第1课时 二次根式及其性质

合集下载

2024年北师大版八年级上册教学设计第二章2.7 二次根式

2024年北师大版八年级上册教学设计第二章2.7   二次根式

第1课时二次根式及其性质课时目标1.了解二次根式和最简二次根式的概念,能将二次根式(根号下仅限于数)化简为最简二次根式.2.通过对二次根式的性质的探究,提高数学探究能力和归纳表达能力.3.经历在具体情境中发现二次根式的过程,体会引入二次根式的必要性.4.经历观察、交流、总结等数学活动,感受数学活动充满了探索性和创造性,让学生体现发现的快乐,并提高应用的意识.学习重点了解二次根式和最简二次根式的概念,能将二次根式化简为最简二次根式.学习难点对二次根式的性质的探究.课时活动设计问题引入思考:用带根号的式子填空,观察这些结果有什么特点?(1)图1的画框为正方形,若面积为8 dm2,则边长为√8dm;若面积为S dm2,则边长为√S dm.,土地的面积为13 m2,则它的长(2)图2是一块长方形的土地,若宽是长的35为√65m.3图1图2设计意图:通过实际问题,让学生用带根号的式子填空,为下面探究二次根式的特征作准备.知识回顾1.什么叫做平方根?2.什么叫做算术平方根?3.什么数有算术平方根?设计意图:回顾平方根和算术平方根的定义,为本节课要学习的内容作准备.探究新知探究1二次根式的概念教师提出问题,学生思考并解答,最后教师总结.,这些式子分别问题1:问题引入中的问题,我们得到的结果分别是√8,√S,√653表示什么意义?解:这些式子分别表示8,S,65的算术平方根.3问题2:非负数b,m+n,t2-2的算术平方根怎么表示?解:算术平方根分别是√b,√m+n,√t2-2.问题3:什么样的数才有算术平方根?解:只有非负数才有算术平方根.问题4:这些式子有什么共同特征?解:①含有“√”;①被开方数为非负数.总结二次根式的概念:一般地,形如√a(a≥0)的式子叫做二次根式,a叫做被开方数.(注意:a可以是数,也可以是式子.)二次根式的两个必备特征:①外貌特征,含有“√”;①内在特征,被开方数a≥0.探究2二次根式中字母的取值范围学生思考,小组交流,回答下列问题.问题1:使二次根式√m-2在实数范围内有意义的m的取值范围是.分析:要使二次根式在实数范围内有意义,即需满足被开方数≥0,列不等式求解即可.解:由m -2≥0,得m ≥2.①当m ≥2时,√m -2在实数范围内有意义. 问题2:使式子√a -1在实数范围内有意义的a 的取值范围是 .分析:若二次根式为分母时,应同时考虑分母不为零. 解:由a -1≥0,得a ≥1. 又①√a -1为分母,①√a -1≠0. ①a -1≠0,即a ≠1. ①当a >1时,√a -1在实数范围内有意义.总结 二次根式中字母的取值范围的依据: (1)形如√m 的二次根式有意义的条件:m ≥0. (2)二次根式作为分式的分母时,如√m有意义的条件:m >0.探究3 二次根式的性质观察下列式子,你发现了什么?学生思考,小组交流讨论. √4×9=6;√4×√9=6;√49=23;√4√9=23;√2549=57;√25√49=57. 问题1:你有什么猜想?解:√a·b =√a ·√b (a ≥0,b ≥0),√a b =√a√b (a ≥0,b >0).问题2:根据上面的猜想,估计下面每组两个式子是否相等,借助计算器验证一下吧.(结果精确到0.000 1)(1)√6×7= ,√6×√7= ;(2)√67=√6= .解:(1)6.480 7 6.480 7 (2)0.925 8 0.925 8 验证猜想:√6×7=√6×√7,√67=√6√7.总结 二次根式的性质:(1)积的算术平方根等于算术平方根的积;(2)商的算术平方根等于算术平方根的商.√a·b =√a ·√b (a ≥0,b ≥0),√a b =√a√b (a ≥0,b >0).探究4 最简二次根式 问题:化简下列二次根式.(1)√81×64; (2)√25×6; (3)√59. 解:(1)√81×64=√81×√64=9×8=72. (2)√25×6=√25×√6=5√6. (3)√59=√5√9=√53.交流:观察化简结果5√6,√53,这些数有什么特点呢? 解:被开方数中都不含分母,也不含能开得尽的因数或因式.小结 最简二次根式定义:一般地,被开方数不含分母,也不含能开得尽方的因数或因式,这样的二次根式,叫做最简二次根式.化简时,通常要求最终结果中分母不含有根号,而且各个二次根式是最简二次根式.设计意图:引领学生自主探索二次根式的性质,从特殊数入手,希望学生获得一定的感性经验,再进一步强化这样的经验和猜测,最后经由学生交流,总结、归纳出二次根式的性质.典例精讲 例1 化简:(1)√81×64; (2)√25×6; (3)√59. 解:(1)√81×64=√81×√64=9×8=72. (2)√25×6=√25×√6=5√6. (3)√59=√5√9=√53.例2 化简:(1)√50; (2)√27; (3)√3.解:(1)√50=√25×2=√25×√2=5√2.(2)√27=√2×77×7=√2×7√7×7=√147. (3)√3=√3√3×√3=√33. 设计意图:通过例题,学生进一步理解二次根式的概念、性质和熟练掌握将二次根式化为最简二次根式.巩固训练1.下列各式是最简二次根式的是( C )A.√-7B.√23C.√3D.√25 2.下列各式正确的是( B )A.√a·b =√a ·√bB.√2×3=√2×√3C.√(-2)×(-3)=√-2×√-3D.√827=23 3.填空. (1)√4−a√a -1有意义的a 的取值范围为 1<a ≤4 .(2)已知√x +3+√2y -4=0,则xy 的值为 -6 .(3)当x = -12 时,√2x +1+6有最小值,最小值为 6 . 4.化简:(1)√5; (2)√3.6; (3)√8×36.解:(1)√5=√5√5×√5=3√55. (2)√3.6=√185=√18×55×5=√18×5√5×5=3√105. (3)√8×36=√8×√36=2√2×6=12√2.设计意图:让学生在练习中联系相关知识分析、说明解决问题的想法,获得成功的体验;考查学生的知识应用能力,培养学生独立完成练习的习惯.课堂小结1.二次根式的概念是什么?怎样判断一个式子是否是二次根式?2.二次根式具有怎样的性质?3.怎样把一个二次根式化简成最简二次根式?设计意图:总结回顾本节课学习的重点内容,帮助学生巩固课堂知识.课堂8分钟.1.教材第43页习题2.9第1,2,3题.2.七彩作业.第1课时二次根式及其性质1.二次根式定义.2.二次根式性质.3.最简二次根式.4.练习.教学反思第2课时二次根式的运算课时目标1.掌握二次根式的乘、除法运算法则,并能够熟练应用乘、除法法则进行计算.2.会用二次根式的四则运算法则进行简单运算.3.用类比的方法,引入实数的运算法则、运算律,并能用这些运算法则、运算律在实数范围内正确计算,培养类比学习的能力.4.增强学生的符号、应用意识,培养学生合作交流、合情推理和表达的能力.学习重点掌握二次根式的乘、除法运算法则,并能够熟练应用乘、除法法则进行计算.学习难点会用二次根式的四则运算法则解决简单的数学问题.课时活动设计回顾复习1.二次根式有什么特征?2.求使在实数范围内有意义的x的取值范围.√x-13.二次根式的性质是什么?4.什么叫最简二次根式?设计意图:通过回答二次根式的特征、求二次根式中字母的取值范围以及最简二次根式的定义等问题,学生对所学知识进行回顾与复习,重点让学生复习回顾二次根式的性质,为本节课的学习打下基础.问题导入思考:长方形的面积是√20,它的长是√5,宽是多少?教师追问:该怎么计算呢?提示:根据之前学过的二次根式的性质来解决二次根式的四则运算问题.设计意图:通过思考问题,引出二次根式的除法,从而切入正课:如何进行二次根式的运算.探究新知探究1同类二次根式教师提出问题,学生思考,小组交流,最后总结.化简下列二次根式,观察他们的特点,并进行分类:√8; √18; √80; √0.5; √18; √20. 解:分别化简为2√2; 3√2; 4√5;√22; √24; 2√5. 分成两组:一组是2√2,3√2,√22,√24;另一组是4√5,2√5. 问题:这样分类的依据是什么呢?解:将二次根式中带有相同根式的分为一组,如第一组中都含有√2,第二组中都含有√5.小结:化简后,被开方数相同的二次根式被称为同类二次根式. 探究2 二次根式的乘除运算根据二次根式的性质,等号的左边与右边对换,就能得到二次根式的乘法法则和除法法则.二次根式的性质1:√a·b =√a ·√b (a ≥0,b ≥0); 二次根式的乘法法则:√a ·√b =√a·b (a ≥0,b ≥0). 二次根式的性质2:√a b =√a √b (a ≥0,b >0);二次根式的除法法则:√a√b =√ab (a ≥0,b >0).追问:问题导入中的长方形的宽该如何计算呢? 解:宽=√20√5=√5√5=2. 问题:从上面的运算中,你发现了什么?总结:二次根式的乘法法则:√a ·√b =√a·b (a ≥0,b ≥0);二次根式的除法法则:√a √b=√a b (a ≥0,b >0). 提示:在二次根式的运算中,最后结果一般要求写成最简的二次根式的形式. 探究3 二次根式的分母有理化问题:√5是最简二次根式吗?如果不是,如何化简呢?解:不是.√5=√5√5×√5=√55. 总结:形如m √n 的式子,分子、分母同乘以√n ,可以使分母不含根号.思考:√5+√3如何化简呢?解:√5+√3=√5-√3(√5+√3)(√5-√3)=√5-√32. 总结:形如m√a±n √b的式子,分子、分母同乘以m √a ①n √b ,构成平方差公式,可以使分母不含根号.探究4 二次根式的加减运算问题1:你能直接写出下列式子的结果吗? (1)3x 2+4x 2;(2)x 2+3x 2+y. 解:(1)7x 2.(2)4x 2+y.问题2:类比合并同类项的方法,想想如何计算√80-√45? 解:√80-√45=4√5-3√5=√5.问题3:√3+√5能不能再进行计算?为什么?解:不能,因为它们都是最简二次根式,被开方数不相同,所以不能合并. 二次根式的加法、减法法则:(1)先化为最简二次根式;(2)再合并同类二次根式.提示:在二次根式的运算中,最后结果一般要求写成最简的二次根式的形式. 探究5 二次根式的四则混合运算计算下列式子,观察运算过程,你从中发现了什么?(1)3√2×2√3;(2)√12×√3-5;(3)(√5+1)2;(4)(√13+3)(√13-3); (5)(√12-√13)×√3;(6)√8+√18√2. 解:(1)3√2×2√3=3×2×√2×3=6√6. (2)√12×√3-5=√12×3-5=√36-5=6-5=1. (3)(√5+1)2=(√5)2+2√5+12=5+2√5+1=6+2√5. (4)(√13+3)(√13-3)=(√13)2-32=13-9=4. (5)(√12-√13)×√3=√12×√3-√13×√3=√36-√1=6-1=5. (6)√8+√18√2=√8√2+√18√2=√82+√182=√4+√9=2+3=5.总结:实数的运算律同样适用于二次根式,我们在进行二次根式的混合运算时,可以用到乘法交换律、结合律和分配律,也可以用到完全平方公式和平方差公式.探究6 二次根式化简求值化简(√1a -√b )·√ab ,其中a =3,b =2.你是怎么做的? 解:方法一(先代入,后化简):把a =3,b =2代入代数式中, 原式=(√13-√2)·√3×2=√13×3×2-√2×3×2=√2-2√3. 方法二(先化简,后代入):原式=√1a ·√a ×b -√b ·√a ×b =√b -b √a , 把a =3,b =2代入代数式中,原式=√2-2√3. 追问:哪种方法更简便?归纳 二次根式化简求值的方法:解决二次根式的化简求值问题时,直接代入求值比较麻烦,可先化简已知条件,再用乘法公式变形,最后代入求值即可.设计意图:给出问题,激发学生思考,小组讨论,教师引导学生从数学现象发现数学规律.通过探究中具体例题的学习,获得二次根式加减乘除运算的有关技能.典例精讲 例1 计算:(1)√48+√3;(2)√5-√15;(3)(√43+√3)×√6.解:(1)√48+√3=√16×3+√3=√16×√3+√3=4√3+√3=5√3. (2)√5-√15=√5-√525=√5-√55=45√5.(3)(√43+√3)×√6=√43×6+√3×6=√8+√18=2√2+3√2=5√2.例2 已知a =√5-2,b =√5+2,求√a 2+b 2+2. 分析:先化简已知条件,再利用乘法公式变形,即a 2+b 2=(a +b )2-2ab ,最后代入求解.解:①a =√5-2=√5+2(√5-2)(√5+2)=√5+2,b =√5+2=√5-(√5+2)(√5-2)=√5-2, ①a +b =2√5,ab =1,①√a 2+b 2+2=√(a +b)2-2ab +2=√(2√5)2-2+2=√20=2√5.设计意图:通过例题,学生进一步理解二次根式的运算法则.巩固训练1.下列各式正确的是( B )A.√(-2)2=-2B.√(-2)×(-2)=2C.3√2-√2=3D.√8+√2=√10 2.填空.(1)计算√2×√3= √6 ;√36×9= 18 .(2)长方形的宽为√3,面积为2√6,则长方形的长为 2√2 .(3)计算(√48-3√27)÷√3= -5 .(4)若两个最简二次根式√5和√2m -5能够合并,则m = 5 .3.计算:(1)(√6-√38)×√2;(2)(2+√2)(2-√2);(3)√27×√3=√100;(4)√183+√32-15√50. 解:(1)(√6-√38)×√2=√6×√2-√38×√2=√6×2-√38×2=2√3-√32=3√32. (2)(2+√2)(2-√2)=22-(√2)2=4-2=2. (3)√27×√3-√100=3√3×√3-10=3×3-10=-1.(4)√183+√32-15√50=√2+4√2-√2=4√2. 设计意图:通过实时练习,学生在系统归纳整理了二次根式四则运算的相关知识的基础上,进一步加深了对二次根式四则运算法则的理解,提高学生解决问题的能力,并培养学生的应用意识.课堂小结1.二次根式的四则运算法则是什么?2.二次根式化简求值的方法有哪些?设计意图:总结回顾本节课学习的重点内容,帮助学生巩固课堂知识.课堂8分钟.1.教材第45页习题2.10第1,2题,第48页习题2.11第1,2,3题.2.七彩作业.第2课时二次根式的运算1.二次根式乘除法法则.2.同类二次根式.3.例题:4.练习:教学反思。

八年级数学上册第2章实数7二次根式第1课时二次根式的概念及其性质预学新版北师大版

八年级数学上册第2章实数7二次根式第1课时二次根式的概念及其性质预学新版北师大版

D. −
1
2
3
4
5
6
7
8
9
6. 【新考法 逐项代入法】二次根式 中, x 的值不能是
(
D
)
A. π
B. 1
C. 0
D. -1
1
2
3
4
5
6
7
8
9
7. 下列二次根式是最简二次根式的是(
A.
C.
B
B.


D. .
1
2
3
4
5
6
7
8
9
)
8. 下列式子成立的是(
D
)
Hale Waihona Puke A. (−) × (−) = − × −
2. 表示的意义是非负数 a 的
1
2
.

二次根式 , a 叫
1. 一般地,形如 ( a ≥0)的式子叫做
做被开方数.
1
2
3
4
5
6
7
8
9
2. 二次根式的双重非负性:若 有意义,则 a


0.
1
2
3
4
5
6
7
8
9

0,
3. =
·



( a ≥0, b ≥0),


(a
≥0, b >0).即积的算术平方根,等于积中各因式的算术

(1) × =
(2) × =
笔记:

×
×



= 3
2
× 4
.

第1课时 二次根式的概念与性质

第1课时 二次根式的概念与性质

42
4 ———
由于52 25, 因此
25 5, 即
52
5 ———
由于1.52 2.25, 因此
2.25
1.5,

1.52
1.5 ———
………………..
a a 根据上面的结果 , 当a 0时, 你猜测:
2 ———
二次根式的性质 2: a2 a (a 0)
9. 练习四:计算
(1) 72 (2) 132 (3) ( 3)2 (4) 5
因此,当 x 4 时,二次根式 4 x在实数范围内有意义.
(4)由 x 1 0 得, x 1.
因此,当
x 1 时,二次根式
1
在实数范围内有意义.
x 1
6、二次根式的性质:
( 2)2 2, ( a )2 a. (a 0)
S=2
边 长 a
?
2
边长a? 2
二次根式的性质1:
2 a a (a 0).
(2)由 x 7 0 得, x 7. 因此,当 x 7 时,二次根式 x 7 在实数范围内有意义.
5、练习二:当 x 取什么值时,下列二次根式 在实数范围内有意义?
1
(1) x 6 ; (2) x 7 ; (3) 4 x ; (4)
.
x 1
解(3)由 4 x 0 得, x 4.
2
1.23 .
3
解:(1)原式=9;(2)原式=0.2;(3)原式=3;
(4)原式= 8; (5)原式=0;(6)原式=1.23. 3
3、 (1)若 a - 5 b 2 0,求a、b的值;
解:由题意,得a-5=0,b+2=0.解得a=5.b=-2.
(2)若 2x 3y 5 x 2 y 3 0,求x、y的值.

2024八年级数学上册第二章实数7二次根式第1课时二次根式及其性质习题课件新版北师大版

2024八年级数学上册第二章实数7二次根式第1课时二次根式及其性质习题课件新版北师大版

5. [2024永州一中期末]化简| a -3|+( − )2的结果是
(
D
)
A. 0
B. 6
C. 2 a -6
D. 6-2 a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
知识点2二次根式的性质
·
6. (1) =
(2)




1

2
3
( a ≥0, b ≥0);
( a ≥0, b >0).
4
5
6
7
8
9
10
11
12
13
14
15
16
7. 下列各式的化简正确的是(
C
)
A. (−) × (−) = − × − =(-2)×(-7)=14
B. = + = × =5
C.











D. . =
1
2





3
4
5
6
7
8
9
10
嘉嘉在学习二次根式时,发现一些含根号的式子可以化
成另一个式子的平方,如:
5+2 =(2+3)+2 × =( )2+( )2+2× ×
=( + )2;
8+2 =(1+7)+2 × =12+( )2+2×1× =
(1+ )2.
1
2
3
4
5
6
7

二次根式及其性质课件

二次根式及其性质课件

1 •下列式子一定是二次根式的是( C )
知1-练
2 •(中考·武汉)若代数式 C
•则x的取值范围是( )
在实数范围内有意义,
•A.x≥-2 B.x>-2 C.x≥2 D.x≤2
知识点 2 二次根式的性质
知2-导
做一做
(1)计算下列各式,你能得到什么猜想?
4 9 ____, 4 9 _____; 4 _____, 4 _____;

的根指数为2,所以
是二次根式.
• (7)是.理由:因为|x|≥0,且 根式.
的根指数为2,所以
是二次
总结
知1-讲
二次根式是在初始的外在情势上定义的,不能从化 简结果上判断,如 是二次根式. 像 (a≥0)这样的式子只能称为含有二次根式 的式子,不能称为二次根式.
知1-讲
• 例2 当x取怎样的数时,下列各式在实数范围内有意 义?
知识点 1 二次根式的定义
知1-讲
形如 a (a≥0)的式子叫做二次根式. 其中a为整式或分式,a叫做被开方式. 特点:①都是形如 a 的式子,
②a都是非负数.
例1 判断下列各式是否为二次根式,并说明理由.
知1-讲
导引: 判断一个式子是不是二次根式,实质是看它是否具备二次根
式定义的条件,紧扣定义进行辨认.
知3-练
1 (中考·淮安)下列式子为最简二次根式的是( A )
2 在下列根式中,不是最简二次根式的是( D )
1. 当a≥0时, 2. 当a≥0时, •3.
完成教材P43,习题T1-T4
谢谢!
知2-讲
知识点
商的算术平方根再探索 (1)商的算术平方根的性质的实质是逆用二次根式的除法

八年级数学上册2.7 第1课时 二次根式及性质

八年级数学上册2.7   第1课时 二次根式及性质

”称为二次根号.
说明:二次根式的两个要素:
①根指数为2;②被开方数为非负数.
知识点2:二次根式的性质(难点)
1. a≥0,(a≥0);2.( a)2=a(a≥0);
3. a2=|a|=
4.积的算术平方根等于积中各因式的算术平方根的积,即 ab
= a· b(a≥0,b≥0).
5.商的算术平方根等于被除数的算术平方根与除数的算术平方

(1)如图①的海报为正方形,若面积为2 m2,则边长为_____m;若面
m.
积为S m2,则边长为______
(2)如图②的海报为长方形,若长是宽的2倍,面积为6 m2,则它
的宽为______m.

(3)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与开
始落下的高度h(单位:m)满足关系h=5t2,如果用含有h的式子表
学习了本节课后你有哪些收获
1.一般地,形如(a≥0)的式子叫做二次根式,a叫做被开方数.
a
a
ab= a· b(a≥0,b≥0); b=
2.
b (a≥0,b≥0);=(a≥0,b>0),即
积的算术平方根,等于各因数(因式)的算术平方根的积;商的算术平方
根,等于被除数的算术平方根与除数的算术平方根的商.
-y)2 025 的值为( B )
A.2-Biblioteka 3 B.2+3 C.1 D.-1
25
变式 2:已知 y= x-5+ 5-x+2,则 xy=________.
题型三
二次根式的定义——求字母的值
例 4:若 45n是整数,则正整数 n 的最小值是
5
________.
变式:若二次根式 32n的值是整数,则下列 n 的取值

二次根式的概念、性质(第1、2课时 教案)

二次根式的概念、性质(第1、2课时 教案)

第十六章二次根式16.1二次根式第1课时二次根式的概念【知识与技能】是一个非负数.【过程与方法】通过新旧知识的联系,培养学生观察、演绎能力,发展学生的归纳概括能力.【情感态度】通过观察一些特殊的情形,获得一般结论,使学生感受归纳的思想方法,进而体验成功的喜悦,并通过合作学习增进终身学习的信念.≥0的基本性质【教学难点】经历知识产生的过程,探索新知识.一、情境导入,初步认识问题(1)一个长方形的围栏,长是宽的3倍,面积为39m2,则它的宽为_______m;(2)面积为S的正方形的边长为_______;(3)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落下的高度h(单位:m)满足关系h=5t2,如果用含h的式子表示t,则t=.______【教学说明】设置上述问题的目的是让学生感受到研究二次根式是实际的需要,二次根式与实际生活联系紧密.教师提出问题后,让学生独立思考,然后相互交流,获得对二次根式的感性认识.二、思考探究,获取新知思考的式子,这些式子有什么特点?【教学说明】教师提出问题,同学生一道分析,体会这些式子的特征,从而引出二次根式的定义.a≥0)形式的式子称.针对上述定义,教师可强调以下几点:(1中,a必须是大于等于0的数或式子,否则它就没有意义了;(2=2,是一个整数,但4仍应称为一个二次根式;(3)当a≥0表示a的算术平方根,而一个非负数的算术平方根必≥0(a≥0)三、典例精析,掌握新知例1下列各式中,一定是二次根式的有_______分析:判断二次根式应关注两点:(1;(2)被开方数必须是非负数.因而在所给出四个式子中,只有②③中的式子同时符合两个要求,故应填②③.例2当x为何值时,下列各式在实数范围内有意义.解:(1)中,由x-2≥0,得x≥2;(2)中,由得2≤x≤3;(3)中,由2x-1>0,得x>1/2.【教学说明】对于例3,教师应引导学生分析题目特征,抓住解决问题的突a中a≥0及a≥0的双重非负性特征.四、运用新知,深化理解1.填空题:(1)形如_______的式子叫二次根式;(2)负数算术平方根________(填“有”或者“没有”)2.当a是怎样的实数时,下列各式在实数范围内有意义:【教学说明】学生自主探究,教师巡视,了解学生对本节课知识的掌握情况,及时予以指导,帮助学生巩固新知.五、师生互动,课堂小结通过这节课的学习,你掌握了哪些新知识,你获得哪些解决二次根式问题的方法?你还有哪些问题?请与同伴交流.【教学说明】学生相互交流,回顾知识,反思问题,共同发展提高.1.布置作业:从教材“习题16.1”中选取.2.完成练习册中本课时练习.1.教师创设情境,给出实例.学生积极主动探索,教师引导与启发,师生互动.体现教师的组织者、引导者与合作者地位.2.注意知识之间的衔接,在温故知新的过程中引导出新知,讲练结合旨在巩固学生对新知的理解.第十六章二次根式16.1二次根式第2课时二次根式的性质【知识与技能】理解并掌握二次根式的性质,正确区分=a(a≥0)与2a=a(a ≥0),并利用它们进行化简和计算.【过程与方法】在探索二次根式性质的学习活动中,进一步增强学生的参与意识,培养学生的计算能力和解决问题的能力.【情感态度】通过创设问题情境,激发学生学习兴趣,培养学生主动探究意识和创新精神,形成良好的心理品质,促进身心健康发展.【教学重点】2a=a(a≥0)2a(a≥0)及其应用.【教学难点】用探究的方法探索2a=a(a≥02a(a≥0)的结论.一、情境导入,初步认识试一试:请根据算术平方根填空,.猜一猜:通过对上述问题的思考,你能猜想出2a(a≥0)的结论是什么?说说你的理由.【教学说明】让学生通过具体实例所展示的特征,猜想出结果,然后再利用算术平方根的意义对所猜测结论进行分析,由感性认识到理性思考,培养学生利用代数语言进行推理的能力.二、思考探究,获取新知在学生相互交流的基础上可归纳出:2=a(a≥0).探究(1)填空:(2)通过(1)的思考,你能确定a≥0)的化简结果吗?说说你的理由.【教学说明】教师应尽力引导学生积极主动进行探究思考,让学生经历知识的发现与完善的过程,深化对所学知识的理解和记忆,最后师生共同完成对知识的归纳总结.(a≥0).最后,教师给出代数式的概念.代数式:用运算符号(加、减、乘、除、乘方和开方)把数和表示数的字母连接起来的式子称为代数式.(代数式的定义只要求学生了解就行,不必深究.)三、典例精析,掌握新知例1计算:(1))2;(2)(2【教学说明】以上例1、例2可由学生自主完成,教师巡视,对有困难的学生及时予以指导,让每个学生都能得到发展.例3教师引导学生看懂数轴,结合数轴确定a、b的符号.四、运用新知,深化理解【教学说明】以上1~3题可试着让学生自主完成,第4题稍有难度,教师适时点拨.(22a进行化简.然后再根据x>2的这个范围,来判断x-2与1-2x的正负,最后化简掉绝对值符号.∵x>2,∴x-2>0,1-2x<0.3.(1)原式=5-5+1=1(2)原式=7+49×2/7=7+14=21(2)首先利用a2=|a|化简掉二次根号,再根据x的取值范围来判断绝对值中的代数式的正负,化掉绝对值的符号.五、师生互动,课堂小结1.本节知识可这样归纳:2.通过这节课的学习,你有哪些收获和体会?与同伴交流.1.布置作业:从教材“习题16.1”中选取.2.完成练习册中本课时练习.1.注意前后知识的联系,在复习旧知的过程中导入本节课的数学内容,按照由特殊到一般的规律,降低学生理解的难度.2.在总结二次根式的性质过程中,由学生经过观察、分析的过程,让学生在交流中体会成功.3.几个例题,旨在帮助学生对二次根式的性质的理解,在练习和作业中都增加了难度,主要给能力较好的学生提供更大的发展空间.。

初中八年级数学课件 5.1 第1课时 二次根式的概念及性质

初中八年级数学课件 5.1 第1课时 二次根式的概念及性质
第5章 二次根式
5.1 二次根式
第1课时 二次根式的概念及性质
学习目 1.了解二次根式的标定义;
2.理解二次根式在实数范围内有意义的条件; (重点)
3.掌握二次根式的两条重要性质.(重点、 难点)
导入新 课
回顾与 思考
(1) 5的平方根是5________,算术平5 方根是
______.
a
a
(2)正实数a的平方根是_____,算术平方S根
是______.
(3)如果一个正方形的的面积是 S,那么它
的边长是 .
讲授新 课
一 二次根式的概念
运用运载火箭发射航天 飞船时,火箭必须达到 一定的速度(称为第一 宇宙速度),才能克服 地球的引力,从而将飞 船送人环地球运行的轨 道.而第一宇宙速度v与 地球半径R之间存在如 下关系:v2=gR,其中 重力加速度常数 g≈9.8m/s2.若已知地球半
由于在实数范围内,负实数没有平方 根,因此
只有当被开方数是非负实数时,二次 根式才在实数范围内有意义.
例1 当x是怎样的实数时,二x次-1 根式
范围内有解意: 义由?x-1≥0, 解得 x ≥ 1.
在实数
因此,当x≥1时x,-1 在实数范围内有意义.
注意:我们都是在实数范围内讨论二
次根式有没有意义,今后不再写出
( 2 ) ( -1.2 )2 .
解: ( 1) (-2)2 = 22 =2 ; ( 2 ) (-1.2)2 = 1.22 = 1.2 .
议一 议
当a<0时,a2 = a 是否仍然成立?为
什么?
一般地,当a<0时, a2 = -a. 因此,我们可以得到:
a2
a
aa≥0 , a a<0 .

八年级数学上册第二章实数7二次根式第1课时二次根式及其性质习题pptx课件新版北师大版

八年级数学上册第二章实数7二次根式第1课时二次根式及其性质习题pptx课件新版北师大版
其中首先错误的一步是( C )
A. 第一步
B. 第二步
C. 第三步
D. 第四步
【点拨】
因为-3 =- × =- ,所以首先错误的
一步是第三步.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
10. [母题教材P43习题T2] 若直角三角形的两条直角边长分
别为 cm和 cm,则此直角三角形的斜边长为
8
9
10
11
12
13
14
15
(1)第7行,第2列上的数是
4


(2)我们规定一个二次根式落在第 a 行,第 b 列,可记作
( a , b ),如 落在第2行,第4列,记作(2,4),则
可记作
1
2
3
4
(406,5)
.

5
6
7
8
9
10
11
12
13
14
15
14. 实数 a , b 在数轴上的位置如图所示.
( D )
A. 3 cm
B. 3 cm
C. 12 cm
D. 2 cm
【点拨】
由勾股定理,得直角三角形的斜边长=
( ) +( ) =2 (cm).
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
11. 已知 = a , = b ,则 . 等于(


B.
A.

二次根式及其性质课件北师大版八年级数学上册

二次根式及其性质课件北师大版八年级数学上册

7. 下列各式: A. 4个 B. 3个
二次根式有 ( B )
C. 2个 D. 1个
课堂练习
8. 已知y=
(x+4y)3=__2_7____.
9.化简
(1) 9 49
(2) 27
,则
(3) 1 3
(4) 9 50
B. 一定是二次根式
C.
一定是二次根式
D. 二次根式的值必定是无理数
课堂练习
3. 下列各式中,属于最简二次根式的是 ( C )
4. 若代数式 x 有意义,则x的取值是
A. x=0
B. x≠0
C. x≥0
D. x>0
( C)
课堂练习
5.下列各式计算正确的是 ( D )
课堂练习
6.如果a是任意实数,下列各式一定有意义的是( C )
(3) 1 ; (4) 2 ; (5) 8 .
3
7
9
解:(1) 45 9 5 9 5 3 5;
(2) 27 9 3 9 3
将被开方数分解成平方因数 与其他因数相乘的形式!
例2 化简
(1) 45; (2) 27; (3) 1 ; (4) 2 ; (5) 8 .
3
7
9
(3) 1 1 3 3 . 3 3 3 3
7
7
7
7
7 7
7
3.6 18 18 5 18 5 9 10 9 10 3 10
5
55
55
55
5
5
被开方数是带分数或小数, 先化成假分数或分数,再进行化简
知识点三:最简二次根式
判断下列各式是否为最简二次根式?
(1) 12 × (2) 4.5 × (3) 3 √

专题01 二次根式及其性质

专题01 二次根式及其性质

专题01 二次根式及其性质【考点剖析】1、二次根式概念:一般地,我们把形如(a≥0)的式子叫二次根式.2、二次根式有意义的条件:二次根式中的被开方数是非负数.(1)如果一个式子中含有多个二次根式,那么它们有意义的条件是:各个二次根式中的被开方数都必须是非负数.(2)如果所给式子中含有分母,则除了保证被开方数为非负数外,还必须保证分母不为零.3、二次根式的性质与化简(1)二次根式的基本性质:①;②;③(2)与要注意区别与联系:①a的取值范围不同,中a≥0,中为任意值;②a≥0时,;a<0时,无意义,二次根式的定义【典例】例1.下列式子:,,,,,,中,一定是二次根式的是( )A.3个B.4个C.5个D.6个【答案】B【解析】解:在所列式子中,一定是二次根式的是,,,这4个,故选:B.【点睛】根据二次根式的性质:二次根式中的被开方数必须是非负数,否则二次根式无意义,逐一判断.本题考查了二次根式的定义.理解被开方数是非负数,给出一个式子能准确的判断其是否为二次根式,并能根据二次根式的定义确定被开方数中的字母取值范围.【巩固练习】1.、、、、中二次根式有( )A.5个B.4个C.3个D.2个【答案】C【解析】解:、、是二次根式,、的被开方数不一定为非负数,故不一定是二次根式.故选:C.2.下列各式中①;②;③;④;⑤;是二次根式的有( )个.A.2个B.3个C.4个D.5个【答案】A【解析】解:①、②的被开方数是负数,不是二次根式;③;④符合二次根式的定义;⑤当﹣1<x<1时,被开方数是负数,不是二次根式.综上所述,二次根式的个数是2.故选:A.3.下列各式中:①;②;③;④.其中,二次根式的个数有( )A.1个B.2个C.3个D.4个【答案】A【解析】解:①;②;③;④.二次根式的只有①,故选:A.二次根式有意义的条件【典例】例1.式子中x的取值范围是( )A.x≥1且x≠2B.x>1且x≠2C.x≠2D.x>1【答案】A【解析】解:由题意得:x﹣1≥0且x﹣2≠0,解得:x≥1且x≠2.故选:A.【点睛】根据二次根式有意义的条件可得x﹣1≥0,再根据分式有意义的条件可得x﹣2≠0,再解出x的值.此题主要考查了二次根式有意义的条件,以及分式有意义的条件,关键是掌握分式有意义,分母不为0;二次根式的被开方数是非负数.例2.若已知a、b为实数,且2b+4,则a+b=______.【答案】1【解析】解:由题意得,a﹣5≥0,5﹣a≥0,解得,a=5,则b=﹣4,则a+b=1,故答案为:1.【点睛】根据二次根式中的被开方数必须是非负数解答即可.本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.【巩固练习】1.若二次根式有意义,则x的取值范围是( )A.x B.x C.x D.x≤5【答案】B【解析】解:由题意得,5x﹣1≥0,解得,x,故选:B.2.代数式有意义,则x应满足的条件是( )A.x≠3B.x C.x且x≠3D.x且x≠3【答案】C【解析】解:由题意得,1+3x≥0,x﹣3≠0,解得,x且x≠3,故选:C.3.如果代数式有意义,那么x的取值范围是( )A.x≥0B.x≠1C.x>1D.x≥0且x≠1【答案】C【解析】解:由题意得,x≥0,x﹣1>0,解得,x>1,故选:C.4.如果y3,那么y x的算术平方根是( )A.2B.3C.9D.±3【答案】B【解析】解:由题意得,x﹣2≥0,2﹣x≥0,解得,x=2,∴y=3,则y x=9,9的算术平方根是3.故选:B.5.若|2017﹣m|m,则m﹣20172=____________.【答案】2018【解析】解:∵|2017﹣m|m,∴m﹣2018≥0,m≥2018,由题意,得m﹣2017m.化简,得2017,平方,得m﹣2018=20172,m﹣20172=2018.故答案为:20186.已知a满足|2017﹣a|a,则a﹣20172的值是____________.【答案】2018【解析】解:∵|2017﹣a|a,∴a﹣2018≥0,故a≥2018,则原式可变为:a﹣2017a,故a﹣2018=20172,则a﹣20172=2018.故答案为:2018.二次根式的性质【典例】例1.下列各式中,一定能成立的是( )A.B.()2C.x﹣1D.•【答案】A【解析】解:A、,所以A选项正确;B、()2当a为负数是不成立,所以B选项错误;C、x﹣1当x<1时不成立,所以C选项错误;D、•当x<3时不成立,所以D选项错误.故选:A.例2.实数a,b在数轴上的位置如图,则化简|a﹣b|的结果为( )A.2a B.﹣2a C.2b D.﹣2b 【答案】B【解析】解:由题意得:a>b,|a|<|b|,a>0,b<0,∴a﹣b>0,a+b<0,∴|a﹣b|=﹣a﹣b﹣a+b=﹣2a,故选:B.例3.阅读下面的解题过程,判断是否正确?若不正确,请写出正确的解答.已知m为实数,化简:解:原式.【答案】见解析【解析】解:不正确,根据题意,m成立,则m为负数,=m=m=(m+1).【点睛】本题主要考查了二次根式的性质的灵活运用,关键是根据成立,则m为负数,要求熟练掌握负整数指数幂、二次根式、绝对值等考点的运算.【巩固练习】1.下列各式成立的是( )A.2B.()2=2C.a D.3【答案】D【解析】解:A、2,故此选项错误;B、()2=4,故此选项错误;C、|a|,故此选项错误;D、3,正确.故选:D.2.实数a在数轴上的位置如图所示,则化简后为( )A.8B.﹣8C.2a﹣18D.无法确定【答案】A【解析】解:由题意可知6<a<12,∴a﹣5>0、a﹣13<0.∴|a﹣5|+|a﹣13|=a﹣5+13﹣a=8.故选:A.3.如图所示,实数a、b在数轴上的位置化简的结果是( )A.﹣2a B.﹣2b C.0D.2a﹣2b 【答案】A【解析】解:由数轴可知:a<0,b>0,a﹣b<0,∴原式=﹣a﹣b﹣(a﹣b)=﹣a﹣b﹣a+b=﹣2a故选:A.4.把x根号外的因数移到根号内,结果是( )A.B.C.D.【答案】C。

5.1 二次根式 第1课时 二次根式的概念及性质

5.1 二次根式   第1课时 二次根式的概念及性质

第1课时 二次根式的概念及性质 [解析] 利用 a2=a(a≥0)进行化简.
第1课时 二次根式的概念及性质
解:(1) 64= 82=8. (2) (-57)2=-57=57. (3)- (-6)2=-|-6|=-6. (4) 10-4= (10-2)2=10-2=1100.
(5)∵π>3.14, ∴π-3.14>0, ∴ (π-3.14)2=π-3.14.
第1课时 二次根式的概念及性质
【归纳总结】
( a)2=a(a≥0)的应用: (1)应用( a)2=a 时需注意成立的条件 a≥0;
(2)可直接应用性质进行化简或计算; (3)逆用此性质可以将一个非负数写成一个数的平方的形式.
第1课时 二次根式的概念及性质
例 4 [教材例 3 针对训练]化简: (1) 64;(2) (-57)2;(3)- (-6)2; (4) 10-4;(5) (π-3.14)2;(6) ( 5- 7)2.
即当 a≥13时,
3a-1 a-3 在实数范围内有意义.
以上解答错在哪里?并给出正确的解答过程.
第1课时 二次根式的概念及性质
2.学完本节后,老师留了一道题: 化简: ( 3-2)2=________. 小明是这样考虑的:
因为 a2=a,所以 ( 3-2)2= 3-2.
你认为他的解法正确吗?若不正确,请说明理由,并改正.
围内有意义?
(1) 10-3a;(2) -(a-2)2;(3) a-1 2; (4) a+3+ 3-a.
第1课时 二次根式的概念及性质
[解析] 利用二次根式在实数范围内有意义的条件,可把问 题转化为解相应的不等式或不等式组.
第1课时 二次根式的概念及性质
解:(1)由题意,得 10-3a≥0,解得 a≤130, 即当 a≤130时,式子 10-3a在实数范围内有意义. (2)由题意,得-(a-2)2≥0, 即(a-2)2≤0. 又因为(a-2)2≥0, 所以 a-2=0,所以 a=2, 即当 a=2 时,式子 -(a-2)2在实数范围内有意义.

第01讲二次根式的性质

第01讲二次根式的性质

第01讲二次根式的性质第1讲二次根式的性质知识导航1.二次根式的概念与被开方数中字母的取值范围;2.二次根式的双重非负性;3.开平方与平方两种运算的关系【板块一】二次根式的概念与基本性质方法技巧一般地,我们把形如(a0)的式子叫做二次根式,”称为二次根号.开平方时,被开方数a的取值范围是a0,二次根式有两个非负性,也叫二次根式的双重非负性,即被开方数a的取值范围是a0,算术平方根的结果0.题型一判断式子是否为二次根式【例1】下列式子中是二次根式的有();;-;;;(x>1);A.2个 B.3个 C.4个 D.5个【分析】形如(a0)的式子叫做二次根式,被开方数a的取值范围是a0;不符合被开方数a的取值范围是a0,是开3次方,为二次根式,故选C.【解答】C题型二二次根式有意义的字母的取值范围【例2】在下列式子:;(x-2)0;中,x不可以取2的是()A.只有 B.只有 C.和 D.和【分析】二次根式中被开方数大于等于零,零指数幂的底数不为零,分母的值不为零.,x-20,则x2;(x-2)0,x-20,则x2;中,x-20,解得x2,故x不可以取2的是和,故选C【解谷】C题型三二次根式的双重非负性【例3】若x,y为实数,y=,则4y-3x的平方根是.【分析】,故只有x2-4=0,即x=±2,又x-2≠0,x=-2,y==-,4y-3x=-1-(-6)=5,故4y-3r的平方根是±.【解答】士.【例4】已知|7-9m|+(n-3)2=9m-7-,求(n-m)2019的值.【分析】非负数有三种呈现形式:绝对值,平方,算术平方根,几个非负数的和一定是非负数,若几个非负数的和为0,则这几个非负数均为0.【解答】+(n-3)2=9m-7-,+(n-3)2+=9m-70,9m-7+(n-3)2+=9m-7,(n-3)2+=0,n-3=0,m-4=0,n=3,m=4,(n-m)2019=(-1)2019=-1.题型四二次根式中的隐含条件的运用【例5】若实数x,y,m适合关系式+=·,求m的值.【分析】由(x+y)-200,20-(x+y)0,所以x+y=20.再利用两个二次根式的和等于0,即每一个被开方数等于0.【解答】x+y-200,20-(x+y)0,x+y=20.+=0,≥0,0,3x+3y-m=0,m=3(x+y)=3×20=60.针对练习11.x取何值时,下列各式有意义(1);(2);-;(4).【解答】(1)x>;(2)x4且x-5;(3)1x≤2;(4)x5且x6.2.代数式++的最小值是()A.0 B.1+ C.1 D.不存在【解答】B.3.方程+=0的解是.【解答】,或4.已知x,y为实数,且满足-(3y-1)=0,则(xy)2019=.【解答】-15.如果x,y,z为实数,且满足++z2-z+=0,求(y+z)x2的值.【解答】|4x-4y+1|++(z-)2=0,又≥0,0,(z-)20,4x-4y+1=0,2y+z=0,z-=0,x=-,y=-,z=,(y+z)x2=(-+)(-)2=.6.若m适合关系式:-=-,求m的值.【解答】由条件得x+y-1160,116-(x+y)0,116≤x+y116,x+y=116,=-,≥0,-0,,+得5(x+y)+18=2m,2m=5×116+18,m=299.【板块二】二次根式的两个基本性质的综合运用方法技巧二次根式的两个性质()2=a(a≥0)和=,可以运用上述两个性质进行有关计算和化简.题型五=的运用【例1】已知0<a<1,化简-=.【分析】a=()2,=,又0<a<1,()2<,即<.原式=-=-=+-(-)=2.【解答】2.【例2】若化简-的结果为2x-5,则x的取值范围是.【分析】根据x的取值化简绝对值和二次根式的性质分析.-=-=2x-5,则-=x-1+x-4,即1-x0,x-40,解得1x≤4.【解答】1x≤4.题型六()2=a(a0)的运用【例3】已知ABC的三边a,b,c满足关系式a+b+c-2-4-6+4=0,试求ABC的周长.【分析】根据式子的结构特点,运用a=()2配方,然后利用非负性解题.【解答】a+b+c-2-4-6+4=0,(a-5)-2+1+(b-4)-4+4+(c-1)-6+9=0,(-1)2+(-2)2+(-3)2=0,a-5=1,b-4=4,c-1=9.a=6,b=8,c=10,ABC的周长为6+8+10=24.题型七二次根式的规律探究【例4】观察分析,探求出规律,然后填空:,2,,2,,,…,(第n个数).【分析】由题意可知,被开方数是2的倍数,由此即可求解=,2=,=,2=,=,第6个数是=2,第n个数是.【解答】2,.【例5】观察下列各式:=2;=3;=4;,请你猜想⑴=,=;(2)计算(请写出推导过程):;(3)请你将猜想到的规律用含有自然数n(n≥1)的代数式表达出来.【分析】先将被开方数化为假分数,再用二次根式的性质化简.【解答】=5,=6;(2)===14;=(n+1)(n1).题型八求值【例6】已知:x=2-,求代数式x2-4x-6的值.【分析】由x=2-得x-2=-,两边平方可得二次式.【解答】x=2-,x-2=-,(x-2)2=(-)2,x2-4x+4=10,x2-4x=6,x2-4x-6=0.【例7】已知x=2-,那么x4-8x3+16x2-x+1的值是.【分析】由x=2-得出x2-4x-1=0,用x2-4x-1除x4-8x3+16x2-x+1,得出商和余数,利用:被除数=除数×商十余数,将多项式化简,再代值计算.【解答】由x=2-得x-2=-,两边平方,得x2-4x+4=5,x2-4x-1=0,x4-8x3+16x2-x+1=(x2-4x-1)(x2-4x+1)+(-x+2)=2-x=.题型九复合二次根式的化简【例8】先阅读下面的解答过程,然后作答:形如的化简,只要我们找到两个非负数a,b,使a+b=m,ab =n,这样()2+()2=m,(=,那么便有==(a>b).例如:化简.首先把化为,这里m=7,n=12;由于4+3=7,43=12,即()2+()2=7,(=,===2+.由上述例题的方法化简:(1);(2);(3).【分析】由例题所给信息知关键是要找到两个合适的非负数.【解答】(1)==;(2)===-;(3)==(=(-1)=-.====1+.解决问题:(1)在括号内填上适当的数:====________;(2)根据上述思路,试将予以化简.【分析】通过完全平方公式,将被开方数化成平方的形式,再根据二次根式的性质,化去里面的一层根号.【解答】(1)====3+;(2)====5-.针对训练21.a,b,++-a-.a,b在数轴上的位置可得a<0a+b<0-a>0b-<0.-a|-|b -|=-a-a-b+-a+b-=-3a.2.=·,-2+.=·3x+10,2-x0,∴-≤x≤2,x-2+=x-2+3x+1=-(x-2)+(3x+1)=2x+3.++1,试化简代数式:|x-1|--.【解答】∵-x≥0,x-≥0,-x=,y>0+0+1,y>1y-1>,=-=-14.当1<x<5时,化简:-.【解答】原式=-=|x-1|-|x-5|,又∵1<x<5,原式=(x-1)-[-(x-5)]=2x-6.5.若x,y为实数,且y=++,求-的值.【解答】∵1-4x≥0,4x-1≥0,∴1-4x=0,∴x=,∴y=,+=2+=.∴原式=-==.6.已知a为偶数,且=,求-的值.【解答】∵=,∴a-1≥0,3-a>0,∴1≤a<3,又∵a为偶数,∴a=2,又∵-=-,∵a=2,a-3<0,∴原式=a-1-=a-1+=2-1+=.7.对于题目“化简求值:+,其中a=”甲、乙两人的解答不同.甲的解答是:+=+=+-a=-a=;乙的解笞是:+=+=+a-=a=,谁的解答是错误的?为什么?【解答】乙的解答是错误的.∵当a=时,-a>0,∴=-a.8.化简:(1);(2).【解答】(1)原式===;(2)原式===(+1)=+.9.已知a+b+c=2+4+6-14,求a(b+c)+b(c+a)+c(a+b)的值.【解答】依题意得(a+1)-2+1+(b+1)-4+4+(c-2)-6+9=0,∴(-1)2+(-2)2+(-3)2=0,∴=1,=2,=3,∴a=0,b=3,c=11.a(b+c)+b(c+a)+c(a+b)=0+33+33=66.10.利用“≥0”解答下列问题:(1)若++=0,求a,b,c的值;(2)若a+b+c=4+6+2,求a,b,c的值.【解答】(1)∵≥0,≥0,≥0.++==0,=0=0,a=1b=4,c =9;(2a-2+b-4+c-6=0,[()2-2+1]+[()-4+4]+[()-6+9]=0,(-1+(-2)+(-3)=0,(-10,(-2)0,(-3)0.-1=0,-2=0-3=0,a=2,b=8,c=18.11.+=a-2017=__.a-2018≥0,即a≥2018,则原方程可化为|2017-a+=aa-2017+=a=2017a-2018=201720172=2018.2018.。

15.1 二次根式 - 第1课时课件(共17张PPT)

15.1 二次根式 - 第1课时课件(共17张PPT)
新知探究
知识点1 二次根式的概念
一起究
1.(1)2,18,(2)非负数m,p+q,t2-1的算术平方根又是怎样表示的?
2.学校要修建一个占地面积为S ㎡的圆形喷水池,它的半径应为多少米?如果在这个圆形喷水池的外围增加一个占地面积为a ㎡的环形绿化带,那么所成的大圆的半径应为多少米?
一般地,我们把形如 的式子叫做二次根式.
15.1 二次根式第1课时
第十五章 二次根式
学习目标
1.了解二次根式的概念.2.能根据二次根式的意义确定被开方数中字母的取值范围.3.掌握二次根式的双重非负性及其应用.
学习重难点
掌握二次根式的概念.
难点
重点
掌握二次根式的双重非负性及其应用.
复习巩固
一个正数有两个平方根,它们互为相反数.0只有一个平方根,是0本身.负数没有平方根.正数a的算术平方根是
二次根式特征
1.外貌特征:含有“ ”.2.内在特征:被开方数3.内在特征:a可以是数,也可以是含有字母的式子.
知识点2 二次根式的几个性质
例题解析
例1 化简:
随堂练习
C
A
A
3.下列计算正确的是( ).
拓展提升
D
3.做一个面积为300 cm3的长方形镜框,使它长与宽的比为3:2.镜框的宽应为多少厘米?
归纳小结
二次根式
定义
性质
同学们再见!
授课老师:
时间:2024年9月15日

二次根式及其性质(第1课时)

二次根式及其性质(第1课时)

7.1二次根式及其性质(第1课时)诸城市舜王街道解留初中宋洪波学习目标:1、了解二次根式的概念及二次根式的意义。

2、会用二次根式的性质进行二次根式的化简。

3、进一步培养学生的观察、总结能力。

教学过程:(一)、复习引入前面我们学习了平方根和算术平方根,让我们一起回忆一下:(1)、∵()2 = 4∴ 4的平方根是即± 4 = 。

(2)如果一个数x的平方等于a,那么叫做的平方根,或二次方根。

(3)、 a 表示什么?a需要满足什么条件?为什么?(二)、合作交流,理解“二次根式”的概念1、已知正方形的面积,你会求正方形的边长吗?完成“交流与发现”的(1)——(3)题,能说出你这样做的依据吗?2、请总结以上所得结果与算术平方根的共同点:3、理解“二次根式”的定义,并完成:选择题①.下列式子中,是二次根式的是()A.-7 B.C D.x②.下列式子中,不是二次根式的是()A. 4 B.16 C D.1x③.已知一个正方形的面积是5,那么它的边长是()D.以上皆不对A.5 B.C.15(三)、深化认识,探究“被开方数中未知数的取值范围”。

自学例1,回答:(1)二次根式 2 x - 1 的被开方数是,被开方数需满足的条件是。

(2)试一试:当a取何值时,下列各式有意义?① a + 2 ②a2③1 a(四)、观察、思考,探索二次根式的性质1。

(1)求下列各式的值。

( 4 )2 =(9 )2 = 总结:( a )2= (其中a 0)(16 )2 =……(2)自学例2 ,并完成:计算:①(12 )2②(4 5 )2③(− 3.6 )2④(x2+ 1 )2(3)把下列非负数写成一个数的平方的形式。

①12 ② 2 ③ 2.5(五)、训练提升:配套练习册第1页(一、选择题二、填空题三、解答题7、8)(六)、拓展与延伸配套练习册第1页(三、解答题9、10)。

第1课时 二次根式的概念及其性质

第1课时 二次根式的概念及其性质

7二次根式第1课时二次根式的概念及其性质【学习目标】1.理解二次根式概念及性质.2.会用公式ab=a·b(a≥0,b≥0),ab=ab(a≥0,b>0)进行二次根式的化简运算.【学习重点】二次根式乘除法法则.【学习难点】二次根式乘除法法则的灵活运用.一、情景导入生成问题观察下列代数式:5,11,7.2,49121,(c+b)(c-b)(其中b=24,c=25).这些式子都是我们在前面已经学习过的,它们有什么共同特征呢?【说明】通过学生观察、总结归纳这些式子的特点,为给二次根式下定义做好准备.【归纳结论】它们都含有开方运算,并且被开方数都是非负数.一般地,形如a(a≥0)的式子叫做二次根式,a叫做被开方数.二次根式有些什么性质呢?让我们一起去研究吧!二、自学互研生成能力知识模块一二次根式积的算术平方根与商的算术平方根先阅读教材第41页“做一做”的内容,然后完成下面的问题.做一做:(1)计算下列各式,你能得到什么猜想?4×9=________,4×9=________;49=________,49=________;2549=________,2549=________;(2)根据上面的猜想,估计下面每组两个式子是否相等,借助计算器验证,并与同伴进行交流.6×7与6×7,67与67.【归纳结论】ab=a·b(a≥0,b≥0),ab=ab(a≥0,b>0).即积的算术平方根,等于各个因式算术平方根的积,商的算术平方根,等于被除数的算术平方根除以除数的算术平方根.注意:a、b的取值范围不能忽略.知识模块二二次根式的化简先独立完成下面例1的化简,然后再对照教材第42页例1的规范解答自评自解.例1:化简:(1)81×64;(2)25×6;(3)5 9.师生合作完成下面例2的学习与探究.例2:化简:(1)50;(2)27;(3)13.【归纳结论】一般地,被开方数不含分母,也不含能开得尽方的因数或因式,这样的二次根式,叫做最简二次根式.注意:化简时,通常要求最终结果中分母不含有根号,而且各个二次根式是最简二次根式.三、交流展示生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一二次根式积的算术平方根与商的算术平方根知识模块二二次根式的化简四、检测反馈达成目标见《名师测控》学生用书.五、课后反思查漏补缺1.收获:________________________________________________________________________2.存在困惑:________________________________________________________________________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2) 二次根式从内容上看,a既可以是一个数,又可以是一
个含有字母的式子,但必须注意___a_≥_0___是a为二次
根式的前提.
返回
2.下列各式中不是二次根式的是( C )
A. x2+1 B. 0 3.下列式子:
C. -2
D. (a-b)2
① 2 ;② -5 ;③ m+1 ;④ | a |+1,
其中二次根式的个数有( B )
(1)被开方数不含___分__母___;
(2)被开方数中不含能_开__得__尽__方__的因数或___因__式____.
11.(中考•贵港)下列二次根式中,最简二次根式是( A )
A.- 2 B. 12 C. 1
D. a2
返回
5
12.在下列根式中,不是最简二次根式的是( D )
A. a2+1
B. 2x+1
返回
返回
8.已知
1-a a2 =
1-a a
,则a的取值范围是(
C)
AБайду номын сангаасa≤0
B.a<0
C.0<a≤1
D.a>0
9.设 2=a, 3 =b,用含有a,b的式子表示0.54,则下
列表示正确的是( A )
A.0.3ab B.3ab C.0.1ab2 D.0.1a2b 返回
知识点 3 最简二次根式
10.最简二次根式应有如下两个特点:
2b C.
4
D. 0.1y
返回
13.若a>0,把 A. 2 -ab
-4a 化成最简二次根式为( b B.- 2 ab
C)
b
b
C.- 2 -ab b
D.2b -ab
返回
14.(中考•潍坊)实数a,b在数轴上对应点的位置如图 所示,化简|a|+ (a-b)2 的结果是( A )
A.-2a+b C.-b

-a=(1-a )
-a .
返回
题型 4 商的算术平方根性质在求值中的应用
19.已知
x-6= 9-x
x-6 9-x
,且x为奇数,求
1+x+|x-5|
+(x2+6)0的值.
解:因为
x-6= 9-x
x-6 9-x

所以
x-
6≥0
,9
-x

0.
所以6≤x<9.又因为x是奇数,所以x=7.
返回
当x=7时,原式= 1+7+|7-5|+(72+6)0=2 2+3.
B.2a-b D.b
返回
题型 1 二次根式的非负性在求最值中的应用
15.当x取什么实数时,式子 3x-1 +2的值最小?并
求出这个最小值.
解:因为 3x-1 ≥0,
所以当
3
x-1
=0,即x=
1 3
时,式子
值最小,最小值为2.
3x-1 +2的
返回
题型 2 二次根式的非负性在求字母值中的应用
16.已知y= 2
1 2
C.x=
1 2
D.x≠
1 2
返回
知识点 2 二次根式的性质
6.
ab =____a_•___b__(a≥0,b≥0); a b
a =______b____(a≥0,
b>0).
返回
7.对于任意实数a,下列各式中一定成立的是( D ) A. a2-1 = a-1 • a+1 B. (a+6)2 =a+6 C. (-16)•(-a)=-4 -a D. 25a4 =5a2
数形结合思想 20.设△ABC的三边长分别为a,b,c,试化简:
(a+b+c)2+(b+c-a)2+(a+c-b)2-(a+b-c)2 .
【思路点拨】
解:因为a,b,c为△ABC的三边长, 所以a+b+c>0,b+c-a>0,a+c-b>0, a+b-c>0. 所以原式=a+b+c+b+c-a+a+c-b-a-b+c=4c.
第二章 实数
2.7 二次根式 第1课时 二次根式及其性质
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
知识点 1 二次根式的定义
1.一般地,形如 a (a≥0)的式子叫做二次根式,a叫做被 开方数,“ ”称为二次根号.理解要点如下:
(1) 二次根式从形式上界定,必须含有________;
2 x-1+3
1-2x + 1 ,求 1 + 1 的值.
3
xy
解:由被开方数的非负性,得2x-1≥0,且1-2x≥0,
所以x≥ 1 ,且x≤ 1 .所以x= 1 .
将 所以x=1x12+2代入1y =已2知+2条3=件5,. 得y=2
1 3
.
返回
17.已知 x+1 + x+y-2 =0,求x,y的值. 解:因为 x+1 ≥0, x+y-2 ≥0,且其和为0, 所以x+1=0,x+y-2=0. 所以x=-1,y=3.
返回
题型 3 积的算术平方根性质在辨析中的应用
18.阅读下面一题的解答过程,请判断是否正确.若不
正确,请写出正确的解答过程.
已知a为实数,化简 -a3-a - 1 .
a
解:-a3-a - 1=a -a-a • 1 -a=(a-1) -a .
a
a
解: 不正确.
-a3-a
- 1=-a a
-a-a
1 • -a
A.1个 B.2个 C.3个 D.4个 返回
4.(中考•广安)要使二次根式 2x-4 在实数范围内有意
义,则x的取值范围是( B )
A.x>2 B.x≥2 C.x<2 D.x=2
5.(中考•济宁)若 2x-1 + 1-2x +1在实数范围内有
意义,则x满足的条件是( C )
A.x≥ 1 2
B.x≤
相关文档
最新文档