数学建模方法及其应用中的随机模型讲解部分随机模型优秀课件
数学建模—概率模型 ppt课件
数学建模—概率模型
v3统计图(examp05-03) v箱线图(判断对称性) v频率直方图(最常用) v经验分布函数图 v正态概率图(+越集中在参考线附近,越近似正态分布)
v4分布检验 vChi2gof,jbtest,kstest,kstest2,lillietest等 vChi2gof卡方拟合优度检验,检验样本是否符合指定分布。它把观测数据分 组,每组包含5个以上的观测值,根据分组结果计算卡方统计量,当样本够 多时,该统计量近似服从卡方分布。 vjbtest,利用峰度和偏度检验。
3 单因素一元方差分析步骤
( example07_01.m 判断不同院系成绩均值是否相等)
数据预处理
正态性检验 lillietest (p>0.05接受)
方差齐性检验 vartestn (p>0.05接受)
方差分析
anoval (p=0 有显著差别)
多重比较:两两比较,找出存在显著差异的学院,multcompare
构造观测值矩阵,每一列对应因素A的一个水平,每一行对应因素B的一个
水平
方差分析
anova2 得到方差分析表
方差分析表把数据差异分为三部分(或四部分): 列均值之间的差异引起的变差 列均值之间的差异引起的变差 行列交互作用引起的变差 (随机误差) 后续可以进行多重比较,multcompare,找出哪种组合是最优的
Computer Science | Software Engineering & Information System
数学建模—概率模型
目的:用一个函数近似表示变量之间的不确定关系。 1 一元线性回归分析 做出散点图,估计趋势;计算相关系数矩阵; regress函数,可以得到回归系数和置信区间,做残差分析,剔除异常点,重 新做回归分析 Regstats 多重线性或广义回归分析,它带有交互式图形用户界面,可以处 理带有常数项、线性项、交叉项、平方项等模型 robustfit函数:稳健回归(加权最小二乘法)
数学建模课堂PPT(部分例题分析)
在解决实际问题时,概率论与数 理统计可以帮助我们描述和预测 随机事件,例如股票价格波动、
市场需求等。
概率论中的随机过程和数理统计 中的回归分析在金融、保险等领
域有广泛应用。
概率论与数理统计
概率论与数理统计是研究随机现 象的数学分支,用于对不确定性
和风险进行量化分析。
在解决实际问题时,概率论与数 理统计可以帮助我们描述和预测 随机事件,例如股票价格波动、
例题三:股票价格预测模型
要点一
总结词
要点二
详细描述
描述如何预测股票价格的走势
股票价格预测模型旨在通过分析历史数据和市场信息,来 预测股票价格的走势。该模型通常采用时间序列分析、回 归分析、机器学习等方法,来建立股票价格与相关因素之 间的数学关系。例如,可以使用ARIMA模型或神经网络模 型来预测股票价格的走势。
总结词
模型的复杂度
详细描述
在选择数学模型时,需要考虑模型的复杂度。如果数据量 较小,应选择简单模型以避免过拟合;如果数据量较大, 可以选择复杂模型以提高预测精度。
详细描述
在选择数学模型时,需要考虑模型的适用范围。例如,逻 辑回归模型适用于二分类问题,而K均值聚类模型则适用 于无监督学习中的聚类问题。
总结词
模型的复杂度
详细描述
在选择数学模型时,需要考虑模型的复杂度。如果数据量 较小,应选择简单模型以避免过拟合;如果数据量较大, 可以选择复杂模型以提高预测精度。
例题三:股票价格预测模型
总结词
分析模型的假设条件和局限性
详细描述
股票价格预测模型通常基于一些假设条件,如假设股票 价格是随机的或遵循一定的规律。然而,在实际情况下 ,股票价格受到多种因素的影响,如公司业绩、宏观经 济状况、市场情绪等。因此,这些模型可能存在局限性 ,不能完全准确地预测股票价格的走势。
随机理论模型.ppt
D87.5% (89.4%)
的途径: • 习题1
9.2 报童的诀窍
报童售报: a (零售价) > b(购进价) > c(退回价)
问 售出一份赚 a-b;退回一份赔 b-c 题 每天购进多少份可使收入最大?
购进太多卖不完退回赔钱
分 析
购进太少不够销售赚钱少
应根据需求确定购进量
存在一个合 适的购进量
每天需求量是随机的
0
(
x
r
)
p(r
)dr
c3
x
(r
x)
p(r
)dr
J(u)在u+x=S处达到最小
I(x)
J(u)与I(x)相似
I(S)+c0
I(x)在x=S处达到最小值I(S) I(S)
I(x)图形 I(S)
0s
I
(x)
c 0
I
(S)
的最小正根
s
S
x
9.4 轧钢中的浪费
背 轧制钢材 • 粗轧(热轧) ~ 形成钢材的雏形 景 两道工序 • 精轧(冷轧) ~ 得到钢材规定的长度
求 m 使浪费最小。
=l/=10
z*=-1.78
-1.0 3.477 2.0 0.420
-0.5 1.680
2.5 0.355
10 z
*= -z*=11.78 m*= *=2.36(米)
5
F(z)
z -2.0 * -1.0 0
1.0
2.0 z
9.5 随机人口模型
背景 • 一个人的出生和死亡是随机事件
PN
P
记 J (m) m P(m)
更合适的目标函数
P(m)
l
《数学建模培训》PPT课件
数学建模案例解析
04
经济学案例:供需平衡模型
供需平衡理论
通过数学语言描述市场需求与供给之间的平衡关 系,涉及价格、数量等关键变量。
建模过程
收集相关数据,建立需求函数和供给函数,通过 求解方程组找到均衡价格和均衡数量。
模型应用
预测市场趋势,分析政策对市场的影响,为企业 决策提供支持。
物理学案例:热传导模型
Lingo在数学建模中的应 用案例
展示Lingo在数学建模中的实 际应用,如线性规划、整数规 划、非线性规划等优化问题的 求解。
其他数学建模相关软件与工具简介
Mathematica软件
简要介绍Mathematica的特点和功能,以及其 在数学建模中的应用。
SAS软件
简要介绍SAS的特点和功能,以及其在数学建模 中的应用。
数据预处理
包括数据清洗、缺失值处 理、异常值检测等,保证 数据质量。
数据可视化
利用图表、图像等手段展 示数据,便于理解和分析 。
数据分析方法
如回归分析、时间序列分 析、聚类分析等,用于挖 掘数据中的信息和规律。
数学建模常用方法
03
回归分析
线性回归
通过最小二乘法拟合自变量和因 变量之间的线性关系,得到最佳
模型应用
预测舆论走向,分析社会热点问题,为政府和企业提供决策支持。
数学建模软件与工
05
具介绍
MATLAB软件介绍及使用技巧
MATLAB概述
简要介绍MATLAB的历史、功能和应用领域 。
MATLAB常用函数
列举并解释MATLAB中常用的数学函数、绘 图函数、数据处理函数等。
MATLAB基础操作
详细讲解MATLAB的安装、启动、界面介绍 、基本语法和数据类型等。
数学建模第五章随机模型
05
随机模拟
随机模拟的基本原理
随机模拟是一种基于概率统计的数值计算方法,通过模拟随机事件或过程来求解实 际问题。
随机模拟的基本原理包括抽样、统计推断和误差分析,其中抽样是随机模拟的核心 步骤,通过从概率分布中抽取样本,模拟随机事件的概率特征。
随机模拟的精度取决于样本数量和分布的准确性,样本数量越多,模拟结果越接近 真实情况。
THANKS FOR WATCHING
感谢您的观看
蒙特卡洛积分
蒙特卡洛积分是一种基于随机抽样的 数值积分方法,通过将积分转化为求 和的形式,利用大数定律和中心极限 定理来估计积分值。
蒙特卡洛积分在金融、物理、工程等 领域有广泛应用,可以用于求解复杂 的高维积分问题。
蒙特卡洛积分的精度与样本数量和积 分的可积性有关,对于不可积的积分, 可以通过增加样本数量来提高估计精 度。
马尔科夫链蒙特卡洛方法
总结词
马尔科夫链蒙特卡洛方法是一种基于马尔科夫链的随机抽样方法,常用于求解复杂数学 问题的不确定性。
详细描述
马尔科夫链蒙特卡洛方法通过构造一个马尔科夫链,使其平稳分布为目标分布,从而通 过抽样得到目标分布的近似解。这种方法在统计学、物理、经济学等领域有广泛应用, 可以用于求解复杂数学问题的不确定性,如概率论中的积分、统计推断中的参数估计等。
描述随机变量取值概率分布的函数称 为随机变量的分布函数。常见的分布 函数有离散型分布和连续型分布,如 二项分布、泊松分布、正态分布等。
03
随机过程
随机过程的定义与分类
定义
随机过程是随机变量在时间或空间上的扩展,描述了一个随机现象在连续时间或 离散时间上的变化。
分类
根据过程的性质和特点,随机过程可以分为平稳随机过程、非平稳随机过程、离 散随机过程和连续随机过程等。
第一章 数学建模概论 数学模型与实验 国家级精品课程课件 20页
2、国际数学建模竞赛(MCM)
创办于1985年,由美国运筹与管理学会,美国工业与应 用数学学会和美国数学会联合举办,开始主要是美国的大学 参赛,90年代以来有来自中国、加拿大、欧洲、亚洲等许多 国家的大学参加,逐渐成为一项全球性的学科竞赛。上一年 11月份报名,每个大学限报4队,每个系限报2队,2月上旬 比赛,4月份评奖。9篇优秀论文刊登在 “The Journal of Undergraduate Mathematics and Its Applications(UMAP)” 专刊上。详见 /
用实际问题的实测数据等 来检验该数学模型
不符合实际 符合实际
交付使用,从而可产生 经济、社会效益
建模过程示意图
七、怎样撰写数学建模的论文? 1、摘要:问题、模型、方法、结果 2、问题重述 3、模型假设 4、分析与建立模型 5、模型求解 6、模型检验 7、模型改进、评价、推广等 8、参考文献 9、附录
数学模型与实验
十一、 资料查询
校内:校图书馆提供电子资源,搜索软件查询 校外:, ,
数学模型与实验
十二 数学建模示例
椅子能在不平的地面上放稳吗 问题分析 通常 ~ 三只脚着地 模 型 假 设
放稳 ~ 四只脚着地
• 四条腿一样长,椅脚与地面点接触,四脚 连线呈正方形; • 地面高度连续变化,可视为数学上的连续 曲面; • 地面相对平坦,使椅子在任意位置至少三 只脚同时着地。
1、中国大学生数学建模竞赛(CUMCM)
创办于1990年,由教育部高教司和中国工业与应用数学 学会共同举办,全国几乎所有大专院校都有参加,每年6月份 报名,9月下旬比赛,11月份评奖。优秀论文刊登在《数学 的实践与认识》或?工程数学?每年第一期上。详见
随机数据建模优秀PPT文档
– 简单调和平均数 – 加权调和平均数
• 几何平均数
– 简单几何平均数 – 加权几何平均数
算术平均数
• 简单算术平均数
– 根据原始数据直接计算均值
• 2004 年A题:奥运会临时超市网点设计
– 该题数据量非常大,需在统计分析基础上才可进 行下一步工作
近年的赛题,每年几乎总有一个需要对大量数据 进行处理,这也反映了科研与应用中对数据处理 的需求;人才市场中较为青睐数据分析工作者。
其他案例
• 统计学中的盐(印度) • 数据挖掘:超市商品选择
二、常见收集数据方法
单变量数据的图表描述
数据整理
分组 频数分布表 累积频数分布表
未分组
数据图 形描述
直方图
折线图
累积频数分布图 茎叶图 箱线图
定类变量 定序变量
90 80 70 60 50 40 30 20 10
0
定性变量
条形图 圆形图
定距变量 定比变量
条形图 圆形图 茎叶图
直方图 频数表
140 120 100
80 60 40 20
是测度数据离散程度的相对指标,其计算公式如下:
类似于整理定量数据的频数分布表
单变量定量数据的图表描述
多变量定性数据的图表描述
经济 由一系列偶然因素引起的一类
离方框上/下界的距离超过四分位数间距1.
条宽的1/2 变量的分类数目较多时,用帕雷托图要比条形图和饼图更能直观地显示信息。
5倍的为离群值,以 “O” 表示;
• 帕雷托图
– 变量的分类数目较多时,用帕雷托图要比条形图和饼图更 能直观地显示信息。
– 广泛应用于过程分析和质量分析中
数学模型之随机模型
用数学公式或位移寄存器的 移位操作来产生的随机数,实际 上是伪随机数
几种产生均匀随机数的方法
2
(1) 利用计算机移位寄存器的移位操作来产生均匀分 布的伪随机数
如 取 原 整 数 45086273, 可 以 得 到 第 一 个 随 机 数 0.45086273;
将 45086273 右 移 三 位 得 00045086 , 将 45086273 与 00045086 按 位 相 加 得 45021259 , 将 45021259 左 移 四 位 得 12590000, 将12590000 与 45021259 按位相加得57511259, 于是得到第二个随机数0.5751129;
X1 2lnU1 cos(2U2 )
X2 2lnU1 sin(2U2 ).
8
证明: 由
y1 2ln v1 cos(2v2)
y2 2ln v1 sin(2v2).
解得
v1 exp(( y12 y22 ) / 2)
v2
1
2
arctan(
y2 y1
)
F (x1, x2 ) P{X1 x1, X 2 x2}
再将 57511259与右移三位的数按位相加得57568760, 将57568760与左移四位的数相加得整数34168760,这就得 到第三个随机数0.34168760。按此规律一直重复下去,可以 得到一个随机数序列。
数学建模中的随机过程模型及其参数估计
数学建模中的随机过程模型及其参数估计随机过程是数学建模中常用的一种工具,它描述了随机变量的动态演化过程。
在数学建模中,我们经常会遇到需要建立随机过程模型并估计其参数的问题。
本文将介绍数学建模中常用的随机过程模型以及参数估计的方法。
一、随机过程模型1. 随机游走模型随机游走模型是最简单的随机过程模型之一,其描述了一个随机变量在时间序列上的演化过程。
在随机游走模型中,当前的变量值等于前一个变量值加上一个随机扰动。
随机游走模型广泛应用于金融领域中股票价格的建模。
2. 马尔可夫链模型马尔可夫链模型是一种随机过程模型,具有马尔可夫性质,即当前状态只依赖于前一个状态,并且未来状态与过去状态无关。
马尔可夫链模型在预测序列数据、自然语言处理等领域中有广泛的应用。
3. 随机差分方程模型随机差分方程模型是描述离散时间的随机过程,它将随机扰动引入到差分方程中,描述了随机变量在离散时间序列上的演化过程。
随机差分方程模型在宏观经济学、自然生态学等领域中有重要的应用。
二、参数估计参数估计是建立随机过程模型的重要步骤之一,它帮助我们从观测数据中估计出模型的未知参数。
以下介绍两种常用的参数估计方法。
1. 极大似然估计极大似然估计是一种常用的参数估计方法,它基于最大化观测数据的似然函数来估计模型的参数值。
极大似然估计的优点是数学基础严谨,但需要满足一些假设条件。
2. 贝叶斯估计贝叶斯估计是一种基于贝叶斯统计理论的参数估计方法,它将参数的估计看作是一个先验分布和似然函数的加权平均问题。
贝叶斯估计的优点是能够处理参数的不确定性,并且可以根据观测数据进行更新。
三、案例应用为了更好地理解随机过程模型及其参数估计,在实际建模中的应用非常重要。
以下是一个案例应用的描述。
假设我们需要建立一个预测某个文本的下一个词的模型,我们可以使用马尔可夫链模型进行建模。
首先,我们将文本数据进行预处理,将其转化为一个序列数据。
然后,我们根据观测数据估计模型的参数。
随机模拟(优秀经典公开课课件)
解析 要把 1200 人分到 40 个考场,每个考场 30 人,可用计算机完成. (1)按班级、学号顺序把学生档案输入计算机. (2)用随机函数按顺序给每个学生一个随机数(每人都不相同). (3)使用计算机的排序功能按随机数从小到大排列,可得到 1200 名学生的考 试号 0001,0002,…,1200,然后 0001~0030 为第一考场,0031~0060 为第二考 场,依次类推.
[规律方法]
随机数产生的方法比较
方法 抽签法
用计算器或计算机产生
优点 保证机会均等
操作简单,省时、省力
耗费大量人力、物力、时间,或不具 由于是伪随机数,故不能保证完全等
缺点
有实际操作性
可能
[触类旁通] 1.某校高一年级共 20 个班,1200 名学生,期中考试时如何把学生分配到 40 个考场中去?
23065 37052 89021 34435 77321 33674 01456 12346 22789 02458 99274 22654 18435 90378 39202 17437 63021 67310 20165 12328 这就相当于做了 20 次试验,在这些数组中,如果至多有一个是 0 或 1 的数 组表示至少有 4 棵成活,共有 15 组,于是我们得到种植 5 棵树苗至少有 4 棵成 活的概率近似为 15÷20=0.75.
[规律方法]
利用随机模拟估计概率应关注三点
用整数随机数模拟试验估计概率时,首先要确定随机数的范围和用哪些数代
表不同的试验结果.我们可以从以下三方面考虑:
(1)当试验的基本事件等可能时,基本事件总数即为产生随机数的范围,每个
随机数代表一个基本事件.
(2)研究等可能事件的概率时,用按比例分配的方法确定表示各个结果的数字
12.数学建模-随机微分方程法
(3) 股票价格的随机模型 在对任何资产(例如股票)进行投资时,投资者所关心的是对资 产投资的回报率多大,而不是该资产的绝对增加量多大。例如, 有两种股票 A 与 B , 假定它们每年每股都平均增加10元,股票 A 的 市价为 100元/ 股,股票 B 的市价为 1000元/ 股。 显然,股票 A 是 投资者的最佳选择,因为它的回报率为 10 % , 而股票B的回报率 只有 1 % 。 在进行股票投资时,如果记 Si 是第 i 天的股票价格,则投资的 S i +1 Si 日回报率为:
dz = ε dt
对于维纳过程而言, 对于维纳过程而言 我们常称其随机变量在某个时刻的平均值为该 平均漂移” 变量在该时刻的 “平均漂移”, 而称在单位时间处的平均漂移为该维 纳过程的漂移率 ; 同时还称此随机变量在单位时间处的方差值为该 . 维纳过程的方差率. 上面讨论到的维纳过程, 维纳过程的方差率 上面讨论到的维纳过程 其漂移率应是 0 , 方差 率应是 1 . 这里 , 漂移率为 0 , 意味着在未来任何时刻 , z 的期望值 的一段时间段后, 等于它的当前值 ; 方差率为 1 , 意味着在长度为 T 的一段时间段后 z 的变化的方差为 1×T = T . × 的维纳过程,我们常称之为 漂移率为 0、方差率为 1 的维纳过程 我们常称之为 基本维纳过 、 程 . 软件程序可以写为: 生成 基本维纳过程 的 Mathematica 软件程序可以写为:
R e a l , 1 ,
- 1 0 0 , 1 0 0
;
* D t
0 . 5
,
i ,
1 0 0
= y
,
i
i i ,
+ 0 . 3 D t
1 0 0
1 ,
数学建模中的随机模型
数学建模中的随机模型在数学建模中,随机模型是一种重要的方法,用于描述及预测现实世界中的不确定性和随机性。
本文将介绍随机模型的基本概念、应用范围以及常见的建模方法。
一、随机模型的基本概念随机模型是一种基于概率论和统计学的模型,用于描述具有不确定性和随机性的系统。
它通常涉及随机变量、概率分布以及随机过程等概念。
随机变量代表系统中的不确定性因素,概率分布则描述了随机变量的可能取值及其出现的概率。
随机过程则是描述随机现象随时间的变化。
二、随机模型的应用范围随机模型在各个领域都有广泛的应用,包括但不限于以下几个方面:1. 金融领域:在金融数据分析中,随机模型能够用于预测股市的波动、计算期权的价格、评估风险等。
2. 生物医学:在生物医学领域,随机模型可用于建立生物系统的动力学模型,研究细胞生长、传染病传播等问题。
3. 交通运输:随机模型可以用于优化交通信号配时、研究交通拥堵的产生与演化规律,提高交通运输效率。
4. 气象科学:利用随机模型,可以预测气象变化趋势、研究气候变化等问题,为气象灾害预警提供科学依据。
5. 环境保护:在环境保护领域,随机模型可以用于模拟污染物的扩散传播、评估环境风险等。
三、常见的随机模型建模方法在数学建模中,常用的随机模型建模方法包括概率统计方法、随机过程建模方法以及蒙特卡洛模拟等。
1. 概率统计方法:这是最基本的建模方法,通过对系统中的观测数据进行统计分析,建立概率分布模型。
常用的分布包括正态分布、泊松分布、指数分布等。
2. 随机过程建模方法:随机过程是描述随机现象随时间的演化规律的数学模型。
常用的随机过程包括马尔可夫链、布朗运动、扩散过程等。
通过建立随机过程模型可以更好地描述系统的动态行为。
3. 蒙特卡洛模拟:这是一种基于概率统计的数值模拟方法,通过随机抽样和统计分析来模拟系统的行为。
蒙特卡洛模拟可用于求解复杂的数学问题,比如计算π的值、模拟金融市场波动等。
四、随机模型的局限性及发展方向随机模型在实际应用中存在一定的局限性,例如对于复杂系统的建模需要大量的计算资源和数据支持。
《随机数学模型》课件
将实际问题转化为数学语言,运用数学符号和公式来表示问题中的 变量、参数和关系。
确定随机因素
识别问题中的随机因素,并将其引入模型中,以反映模型的随机性 。
随机数学模型的求解方法
解析法
通过数学公式和定理,直接求解模型中的未 知数。适用于具有明确解的简单模型。
蒙特卡罗模拟法
利用随机抽样的方法,通过大量模拟实验来估计模 型的解。适用于难以解析求解的复杂模型。
集成学习
将多个模型集成在一起,通过综合各个模型的优点来提高整体性能 。可以通过集成多种模型、特征或数据来实现。
05 随机数学模型的 应用案例
在金融领域的应用案例
1 2
风险评估
随机数学模型用于评估投资组合的风险,通过模 拟市场波动和价格变化,帮助投资者制定风险管 理策略。
衍生品定价
随机数学模型用于确定衍生品的公允价值,如期 权、期货等,为市场参与者提供定价参考。
流体动力学模拟
随机数学模型用于模拟流体动力学现象,如湍流、流体阻力等,为流 体机械和流体控制系统的设计提供依据。
在社会科学领域的应用案例
人口统计学研究
随机数学模型用于预测 人口发展趋势和分布, 分析人口结构变化对社 会经济的影响。
社会网络分析
随机数学模型用于分析 社会网络的结构和演化 规律,揭示网络中个体 和群体的互动关系。
多维随机变量的概率分布
高斯分布
描述n维实数空间中服从正态分布的随机变 量的概率分布。
联合概率分布
描述多个随机变量之间相互关联的概率分布 。
条件概率分布
在给定其他随机变量值的条件下,一个随机 变量的概率分布。
随机变量的函数变换
线性变换
01
数学建模简明教程课件:概率模型
31
图 7-4
32
5.决策树的优缺点
•决策树方法的优点:可以生成可以理解的规则;计 算量相对来说不是很大;可以处理连续和种类字段;决策 树可以清晰地显示哪些字段比较重要.
•决策树方法的缺点:对连续性的字段比较难预测; 对有时间顺序的数据,需要很多预处理的工作;当类别太 多时,错误可能就会增加得比较快;一般算法分类的时候 ,只是根据一个字段来分类.
(a b)np(r) d r
0
n
计算
(7.2.2)
d G (a b)np(n)
n
(b c) p(r) d r (a b)np(n)
(a b) p(r) d r
dn
0
n
n
(b c)0 p(r) d r (a b)n p(r) d r
18
令 d G 0 ,得到 dn
n
0
p(r)d r p(r)d r
14
2.问题的分析及假设
众所周知,应该根据需求量确定购进量.需求量是随机 的,假定报童已经通过自己的经验或其它的渠道掌握了需 求量的随机规律,即在他的销售范围内每天报纸的需求量 为r份的概率是f(r)(r=0,1,2,…).有了f(r)和a,b,c,就 可以建立关于购进量的优化模型了.
假设每天的购进量为n份,因为需求量r是随机的,故r 可以小于n、等于n或大于n,致使报童每天的收入也是随 机的.所以作为优化模型的目标函数,不能是报童每天的收 入,而应该是他长期(几个月或一年)卖报的日平均收入.
26
(4)设定变量: A——试销成功,——试销失败 B——大量销售成功,——大量销售失败
27
3.建立模型 先来计算两个概率,注意到P(A|B)=0.84,P(B)=0.6 ,P(A|)=0.36,代入贝叶斯概率公式:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
即得一名健康人与一名指定病人接触并被感染的概率为
p1
p
m
n 1
。
2021/2/28
数学建模实用教程-高教出版社
8
问题2:传染病的传播模型
(2)模型的建立与求解
为了求出一名健康人每天被感染为病人的
概率 p2 ,利用对立事件概率的计算方法:
p2
1 (1
p1)i
1
(1
m )i 。
n 1
健康人被感染为病人的人数也服从二项分布,
2021/2/28
数学建模实用教程-高教出版社
6
问题2:传染病的传播模型
(1)问题的分析与假设
假设将人群分为病人和健康人两类,病人
数和健康人数分别记为 i 和 s ,总人数为 n ,短 时间内不变,即 i s n 。
人群中任何两人的接触是相互独立的,且
具有相同概率 p ,每人每天平均与 m 人接触。
P(
Ai
)
1 n
,
(i
1,
2,
, n) 。
第 i 和第 j 个同学同时抽取到自己所带礼品的概率为
P( Ai Aj )
1 1 , (1 i n n 1
j
n) 。
类似地, P( Ai Aj Ak )
1 1 1 , (1 i n n 1 n 2
j
k
n) ,
P (A 1A 2 A n)1 nn1 1 1
i 1
i 1
1i jn
1i jk n
C C C 1 1 2 1 1 3 1 1 1 (1)n1 1 1 1
n n n n n 1 n n n 1 n 2
n n 1
111 (1)n1 1
2! 3!
n!
当充分大,即人数较多时,至少有1人抽取到自己所带礼品
的概率为
n
P( )1e10.63212
2021/2/28
数学建模实用教程-高教出版社
4
n
1、初等概率模型
问题1:有趣的蒙特莫特模型
由概率的加法公式与乘法公式,则 n 个同学中至少
有一个抽取到自己所带礼品的概率为
n
n
P( Ai ) P(Ai ) P(Ai Aj )
P( Ai Aj Ak ) (1)n1 P( A1A2 An )
数学建模方法及其 应用中的随机模型 讲解部分随机模型
第5章 随机模型
主要内容
初等概率模型; 简单统计模型; 一元线性回归模型; 参数估计模型; 主成份分析模型。
2021/2/28
数学建模实用教程-高教出版社
2
1、初等概率模型
问题1:有趣的蒙特莫特模型
假设某班共有 n 个同学参加活动,每个同学都
随机地抽取一份礼品, Ai (i 1, 2, , n) 表示第 i 个
其平均值 sp2 (n i) p2 ,
均方差为 sp2 (1 p2 ) (n i) p2(1 p2) 。
2021/2/28
数学建模实用教程-高教出版社
9
问题2:传染病的传播模型
(2)模型的建立与求解
为了简便,将上式右端作 Taylor 展开,并取
前两项:
p2
1
(1
mi
n 1
) mi mi , (n
n 1 n
m, n
1)
最后得到: mi(n i) ,
n
1 p2 n mi 。 (n i) p2 mi(n i)
2021/2/28
数学建模实用教程-高教出版社
10
问题2:传染病的传播模型
(3)模型的检验
健康人群每天平均被感染的人数 与人群中每人 每天平均接触的人数 m 以及接触时被感染的概率 成
(r=0,1,2,… ),报亭每天购进 n 份报纸的
平均收入为 G(n)元。
2021/2/28
数学建模实用教程-高教出版社
14
问题3 报亭的进报策略模型
(3)模型的建立与求解
因为需求量是随机的,致使报亭每天的销售收 入也是随机的。所以,不能以报亭每天的收入数作 为优化模型的目标函数,而应该是以报亭的长期( 几个月,或一年)卖报的日平均收入最大为目标函 数。
由概率论的知识,这相当于报亭每天销售收入 的期望值,以下简称平均收入。
设每天报纸的需求量为 r 份的概率是 p(r)
同学抽取到自己所带的礼品。
n 个同学中至少有一人抽取到自己所带的礼品
为 A1 A2
n
An ,简记为 Ai 。 i 1
n
要解决的问题是求事件的概率 P( Ai ) 。 i 1
2021/2/28
数学建模实用教程-高教出版社
3
1、初等概率模型
问题1:有趣的蒙特莫特模型
事实上,第 i 个同学抽取到自己所带礼品的概率为
(1)问题的提出
报纸每份购进价为 b 元,零售价为 a 元,退回价为 c 元,且 a b c 。
则报亭售出一份赚 a b 元,退回一份 赔 b c 元。报亭应该如何确定每天购进
报纸的数量,以获得最多的收入?
2021/2/28
数学建模实用教程-高教出版社
13
问题3 报亭的进报策略模型
(2) 问题的分析
不妨设 m 20, 0.1,对于不同的i ,计算 和 。
从计算结果可以看出:随着病人数 i 的增加,平均感
染率 随之增加,而相对误差 随之减少;
当病人的比例 i 一定,总人口数 n 变大时,相对误差 n
也随之减少。
2021/2/28
数学建模实用教程-高教出版社
12
问题3:售报厅的进报策略模型
当一个健康人与病人接触时,这个健康人
被感染的概率为 。
2021/2/28
模型
(2)模型的建立与求解
由于任何两人接触的概率为 p ,且两两接触的独立 性,一名健康人每天接触的人数服从二项分布,其平均值 为 m 。利用二项分布的基本性质,并注意到人群总数为 n , 则有 m (n 1) p ,于是, p m 。
i1
2021/2/28
数学建模实用教程-高教出版社
5
1、初等概率模型
问题2:传染病的传播模型
现在的问题:
对某种传染病而言,人群中有病人(带菌者)和 健康人(易感染者),任何两人之间的接触是随机 的,当健康人与病人接触时健康人是否被感染也是 随机的.
如果通过实际数据或经验掌握了这些随机规律, 那么怎样估计平均每天有多少健康人被感染,这种 估计的准确性有多大?
正比,并且随着人群总数 n 的增加而增加。
平均感染率 与病人数 i 的关系,当 i 很小或很大 (接近 n )时, 值都很小,而当 i n 时, 值最大。
2
这个结果合理吗?
为了直观,给出几组检验数据的计算结果。
2021/2/28
数学建模实用教程-高教出版社
11
问题2:传染病的传播模型
(3)模型的检验