冀教版九年级数学上册期中试题

合集下载

最新冀教版九年级数学上册期中考试卷【参考答案】

最新冀教版九年级数学上册期中考试卷【参考答案】

最新冀教版九年级数学上册期中考试卷【参考答案】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2020的相反数是( )A .2020B .2020-C .12020D .12020- 2.一次函数()224y k x k =++-的图象经过原点,则k 的值为( )A .2B .2-C .2或2-D .33.关于x 的一元二次方程2(3)0x k x k -++=的根的情况是( )A .有两不相等实数根B .有两相等实数根C .无实数根D .不能确定4.已知一个多边形的内角和等于900º,则这个多边形是( )A .五边形B .六边形C .七边形D .八边形5.关于x 的不等式2(1)40x a x ><-⎧⎨-⎩的解集为x >3,那么a 的取值范围为( ) A .a >3B .a <3C .a ≥3D .a ≤3 6.对于二次函数,下列说法正确的是( ) A .当x>0,y 随x 的增大而增大B .当x=2时,y 有最大值-3C .图像的顶点坐标为(-2,-7)D .图像与x 轴有两个交点7.如图,将▱ABCD 沿对角线BD 折叠,使点A 落在点E 处,交BC 于点F ,若ABD 48∠=,CFD 40∠=,则E ∠为( )A .102B .112C .122D .928.如图,已知,5,3AB AC AB BC ===,以AB 两点为圆心,大于12AB 的长为半径画圆,两弧相交于点,M N ,连接MN 与AC 相较于点D ,则BDC ∆的周长为( )A .8B .10C .11D .139.如图,四边形ABCD 内接于⊙O ,点I 是△ABC 的内心,∠AIC=124°,点E 在AD 的延长线上,则∠CDE 的度数为( )A .56°B .62°C .68°D .78°10.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.计算182÷的结果是__________.2.因式分解:22ab ab a -+=__________.3.设m ,n 是一元二次方程x 2+2x -7=0的两个根,则m 2+3m +n =_______.4.如图,△ABC 中,∠BAC =90°,∠B =30°,BC 边上有一点P (不与点B ,C 重合),I 为△APC 的内心,若∠AIC 的取值范围为m °<∠AIC <n °,则m +n =__________.5.如图,点A ,B 是反比例函数y=k x(x >0)图象上的两点,过点A ,B 分别作AC ⊥x 轴于点C ,BD ⊥x 轴于点D ,连接OA ,BC ,已知点C (2,0),BD=2,S △BCD =3,则S △AOC =__________.6.如图,在菱形ABCD 中,对角线,AC BD 交于点O ,过点A 作AH BC ⊥于点H ,已知BO=4,S 菱形ABCD =24,则AH =__________.三、解答题(本大题共6小题,共72分)1.(1)计算:1862(2)解方程:2533322x x x x --+=--2.先化简,再求值:22121244x x x x x x +-⎛⎫-÷ ⎪--+⎝⎭,其中3x =3.如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O,点D为⊙O上一点,且CD=CB、连接DO并延长交CB的延长线于点E(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若BE=4,DE=8,求AC的长.41.如图,在△ABC中,∠ACB=90°,∠CAB=30°,以线段AB为边向外作等边△ABD,点E是线段AB的中点,连接CE并延长交线段AD于点F.(1)求证:四边形BCFD为平行四边形;(2)若AB=6,求平行四边形BCFD的面积.5.为了提高学生阅读能力,我区某校倡议八年级学生利用双休日加强课外阅读,为了解同学们阅读的情况,学校随机抽查了部分同学周末阅读时间,并且得到数据绘制了不完整的统计图,根据图中信息回答下列问题:(1)将条形统计图补充完整;被调查的学生周末阅读时间众数是小时,中位数是小时;(2)计算被调查学生阅读时间的平均数;(3)该校八年级共有500人,试估计周末阅读时间不低于1.5小时的人数.6.某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y关于x的函数关系式;(2)该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?(3)实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、A4、C5、D6、B7、B8、A9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、32、()21a b -3、54、255.5、5.6、245三、解答题(本大题共6小题,共72分)1、(1)2)4x =.2、3x3、(1)相切,略;(2)4、(1)略;(2)5、(1)补全的条形统计图如图所示,见解析,被调查的学生周末阅读时间的众数是1.5小时,中位数是1.5小时;(2)所有被调查学生阅读时间的平均数为1.32小时;(3)估计周末阅读时间不低于1.5小时的人数为290人.6、(1) =﹣100x+50000;(2) 该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)见解析.。

最新冀教版九年级数学上册期中考试题及答案【完整版】

最新冀教版九年级数学上册期中考试题及答案【完整版】

最新冀教版九年级数学上册期中考试题及答案【完整版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.下列实数中的无理数是( )A . 1.21B .38-C .332-D .2272.若999999a =,990119b =,则下列结论正确是( ) A .a <b B .a b = C .a >b D .1ab =3.□ABCD 中,E 、F 是对角线BD 上不同的两点,下列条件中,不能得出四边形AECF 一定为平行四边形的是( )A .BE=DFB .AE=CFC .AF//CED .∠BAE=∠DCF4.2018年10月24日港珠澳大桥全线通车,港珠澳大桥东起香港国际机场附近的香港口岸人工岛,向西横跨伶仃洋海域后连接珠海和澳门人工岛,止于珠海洪湾,它是世界上最长的跨海大桥,被称为“新世界七大奇迹之一”,港珠澳大桥总长度55000米,则数据55000用科学记数法表示为( )A .55×105B .5.5×104C .0.55×105D .5.5×1055.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是( )A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-26.若()()229111181012k --=⨯⨯,则k =( ) A .12 B .10C .8D .6 7.如图,将矩形ABCD 沿GH 折叠,点C 落在点Q 处,点D 落在AB 边上的点E 处,若∠AGE=32°,则∠GHC 等于( )A .112°B .110°C .108°D .106°8.如图,AB 为O 的直径,,C D 为O 上两点,若40BCD ∠︒=,则ABD ∠的大小为( ).A .60°B .50°C .40°D .20°9.观察下列图形,是中心对称图形的是( )A .B .C .D .10.如图,在矩形ABCD 中,点E 在DC 上,将矩形沿AE 折叠,使点D 落在BC 边上的点F 处.若AB =3,BC =5,则tan ∠DAE 的值为( )A .12B .920C .25D .13二、填空题(本大题共6小题,每小题3分,共18分)1.计算:27﹣12=__________.2.因式分解:_____________.3.一个正多边形的每个外角为60°,那么这个正多边形的内角和是_______.4.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为_____________.5.如图,M 、N 是正方形ABCD 的边CD 上的两个动点,满足AM BN =,连接AC交BN 于点E ,连接DE 交AM 于点F ,连接CF ,若正方形的边长为6,则线段CF 的最小值是__________.6.如图,直线l x ⊥轴于点P ,且与反比例函数11k y x=(0x >)及22k y x =(0x >)的图象分别交于A 、B 两点,连接OA 、OB ,已知OAB ∆的面积为4,则12k k =﹣________.三、解答题(本大题共6小题,共72分)1.解分式方程:12211x x x +=-+2.已知二次函数的图象以A (﹣1,4)为顶点,且过点B (2,﹣5)(1)求该函数的关系式;(2)求该函数图象与坐标轴的交点坐标;(3)将该函数图象向右平移,当图象经过原点时,A 、B 两点随图象移至A ′、B ′,求△O A ′B ′的面积.3.如图,以D 为顶点的抛物线y=﹣x 2+bx+c 交x 轴于A 、B 两点,交y 轴于点C ,直线BC 的表达式为y=﹣x+3.(1)求抛物线的表达式;(2)在直线BC 上有一点P ,使PO+PA 的值最小,求点P 的坐标;(3)在x轴上是否存在一点Q,使得以A、C、Q为顶点的三角形与△BCD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.4.如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.(1)求证:△ABM∽△EFA;(2)若AB=12,BM=5,求DE的长.5.随着科技的进步和网络资源的丰富,在线学习已成为更多人的自主学习选择.某校计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.根据图中信息,解答下列问题:(1)求本次调查的学生总人数,并补全条形统计图;(2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)该校共有学生2100人,请你估计该校对在线阅读最感兴趣的学生人数.6.某地2015年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2017年在2015年的基础上增加投入资金1600万元.(1)从2015年到2017年,该地投入异地安置资金的年平均增长率为多少?(2)在2017年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、B3、B4、B5、A6、B7、D8、B9、D10、D二、填空题(本大题共6小题,每小题3分,共18分)1、32、3、720°.4、10.5、3536、8.三、解答题(本大题共6小题,共72分)x=1、32、(1)y=﹣x2﹣2x+3;(2)抛物线与y轴的交点为:(0,3);与x轴的交点为:(﹣3,0),(1,0);(3)15.3、(1)y=﹣x2+2x+3;(2)P (97,127);(3)当Q的坐标为(0,0)或(9,0)时,以A、C、Q为顶点的三角形与△BCD相似.4、(1)略;(2)4.95、(1)90人,补全条形统计图见解析;.(2)48 ;(3)560人.6、(1)50%;(2)今年该地至少有1900户享受到优先搬迁租房奖励.。

冀教版九年级数学上册期中考试及答案【完整】

冀教版九年级数学上册期中考试及答案【完整】

冀教版九年级数学上册期中考试及答案【完整】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣15的绝对值是( ) A .﹣15 B .15 C .﹣5 D .52.某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见,随机对全校100名学生家长进行调查,这一问题中样本是( )A .100B .被抽取的100名学生家长C .被抽取的100名学生家长的意见D .全校学生家长的意见3.若抛物线2y x ax b =++与x 轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线1x =,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( )A .()3,6--B .()3,0-C .()3,5--D .()3,1-- 4.已知整式252x x -的值为6,则整式2x 2-5x+6的值为( ) A .9 B .12C .18D .24 5.已知关于x 的分式方程+=1的解是非负数,则m 的取值范围是( )A .m >2B .m ≥2C .m ≥2且m ≠3D .m >2且m ≠36.一个等腰三角形的两条边长分别是方程27100x x -+=的两根,则该等腰三角形的周长是( )A .12B .9C .13D .12或97.如图,正方形ABCD 的边长为2cm ,动点P 从点A 出发,在正方形的边上沿A →B →C 的方向运动到点C 停止,设点P 的运动路程为x(cm),在下列图象中,能表示△ADP 的面积y(cm 2)关于x(cm)的函数关系的图象是( )A .B .C .D .8.如图,已知BD 是ABC 的角平分线,ED 是BC 的垂直平分线,90BAC ∠=︒,3AD =,则CE 的长为( )A .6B .5C .4D .33 9.如图,在矩形ABCD 中,点E 是边BC 的中点,AE ⊥BD ,垂足为F ,则tan ∠BDE 的值是( )A .24B .14C .13D .2310.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A .485B .325C .245D .125二、填空题(本大题共6小题,每小题3分,共18分)1.计算:02(3)π-+-=_____________.2.因式分解:3222x x y xy +=﹣__________. 3.若式子x 1x+有意义,则x 的取值范围是_______. 4.把长方形纸片ABCD 沿对角线AC 折叠,得到如图所示的图形,AD 平分∠B ′AC ,则∠B ′CD=__________. 5.如图,从一块半径为1m 的圆形铁皮上剪出一个圆周角为120°的扇形ABC ,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为_________m .6.如图是一张矩形纸片,点E 在AB 边上,把BCE 沿直线CE 对折,使点B 落在对角线AC 上的点F 处,连接DF .若点E ,F ,D 在同一条直线上,AE =2,则DF =_____,BE =__________.三、解答题(本大题共6小题,共72分)1.解方程23111x x x -=--2.关于x 的一元二次方程2223()0m x mx m +++=-有两个不相等的实数根.(1)求m 的取值范围;(2)当m 取满足条件的最大整数时,求方程的根.3.如图,在ABC 中,ACB 90∠=,AC BC =,D 是AB 边上一点(点D 与A ,B 不重合),连结CD ,将线段CD 绕点C 按逆时针方向旋转90得到线段CE ,连结DE 交BC 于点F ,连接BE .1()求证:ACD ≌BCE ;2()当AD BF =时,求BEF ∠的度数.4.如图,在正方形ABCD 中,点E 是BC 的中点,连接DE ,过点A 作AG ED ⊥交DE 于点F ,交CD 于点G .(1)证明:ADG DCE ∆∆≌;(2)连接BF ,证明:AB FB =.5.学校开展“书香校园”活动以来,受到同学们的广泛关注,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计表.学生借阅图书的次数统计表 借阅图0次 1次 2次 3次4次及书的次以上数人数7 13 a 10 3请你根据统计图表中的信息,解答下列问题:()1a=______,b=______.()2该调查统计数据的中位数是______,众数是______.()3请计算扇形统计图中“3次”所对应扇形的圆心角的度数;()4若该校共有2000名学生,根据调查结果,估计该校学生在一周内借阅图书“4次及以上”的人数.6.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、B4、C5、C6、A7、B8、D9、A10、C二、填空题(本大题共6小题,每小题3分,共18分) 1、32、()2x x y -3、x 1≥-且x 0≠4、30°5、136、 1三、解答题(本大题共6小题,共72分)1、2x =2、(1)6m <且2m ≠;(2)12x =-,243x =- 3、()1略;()2BEF 67.5∠=.4、(1)略;(2)略.5、()117、20;()22次、2次;()372;()4120人.6、(1)第一批饮料进货单价为8元.(2) 销售单价至少为11元.。

冀教版九年级数学上册期中考试及参考答案

冀教版九年级数学上册期中考试及参考答案

冀教版九年级数学上册期中考试及参考答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.﹣15的绝对值是( ) A .﹣15 B .15 C .﹣5 D .52.已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为( )A .﹣3B .﹣5C .1或﹣3D .1或﹣53.某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,则这种植物每个支干长出的小分支个数是( )A .4B .5C .6D .74.把函数y x =向上平移3个单位,下列在该平移后的直线上的点是( )A .()2,2B .()2,3C .()2,4D .(2,5) 5.如果分式||11x x -+的值为0,那么x 的值为( ) A .-1 B .1 C .-1或1 D .1或06.对于一个函数,自变量x 取a 时,函数值y 也等于a ,我们称a 为这个函数的不动点.如果二次函数y =x 2+2x +c 有两个相异的不动点x 1、x 2,且x 1<1<x 2,则c 的取值范围是( )A .c <﹣3B .c <﹣2C .c <14D .c <17.如图,点B ,C ,D 在⊙O 上,若∠BCD =130°,则∠BOD 的度数是( )A .50°B .60°C .80°D .100°8.如图,平行于x 轴的直线与函数11k y (k 0x 0)x =>>,,22k y (k 0x 0)x=>>,的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若ABC 的面积为4,则12k k -的值为( )A .8B .8-C .4D .4-9.如图,△ABC 中,AD 是BC 边上的高,AE 、BF 分别是∠BAC 、∠ABC 的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=( )A .75°B .80°C .85°D .90°10.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A .485B .325C .245D .125二、填空题(本大题共6小题,每小题3分,共18分)123.2.因式分解:3222x x y xy +=﹣__________.3.函数132y xx=--+中自变量x的取值范围是__________.4.如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x的不等式组22{20x m xx+----<<的解集为__________.5.如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是__________.6.如图抛物线y=x2+2x﹣3与x轴交于A,B两点,与y轴交于点C,点P是抛物线对称轴上任意一点,若点D、E、F分别是BC、BP、PC的中点,连接DE,DF,则DE+DF的最小值为__________.三、解答题(本大题共6小题,共72分)1.解方程:113 22xx x-=---2.已知关于x的方程220x ax a++-=.(1)当该方程的一个根为1时,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.3.如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O,点D为⊙O上一点,且CD=CB、连接DO并延长交CB的延长线于点E(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若BE=4,DE=8,求AC的长.4.如图,四边形ABCD内接于⊙O,∠BAD=90°,点E在BC的延长线上,且∠DEC=∠BAC.(1)求证:DE是⊙O的切线;(2)若AC∥DE,当AB=8,CE=2时,求AC的长.5.为了了解居民的环保意识,社区工作人员在光明小区随机抽取了若干名居民开展主题为“打赢蓝天保卫战”的环保知识有奖问答活动,并用得到的数据绘制了如图条形统计图:请根据图中信息,解答下列问题:(1)本次调查一共抽取了名居民;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)社区决定对该小区500名居民开展这项有奖问答活动,得10分者设为“一等奖”,请你根据调查结果,帮社区工作人员估计需准备多少份“一等奖”奖品.5.某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.(1)求出y与x的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、C4、D5、B6、B7、D8、A9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1.2、()2x x y -3、23x -<≤4、﹣2<x <25、x=26、2三、解答题(本大题共6小题,共72分)1、无解2、(1)12,32-;(2)证明见解析.3、(1)相切,略;(2).4、(1)略;(2)AC5、(1)50;(2)平均数是8.26;众数为8;中位数为8;(3)需要一等奖奖品100份.6、(1)y=﹣2x+80(20≤x≤28);(2)每本纪念册的销售单价是25元;(3)该纪念册销售单价定为28元时,才能使文具店销售该纪念册所获利润最大,最大利润是192元.。

冀教版九年级数学上册期中测试卷【参考答案】

冀教版九年级数学上册期中测试卷【参考答案】

冀教版九年级数学上册期中测试卷【参考答案】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.3-的倒数是( )A .3B .13C .13-D .3-2.某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见,随机对全校100名学生家长进行调查,这一问题中样本是( )A .100B .被抽取的100名学生家长C .被抽取的100名学生家长的意见D .全校学生家长的意见3.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x 名工人生产螺钉,则下面所列方程正确的是( )A .2×1000(26﹣x )=800xB .1000(13﹣x )=800xC .1000(26﹣x )=2×800xD .1000(26﹣x )=800x4.直线y x a =+不经过第二象限,则关于x 的方程2210ax x ++=实数解的个数是( ).A .0个B .1个C .2个D .1个或2个5.《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x 人,所列方程正确的是( )A .54573x x -=-B .54573x x +=+C .45357x x ++=D .45357x x --= 6.关于x 的方程2(1)(2)x x ρ-+=(ρ为常数)根的情况下,下列结论中正确的是( )A .两个正根B .两个负根C .一个正根,一个负根D .无实数根7.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.8.如图,A,B是反比例函数y=4x在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,则△OAB的面积是()A.4 B.3 C.2 D.19.如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则tan∠BDE的值是()A.2B.14C.13D.210.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)116__________.2.分解因式:3244a a a -+=__________.3.已知二次函数y=x 2﹣4x+k 的图象的顶点在x 轴下方,则实数k 的取值范围是__________.4.如图,已知△ABC 的周长是21,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =4,△ABC 的面积是__________.5.如图所示,在四边形ABCD 中,AD ⊥AB ,∠C=110°,它的一个外角∠ADE=60°,则∠B 的大小是__________.6.如图,菱形ABCD 顶点A 在例函数y =3x (x >0)的图象上,函数 y =k x (k >3,x >0)的图象关于直线AC 对称,且经过点B 、D 两点,若AB =2,∠DAB =30°,则k 的值为______.三、解答题(本大题共6小题,共72分)1.解分式方程:241244x x x x -=--+2.关于x 的一元二次方程2223()0m x mx m +++=-有两个不相等的实数根.(1)求m 的取值范围;(2)当m 取满足条件的最大整数时,求方程的根.3.如图,在▱ABCD中,E是BC的中点,连接AE并延长交DC的延长线于点F.(1)求证:AB=CF;(2)连接DE,若AD=2AB,求证:DE⊥AF.4.在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F(1)在图1中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG 的度数.5.某商场服装部分为了解服装的销售情况,统计了每位营业员在某月的销售额(单位:万元),并根据统计的这组销售额的数据,绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(1)该商场服装营业员的人数为,图①中m的值为;(2)求统计的这组销售额数据的平均数、众数和中位数.6.东营市某学校2015年在商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍,且购买一个乙种足球比购买一个甲种足球多花20元.(1)求购买一个甲种足球、一个乙种足球各需多少元;(2)2016年为响应习总书记“足球进校园”的号召,这所学校决定再次购买甲、乙两种足球共50个,恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%,如果此次购买甲、乙两种足球的总费用不超过2900元,那么这所学校最多可购买多少个乙种足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、C4、D5、B6、C7、D8、B9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、±2.2、2(2)a a -;3、k <44、425、40°6、三、解答题(本大题共6小题,共72分)1、4x =2、(1)6m <且2m ≠;(2)12x =-,243x =-3、详略.4、(1)略;(2)45°;(3)略.5、(1)25;28;(2)平均数:18.6;众数:21;中位数:18.6、(1)购买一个甲种足球需50元,购买一个乙种足球需70元;(2)这所学校最多可购买18个乙种足球.。

最新冀教版九年级数学上册期中考试(完美版)

最新冀教版九年级数学上册期中考试(完美版)

最新冀教版九年级数学上册期中考试(完美版) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.估计7+1的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间2.若999999a =,990119b =,则下列结论正确是( ) A .a <b B .a b = C .a >b D .1ab =3.若x ,y 的值均扩大为原来的3倍,则下列分式的值保持不变的是( )A .2x x y +-B .22y xC .3223y xD .222()y x y - 4.若一个直角三角形的两直角边的长为12和5,则第三边的长为( )A .13或119B .13或15C .13D .155.已知2,1=⎧⎨=⎩x y 是二元一次方程组7,{1ax by ax by +=-=的解,则a b -的值为( ) A .-1 B .1 C .2 D .36.面积为4的正方形的边长是( )A .4的平方根B .4的算术平方根C .4开平方的结果D .4的立方根7.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是( )A .B .C .D .8.如图,平行于x 轴的直线与函数11k y (k 0x 0)x =>>,,22k y (k 0x 0)x=>>,的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x轴上的一个动点,若ABC 的面积为4,则12k k -的值为( )A .8B .8-C .4D .4-9.观察下列图形,是中心对称图形的是( )A .B .C .D .10.如图,在矩形纸片ABCD 中,AB=3,点E 在边BC 上,将△ABE 沿直线AE 折叠,点B 恰好落在对角线AC 上的点F 处,若∠EAC=∠ECA ,则AC 的长是( )A .33B .6C .4D .5二、填空题(本大题共6小题,每小题3分,共18分)1.计算:273-=__________.2.分解因式:ab 2﹣4ab+4a=________.3.若n 边形的内角和是它的外角和的2倍,则n =__________.4.如图,在△ABC 中,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 相交于点F ,若BF =AC ,则∠ABC =__________度.5.如图,某校教学楼AC 与实验楼BD 的水平间距153CD =部B 点测得教学楼顶部A 点的仰角是30,底部C 点的俯角是45︒,则教学楼AC 的高度是__________米(结果保留根号).6.如图.在44⨯的正方形方格图形中,小正方形的顶点称为格点.ABC ∆的顶点都在格点上,则BAC ∠的正弦值是__________.三、解答题(本大题共6小题,共72分)1.解方程:24111x x x -=--2.先化简,再求值:2532236x x x x x -⎛⎫+-÷ ⎪--⎝⎭,其中x 满足2310x x +-=.3.如图,在平面直角坐标系中,抛物线y=ax 2+2x+c 与x 轴交于A (﹣1,0)B (3,0)两点,与y 轴交于点C ,点D 是该抛物线的顶点.(1)求抛物线的解析式和直线AC 的解析式;(2)请在y 轴上找一点M ,使△BDM 的周长最小,求出点M 的坐标;(3)试探究:在拋物线上是否存在点P ,使以点A ,P ,C 为顶点,AC 为直角边的三角形是直角三角形?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由.4.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF,(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.5.2019年4月23日是第二十四个“世界读书日“.某校组织读书征文比赛活动,评选出一、二、三等奖若干名,并绘成如图所示的条形统计图和扇形统计图(不完整),请你根据图中信息解答下列问题:(1)求本次比赛获奖的总人数,并补全条形统计图;(2)求扇形统计图中“二等奖”所对应扇形的圆心角度数;(3)学校从甲、乙、丙、丁4位一等奖获得者中随机抽取2人参加“世界读书日”宣传活动,请用列表法或画树状图的方法,求出恰好抽到甲和乙的概率.6.某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、D4、C5、A6、B7、B8、A9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、2、a(b﹣2)2.3、64、455、6、三、解答题(本大题共6小题,共72分)1、3x2、3.3、(1)抛物线解析式为y=﹣x2+2x+3;直线AC的解析式为y=3x+3;(2)点M 的坐标为(0,3);(3)符合条件的点P的坐标为(73,209)或(103,﹣139),4、(1)略(2)略5、(1)40,补图详见解析;(2)108°;(3)16.6、(1)甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)他们最多可购买11棵乙种树苗.。

河北省邯郸市鸡泽县2024-2025学年九年级上学期期中考试数学试题 (含答案)

河北省邯郸市鸡泽县2024-2025学年九年级上学期期中考试数学试题 (含答案)

河北省邯郸市鸡泽县2024~2025学年九年级上学期期中考试数学试题(冀教版)一、选择题(共16题;共42分)1.(3分)一组数据:1,3,3,3,5,若去掉一个数据3,则下列统计量中发生变化的是( )A.众数B.中位数C.平均数D.方差2.(3分)方程x2﹣2x﹣3=0经过配方法化为(x+a)2=b的形式,正确的是( )A.(x﹣1)2=4B.(x+1)2=4C.(x﹣1)2=16D.(x+1)2=163.(3分)为执行国家药品降价政策,给人民群众带来实惠,某药品经过两次降价,每盒零售价由16元降为9元,设平均每次降价的百分率是x,则根据题意,下列方程正确的是( )A.16(1﹣x)2=9B.16(1﹣x2)=9C.9(1﹣x)2=16D.9(1+x2)=164.(3分)若抛物线y=kx2﹣2x﹣1与x轴有两个不同的交点,则k的取值范围为( )A.k>﹣1B.k≥﹣1C.k>﹣1且k≠0D.k≥﹣1且k≠05.(3分)在平行四边形ABCD中AN=13NB,则S△ADM:S四边形CMNB为( )A.5:9B.5:19C.4:19D.4:96.(3分)如图,已知∠1=∠2,那么添加下列一个条件后,不能判定△ABC∽△ADE的是( )A.∠C=∠E B.∠B=∠ADE C.ABAD =ACAED.ABAD=BCDE7.(3分)凸透镜成像的原理如图所示,AD∥l∥BC.若物体到焦点的距离与焦点到凸透镜中心线DB 的距离之比为5:4,则物体被缩小到原来的( )A .45B .25C .49D .598.(3分)如图,在△ABC 中,AB =AC ,E 为BC 边上的一点,BE :CE =1:2,D 为AE 的中点,连接BD 并延长交AC 于F ,则CF :AF 的值为( )A .1:2B .1:3C .3:2D .3:19.(3分)如图,为测量一棵与地面垂直的树OA 的高度,在距离树的底端30米的B 处,测得树顶A 的仰角∠ABO 为α,则树OA 的高度为( )A .30tan α米B .30sin α米C .30tan α米D .30cos α米10.(3分)如图,在平面直角坐标系中,点A 的坐标为(4,3),那么cos α的值是( )A .34B .43C .35D .4511.(2分)如图,过x 轴正半轴任意一点P 作x 轴的垂线,分别与反比例函数y 1=2x和 y 2=4x 的图象交于点A 和点B .若点C 是y 轴上任意一点,连接AC 、BC ,则△ABC 的面积为( )A.1B.2C.3D.412.(2分)如图,已知点A,B,C在⊙O上,ACB为优弧,下列选项中与∠AOB相等的是( )A.2∠C B.4∠B C.4∠A D.∠B+∠C13.(2分)如图,ΔABC内接于⊙O,若∠A=45°,⊙O的半径r=4,则阴影部分的面积为( )A.4π―8B.2πC.4πD.8π―814.(2分)如图,在平面直角坐标系中,以坐标原点O为位似中心,在y轴右侧作△ABO放大2倍后的位似图形△CDO,若点B的坐标为(―1,―2),则点B的对应点D的坐标为( )A.(2,4)B.(3,4)C.(3,5)D.(4,3)15.(2分)《九章算术》中记载了一种测量古井水面以上部分深度的方法.如图所示,在井口A处立一根垂直于井口的木杆AB,从木杆的顶端B观察井水水岸D,视线BD与井口的直径AC交于点E,如果测得AB=1米,AC=1.6米,AE=0.4米,那么CD为( )米.A.5B.4C.3D.216.(2分)某品牌自动饮水机,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降.此时水温y(℃)与通电时间x(min)成反比例关系.当水温降至20℃时,饮水机再自动加热,若水温在20℃时接通电源,水温y与通电时间x之间的关系如图所示,则下列说法中正确的是( )A.上午8点接通电源,可以保证当天9:30能喝到不超过40℃的水B.水温下降过程中,y与x的函数关系式是y=400xC.水温从20℃加热到100℃,需要7minD.水温不低于30℃的时间为77min3二、填空题(共3题;共8分)17.(2分)一元二次方程x2=2x的根是 .18.(2分)如图是一边长为6的菱形纸片ABCD,将纸片沿EF折叠,使点D落在边BC上,点A,D的对应点分别为点G,H,GH交AB于点J.若AE=1.4,CF=2,则EJ的长是 19.(4分)如图1 是一款重型订书机,其结构示意图如图2 所示.其主体部分为矩形EFGH,由支撑杆CD 垂直固定于底座AB 上,且可以绕点 D 旋转.压杆MN 与伸缩片PG 连接,点M 在HG 上,MN 可绕点M 旋转,PG⊥HG ,DF=8 cm,GF=2cm,不使用时,EF∥AB,G 是PF 中点,且点 D 在NM 的延长线上,则MG= cm,使用时如图3,按压MN 使得MN∥AB,此时点F 落在AB 上,若CD=2 cm,则压杆MN 到底座AB 的距离为 cm三、解答题(共7题;共70分)20.(9分)4月,某校初2021级800名学生进行了一次政治测试(满分:50分).测试完成后,在甲乙两班各抽取了20名学生的测试成绩,对数据进行整理分析,并给出了下列信息:甲班20名同学的测试成绩统计如下:41,47,43,45,50,49,48,50,50,49,48,47,44,50,43,50,50,50,49,47.乙班20名同学的测试成绩统计如下:组别40<x≤4242<x≤4444<x≤4646<x≤4848<x≤50频数11a69其中,乙班20名同学的测试成绩高于46,但不超过48分的成绩如下:47,48,48,47,48,48.甲乙两班抽取的学生的测试成绩的平均数、中位数、众数如表所示:班级平均数中位数众数甲班47.548.5c乙班47.5b49(1)(3分)根据以上信息可以求出:a=_____,b=_____,c=_____;(2)(3分)你认为甲乙两个班哪个班的学生政治测试成绩较好,请说明理由(理由写出一条即可);(3)(3分)若规定49分及以上为优秀,请估计该校初2021级参加此次测试的学生中优秀的学生有多少人?21.(9分)如图,AB是⊙O的直径,点D在直径AB上(D与A,B不重合),CD⊥AB且CD=AB,连接CB,与⊙O交于点F,在CD上取一点E,使EF与⊙O相切.(1)(5分)求证:EF =EC ;(2)(4分)若D 是OA 的中点,AB =4,求BF 的长.22.(9分)火灾是最常见、最多发的威胁公众安全和社会发展的主要灾害之一,消防车是消防救援的主要装备.图1是某种消防车云梯,图2是其侧面示意图,点D ,B ,O 在同一直线上,DO 可绕着点O 旋转,AB 为云梯的液压杆,点O ,A ,C 在同一水平线上,其中BD 可伸缩,套管OB 的长度不变,在某种工作状态下测得液压杆AB =3m ,∠BAC =53°,∠DOC =37°.(1)(5分)求BO 的长.(2)(4分)消防人员在云梯末端点D 高空作业时,将BD 伸长到最大长度6m ,云梯DO 绕着点O 顺时针旋转一定的角度,消防人员发现铅直高度升高了3m ,求云梯OD 旋转了多少度.(参考数据:sin 37°≈35,tan37°≈34,sin53°≈45,tan53°≈43,sin64°≈0.90,cos64°≈0.44)23.(9分)某水渠的横断面是以AC 为直径的半圆O ,图1表示水渠正好盛满了水,点D 是水面上只能上下移动的浮漂,AB 是垂直水面线的发光物体且从点B 发出光线,测得∠BDA 、∠BCA 分别为60°,30°,已知AD =1m .(1)(5分)求AC 的长;πm,求DN (2)(4分)如图2,把水渠中的水放掉一部分,得到水面线为MN,若AM的长为940);的长(tan27°=1224.(10分)教师办公室有一种可以自动加热的饮水机,该饮水机的工作程序是:放满水后接通电源,则自动开始加热,每分钟水温上升10℃,待加热到100℃,饮水机自动停止加热,水温开始下降.水温y(℃)和通电时间x(min)成反比例函数关系,直至水温降至室温,饮水机再次自动加热,重复上述过程.设某天水温和室温均为20℃,接通电源后,水温y(℃)和通电时间x(min)之间的关系如图所示,回答下列问题:(1)(4分)分别求出当0≤x≤8和8<x≤a时,y和x之间的函数关系式;(2)(3分)求出图中a的值;(3)(3分)李老师这天早上7:30将饮水机电源打开,若他想在8:10上课前喝到不低于40℃的开水,则他需要在什么时间段内接水?25.(11分)如图1,已知∠ABC=60°,点O在射线BC上,且OB=4.以点O为圆心,r(r>0)为半径作⊙O,交直线BC于点D,E.(1)(2分)当⊙O与∠ABC只有两个交点时,r的取值范围是________.(2)(9分)当r=22时,将射线BA绕点B按顺时针方向旋转α(0°<α<180°).①若BA与⊙O相切,求α的度数为多少;②如图2,射线BA与⊙O交于M,N两点,若MN=OB,求阴影部分的面积.26.(13分)如图1,将Rt△ABC的顶点C放在⊙O上,边BC与⊙O相切于点C,边AC与⊙O交于点D.已知∠BCA=60°,∠B=90°,BC=6,⊙O的直径为8.(1)(4分)如图1,过点O作OM⊥CD于点M,求CM的长度;(2)(9分)从图1的位置开始,将△ABC绕点C顺时针旋转,设旋转角为α(0°≤α≤360°).①如图2,当α=20°时,边BC与⊙O的另一交点为E,求CE的长度;②如图3,当AC经过圆心O时,试判断AB与⊙O之间的位置关系,并说明理由;③在旋转过程中,直接写出点O到边AB的距离h的取值范围.答案1.D2.A3.A4.C5.C6.D7.A8.D9.C10.D11.A12.A13.A14.A15.C16.D17.x1=0,x2=218.2.819.4;15+2220.(1)3,48,50(2)甲班的成绩较好,理由:甲乙两班的平均数相等、甲班的中位数、众数都比乙班的大(3)估计该校初2021级参加此次测试的学生中优秀的学生有380人21.(1)证明:连接OF,则OF=OB,∵EF与⊙O相切于点F,∴EF⊥OF,∴∠OFE =90°,∴∠EFC +∠OFB =180°―∠OFE =90°,∵CD ⊥AB ,∴∠CDB =90°,∴∠C +∠B =90°,∵∠OFB =∠B ,∴∠EFC =∠C ,∴EF =EC .(2)解:连接AF ,∵AB 是⊙O 的直径,∴∠AFB =∠CDB =90°,∴∠B =∠B ,∴△AFB ∽△CDB ,∴BF BD =AB CB,∵D 是OA 的中点,AB =4,∴OA =OB =12AB =2,OD =AD =12OA =1,∴BD =OB +OD =2+1=3,∵CD =AB =4,∴CB =BD 2+CD 2=32+42=5,∴BF =AB ⋅BD CB =4×35=125,∴BF 的长是125.22.(1)解:如图,过点B 作BE ⊥OC 于点E ,在Rt △ABE 中,∠BAC =53°,AB =3m ,∴BE =AB ⋅sin∠BAE =3×sin 53°≈3×45=125,在Rt △BOE 中,∠BOE =37°,BE =125,∵sin∠BOE =BE OB ,∴OB =BE sin ∠BOE=12535=4.答:OB =4m .(2)解:如图,过点D 作DF ⊥OC 于点F ,旋转后点D 的对应点为D ′,过点D ′作D ′G ⊥OC 于点G ,过点D 作DH ⊥D ′G 于点H ,在Rt △FOD 中,OD =OB +BD =4+6=10,∠DOF =37°,∴DF =OD ⋅sin 37°≈10×35=6m ,∴D ′G =D ′H +HG =3+6=9m ,在Rt △D ′OG 中,O D ′=10m ,D ′G =9m ,∴sin ∠D ′OG =D ′G D ′O =910,∴∠D ′OG ≈64°,∴∠D ′OD =64°―37°=27°,即云梯OD 大约旋转了27°.23.(1)解:∵∠BAD=90°,AD=1,∠BDA=60°,∴∴AB=AD•tan60°=1×3=3, ∴AC =AB tan30°=3(2)解:连接OM ,设∠AOM=n°∵AM =n ×π×32180=940π∴∠AOM=n°=27°∵AC ∥MN ,∴∠AOM=∠OMN=27°过点O 作OE ⊥MN 于E 点,∴ME=EN ,∵tan∠OMN =OE ME =12,∴ME=2OE ∵O M 2=O E 2+M E 2, ∴OE =3105,ME =355过D 作DD '⊥AC 于点D ',∴DD '∥OE ,∵AC ∥MN ,∴四边形DD 'OE 是平行四边形, ∴DE =D ′O =12, ∴DN =355+1224.(1)当0≤x≤8时,y =10x+20;当8<x≤a 时,y =800x;(2)a =40;(3)李老师要在7:38到7:50之间接水25.(1)0<r ≤23或r >4(2)①15°或105°;②2π―426.(1)解:连接OC ,∵边BC 与⊙O 相切于点C ,∴∠OCB =90°,又∵∠BCA =60°,∴∠OCM =30°,∴OM =12OC =12×4=2,∴CM =OC 2―OM 2=42―22=23,(2)解:①如图,连接OC 、OE ,α=20°时,∠OCB =70°,∵OE =OC ,∴∠OEC =∠OCB =70°,∴∠EOC =180°―∠OEC ―∠OCB =40°,∴CE 的长度为40π×4180=8π9;②AB 与⊙O 相切,理由为:过点O 作OF ⊥AB 于点F ,∵∠BCA =60°,∠B =90°,∴∠A =30°,∴AC =2BC =2×6=12,∴AO =8,∴OF =12AO =12×8=4=OC ,∴AB 与⊙O 相切;③h 的取值范围为2≤ℎ≤10。

冀教版九年级数学上册期中测试卷及答案【完美版】

冀教版九年级数学上册期中测试卷及答案【完美版】

冀教版九年级数学上册期中测试卷及答案【完美版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.-2019的相反数是()A.2019 B.-2019 C.12019D.12019-2.已知a=2018x+2018,b=2018x+2019,c=2018x+2020,则a2+b2+c2-ab-ac-bc的值是()A.0 B.1 C.2 D.33.如果23a b-=,那么代数式22()2a b aba a b+-⋅-的值为()A.3B.23C.33D.434.若实数a、b满足a2﹣8a+5=0,b2﹣8b+5=0,则1111b aa b--+--的值是()A.﹣20 B.2 C.2或﹣20 D.1 25.已知a m=3,a n=4,则a m+n的值为()A.7 B.12 C.D.6.已知:等腰直角三角形ABC的腰长为4,点M在斜边AB上,点P为该平面内一动点,且满足PC=2,则PM的最小值为()A.2 B.22﹣2 C.22+2 D.227.如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A →B→C的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示△ADP的面积y(cm2)关于x(cm)的函数关系的图象是()A.B.C.D.8.如图,A,B是反比例函数y=4x在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,则△OAB的面积是()A.4 B.3 C.2 D.19.如图,函数y1=﹣2x 与y2=ax+3 的图象相交于点A(m,2),则关于x 的不等式﹣2x>ax+3 的解集是()A.x>2 B.x<2 C.x>﹣1 D.x<﹣110.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=-1,x2=3;③3a+c>0;④当y>0时,x的取值范围是-1≤x<3;⑤当x<0时,y随x增大而增大.其中结论正确的个数是()A .4个B .3个C .2个D .1个二、填空题(本大题共6小题,每小题3分,共18分)1.81的平方根是__________.2.因式分解:3222x x y xy +=﹣__________. 3.已知二次函数y=x 2﹣4x+k 的图象的顶点在x 轴下方,则实数k 的取值范围是__________.4.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为_____________.5.如图,反比例函数y=k x的图象经过▱ABCD 对角线的交点P ,已知点A ,C ,D 在坐标轴上,BD ⊥DC ,▱ABCD 的面积为6,则k=_________.6.如图是一张矩形纸片,点E 在AB 边上,把BCE 沿直线CE 对折,使点B 落在对角线AC 上的点F 处,连接DF .若点E ,F ,D 在同一条直线上,AE =2,则DF =_____,BE =__________.三、解答题(本大题共6小题,共72分)1.解分式方程:12211x x x +=-+2.先化简,再求值(32m ++m ﹣2)÷2212m m m -++;其中m =2+1.3.如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,连接DE ,F 为线段DE 上一点,且∠AFE=∠B(1)求证:△ADF ∽△DEC ;(2)若AB=8,33AE 的长.4.在平面直角坐标系中,直线1y 22x =-与x 轴交于点B ,与y 轴交于点C ,二次函数21y bx 2x c =++的图象经过点B,C 两点,且与x 轴的负半轴交于点A ,动点D 在直线BC 下方的二次函数图象上.(1)求二次函数的表达式;(2)如图1,连接DC,DB,设△BCD 的面积为S,求S 的最大值;(3)如图2,过点D 作DM ⊥BC 于点M ,是否存在点D ,使得△CDM 中的某个角恰好等于∠ABC 的2倍?若存在,直接写出点D 的横坐标;若不存在,请说明理由.5.为了了解居民的环保意识,社区工作人员在光明小区随机抽取了若干名居民开展主题为“打赢蓝天保卫战”的环保知识有奖问答活动,并用得到的数据绘制了如图条形统计图:请根据图中信息,解答下列问题:(1)本次调查一共抽取了名居民;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)社区决定对该小区500名居民开展这项有奖问答活动,得10分者设为“一等奖”,请你根据调查结果,帮社区工作人员估计需准备多少份“一等奖”奖品.6.某商店在2014年至2016年期间销售一种礼盒.2014年,该商店用3500元购进了这种礼盒并且全部售完;2016年,这种礼盒的进价比2014年下降了11元/盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.(1)2014年这种礼盒的进价是多少元/盒?(2)若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、A4、C5、B6、B7、B8、B9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、±32、()2x x y -3、k <44、10.5、-36、 1三、解答题(本大题共6小题,共72分)1、3x =2、11m m +-,原式=.3、(1)略(2)64、(1)二次函数的表达式为:213222y x x =--;(2)4;(3)2或2911.5、(1)50;(2)平均数是8.26;众数为8;中位数为8;(3)需要一等奖奖品100份.6、(1)35元/盒;(2)20%.。

冀教版数学九年级上册期中考试试卷含答案详解

冀教版数学九年级上册期中考试试卷含答案详解

冀教版数学九年级上册期中考试试题一、选择题。

(每小题只有一个正确答案)1.要判断甲、乙两队舞蹈队的身高哪队比较整齐,通常需要比较这两队舞蹈队身高的A.方差B.中位数C.众数D.平均数2.如图,在正方形网格上有两个相似三角形△ABC和△DEF,则∠BAC的度数为()A.105°B.115°C.125°D.135°3.已知5个数a1、a2、a3、a4、a5的平均数是a,则数据a1+1,a2+2,a3+3,a4+4,a5+5的平均数为()A.a B.a+3 C.56a D.a+154.一元二次方程x2﹣8x﹣2=0,配方的结果是()A.(x+4)2=18 B.(x+4)2=14 C.(x﹣4)2=18 D.(x﹣4)2=145.如果α是锐角,且sinα=35,那么cos(90°﹣α)的值为()A.45B.35C.34D.436.小明沿着与地面成30º的坡面向下走了2米,那么他下降()A.1米B C.D米7.如图,某地修建高速公路,要从A地向B地修一条隧道(点A、B在同一水平面上).为了测量A、B两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C 处观察B地的俯角为α,则A、B两地之间的距离为()A.800sinα米B.800tanα米C.800sinα米D.800tanα米8.如图,已知在△ABC中,点D、E分别在边AB、AC上,DE∥BC,AD:BD=2:1,点F在AC上,AF:FC=1:2,联结BF,交DE于点G,那么DG:GE等于()A.1:2 B.1:3 C.2:3 D.2:5.9.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条边DF=50cm,EF=30cm,测得边DF离地面的高度AC=1.5m,CD=20m,则树高AB为()A.12m B.13.5m C.15m D.16.5m10.如果一组数据6、7、x、9、5的平均数是2x,那么这组数据的方差为()A.4 B.3 C.2 D.111.如图,在△ABC与△ADE中,∠BAC=∠D,要使△ABC与△ADE相似,还需满足下列条件中的()A.AC ABAD AE=B.AC BCAD DE=C.AC ABAD DE=D.AC BCAD AE=12.已知关于x的一元二次方程3x2+4x﹣5=0,下列说法正确的是()A.方程有两个相等的实数根B.方程有两个不相等的实数根C.没有实数根D.无法确定13.如图,若△ABC和△DEF的面积分别为S1,S2,则()A .121S S 2=B .127S S 2=C .128S S 5=D .12S S =14.如图,在矩形ABCD 中,E 是AD 边的中点,BE ⊥AC ,垂足为点F ,分析下列四个结论:①△AEF ∽△CAB ;②CF=2AF ;③S △AEF :S △CAB =1:4;④AF 2=2EF 2.其中正确的结论有( )A .4个B .3个C .2个D .1个二、填空题15.若m 是方程2x 2-3x-1=0的一个根,则6m 2-9m+2015的值为__________. 16.如图,在△ABC 中,DE ∥BC ,若AD =1,DB =2,则DEBC的值为_________.17.数据5,5,4,2,3,7,6的中位数是__.三、解答题18.小明想知道学校旗杆的高,他发现旗杆顶端的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面.求旗杆的高度.19.已知关于x的一元二次方程:x2﹣2x﹣k﹣2=0有两个不相等的实数根.(1)求k的取值范围;(2)给k取一个负整数值,解这个方程.20.水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤,为保证每天至少售出260斤,张阿姨决定降价销售.(1)若将这种水果每斤的售价降低x元,则每天的销售量是斤(用含x的代数式表示);(2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?21.如图,以点P为位似中心画△ABC的位似图形△DEF,使△ABC与△DEF的位似比为1:2,并写出△ABC与△DEF的面积比和周长比.22.在学校组织的科学常识竞赛中,每班参加比赛的人数相同,成绩分为A,B,C,D四个等级,其中相应等级的得分依次记为90分,80分,70分,60分,学校将八年级一班和二班的成绩整理并绘制成如下的统计图:请你根据以上提供的信息解答下列问题:(1)此次竞赛中二班成绩在70分以上(包括70分)的人数为;(2)请你将表格补充完整:(3)请从不同角度对这次竞赛成绩的结果进行分析.(至少两个角度)23.如图(1),P 为△ABC 所在平面上一点,且∠APB=∠BPC=∠CPA=120°,则点P 叫做△ABC 的费马点.(1)如果点P 为锐角△ABC 的费马点,且∠ABC=60°.①求证:△ABP∽△BCP;②若PA=3,PC=4,则PB= .(2)已知锐角△ABC,分别以AB、AC 为边向外作正△ABE 和正△ACD,CE 和BD相交于P 点.如图(2)①求∠CPD 的度数;②求证:P 点为△ABC 的费马点.24.如图(1),已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.(1)证明与推断:①求证:四边形CEGF是正方形;②推断:AGBE的值为:(2)探究与证明:将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG与BE之间的数量关系,并说明理由:(3)拓展与运用:正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图(3)所示,延长CG交AD于点H.若AG=6,,则BC=.答案与详解1.A【详解】由于方差是用来衡量一组数据波动大小的量,故判断两队舞蹈队的身高较整齐通常需要比较两个队身高的方差.故选A考点:统计量的选择;方差2.D【分析】根据相似三角形的对应角相等即可得出.∵△ABC∽△EDF,∴∠BAC=∠DEF,又∵∠DEF=90°+45°=135°,∴∠BAC=135°,故选:D.【点睛】本题考查相似三角形的性质,解题的关键是找到对应角3.B【分析】根据数据a1+1,a2+2,a3+3,a4+4,a5+5比数据a1、a2、a3、a4、a5的和多15,可得数据a1+1,a2+2,a3+3,a4+4,a5+5的平均数比a多3,据此求解即可.【详解】a+[(a1+1+a2+2+a3+3+a4+4+a5+5)﹣(a1+a2+a3+a4+a5)]÷5=a+[1+2+3+4+5]÷5=a+15÷5=a+3故选B.【点睛】考点:算术平均数.解题关键:熟记算术平均数公式.4.C【详解】x2-8x=2,x2-8x+16=18,(x-4)2=18.故选C.【点睛】本题考查了解一元二次方程-配方法:将一元二次方程配成(x+m)2=n 的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.5.B【解析】根据:cos(90°﹣α)= sinα.【详解】cos(90°﹣α)= sinα=3 5 .故选:B【点睛】考核知识点:三角函数.解题关键点:理解cos(90°﹣α)= sinα..6.A【分析】直接利用坡度的定义,坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,可画出三角形,结合图形运用三角函数求解即可.【详解】如图所示:∵AB=2,∠C=90°,∠A=30°.∴他下降的高度BC=ABsin30°=1(米).故选A【点睛】此题主要考查了坡度的定义和特殊角的三角函数值,正确记忆特殊角的三角函数值是解题的关键.7.D【详解】【分析】在Rt△ABC中,∠CAB=90°,∠B=α,AC=800米,根据tanα=ACAB,即可解决问题.【详解】在Rt△ABC中,∵∠CAB=90°,∠B=α,AC=800米,∴tanα=AC AB,∴AB=800 tan tanACαα=,故选D.【点睛】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是熟练掌握基本知识,属于中考常考题型.8.B【解析】∵DE∥BC,∴==2,∴CE:CA=1:3,==,∵AF:FC=1:2,∴AF:AC=1:3,∴AF=EF=EC,∴EG:BC=1:2,设EG=m,则BC=2m,∴DE=m,DG=m﹣m=m,∴DG:GE=m:m=1:3,故选B.9.D【分析】利用直角三角形DEF和直角三角形BCD相似求得BC的长后加上小明同学的身高即可求得树高AB.【详解】∵∠DEF=∠BCD=90°,∠D=∠D,∴△DEF∽△DCB,∴BC DC EF DE=,∵DF=50cm=0.5m,EF=30cm=0.3m,AC=1.5m,CD=20m,∴由勾股定理求得DE=40cm,∴20 0.30.4 BC=,∴BC=15米,∴AB=AC+BC=1.5+15=16.5(米).故答案为16.5m.【点睛】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型.10.A【详解】分析:先根据平均数的定义确定出x的值,再根据方差公式进行计算即可求出答案.详解:根据题意,得:67955x++++=2x解得:x=3,则这组数据为6、7、3、9、5,其平均数是6,所以这组数据的方差为15[(6﹣6)2+(7﹣6)2+(3﹣6)2+(9﹣6)2+(5﹣6)2]=4,故选A.点睛:此题考查了平均数和方差的定义.平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.11.C【分析】本题中已知∠BAC=∠D,则对应的夹边比值相等即可使△ABC与△ADE相似,结合各选项即可得问题答案.【详解】解:∵∠BAC=∠D,AC AB AD DE=∴△ABC∽△ADE.故选C.【点睛】此题考查了相似三角形的判定:①有两个对应角相等的三角形相似;②有两个对应边的比相等,且其夹角相等,则两个三角形相似;③三组对应边的比相等,则两个三角形相似,熟记各种判定相似三角形的方法是解题关键.12.B【详解】试题分析:先求出△=42﹣4×3×(﹣5)=76>0,即可判定方程有两个不相等的实数根.故答案选B.考点:一元二次方程根的判别式.13.D【详解】解:作AM⊥BC于M,DN⊥EF于N,如图,在Rt△ABM中利用正弦的定义得到AM=3sin50°,利用三角形面积公式得到S1=12BCAM=212sin50°,同样在Rt△DEN中得到DN=7sin50°,则S2=12EFDN=212sin50°,于是可判断S1=S2.故选D.【点睛】本题考查解直角三角形,准确添加辅助线构造直角三角形是解题关键.14.B【解析】【分析】①根据四边形ABCD是矩形,BE⊥AC,可得∠ABC=∠AFB=90°,又∠BAF=∠CAB,于是△AEF∽△CAB,故①正确;②根据点E是AD边的中点,以及AD∥BC,得出△AEF∽△CBF,根据相似三角形对应边成比例,可得CF=2AF,故②正确;③根据△AEF∽△CBF得到EF与BF的比值,据此求出S△AEF=12S△ABF,S△AEF=14S△BCF,可得S△AEF:S△CAB=1:6,故③错误;④根据AA可得△AEF∽△BAF,根据相似三角形的性质可得AF2=2EF2,故④正确.【详解】∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,∴∠EAC=∠ACB,∵BE⊥AC,∴∠ABC=∠AFE=90°,∴△AEF∽△CAB,故①正确;∵AD∥BC,∴△AEF∽△CBF,∴AE AFBC FC==12,∵AE=12AD=12BC,∴AFCF=12,∴CF=2AF,故②正确;∵△AEF∽△CBF,∴EF:BF=1:2,∴S△AEF=12S△ABF,S△AEF=14S△BCF,∴S△AEF:S△CAB=1:6,故③错误;∵△AEF∽△CAB,∴∠AEF=∠BAF,∵∠AFE=∠BFA=90°,∴△AEF∽△BAF,∴EF AF AF BF=,AF2=EF•BF=2EF2,故④正确.故选:B.【点睛】本题属于四边形综合题,主要考查了相似三角形的判定和性质,矩形的性质,图形面积的计算的综合应用,正确作出辅助线是解题的关键.解题时注意,相似三角形的对应边成比例.15.2018【分析】根据一元二次方程的解的定义即可求出答案.【详解】由题意可知:2m 2-3m-1=0,∴2m 2-3m=1∴原式=3(2m 2-3m )+2015=2018故答案为2018【点睛】本题考查一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义,本题属于基础题型.16.13【解析】DE ∥BCAD DE AB BC∴= 即31DE BC = 17.5.【详解】分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.详解:从小到大排列此数据为:2、3、4、5、5、6、7,一共7个数据,其中5处在第4位为中位数.故答案为5.点睛:考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.18.12米【分析】设旗杆的高度为x 米,则绳长为(x+1)米,根据勾股定理即可得出关于x 的一元一次方程,解之即可得出结论.【详解】设旗杆的高度为x 米,则绳长为(x+1)米,根据题意得:(x+1)2=x 2+52,即2x-24=0,解得:x=12.答:旗杆的高度是12米.【点睛】此题考查勾股定理的应用,解一元一次方程,根据勾股定理列出关于x 的一元一次方程是解题的关键.19.(1)k >﹣3;(2)取k=﹣2, x 1=0,x 2=2.【详解】【分析】(1)利用判别式的意义得到△=(﹣2)2﹣4(﹣k ﹣2)>0,然后解不等式即可; (2)在(1)中的k 的范围内取﹣2,方程变形为x 2﹣2x=0,然后利用因式分法解方程即可.【详解】(1)根据题意得△=(﹣2)2﹣4(﹣k ﹣2)>0,解得k >﹣3;(2)取k=﹣2,则方程变形为x 2﹣2x=0,解得x 1=0,x 2=2.【点睛】本题考查了根的判别式,解一元二次方程.一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2﹣4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.20.(1)100+200x ;(2)1.【详解】试题分析:(1)销售量=原来销售量﹣下降销售量,列式即可得到结论;(2)根据销售量×每斤利润=总利润列出方程求解即可得到结论.试题解析:(1)将这种水果每斤的售价降低x 元,则每天的销售量是100+0.1x ×20=100+200x 斤;(2)根据题意得:(42)(100200)300x x --+=,解得:x=12或x=1,∵每天至少售出260斤,∴100+200x≥260,∴x≥0.8,∴x=1.答:张阿姨需将每斤的售价降低1元.考点:1.一元二次方程的应用;2.销售问题;3.综合题.21.见解析;【解析】连接AP、BP和CP,并延长到2AP、2BP和2CP长度找到各点的对应点,顺次连接即可.相似三角形的面积比等于相似比的平方,周长之比等于相似比。

最新冀教版九年级数学上册期中测试卷【参考答案】

最新冀教版九年级数学上册期中测试卷【参考答案】

最新冀教版九年级数学上册期中测试卷【参考答案】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是( )A .2-B .2C .12D .12- 2.某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见,随机对全校100名学生家长进行调查,这一问题中样本是( )A .100B .被抽取的100名学生家长C .被抽取的100名学生家长的意见D .全校学生家长的意见3.已知α、β是方程x 2﹣2x ﹣4=0的两个实数根,则α3+8β+6的值为( )A .﹣1B .2C .22D .304.如图,数轴上有三个点A 、B 、C ,若点A 、B 表示的数互为相反数,则图中点C 对应的数是( )A .﹣2B .0C .1D .45.若点1(),6A x -,2(),2B x -,32(),C x 在反比例函数12y x =的图像上,则1x ,2x ,3x 的大小关系是( )A .123x x x <<B .213x x x <<C .231x x x <<D .321x x x <<6.正十边形的外角和为( )A .180°B .360°C .720°D .1440°7.下面四个手机应用图标中是轴对称图形的是( )A .B .C .D .8.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD9.如图,已知⊙O 的直径AE =10cm ,∠B =∠EAC ,则AC 的长为( )A .5cmB .52cmC .53cmD .6cm10.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A .485B .325C .245D .125二、填空题(本大题共6小题,每小题3分,共18分)1.81的平方根是__________.2.分解因式:2x 3﹣6x 2+4x =__________.3.已知二次函数y=x 2﹣4x+k 的图象的顶点在x 轴下方,则实数k 的取值范围是__________.4.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为_____________.5.如图,已知正方形ABCD 的边长是4,点E 是AB 边上一动点,连接CE ,过点B 作BG ⊥CE 于点G ,点P 是AB 边上另一动点,则PD+PG 的最小值为________.6.如图是一张矩形纸片,点E 在AB 边上,把BCE 沿直线CE 对折,使点B 落在对角线AC 上的点F 处,连接DF .若点E ,F ,D 在同一条直线上,AE =2,则DF =_____,BE =__________.三、解答题(本大题共6小题,共72分)1.解分式方程:2311x x x x +=--2.先化简,再求值:22121244x x x x x x +-⎛⎫-÷ ⎪--+⎝⎭,其中3x =3.如图,已知点A (﹣1,0),B (3,0),C (0,1)在抛物线y=ax 2+bx+c 上.(1)求抛物线解析式;(2)在直线BC 上方的抛物线上求一点P ,使△PBC 面积为1;(3)在x 轴下方且在抛物线对称轴上,是否存在一点Q ,使∠BQC=∠BAC ?若存在,求出Q 点坐标;若不存在,说明理由.4.如图,已知P是⊙O外一点,PO交圆O于点C,OC=CP=2,弦AB⊥OC,劣弧AB的度数为120°,连接PB.(1)求BC的长;(2)求证:PB是⊙O的切线.5.我国中小学生迎来了新版“教育部统编义务教育语文教科书”,本次“统编本”教材最引人关注的变化之一是强调对传统文化经典著作的阅读.某校对A 《三国演义》、B《红楼梦》、C《西游记》、D《水浒》四大名著开展“最受欢迎的传统文化经典著作”调查,随机调查了若干名学生(每名学生必选且只能选这四大名著中的一部)并将得到的信息绘制了下面两幅不完整的统计图:(1)本次一共调查了_________名学生;(2)请将条形统计图补充完整;(3)某班语文老师想从这四大名著中随机选取两部作为学生暑期必读书籍,请用树状图或列表的方法求恰好选中《三国演义》和《红楼梦》的概率.6.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、D4、C5、B6、B7、D8、D9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、±32、2x (x ﹣1)(x ﹣2).3、k <44、10.5、6、 1三、解答题(本大题共6小题,共72分)1、x=32、3x 3、(1)抛物线的解析式为y=﹣13x 2+23x+1;(2)点P 的坐标为(1,43)或(2,1);(3)存在,理由略.4、(1)2(2)略5、(1)50;(2)见解析;(3)16.6、(1)120件;(2)150元.。

2024-2025学年九年级数学上学期期中测试卷(冀教版,九上全部)(考试版A4)

2024-2025学年九年级数学上学期期中测试卷(冀教版,九上全部)(考试版A4)

2024-2025学年九年级数学上学期期中模拟卷(冀教版)(满分120分,时间120分钟)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:冀教版九年级上册。

5.难度系数:0.65。

第Ⅰ卷一、选择题(本大题共16个小题,共38分,1~6小题每题3分,7~16小题每题2分.每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.在某市体育中考期间,在运动技能测试“排球垫球”项目中,某市直中学有8位学生的垫球数分别为39,53,55,48,52,53,48,48.这组数据的中位数和众数分别是()A .50,48B .52,48C .52,53D .48,482.甲、乙、丙、丁四名同学参加科技知识竞赛,他们平时测验成绩的平均分相同,方差分别是21.7S =甲,2 2.4S =乙,20.5S =丙,24S =丁,则成绩最稳定的是( )A .甲B .乙C .丙D .丁3.若38m n =,则m n n +的值是( )A .118B .311C .113D .8114.如图,河坝横断面迎水坡AB 的坡度是,坝高BC =,则坡面AB 的长度是( )A .B .6mC .D .9m5.如图,AB 为O e 的直径,点C ,D 在圆上,若64D Ð=°,则BAC Ð的度数为( )A .64°B .34°C .26°D .24°6.将方程21010x x -=+利用配方法转化为()25x c -=的形式,则c 的值为( )A .24B .25C .26D .1007.下表是小明填写的综合实践活动报告的部分内容,请你借助小明的测量数据,计算河流的宽度AB .题目测量河流宽度AB目标示意图测量数据1.5m BC =,10m BD =, 1.8mDE =则AB =( )m A .20B .30C .40D .508.已知菱形OABC 在平面直角坐标系中如图放置,点C 在x 轴上,若点A 的坐标为(3,4),经过点A 的双曲线交BC 于点D ,则OAD △的面积为( )A .8B .9C .10D .129.如图,在由小正方形组成的网格中,小正方形的边长均为1,点A ,B ,O 都在小正方形的顶点上,则AOBÐ的正弦值是( )A B C .13D .1210.如图,直线y kx =与双曲线my x =相交于点A 和B ,已知点A 的坐标为()4,1,则不等式m kx x³的解集为( )A .4x ³B .04x <£C .4x ³或4x £-D .4x ³或40x -£<11.如图,A 、B 、C 、D 均为圆周上十二等分点,若用直尺测量弦CD 长时,发现C 点、D 点分别与刻度1和4对齐,则A 、B 两点的距离是( )A .B .C .D .612.在矩形ABCD 中,已知45AB AD ==,,点E 为BC 上一点,连接AE 并延长交DC 的延长线于点F ,连接DE ,若2DEC BAE Ð=Ð,则EF 的长为( )A .B .C .3D .513.关于x 的方程22240x mx m -+-=的两个根1x ,2x 满足1223x x =+,且12x x >,则m 的值为( )A .3-B .1C .3D .914.如图,当反比例函数()0ky x x=>的图象L 将矩形ABCD 的内部(不含边界)的横、纵坐标都为整数的点分成数量相等的两部分,则k 的取值范围为( )A .1215k <<B .1014k <<C .410k <<D .1516k <<15.某数学兴趣小组借助无人机测量一条河流的宽度BC .如图,无人机在P 处测得正前方河流的点B 处的俯角DPB a Ð=,点C 处的俯角45DPC Ð=o ,点A ,B ,C 在同一条水平直线上.若45m AP =,tan 3a =,则河流的宽度BC 为( )A .30mB .25mC .20mD .15m16.如图,已知A ,B ,C 为O e 上的三点,且2120AC BC ACB ==Ð=°,.点P 从点A 出发,沿着逆时针方向运动到点B ,连接CP 与弦AB 相交于点D ,当ACD V 为直角三角形时,弧AP 的长为( )A .2pB .12πC .23p 或12πD .2p 或43p第Ⅱ卷二、填空题(本大题共3个小题,共10分;17小题2分,18~19小题各4分,每空2分,答案写在答题卡上)17.如图,在O e 中,AM 是O e 的直径,8AM =,点B 是 AM 的中点,点C 在弦AB 上,且AC =D 在 AB 上,且CD OB ∥,则CD 的长为.18.如图①所示,E 为矩形ABCD 的边AD 上一点,动点P ,Q 同时从点B 出发,点P 沿折线BE ED DC--运动到点C 时停止,点Q 沿BC 运动到点C 时停止,它们运动的速度都是1cm/s ,设P ,Q 同时出发t 秒时,BPQ V 的面积为2cm y .已知y 与t 的函数关系图象如图②(曲线OM 为抛物线的一部分),则:(1)cos ABE Ð= ;(2)当t = 时,ABE QBP ∽△△.19.如图,点(3,0)A ,(0,4)B ,连接AB ,点D 为x 轴上点A 左侧的一点,点E ,F 分别为线段AB ,线段BO上的点,点B ,D 关于直线EF 对称.(1)若DE AO ^,则四边形BEDF 的形状是 ;(2)当AD 最长时,点F 的坐标为 .三、解答题(本大题共7个小题,共72分,解答应写出文字说明、证明过程或演算步骤)20.(本小题满分9分)解方程:(1)22125x x -+=;(2)()()3222x x x +=+.21.(本小题满分9分)某校九年级男生进行了“引体向上”测试,每班随机抽取的人数相同,成绩分为“优秀”“良好”“及格”“不及格”四个等级,其中相应等级的得分分别为10分、8分、6分、4分.小聪将九(1)班和九(2)班的成绩整理并绘制了如图所示的不完整的统计图表.班级平均数众数中位数方差九(1)班7.6——8 3.84九(2)班8.410—— 3.84请你根据所给的信息解答下列问题:(1)请补充完成条形图和统计分析表;(2)若九(2)班少统计了一个学生“优秀”的成绩,则此次统计的数据中不受影响的是______(选填“平均数”“众数”“中位数”);(3)请你从两个方面分析出哪个班的男生“引体向上”成绩更好些.22.(本小题满分9分)如图,ABCD Y 中,点E 是AD 的中点,连接CE 并延长交BA 的延长线于点F .(1)求证:AF AB =;(2)点G 是线段AF 上一点,满足,FCG FCD CG Ð=Ð交AD 于点H .①求证:AH CH DH GH ×=×;②若2,6AG FG ==,求GH 的长.23.(本小题满分10分)图1是某住宅单元楼的人脸识别系统(整个头部需在摄像头视角范围内才能被识别),其示意图如图2,摄像头A 的仰角、俯角均为15°,摄像头高度160cm OA =,识别的最远水平距离150cm OB =.(1)如图2,张亮站在摄像头前水平距离100cm 的点G 处,恰好能被识别(头的顶部在仰角线AD ), 求张亮的身高约是多少厘米;(2)夕夕身高136cm ,头部高度为18cm ,踮起脚尖可以增高3cm ,此时夕夕能被识别吗?请计算说明.(精确到0.1cm ,参考数据:sin150.26cos150.97°»°»,,tan150.27°»)24.(本小题满分10分)如图1,一汤碗的截面是以AB 为直径的半圆O (碗体厚度忽略不计),放置于水平桌面MN 上,碗中装有一些液体(图中阴影部分),其中液面截线∥CD MN .已知液面截线CD 宽8cm ,液体的最大深度为2cm .(1)求汤碗直径AB 的长;(2)如图2,在同一截面内,将汤碗(半圆O )沿桌面MN 向右作无滑动的滚动,使液体流出一部分后停止,再次测得液面截线CD 减少了2cm .①上述操作后,水面高度下降了多少?②通过计算比较半径12AB 和流出部分液体后劣弧 CD 的长度哪个更长.(参考数据:3tan 374°=)25.(本小题满分12分)如图,已知在平面直角坐标系中,矩形ABCD 的边AB x ∥轴,AD y ∥轴,点A 的坐标为(2,1),43AB AD ==,.(1)求直线BD 的解析式;(2)已知双曲线()0ky k x =>与折线ABC 的交点为E ,与折线ADC 的交点为F .①连接CE ,当3BCE S =V 时,求该双曲线的解析式,并求出此时点F 的坐标;②若双曲线()0ky k x =>与矩形ABCD 各边和对角线BD 的交点个数为3,请求k 的取值范围.26.(本小题满分13分)在ABC V 中,45A Ð=°,AC =D 为AB 边上一动点,45CDF Ð=°,DF 交BC 边于F .探究:如图1,若AC BC =,(1)当ACD V 与BDF V 全等时,求AD 的长;(2)当CDF V 为等腰三角形时,求CF 的长.延伸:如图2,若90DCF Ð=°,E 为BD 上一点,且45DEF Ð=°,(3)小东经过研究发现:“当点D 在AB 边上运动时,DE 的长度不变,是个定值.”你认为小东的结论是否正确,如果正确,请求出这个定值;如不正确,说明理由(4)若BF =sin B 的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

11 . 一种药品经过两次降价后,每盒的价格由原来的 60元降至48.6元,那么平均每次降价的百分率
期中数学复习题
考号 ____________ 班级 _________________ 姓名 ________________ 分数 _________
一、正确选择(每小题 2分,共20分)(各题均为单选) 1 .方程x 2 5x 6 =0的解是(

A . -2 , 3
B . 2 . -3
C . 2 , 3
D . -2 , -3 2 .已知一元二次方程 -5x 2 16x ^0,若把二次项系数变为正数,且使得方程根不变的是(
2
A . 5x T6x 亠3=0
2
B . 5x —16x —3 =0
形与A ABC 相似,满足条件的直线的条数是(

6 .已知:一块长方形土地的长比宽的 2倍还多12m ,面积为320m 2 .
则这块土地的周长是( )
A . 42m
B . 84m
C . 60 m
D . 120 m
7 .如图5,身高为1.6m 的某学生想测量一棵大树的高度,她沿着树影 BA
由点B 向点A 走去,当走到点 C 时,她的影子顶端正好与树的影子顶端重合, 测得
BC =3.2m , CA =0.8m ,则树的高度为(

、准确填空(每小题 3分,共30 分)
8 .已知关于x 的一元二次方程 5x 2,mx-6=0的一个根是x =3,贝U m = _____________
9
9 .将方程x •2x -1=0配方后,得到的新方程为 _________________ 10 .若 x-3y= 0 ,贝U x := ___________
2
C . 5x T6x-3=0 2
D . 5x -16x 3=0 3 .如图2,点
E 是EABCD 的边BC 延长线上的一点, AE 与CD 相交于点G , AC 是CABCD 的对角线, 则图中相似三角形共有( ) A . 2对 B . 3对 C . 4对 4.下列一元二次方程中,能直接开平方的是( )
2
A . 3x 5x -1 = 0
B . (x 1)(x 2) =
8 C . x 2 x =0 D . (2x-1)2=7
图2
图4
5.如图4,点P 是Rt ZABC 的斜边BC 上异于B ,
C 的一点,过点 P 作直线截厶ABC ,使截得的三角
A . 4.8m
B . 6.4m
C . 8m
D . 10m
图5
是 ・
12 •如图7,铁道口栏杆的短臂长为 1.2m ,长臂长为8m ,当短臂端点下 降0.6m 时,长臂端点升高 __________ m (杆的粗细忽略不计)•
1
13 .已知:在△KBC 和厶 AB C 中, AB: AB =BC : B C = AC : AC =—,
2
且A ABC 的周长是12cm ,则△ ABC ■的周长是 _______ cm . 三、挑战技能(共 70分)
14 . (6 分)解方程:x 2,2x-8=0 ;
15 . (6 分)解方程:(2x 3)2 =3(2x 3).
16 . (6 分)如图 9, △ABC S ^ADE ,其中 AB =15 , AD =18 , AC =14,求 AE 的长.
17. (6分)某饮料厂1月份生产饮料的产量为 月份
产量的平均增长率.
18 . (6分)如图10,在水平桌面上的两个“ E ”当点P 1, P 2, O 在一条直线上时,在点 O 处用①号“E‘ 测得的视力与用②号“ E ”测得的视力效果相同.
(1)图中b 1, b 2, I 1, I 2满足怎样的关系式?
(2 )若b 1 =3cm,b^2cm,①号E ”到点O 的距离l^3m ,要使得测得的视力相同,则②号“ E ”到 点O 的
距离l 2应为多少?

压 1 ------ b
500吨,3月份上升到720吨,求这个饮料厂2月份和3
9
图10
19 . (7分)如图11,正方形ABCD的边长为2 , AE = EB, MN = 1,线段MN的两端在CB , CD上滑
动,请你说明当CM的长为多少时,△ AED与以M, N, C为顶点的三角形相似?
D
N
C
20 . (7分)某商场销售一种服装,平均每天可售出20件,每件赢利40元•经市场调查发现:如果每件服
装降价1元,平均每天能多售出2件•在国庆节期间,商场决定采取降价促销的措施,以达到减少库存、扩大销售量的目的•如果销售这种服装每天赢利1200元,那么每件服装应降价多少元?
21 . (8分)已知关于x的方程(k -1)x2 -k2x -1 =0的一个根是-1,求k的值•方程是否还有其它的根?若有,求出来,若没有,说明理由.
22 . (8分)某小区规划在一个长为40m ,宽为26m的矩形场地ABCD上修筑三条同样宽的甬路,使其中两条与AB平行,另一条与AD平行,其余部分种草,如图12所示.若使每一块草坪的面积都是144m 2,
求甬路的宽.
23 . (10分)如图13 —1,在△ABC中,/C=90 °,AC=4 , BC=3,四边形DEFG为△ABC的内接正方
(1)
如图13 —
2,若三角形内有并排的两个全等的正方形,它们组成的矩形内接于△
ABC ,则正方
形的边长为 ___________ ;
(2) 如图13 — 3,若三角形内有并排的三个全等的正方形,它们组成的矩形内接于△
ABC ,则正方
形的边长为
猜想与证明:
如图13 — 4,若三角形内有并排的 n 个全等的正方形,它们组成的矩形内接于△ ABC ,请你猜想正
方形的边长是多少?并对你的猜想进行证明.
图 13—1 图 13—2
形,若设正方形的边长为
探究与计算:
X ,容易算出 X 的长为60
.
37
图 13—3
精选
试题答案及提示
第一部分试试你的基本功
精选
2
、填空题
1 . -13;
2 . (x 1) =2 ; 3.
90°;4. 3 :; 5.
4
; 6. 10% ; 7. 30 °;8. 4; 9. 24; 10. - 5 : 2 ; 3
11 . 3.4 ; 12 . 8. 2 . 二、选择题 1 . D ; 2. B ; 3. C ; 4. C ;
三、挑战技能 6. D ; 7 . C ; 8. C ; 9. B ; 10. C ; 11. C ; 12 . 3 1 . X 1=2 , X 2=-4; 2 . X 1=0, x 2 :
3. AE =16.8 ;
4. AC =6 ; 5 .因为 AB =AC , /A =36 ° ,所以Z ABC =
BC
ZC =72。

.因为BD 是ZABC 的平分线,所以/ CBD =36。

.所以△KBC^zBCD .所以 一 DC
AD 2 = DCLAC 。

AC .所以
BC 2
二 DC[_AC .因为/ABD = ZA=36。

,/DC = zC=72。

,所以AD = BD =BC .所以 第二部分把道理说明白 1 .解:因为Z A /C =90;,由勾股定理可得:
ED =冷5 .分两种情况: CM 5 时,:
AEDL 'CMN . 5 CM 二士 时,•:AEDL CNM . 5 CM MN (2
) AD CM 1
,即 V =
,5 CM _ 1 厂5, 3 . k =1 或 k = -2 , k =1时,方程没有其它的根;当 k =-2时,方程的另一个根是 第三部分数学就在我们生活中
2.( 1)b ^v; b 1 h 即为六块面积的总和.解 设甬路的宽为 x m ,根据题意得: (
40 -2x )(26 -x ) =144 6 , 整理得 X 2 -46x 8^0,解得 x 1 =2,x^44 . (2)l 2=2m ; 4•利用平移变换法,把甬路都平移到边缘位置,如图 1中的阴影面积
••• X 2 =44 >40,舍去,••• x=2 .答:甬路的宽应为 5 .解:探究与计算:(1) 60 ; (2) 60 .猜想与证明: 49 61 三角形内有并排的n 个全等的正方形,它们组成的矩形内
60 .证明如下: 25 12n
垂足为N ,交GF 于点 •••四边形GDEF 接于△ABC ,正方形的边长是
如图2,过点C 作CN 丄AB , M .设小正方形的边长为 x .
• GF /AB . CM 丄GF .容易算出 CD 5 为矩形, ,CM . CN 12 x 即一 12 5
nx 5 x = 60 .即小正方形的边长是 25 12n 2m : B 图1 C 图2
GF AB 60 25 12n
精选
谢谢观看!欢迎您的下载,资料仅供参考,如有雷同纯属意外。

相关文档
最新文档