的环境来维持微生物群落的生长和代谢。
曝气设备和搅拌器则能够提供足够的氧气和混合效果,促进微生物的活动和氮的转化过程。
短程生物脱氮工艺相比传统的氮污染治理方法具有许多优势。
首先,它能够在较低的氧气条件下进行,减少了能耗和氧气的需求。
其次,短程生物脱氮工艺能够在较短的时间内去除水体中的氮污染物,提高了处理效率。
此外,该工艺对水体中的其他污染物具有一定的去除效果,能够综合治理水环境。
因此,短程生物脱氮工艺被广泛应用于城市污水处理厂和农业废水处理系统等领域。
然而,短程生物脱氮工艺也存在一些挑战和问题。
首先,微生物的选择和培养是关键的一环,需要寻找适合的微生物菌种并提供合适的生长环境。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
污水中的氮一般以有机氮、氨氮、亚硝酸盐氰和硝酸盐氮四种形式存在。
生活污水中氮的主要存在形态是有机氮和氨氮。
通常采用的二级生化处理技术对氮的去除率是比较低的,一般将有机氮化合转化为氨氮,却不能有效地去除氮。
污水脱氮,从原理看,可以分为物理法、化学法和生物法三大类。
由于生物脱氮一般能够满足有关方面对污水净化的要求,而且价格低廉,产生的二次污染物较易处理,因此生物脱氮方法是当前最活跃的研究与投资开发领域。
一、生物脱氮技术
生物脱氮技术主要是利用污水中某些细菌的生物氧化与还原作用实现的。
生物脱氮工艺从碳源的来源分,可分为外碳源工艺和内碳源工艺;从硝化和反硝化过程在工艺流程中的位置来分,可分为传统工艺和前置反硝化工艺;按照细菌的存在状态不同,可以分为活性污泥法和生物膜法生物脱氮工艺。
前者的硝化菌、反硝化菌等微生物处于悬浮态,而后者的各种微生物却附着在生物膜上。
1.活性污泥法
活性污泥法是一种历史悠久、目前应用最广泛的生物脱氮技术,它有许多种形忒。
(1)活性污泥法传统流程这是一种传统的三级生物脱氮工艺,即有机物的氧化、硝化
和反硝化作用分别在不同的构筑物中完成,如下图所示:
由于有机物去除、氨氧化和硝酸盐还原依次进行,彼此之间相对独立,并分别设置污泥沉淀及回流系统,系统运行的灵活性比较强,有机物降解菌、硝化菌和反硝化菌的生长环境均较佳,因而反应速度快,脱氮效果也比较好。
但是,三级活性污泥法的流程长、构筑物多、附属设备多,因此基建费用高、管理难度大。
此外,为了保持硝化所需的稳定pH 值,往往两要向硝化池加碱,为了保证反硝化阶段有足够的电子受体,需要外加甲醇等碳源,为了除去尾水中剩余的有毒物质甲醇,又必须增设后曝气池,所以运行费用也很高。
可以看出,这种工艺的确具有很大的局限性。
如果将有机物去除和硝化放在同一个反应器中进行,而将反硝化作用放在另一个反应器中进行,则可以将三级生物脱氮系统简化为两级生物脱氮系统。
如下图:
与三级生物脱氮流程相比,两级生物脱氮流程的基建费用和占地面积均有所降低,但是仍然需要外加甲醇和碱源。
(2)前置反硝化生物脱氮系统又称缺氧-好氧活性污泥脱氮系统、A/0生物脱氮流程、改良LudMck-Euinger工艺等。
前置反硝化是目前使用比较广泛的一种脱氮工艺(分建式缺氧好氧活性污泥脱氮系统如下图:)。
除分建式系统外,本工艺还可以建成合建式装置,即将缺氧和好氧环境放在-个构筑物内,中间以挡板隔开,挡板下端与池内壁之间以一定的缝隙相通,如下图所示:
采用合建式装置,对于现有推流式曝气池的改造来说更加方便。
与传统的生物脱氰流程相比较,该流程具有如下优势。
①由于构筑物数量减少,因而流程得以简化,占地面积减少,且缺氧段消耗原污水中的部分有机物,能够降低好氧段的有机物污泥负荷,不仅容易使硝化菌取得竞争优势,而且降低了曝气充氧的电耗,因而基建费用和运行费用均比较低。
②将缺氧段放在好氧段前边,可以起到生物选择器的作用,有利于防止污泥膨胀,改善活性污泥的沉降性能。
③反硝化过程能够充分利用原污水中有机物和内源代谢产物作为电子受体,既可以减少或取消外加碳源,从面省去后曝气池,提高处理水水质,又可以保证较高的碳比,有利于反硝化的充分进行。
④由于存在内循环,缺氧反硝化产生的碱度能够补偿硝化反应所造成的pH值下降,大大降低了碱投加量。
前置反硝化生物脱氮系统也有自己的不足之处。
一是处理出水中含有一定浓度的硝酸盐,可能污染受纳水体。
第二,由于内回流比限制本工艺的脱氮率一般为70%~80%, 很难
达到90%。
而且,该工艺对运行管理人员的素质要求比较高。
例如,如果系统运行不当,沉淀池内将发生反硝化反应,造成污泥上浮,使处理水恶化。
(3)氧化沟工艺从工艺、流态和构造方面看,氧化沟也非常适合于生物脱氮。
①氧化沟的污泥龄通常很长,一般可达15~30d,非常适合于世代时间长、增值缓慢的硝化菌存活与繁殖。
②氧化沟往往做成总长达几十米甚至上百米的环行构筑物。
由于循环次数多达72次其至360次,混合液沿沟道方向近似于完全混合式。
然而由于工艺状况不同,混合液中溶解氧的浓度在不同位置也存在很大差异:在曝气器的附近非常容易出现DO比较高的富氧区,而在远离曝气装置的地方,容易出现DO比较低的缺氧区,使硝化和反硝化能够在同一装置中順利进行,从而达到生物脱氮的目的。
据报道,Carrousel氧化沟、交替工作氧化沟、二次沉淀池交替运行氧化沟、Orbal 型氧化沟、曝气-沉淀一体化氧化沟和刺渠型一体化氧化沟等均可以用于脱氮,其脱氮效率可以达到60%-90%,例如,Carrousel氧化沟的脱氮率为90%, Orbal型氧化沟的总氮去除率也以达到85%~90%。
氧化沟工艺构造简单,运行稳定,易于管理维护,出水水质好,基建费用和处理成本均较低,对原水水质水量的变化也有很强的适应性,是一种非常有竞争力的生物脱氮技术。
2.生物膜法
生物膜法是与活性污泥法并列的一种污水处理技术。
由于生物污泥的生物固体平均停留时间与污水的水力停留时间无关,世代时间比较长、比增殖速度较小的硝化菌和亚硝化菌都能够很好的繁殖和增殖,因此各种生物膜处理工艺都具有一定的硝化功能,采用适当的运行方式,还能够达到反硝化脱氮的要求。
而且,与活性污泥法相比,生物膜法还具有下列优点。
①微生物浓度高,处理效率高。
据实测,如果折算成曝气池的MLVSS,珥以达到 40〜
60g/L,远远高于活性污泥处理系统。
②污泥龄长,产泥量少。
由于生物膜上存在的食物链较因此产泥量少,剩余污泥的处理量仅为活性污泥法的一半左右。
在生物转盘上还可以生长世代时间较长的硝化菌,因此如果得当,除有效去除有机物外,还能够具有硝化和反硝化脱氮的作用,其工艺流程如下图:
该工艺的脱氮原理是:由于降解有机物的好氧氧化菌的生长繁殖优先于硝化菌与亚硝
化菌,因此,在前两级转盘上去除有机物的能力较强,而后两级能够产生比较充分的硝化反应,形成硝酸盐氮和亚硝酸盐氮。
由于转盘低速旋转的传质作用.这些硝态氮随污水进人处于厌氧状态的淹没式转盘时,与外加甲醇充分接触,进行反硝化脱氮反应。
而残留下来的甲醇再经过好氧生物转盘的处理后得到去除。