第二章光纤光学基本方程

合集下载

光纤通信基本理论概述

光纤通信基本理论概述

Passive Products
WDM/ Coupling TFF D/CWDM
Amplifier Components
Attenuator Products
Switching
Interconnects
Isolator
MV
SN
Cable Assy
FFC
GFF
VCB
MOMS
Adapters
Interleaver
为什么要用 WDM模块
Example: 4 signals, 100 km span length with regeneration
Tx - λ1 Tx - λ2 Tx - λ3 Tx - λ4
OA
Rx - λ1 Rx - λ2 Rx - λ3
OA
OA
OA
Rx - λ4
• Without DWDM • 4 x 100 km fibre • 4 EDFA
Modulator
OA
PD
CW1550
14xx 300mw
10Gb/s
EDFA 15dBm
APD 10Gb/s
Uncooled TOSA
980 180/300/360
2.5Gb/s
EDFA Circuit pack
PIN 10Gb/s
Cooled TOSA
9xx 4w/uncooled
APE
APD 2.5Gb/s
光线理论的主要优点
(1)简单直观; (2)在分析芯径较粗的多模光纤时可以得到较精确的结果。
光线理论的主要缺点
波动方程的特征解/ 横向光能量分布
(1)出于采用了几何光学近似,光线理论不能够解释诸如:模式分 布、包层模、模式耦合以及光场分布等现象; (2)当不满足λ远小于芯径的近似条件时(如对于单模光纤),光线理 论的分析结果存在很大的误差。

光纤光学

光纤光学
光纤坚硬而又弯曲灵活,强度极大;光学性质:取决于结构和 成分,最明显的就是损耗或信号衰减特性等。光纤是绝缘体, 它不能直接传输电信号和能量。
1.4 光纤与通信网络 光纤的带宽和具有吸引力的特征使其成为理想的线缆 传输媒介。对于通信系统,光纤是具有强大运载信息 能力的工具。光纤工业已经进入显著的繁荣期。在过 去的20年里,一根光纤所能承载的最大数据率差不多 平均每年翻一番,比电子行业的摩尔定律(每18个月 翻一番)还要快 1.4 光纤与通信网络(续) (1)全球海底网络(2)陆地网络 (3)卫星系统与光纤网络(4)光纤到户 (5)局域网
光纤传感技术应用: 工业、制造、土木工程、军用科技、环境保护、地质勘
探、石油探测、生物医学等。
光纤传感器种类: 包括湿度、温度、应变、应力、振动、声音和压力传感
器等。 (1)光纤光栅传感器(2)光纤法布里-珀罗传感器(3)光 纤白光干涉传感器 (4)光纤陀螺传感技术(5)其他光纤传感技术 1.6 光纤的发展 种类:多模光纤 单模光纤、保偏光纤、塑料光纤、掺杂 光纤、光子晶体光纤等数十种; 材料:石英光纤 聚合物/塑料光纤、光子晶体光纤、掺 稀土光纤等
z ds
路径 dr
r r+dr
ls
ls=
dr ds
dr=ds
o
y
x
图 光线传播路径示意图
z
a
b
r
r=(s/n)a+b
o
y
x
图 均匀介质中路径方程的解
矢量b 指出了光线的起始位置; 矢量a 则指明了光线的传播方向。
总结
当光纤纤芯的横向尺寸(直径)远大于光 波长时,可以用较成熟的几何光学(射线光 学)分析法进行分析;
在工业发达国家及我国:干线大容量通信线路不再新建 同轴电缆,而全部铺设光缆。

第二章 光纤光学的基本方程

第二章 光纤光学的基本方程
第二章 光纤光学的基本方程
麦克斯韦方程与亥姆霍兹方程 程函方程与射线方程 波导场方程 模式及其基本性质
波动光学理论
❖ 用几何光学方法虽然可简单直观地得到光线在光 纤中传输的物理图象,但由于忽略了光的波动性 质,不能了解光场在纤芯、包层中的结构分布及 其它许多特性。
❖ 采用波动光学的方法,把光作为电磁波来处理, 研究电磁波在光纤中的传输规律,可得到光纤中 的传播模式、场结构、传输常数及截止条件。

n r


dr ds
dn ds
❖ 上两矢量式点乘,第二项因两矢量正交为零,故有
K

1
R
eR

n r nr
❖ 因曲率半径总是正的,所以等式右边必须为正:
n r nr

0时,eR 与er 夹角小于

2

n r n r

0时,eR
与er
夹角大于

2

A B C A C B A B C
❖ 得到
{S r • S r }E0 n 2E0 0

S r • S r n 2 程函方程
或 S 2 n 2, S(r ) n r


S r
eR
❖ 即光线前进时,向折射率高的一侧弯曲。
n’ n dr/ds
n’ >n
例3:光线在圆柱体中的传播
z
光线方程:d ds
n(r)

dr ds


n(r)
r
0
光线方程在圆柱坐标中可分解成三个标量方程:
设折射率分布横截面为中心对称分布,纵向不变,则:

光纤讲义-第2章 光纤传输基本理论

光纤讲义-第2章 光纤传输基本理论
第2章 光纤传输基本理论
第2章 光纤传输基本理论
第2章 光纤传输基本理论
2.1 光纤传输基本方程及解 2.2 多模光纤的光传输特性 2.3 单模光纤的光传输特性 2.4 光纤传输中的非线性现象
2.1 光纤传输基本方程及解
由于任何光信号都可分解成具有一定相对关系的 单色光的组合,为了得到光纤传输的特性,我们需要 导出在单色光输入情况下光纤的输出特性。本节分析 光纤中光的传输特性。
现 在我们 近 似 假 定 横 向 场的 极化 方 向 保持 不变 , 这样就 可用一个标量来描述它,它将满足标量亥姆霍 兹 方程。由 此 我们可 以通过解 该横 向场的标 量亥姆霍 兹 方程 求 得解 答。 这种 方 法叫标 量 近似 分析 法。可 以 看出,标量近似分析法是以n1≈n2为前提的。下面我们 将用 标 量 近 似 分析 法推 导出场方程、特 征方程,介 绍 标 量解的 模 式分布, 讨论各模 式的传输特性 及光纤中 的功率分布等。
第2章 光纤传输基本理论
第2章 光纤传输基本理论
2.1.1 麦克斯韦方程与波动方程 光信号在光纤中的传输由麦克斯韦方程描述,可写
式中,E(r,t)、 H(r,t)分别为电场强度矢量和磁场强度 矢量;D(r,t)、B(r,t)分别为电位移矢量和磁感应强度矢 量; Jf(r,t) 为电流密度矢量, ρf(r,t) 为电荷密度分布, 是电磁场的源。 当介质内传输的电磁场强度E(r,t)和H(r,t)增大时, (2.1) 电位移矢量D(r,t)和磁感应强度矢量B(r,t)也随之增大, 它们的关系通过物质方程联系起来 D(r,t)=ε0E(r,t)+P(r,t) B(r,t)=μ0H(r,t)+M(r,t) (2.2)
u AJ ( ) r r ≤ a m a R(r ) = DK m ( ω ) r r ≥ a a

光纤光学的基本方程679KB

光纤光学的基本方程679KB

光纤光学的基本⽅程679KB第⼆章光纤光学的基本⽅程光纤光学的研究⽅法⼏何光学⽅法:光纤芯径远⼤于光波波长0λ时, 可以近似认为0λ→0从⽽将光波近似看成由⼀根⼀根光线所构成, 因此可采⽤⼏何光学⽅法来分析光线的⼊射、传播(轨迹) 以及时延(⾊散) 和光强分布等特性,这种分析⽅法即为光线理论。

优点:简单直观,适合于分析芯径较粗的多模光纤。

缺点:不能解释诸如模式分布、包层模、模式耦合以及光场分布等现象,分析单模光纤时结果存在很⼤的误差。

波动光学⽅法:是⼀种严格的分析⽅法,从光波的本质特性电磁波出发,通过求解电磁波所遵从的麦克斯韦⽅程,导出电磁波的场分布。

优点:具有理论上的严谨性,未做任何前提近似,因此适⽤于各种折射率分布的单模和多模光纤。

缺点:分析过程较为复杂。

光纤光学的研究⽅法⽐较光线理论与波动理论分析思路电磁分离波动⽅程wave equation时空分离亥姆赫兹⽅程Helmholtz equation纵横分离波导场⽅程2.1 麦克斯韦⽅程与亥姆赫兹⽅程⼀、麦克斯韦⽅程光纤是⼀种介质光波导,具有如下特点:①⽆传导电流;②⽆⾃由电荷;③线性各向同性。

边界条件:在两种介质交界⾯上电磁场⽮量的E(x,y)和H(x,y)切向分量要连续,D 与B的法向分量连续:⼆、光线⽅程光线⽅程光线⽅程的物理意义:当光线与z 轴夹⾓很⼩时,有:物理意义:将光线轨迹(由r描述)和空间折射率分布(n)联系起来;由光线⽅程可以直接求出光线轨迹表达式;d r/dS是光线切向斜率, 对于均匀波导,n为常数,光线以直线形式传播;对于渐变波导,n是r的函数,则d r/dS为⼀变量, 这表明光线将发⽣弯曲。

⽽且可以证明,光线总是向折射率⾼的区域弯曲。

典型光线传播轨迹反射型折射型模式分析的基本过程数学模型园柱坐标系中的波导场⽅程边界条件本征解与本征值⽅程本征值与模式分析数学模型阶跃折射率分布光纤(SIOF)是⼀种理想的数学模型,即认为光纤是⼀种⽆限⼤直园柱系统,芯区半径a ,折射率为1n ;包层沿径向⽆限延伸,折射率为折射率为2n ;光纤材料为线性、⽆损、各向同性的电介质。

chapter光纤光学ppt课件

chapter光纤光学ppt课件
Pin(dBm)=10log10[Pin(mW)/1mW] =10log10[200×10-3mW/1mW]=-7dBm
在z=30km时的输出功率(用dBm表示) Pout(dBm)=Pin(dBm)-αz
=-7dBm-0.8dB/km×30km =-31dBm
Pout=10-31/10(mW)=0.79×10-3mW=0.79uW
整理ppt
35
2.群延时
延时差:
d( 1 )
g
Vg d
色散系数
整理ppt
36
3.色散系数
引进色散系数D,指的是光信号在单位轴向距离上、单位波长间隔
产生的时延差:Dd dgd d V 1 g 2 2c2 cd d2n 2
群速率色散参数β2
()n()c01012202...
mdd mm0
(dB /km )1 z0log10[P P ((0 z))]4.343 p
整理ppt
5
dB=10log10(PA/PB)是功率增益的单位,是一个相对值。 例如:PA的功率比PB的功率大一倍,那么
10log10(PA/PB)=10log10(2)=3dB
为了方便计算光纤链路中的光功率,通常将dBm作为光功率 的运算单位,这个单位的含义是相对于1mW的功率。
=10log10[PA(mW)/PB(mW)] 例1:如果PA的功率为46dBm,PB的功率为40dBm,则PA比PB大 6dB。
46dBm-40dBm=6dB
10log10[PA/PB]=6 PA/PB=100.6=3.98≈4
整理ppt
7
例2:设想一根30km长的光纤,在波长1300nm处的衰减为 0.8dB/km,如果我们从一端注入功率为200uW的光信号,求 其输出功率Pout。 解:首先将输入功率的单位转换成dBm。

第二章光纤传输理论

第二章光纤传输理论

13
§2-1 概述
4. 其他结构的单模光纤
实际上,根据应用的需要,可以在常规单模光纤的基 础上设计许多结构复杂的特种单模光纤。最有用的若干典 型特种单模光纤的横截面结构和折射率分布如下:
n1 n2 n3 n3 n1 n2 n1
n2
2a 2a’
2a 2a’
广东海洋大学理学院 · 光纤通信
2019年2月26日星期二
2019年2月26日星期二 广东海洋大学理学院 · 光纤通信
6
§2-1 概述
二、光纤的分类 1. 按纤芯折射率分布 (1)阶跃型光纤(SIF :Step Index Fiber) 信号畸变大(色散); (2)渐变型光纤(GIF:Graded Index Fiber) 信号畸变小。
2019年2月26日星期二 广东海洋大学理学院 · 光纤通信
2019年2月26日星期二 广东海洋大学理学院 · 光纤通信
26
§2-3 光纤传输的波动光学分析
麦克斯韦(Maxwell’s Equations)方程组: 磁场强度: 考虑无源情况,介质没有自由 电荷和电流,即ρ=0,J=0。 电场强度: 磁感应强度: 电感应强度: 对于线性和各向同性媒质,物质方程成立:
NA和Δ是一对矛盾的量,必须综合起来考虑, NA越大,则光纤的集光能力越强, 但是其传输光能的能力越小。 为减小光纤的色散,采取减小Δ的措施,但受到 Δ的极限制约,人们又开发出渐变折射率光纤。
2019年2月26日星期二 广东海洋大学理学院 · 光纤通信
22
§2-2 光纤传输的射线分析(几何光学方法)
3. 光在多模渐变光纤中传输 纤芯的折射率不再是均匀分布,而是沿着径向 按抛物线型变化:
2 n 1 ( r / a ) ,r < a 1 nr r是离开纤芯中心的距离 ,r a n2

第2章 光纤光学的基本方程

第2章 光纤光学的基本方程


Ψ x , y , z , t e

dt
9 江汉大学
第2章 2.1麦克斯韦方程与亥姆霍兹方程
边界条件 ˆ D2 D1 n D1n D2 n ˆ B2 B1 0 n 即 B1 n B2 n ˆ E 2 E1 0 n E1t E 2 t n H 2 H 1 H 1t H 2 t
x, y, z r , , z
电流连续性方程
8 江汉大学
ρ J 0 t
第2章 2.1麦克斯韦方程与亥姆霍兹方程
场量的时域和频域表达式
Φ x , y , z , t Ψ x , y , z , e
jt
d
jt
1 Φ x , y , z , 2
23 江汉大学
第2章 2.4模式及其基本性质
modes of a fiber
24 江汉大学
第2章 2.4模式及其基本性质
Rectangular transverse mode patterns TEM(mn)
25 江汉大学
第2章 2.4模式及其基本性质
光纤中的模式-横模
26 江汉大学
第2章 2.4模式及其基本性质
it
得 亥姆霍兹方程
Ψ x , y, z k Ψ x , y, z 0
k nk0 2 2 E x, y, z k E x, y, z 0 2 2 H x, y, z k H x, y, z 0
11 江汉大学
第2章 2.1麦克斯韦方程与亥姆霍兹方程
1.电磁分离H B E t D B H D E H t D E 2 D 0 t t H 2 H H 2 2 B 0 H H H t 1 B 1 H H B B

光纤光学-第2章-光纤光学原理及应用(第二版)-张伟刚-清华大学出版社

光纤光学-第2章-光纤光学原理及应用(第二版)-张伟刚-清华大学出版社

光纤光学》《光纤光学第二章光纤光学的基本理论南开大学张伟刚教授第2 章光纤光学的基本理论2.1 引论2.2 光纤的光线理论222.3光纤的波动理论2.1引论2.1.1光线理论可以采用几何光学方法分析光线的入1.优点:的多模光纤时2.不足:2.1.2波动理论2.不足:2.1.3分析思路麦克斯韦方程光线理论波动理论2.2光纤的光线理论 2.2.1程函方程问题2.1:(r , t )z y x e z e y ex r ˆˆˆ++=G ),(t r E G G ),(t r H G G G G G G G G )0,0(0===t r E E )0,0(0===t r H H )(r G φφ=(2.1) 00ik i t E E e ϕω−+=G G (2.2)00ik i t H H e ϕω−+=G G 000)()()(000E e e E e E E ik ik ik G G G G ×∇+×∇=×∇=×∇−−−φφφik ik −−G G []φφφ00000)()(e E ik e E ×∇−×∇=φ0ik e E ik E −×∇−×∇=G G (2.3)[]φ000)((2.3)G G G G (24)[]φφφ000000)()(ik ik e H ik H e H H −−×∇−×∇=×∇=×∇(2.4) (21)(22)(25)(28)(2.1)(2.2)(2.5)(2.8)B ∂G G t E ∂−=×∇G (2.5)(26)t D H ∂∂=×∇G (2.6)G G 0=⋅∇D (2.7)(28)0=⋅∇B (2.8)(2.9)(2.10)(2.9)E D G G ε=G G (210))HB μ=(2.10) 因光纤为透明介质(无磁性),于是0μμ≈ωi t =∂∂φμωμ0000ik e H c ik H i E −−=−=×∇G G G (2.11) φεωε0ik e E i c ik E i H −==×∇G G G (2.12) 00()(2.32.3))(2.112.11))(2.42.4))(2.122.12))G G G −=−000000)(H c ik E ik E μφ×∇×∇00000)(E c ik H ik H G G G εφ=×∇−×∇1G G G ∇=−(213)00000)(E ik H c E ××∇μφ1H k E c H G G G ×∇=+×∇ε(2.13) (2.14) 0000)(ik φ()H G 0[]000200)(1)(1)(1)(E c E E E G G G G εφφφφμφ−=∇−∇⋅∇=×∇×∇000c c c μμ(2.15)λ→0000)(H c E G G μφ=×∇(2.16) 00)(E c H G G εφ−=×∇(2.17)问题2.2:(2.15)(2.16)000E H ϕϕ⋅∇=⋅∇=G G (2.18a) (218b)∇∇G G (2.18b)0E H ϕϕ⋅∇=⋅∇=G G 、、三个矢量相互垂直三个矢量相互垂直!!0E 0H ϕ∇(2.1(2.188)(2.1(2.155)r c εεμεμφ===∇00221)((2.19)22(220)με00)(n =∇φ(2.20)G G =)()(r n r ∇φ(2.21)221)G (2.21)“程函方程” ()r φ程函方程的物理意义:讨论讨论:r G ∇()φ)(r G φ∇“”n r G 场源()(2.2.2121))),,(),,(),,(),,(2222z y x n z z y x y z y x x z y x =⎥⎦⎤⎢⎣⎡∂∂+⎥⎤⎢⎡∂∂+⎥⎦⎤⎢⎣⎡∂∂φφφ(2.22)⎦⎣问题2.3:(2.2.2121))2.2.2 光线方程根据折射率分布,可由程函方程求出光程函()r Gφ为此,可从程函方程出发推导光线方程。

《光纤光学教学课件》第三讲

《光纤光学教学课件》第三讲

2020/4/22
纵模
• 相长干涉 条件:2 nL=Kλ • 纵模是与激光腔长度相关的,所以叫做“纵
模”,纵模是指频率而言的。
2020/4/22 © HUST 2012
2020/4/22
模式的场分量
• 模式场分布由六个场分量唯一决定:
直角坐标系:Ex Ey Ez Hx Hy Hz 圆柱坐标系:Er E Ez Hr H Hz • Ez 和 Hz 总是独立满足波导场方程
说明:光纤为圆柱型波导,通常 在圆柱坐标系下研究更为方便。 此时其两个横向分量相互交叠, 没有如此简单的分量方程,只有 纵向分量满足独立的波导场方程。
• 场的横向分量可由纵向分量来表示——6个场
分量可简化为2个纵向场分量的求解。
2020/4/22
© HUST 2012
2020/4/22
直角坐标系纵横关系式
优点:具有理论上的严谨性,未做任何前提近似,因此适用于各种折射率分布的单 模和多模光纤。 缺点:分析过程较为复杂。
2020/4/22 © HUST 2012
2020/4/22
光纤光学的研究方法比较
适用条件 研究对象 基本方程 研究方法 研究内容
几何光学方法 d 光线 射线方程 折射/反射定理 光线轨迹
2020/4/22 © HUST 2012
2020/4/22
• 由此得到电场E和磁场H的场分布满足的 波导场方程:
数学物理意义:
是波动光学方法的最基本方程。它是一个典型的
本征方程,其本征值为χ或β。当给定波导的边界条 件时,求解波导场方程可得本征解及相应的本征值。 通常将本征解定义为“模式”.
2020/4/22 © HUST 2012
2020/4/22

光纤光学 学习指南

光纤光学  学习指南

第一部分.光纤光学需要掌握的基本概念与重要结论第一章.绪论(4学时)1.光纤的优缺点优点:大容量;低损耗;抗干扰能力强;保密性好;体积小重量轻;材料取之不竭;抗腐蚀耐高温。

缺点:易折断;连接分路困难;怕水;怕弯曲。

2.光纤的分类重点掌握(1)光纤的结构,纤芯、包层、涂覆层的特点与作用(2)阶跃折射率分布光纤(SIOF)与渐变折射率分布光(GIOF)的特点与区别,折射率分布形式。

一些基本参数的意义与其表达式:相对折射差∆的意义与表达式;折射率分布参数g的意义(当g=∞时为SIOF,当g=2时为平方率分布光纤,当g=1时为三角分布光纤)。

(3)单模光纤与多模光纤的特点与区别(传输的模式数,芯径的大小,归一化频率);归一化频率的意义与表达式(阶跃单模光纤的判据:V<2.405,渐变单模光纤的判据:V<3.508。

注意我们经常见到的2.405 是对阶跃光纤而言的)。

简单了解其它种类的光纤,例如保偏光纤与有源光纤(后面的课程会学到)。

3.光纤的制备工艺简单的了解一下。

第二章.光纤光学的基本方程(2学时)1.分析光纤波导的两种理论“几何光学方法”与“波动光学理论”的应用条件(几何光学方法:芯径远大于光波长;波动光学理论:芯径与波长可比例)与特点。

2.由麦克斯韦方程组出发推导波导场方程(1)“三次分离”,基本过程以及能够这样分离的依据“电磁”分离:由麦克斯韦方程组到波动方程“时空”分离:由波动方程到亥姆霍兹方程“横纵”分离:由亥姆霍兹方程到波到场方程(2)SIOF与GIOF中光线方程的意义,即SIOF与GIOF中光线的传播形式3.模式及其基本性质(1)模式的基本概念与定义(2)TEM、TE、TM、HE、EH模式的特点(3)纵向传播常数β横向传播常数W、U的意义(重点了解W的意义),以及W、U、V之间的关系(4)截止与远离截止的概念与基本条件(W=0截止,W=∞远离截止)(5)相速度、群速度、群延时的基本概念(6)线偏振模的概念第三章.阶跃折射率分布光纤(6学时)1.几何光学分析方法主要掌握一些基本的概念,“子午光线”与“偏斜光线”的定义;数值孔径的表达式,以及其物理意义(标志着光纤收光能力以及与光源耦合时偶和效率的大小),数值孔径与传输带宽的关系(成反比)。

第2章 光纤光学的课件基本方程

第2章 光纤光学的课件基本方程

H z
Ez r
2E
i
w
H r
z
1 Ez r
2Hr
i
we
1 r
Ez
Hz r
25
横纵关系式
Ez
i
1 we
H y x
H x y
Hz
i
1
H x x
H y y
i
w
E y x
Ex y
Ez
i
1 we
1 r
r
rH
1 r
H r Βιβλιοθήκη Hzi11
r
r
rHr
1 r
H
1
w
1 r
r
rE
1 r
Er
26
模式命名
根据场的纵向分量Ez和Hz的存在与否, 可将模式命名为:
(1)横电磁模(TEM): Ez=Hz=0;
(2)横电模(TE):
Ez=0, Hz≠0;
(3)横磁模(TM): Ez≠0,Hz=0;
(4)混杂模(HE或EH):Ez≠0, Hz≠0。
光纤中存在的模式多数为HE(EH)模,有
Q(x, y, z) const
于是,也就确定了光线轨迹。 由光程函数方程可推得光线方程(射线方程):
10
d
(n
dr
)
n(r )
dS dS
当光线与z轴夹角很小时,光线方程可取
近似形式:
d
(n
dr
)
n(r )
dS dS
d
(n
dr
)
n(r )
dz dz
11
射线方程的物理意义
d
(n
dr

光纤光学课后答案

光纤光学课后答案

光纤光学课后答案【篇一:光纤应用习题解第1-7章】>1.详述单模光纤和多模光纤的区别(从物理结构,传播模式等方面)a:单模光纤只能传输一种模式,多模光纤能同时传输多种模式。

单模光纤的折射率沿截面径向分布一般为阶跃型,多模光纤可呈多种形状。

纤芯尺寸及纤芯和包层的折射率差:单模纤芯直径在10um左右,多模一般在50um以上;单模光纤的相对折射率差在0.01以下,多模一般在0.01—0.02之间。

2.解释数值孔径的物理意义,并给出推导过程。

a::na的大小表征了光纤接收光功率能力的大小,即只有落入以m为半锥角的锥形区域之内的光线,才能够为光纤所接收。

3.比较阶跃型光纤和渐变型光纤数值孔径的定义,可以得出什么结论?a:阶跃型光纤的na与光纤的几何尺寸无关,渐变型光纤的na是入射点径向坐标r的函数,在纤壁处为0,在光纤轴上为最大。

4.相对折射率差的定义和物理意义。

n12-n22n1-n2a:d=2n12n1d的大小决定了光纤对光场的约束能力和光纤端面的受光能力。

5.光纤的损耗有哪几种?哪些是其固有的不能避免,那些可以通过工艺和材料的改进得以降低?a:固有损耗:光纤材料的本征吸收和本征散射。

非固有损耗:杂质吸收,波导散射,光纤弯曲等。

6.分析多模光纤中材料色散,模式色散,波导色散各自的产生机理。

a:材料色散是由于不同的光源频率所对应的群速度不同所引起的脉冲展宽。

波导色散是由于不同的光源频率所对应的同一导模的群速度不同所引起的脉冲展宽。

多模色散是由于不同的导模在某一相同光源频率下具有不同的群速度所引起的脉冲展宽。

7.单模光纤中是否存在模式色散,为什么?a:单模光纤中只传输基模,不存在多模色散,但基模的两个偏振态存在色散,称为偏振模色散。

8.从射线光学的观点计算多模阶跃光纤中子午光线的最大群时延差。

a:设光纤的长度为l,光纤中平行轴线的入射光线的传输路径最短,为l;以临界角入射到纤芯和包层界面上的光线传输路径最长,为linfc。

光学中的光学光纤方程

光学中的光学光纤方程

光学中的光学光纤方程光学光纤是现代通信技术中不可或缺的组成部分。

它的应用范围广泛,既可用于通信传输,也可用于医疗、材料加工、传感器等领域。

光学光纤的优点是传输速度快、带宽高、抗干扰能力强、信号损耗小等。

但是,光纤传输中的信号衰减、色散等问题也不容忽视。

在光学光纤中,光从一端进入,经过光纤中的反射和折射等过程传输,并在另一端输出。

光纤的传输过程受到多种因素的影响,如纤芯直径、材料折射率、纤芯和外套之间的折射率差、温度等。

因此,需要建立光学光纤传输的数学模型,以描述光信号的传输过程。

建立光学光纤传输模型的基础是麦克斯韦方程组。

麦克斯韦方程组描述了电磁场的变化,光就是电磁波的一种。

光在介质中传输时,其电场和磁场在空间和时间上都会随着位置和时间的变化而变化,因此麦克斯韦方程组可以描述光的变化规律。

在光纤传输中,光的传播过程涉及到折射和反射现象。

折射现象是指光线从一种介质进入到另一种介质时,会发生偏折的现象。

反射现象则是指光线在介质表面发生反弹现象。

光的折射和反射现象会影响光信号在光纤中的传输过程,也就是说,光纤的传输特性取决于光的折射和反射。

光在光学光纤中的传输过程可以用光学光纤方程表示。

光学光纤方程是通过微分方程对光纤中的光强度和相位进行描述,它可以描述光纤中光的传输特性、极化特性、光学记忆效应、色散和非线性效应等。

常见的光学光纤方程包括折射率波动方程和非线性薄膜方程。

折射率波动方程是描述光在光学光纤中传输时,由于纤芯直径变化等原因而产生的折射率变化所引起的总波长变化。

其数学表达式为:$$\frac{d^2 A}{dz^2}+k^2n^2(z)A=0$$其中$A(z)$表示光波的振幅,$n(z)$表示光纤中的局部折射率,$k$表示波数。

在单模光纤中,$n(z)$是一个常数,说明光波在光纤中传输时的特性是一个单一的傅里叶模式。

非线性薄膜方程描述了光在光学光纤中传输时,受到光纤的非线性效应的影响而引起的相位和能量变化。

光纤光学光纤传输的基本理论

光纤光学光纤传输的基本理论

MAXWELL’S EQUATIONS ∇ · B = 0 ∇ · D = ρ ∇×E = −∂B/∂t ∇×H = J +∂D/∂t From the first line, the normal ponents of D and B are continuous across a dielectric interface From the second line, the tangential ponents of E and H are continuous across a dielectric interface
由于渐变型多模光纤折射率分布是径向坐标r的函数,纤芯各点数值孔径不同.
01
单击此处添加小标题
局部数值孔径NA(r)和最大数值孔径NAmax
组层与层之间有细微的折射率变化的薄层, 其中在中心轴线处的层具有的折射率为n1,在包层边界的折射率为n2。这也是制造商如何来制造光纤的方法。
= r1 (1.13)
01
An(0) sin(Az) cos(Az)
cos(Az)
02
单击此处添加正文,文字是您思想的提炼,为了演示发布的良好效果,请言简意赅地阐述您的观点。
r
03
这个公式是自聚焦透镜的理论依据。
θ*
由此可见,渐变型多模光纤的光线轨迹是传输距离z的正弦函数,对于确定的光纤,其幅度的大小取决于入射角θ0, 其周期Λ=2π/A=2πa/ , 取决于光纤的结构参数(a, Δ), 而与入射角θ0无关。
波动方程
麦克斯韦方程组
时、空坐标分离:亥姆霍兹方程,是关于E(x,y,z)和H(x,y,z)的方程式
单色波:
矢量的Helmholtz方程
空间坐标纵、横分离:得到关于E(x,y)和H(x,y)的方程式;

光纤光学

光纤光学
Chapter 2 24
作业
1. 说明利用材料色散与波导色散制作 色散位移光纤的原理。 2. 简述偏振光在光纤中传输一个拍长时在邦加莱球 上的描述。 3.光波(Ex, Ey)T依次分别通过起偏器、四分一波片、 和二分一波片时的矩阵描述。请分析光波每经过一 个元器件时的偏振态的变化。 4. 构建色散补偿的方法。
劣化的程度随数据速率的平方增大 决定了电中继器之间的距离
Chapter 2 7
色散对光传输系统的影响 如果信号是数字脉冲, 色散产生脉冲展宽(Pulse broadening)。 所以,色 散通常用3 dB光带宽f3dB或 脉冲展宽Δτ表示。 用脉冲展宽表示时, 光纤色散可以写成
Δτ=(Δτ2n+Δτ2m+Δτ2w)1/2 Δτn ——模式色散; Δτm ——材料色散; Δτw ——波导色散 所引起的脉冲展宽的均方根值。
相位角差
决定合成后的偏振态的特性。
Chapter 2
21
• 偏振光通过光学元件的表达:
Ex A B Ex E y o E y out C n
Bn A1 Dn C1
通过两段双折射光纤的表达:
Ex cos E y out sin sin ei 2 cos 0 0 cos e i 2 sin sin ei1 cos 0 0 cos 45 e i1 sin 45 sin 45 E x cos 45 E y in
i (t z x )
对于平面波: E E x x ˆ Ey y ˆ
E y E0 y e
( y x )

光纤光学第二章

光纤光学第二章
第22页,本讲稿共39页
d ds
n
r
dr ds
n
r
1. 在均匀折射率介质中,光线轨迹为直线传播。
2. 设R是光线弯曲的曲率半径,N为光线法向单位
矢量,则:
1 R
1
nr
N
n r
3. 球面对称媒质中的光线都是平面曲线,位于通过原
点的某一平面上
第23页,本讲稿共39页
5. 波导场方程与模式
亥姆霍兹方程: 2 x, y, z k 2 x, y, z 0
优点:具有理论上的严谨性,未做任何前提近似,因此 适用于各种折射率分布的单模及多模光纤
缺点:分析过程较为复杂
第4页,本讲稿共39页
光纤光学的研究方法
适用条件 研究对象 基本方程 研究方法 研究内容
几何光学方法
d 光线 射线方程 折射/反射定理 光线轨迹
波动光学方法
d 模式 波导场方程 边值问题 模式分布
n2k0 n1k0
•β实际上是等相位面沿z轴的变化率;
•β数值分立,对应一组导模;
•不同的导模对应于同一个β数值,则称这些导模简并
2
r
n12n22为实数 包层 : 为纯虚数
第28页,本讲稿共39页
3. 归一化频率(V)
对于给定的光纤,其传输的导模由其结构参数限定。 光纤的结构参数可由其归一化频率V表征:
E0, H0是振幅, k0Q是相位,Q是光程
E E0 ik0Q E0 expik0Q
当0 0或k0 时
k0Q很大, 上式右方的第一项可略去(几何近似),可得:
第14页,本讲稿共39页
E ik0Q E0 expik0Q
同理:
H ik0Q H0 expik0Q

光纤光学第三版

光纤光学第三版

光纤光学第三版第一章:光纤光学的基本概念光纤光学是一门研究光在纤维中传播和控制的学科。

随着信息技术的发展,光纤光学在通信、传感、医疗等领域得到了广泛的应用。

本章将介绍光纤光学的基本概念,包括光的传播特性、光纤的结构和制备方法等。

1.1 光的传播特性光是一种电磁波,具有波粒二象性。

在光纤中,光的传播遵循光的折射定律和反射定律。

光在光纤中的传播速度取决于光的频率和光纤的折射率。

1.2 光纤的结构光纤是由芯、包层和包覆层组成的。

芯是光信号传输的核心部分,包层用于控制光的传播,包覆层用于保护光纤。

光纤的结构对光的传播特性有重要影响。

1.3 光纤的制备方法光纤的制备方法包括拉制法、外延法和化学气相沉积法等。

拉制法是目前最常用的方法,它通过加热和拉伸光纤预制材料来制备光纤。

第二章:光纤的传输特性光纤的传输特性是指光在光纤中传播过程中的损耗、色散和非线性效应等。

本章将介绍光纤的传输特性及其对光信号传输的影响。

2.1 光纤的损耗光纤的损耗是指光在光纤中传播过程中能量的损失。

主要包括吸收损耗、散射损耗和弯曲损耗等。

降低光纤的损耗是提高光纤传输效率的关键。

2.2 光纤的色散光纤的色散是指光在光纤中传播过程中不同频率的光信号传播速度不同所引起的现象。

主要包括色散的类型、原因和补偿方法等。

2.3 光纤的非线性效应光纤的非线性效应是指光在光纤中传播过程中由于光的强度变化而引起的非线性光学现象。

主要包括自相位调制、受激拉曼散射和自发参量过程等。

第三章:光纤通信系统光纤通信系统是利用光纤传输光信号进行信息交换的系统。

本章将介绍光纤通信系统的基本原理和组成部分。

3.1 光纤通信系统的基本原理光纤通信系统的基本原理是将电信号转换为光信号,通过光纤传输光信号,再将光信号转换为电信号进行信息传输。

3.2 光纤通信系统的组成部分光纤通信系统由光源、光纤、光接收器和信号处理器等组成。

光源产生光信号,光纤传输光信号,光接收器接收光信号并转换为电信号,信号处理器对电信号进行处理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

d ds
dr ds
0
表示光线路径为直线。
例2:光线在折射率具有球对称分布媒质中的传播
❖ 球对称:折射率仅仅是半径r的函数
n n
❖ 射线方程:d
ds
r
n
dr ds
n
er
denrrdndrr
dr
推导光线走向的表达式如下:
展开射线方程:
d
r
n
d 2r ds 2
dr ds
dn ds
er
dnr
例1:光线在均匀媒质中的传播(如阶跃型光纤的纤心中)
d 射线方程:ds
n(r)
dr ds
n(r)
a
s
因 n = 常数
改写成:
d 2r n ds 2 0
b r
r 其解为矢量直线方程: sa b
a和b是常矢量,在均匀介质中光线路经沿矢量a前进,并通
过物理r=意b点义。:dds
dr ds
表示光线路径的曲率变化量。
r • H0 0
❖ 三个矢量正交,相位梯度与 ❖ 波面法线方向一致。
(2.2d)
E 相位梯度
H
❖ 利用光线理论的几何光学近似条件:
0,k0
❖ 将(2.2a)代入(2.2b) ❖ 得到
S r {S r E0} n 2E0 0
利用矢量恒等式
A B C A C B A B C
3.简谐时变场的波动方程—— 亥姆霍兹方程
❖ 光在光波导中传播应满足的亥姆霍兹方程式:
2E(x, y, z) k 2E(x, y, z) 0 2H (x, y, z) k 2H (x, y, z) 0
书P3(1.2-8)式
❖ 其中k=k0n为折射率为n的介质中的传播常数 (也叫波数)。k0为真空中的波数。
S r S r
z dr/ds
由程函方程 S(r ) n r
dr
ds
因此
S r n(nr()rd)r
ds
(2.3)
S(r)
dr 路径S r r+dr
y
x
相位梯度等于路径切线方向上的单位光程
上式对路径 S 求导 d
ds
n(r)
dr ds
d ds
S(r)
等式右边:
d ds
S(r)
n(r) n0
2
1
r0 r
2
x 0M 0 y 0L0 2 r02
1/ 2
N
2 0
( 2.6 )
只要光纤折射率分布和入射点确定,就可计算光线轨迹。
x
z
y
小结
❖ 程函方程:表示光波相位变化与介质折射率分布的关系
Q(r )2 n 2 r
❖ 光线在均匀介质传播路径上无方向变化;在非均匀介质传 播路径上有方向变化。
n
r
ddθs
2n r r
dθ dr ds ds
0
( 2.5a ) ( 2.5b )
Z 分量
d ds
n
r
dz ds
0
( 2.5c)
设 x 0,y 0 为入射点, L0 ,M 0 , N0 为入射点方向余弦,
n0 为入射点折射率。
由上三式得光线轨迹(路径与z 的关系):
z
r
N 0dr
r0
Hx的解答式 (5)根据电场和磁场的横向分量可用麦氏方程求出
轴向场分量EZ、HZ的解答式
二、矢量解法
1、理论计算的三大步骤:
①、利用圆柱坐标系(r,φ,z)中的亥姆霍兹方程求 出Ez、Hz
②、由Ez和Hz利用麦克斯韦方程组求出Er、Eφ、Hr、 Hφ
③、利用Eφ、 Hφ在纤芯和包层交界处连续的特点, 即在r=a处Eφ1=Eφ2、 Hφ1= Hφ2求出导波特征方程。
2.电磁波的波动现象
❖ 电场和磁场之间就这样互相激发,互相支持。 ❖ 光在光导纤维中的传播,正是电磁波的一种
传播现象。 ❖ 在光纤中传播的电磁场满足边界条件:磁场
与电场的切向和法向分量均连续,即:
E1t E2t H1t H 2t B1n B2n D1n D2n
3.简谐时变场的波动方程—— 亥姆霍兹方程
dn ds
❖ 上两矢量式点乘,第二项因两矢量正交为零,故有
K
1
R
eR
n r nr
❖ 因曲率半径总是正的,所以等式右边必须为正:
n r nr
0时,eR 与er 夹角小于
2

n r n r
0时,eR
与er
夹角大于
2

eR
❖ 即光线前进时,向折射率高的一侧弯曲。
n’ n dr/ds
n’ >n
❖ 对应于每一阶贝塞尔函数(m取某一确定整数), 都存在多个解(以n=1,2,…表示),记为βmn。
❖ 每一个βmn值对应于一个能在光纤中传输的光场 的模式。
❖ 根据不同的m与n的组合,光纤中将存在许多模式, 记为HEmn或EHmn。
❖ m表示导波模式的场分量沿纤芯沿圆周方向出现 最大值的个数,n表示沿径向出现最大值的个数。
▪ 由: E i0H
▪ 等式左边:
E {E0 e r i[t k0S r ]}
[e ik0S r E0 r E0 r e ik0S r ]e it
[ik0e ik0S r S r E0 r E0 r e ik0S r ]e it
0
k0
2.2 程函方程与射线方程
❖ 光线理论:当光线在传播过程中可以不考虑波长的有限大 小(即衍射现象),则能量可以看作沿一定曲线传播,电 磁波的传播可以近似为平面波。
❖ 方法:确定光线路径,计算相关联的强度和偏振: ▪ 程函方程 ▪ 射线方程
目的:得到任意光波导中的光线轨迹
1、 程函方程
光程:波面走过的几何路径与折射率的乘积。
2、矢量解法的结果
Ez
AJ m(Ur )e jm CK m(Wr )e jm
e j(t z ).......(r e j(t z ).......(r
a) a)
Hz
BJ m(Ur )e jm DK m(Wr )e jm
e j(t z ).......(r e j(t z ).......(r
的横截面上的这种场分布称为是横电磁波,即TEM 波。 ❖ 因此可把一个大小和方向都沿传输方向变化的空间
矢量E变为沿传输方向其方向不变(仅大小变化)的
标量E。
2、分离变量
❖令
(x, y, z) (x, y)eiz
❖ 代入亥姆赫兹方程
2(x, y, z) k 2(x, y, z) 0
❖ 得到
t2(x ,y ) 2(x ,y ) 0
ik0S r
e E0 r i[t k0S r ]
k0S r E0 r 0H0 r
Q r E0 r
0 k0
H0 r
0 00
H0 r
H0 r
❖ 由麦克斯韦方程其他三个方程同样处理,得到:
r E0 H0
r H0
n2
E0
(2.2a) (2.2b)
r • E0 0
(2.2c)
❖ 相位梯度方向与波矢量k方向一致,其模等于该点附近介 质折射率。
❖ 光线方程:
d ds
n(r )
dr
ds
n(r )
❖ 光线向折射率大的方向弯曲。
2.3 波导场方程
❖标量解法 ❖矢量解法
一、标量解法
1.标量近似
❖ 在弱导波光纤中,光线几乎与光纤轴平行。因此其
中的E和H几乎与光纤轴线垂直。 ❖ 横电磁波(TEM波):把E和H处在与传播方向垂直
dr
d 2r ds 2
1
n
er
dnr
dr
dr ds
dn
ds
❖ 据其微大分小几就何是,路等径式曲左线侧的曲dds率。ddsr 是光线路径的曲率矢量,
❖ 令曲率矢量为:K
d 2r ds 2
1
R
eR
K
1
R
R是曲率半径,eR 是曲线主法线方向
❖ 代入光线方程展开式:
❖ 用 n 乘 K 有:
K
1
n
❖ 得到
{S r • S r }E0 n 2E0 0

S r • S r n 2 程函方程
或 S 2 n 2, S(r ) n r

S r
x
2
S r
y
2
S r
z
2
n 2 x ,y ,z
相位梯度 S r 方向与光波传播方向一致,其模等于介 质折射率; 程函方程给出波面变化规律:
第二章 光纤光学的基本方程
麦克斯韦方程与亥姆霍兹方程 程函方程与射线方程 波导场方程 模式及其基本性质
波动光学理论
❖ 用几何光学方法虽然可简单直观地得到光线在光 纤中传输的物理图象,但由于忽略了光的波动性 质,不能了解光场在纤芯、包层中的结构分布及 其它许多特性。
❖ 采用波动光学的方法,把光作为电磁波来处理, 研究电磁波在光纤中的传输规律,可得到光纤中 的传播模式、场结构、传输常数及截止条件。
一、 导波模
❖ 导波光是一种特定的电磁场分布,其传输必须满 足一定条件,称这种特定的电磁场分布为“模”。
❖ 导波模式分类:
x
H
E
yz
E
H
芯层 包层
TE横电模
EZ=0
E H
H E
芯层 包层
TM横磁模 HZ=0
❖ 导波模式分类:
光线
E B
❖混合模: EH Ez>Hz
HE Hz>Ez
二、纵向传播常数
相关文档
最新文档