三角函数导学案
数学导学案:三角函数的诱导公式(第课时)
第1课时诱导公式二、三、四1.掌握π±α,-α,错误!-α的终边与α的终边的对称性.2。
理解和掌握诱导公式二、三、四的内涵及结构特征,掌握这三个诱导公式的推导方法和记忆方法.3。
会初步运用诱导公式二、三、四求三角函数的值,并会进行一般的三角关系式的化简和证明.1。
特殊角的终边对称性(1)π+α的终边与角α的终边关于对称,如图①;(2)-α的终边与角α的终边关于对称,如图②;(3)π-α的终边与角α的终边关于对称,如图③;(4)错误!-α的终边与角α的终边关于直线对称,如图④。
【做一做1】已知α的终边与单位圆的交点为PA. P11,22⎛⎫-⎪⎪⎝⎭B.P2错误!C.P3错误!D。
P4错误!2.诱导公式诱导公式一~四可用口诀“函数名不变,符号看象限”记忆,其中“函数名不变”是指等式两边的三角函数同名,“符号”是指等号右边是正号还是负号,“看象限”是指把α看成锐角时等式左边三角函数值的符号。
【做一做2-1】 若cos α=m ,则cos(-α)等于( )A 。
mB 。
-mC 。
|m |D 。
m 2【做一做2-2】 若sin(π+α)=错误!,则sin α等于( )A.错误!B.-错误!C.3 D 。
-3【做一做2-3】 已知tan α=4,则tan(π-α)等于( )A.π-4 B 。
4 C.-4 D 。
4-π3.公式一~四的应用【做一做3】 若cos 61°=m ,则cos (-2 041°)=( )A.m B 。
-m C 。
0 D.与m 无关 答案:1.(1)原点 (2)x 轴 (3)y 轴 (4)y =x【做一做1】 C 由于π+α,-α,π-α,错误!-α的终边与α的终边分别关于原点、x轴、y轴、直线y=x对称,则P1错误!,P2错误!,P3错误!,P4错误!。
2.tan α-sin αcos α-cos α-tan α同名函数值【做一做2-1】A【做一做2-2】B【做一做2-3】C【做一做3】B cos(-2 041°)=cos 2 041°=cos(5×360°+241°)=cos 241°=cos(180°+61°)=-cos 61°=-m。
职高第五章三角函数导学案
5.1.1任意角的概念教学目标:(1)引导学生用运动变化的观点了解角的概念的推广(2)明白“任意角”、“象限角”的概念教学重点:“任意角”、“象限角”的概念教学难点:“象限角”的判断预习案:一、复习:问题1:回忆初中我们是如何定义一个角的?______________________________________________________所学的角的范围是什么?______________________________________________________问题2:在体操、跳水中,有“转体0720”这样的动作名词,这里的“0720”,怎么刻画?______________________________________________________二、新知:1.角的概念角可以看成平面内一条______绕着它的_____从一个位置_____到另一个位置所形成的图形。
射线的端点称为角的________,射线旋转的开始位置和终止位置称为角的______和______。
2.角的分类按__________方向旋转形成的角叫做正角,按顺时针方向旋转形成的角叫做_________。
如果一条射线没有作任何旋转,我们称它形成了一个_________,它的______和_______重合。
这样,我们就把角的概念推广到了_______,包括_______、________和________。
3、角的表示(1)常用字母A 、B 、C 等表示(2)用字母αβγϕθ、、、、等表示(3)当角作变量时可用字母x 表示4.象限角、轴线角(非象限角)的概念我们常在 直角坐标系 内讨论角。
为了讨论问题的方便,使角的________与__________重合,角的___________与_______________________重合。
那么,角的_________(除端点外)落在第几象限,我们就说这个角是__________________。
任意角的三角函数导学案
课题:3.2.1 任意角的三角函数(第一课时)1. 掌握任意角的正弦、余弦、正切的定义;2. 理解任意角的三角函数不同的定义方法;3. 已知角α终边上一点,会求角α的各三角函数值.二教学重难点:重点: 任意角的正弦、余弦、正切的定义。
难点: 任意角的三角函数不同的定义方法;已知角α终边上一点,会求角α的各三角函数值.三复习回顾:复习1:(1)坐标轴上;(2)第二、四象限.复习2:锐角的三角函数如何定义在初中,我们如果要求一个锐角的三角函数值,经常把这个角放到一个直角三角形中求其比值,从而得到锐角三角函数的值。
那么,你能用直角坐标系中角的终边上的点的坐标更方便的去求一个锐角的三角函数值吗我们可以采用以下方法:如图,设锐角α的顶点与原点O重合,始边与x轴的非负半轴重合,那么它的终边在第一象限.在α的终边上任取一点(,)P a b,它与原点的距离0r>. 过P作x轴的垂线,垂足为M,则线段OM的长度为a,线段MP的长度为b.可得:xsin MP b OP r α==;cos α= = ,tan MPOMα== .四、新课学习:知识点1:三角函数的定义认真阅读教材P 11-P 12,领会下面的内容:由相似三角形的知识,对于确定的角α,这三个比值不会 随点P 在α的终边上的位置的改变而改变,因此我们 可以将点P 取在使线段OP 的长为r=1的特殊位置上, 这样就可以得到用直角坐标系内的点的坐标 表示的锐角三角函数的值为:sin MP OP α==_____;cos OM OP α==_____;tan MPOMα==___ 问题:上述锐角α的三角函数值可以用终边上一点的坐标表示. 那么,角的概念推广以后,我们应该如何得到任意角的三角函数呢 显然,我们只需在角的终边上找到一个点,使这个点到原点的距离为1,然后就可以类似锐角三角函数求值的方法得到该角的三角函数值.注:单位圆:在直角坐标系中,我们称以原点O 为圆心,以单位长度为半径的圆为单位圆.上述的点P 就是α的终边与单位圆的交点,这样锐角三角函数就可以用单位圆上的点的坐标表示。
三角函数诱导公式导学案
4-1.3三角函数的诱导公式(一)导学案课前环节一、明确目标1.学会目标:理解公式的内涵及结构特征;会运用诱导公式进行化简、求值、证明。
2.会学目标:体会诱导公式的推导过程,体验数学化归能力。
3.乐学目标:进一步体会自主学习的成就、合作学习的价值、感受学以致用的快乐,提升自信心。
重点:诱导公式的推导及应用。
难点:相关角边的几何对称关系及诱导公式结构特征的认识。
二、寻找联系活动1:完成下面问题1、2,尝试完成问题3,并提出自己的困惑。
1.回忆三角函数的定义?2.试写出诱导公式(一)并说出诱导公式的结构特征结构特征活动2:检查上节课学习效果及提出新问题3.完成下面练习Sin300= cos300= tan300=公式一Sin3900= cos3900= tan3900=Sin2100= cos2100= tan2100=Sin1500= cos1500= tan1500=Sin(-300)= cos(-300)= tan(-300)=温馨提示:如果能找到sin300与sin1500,sin2100,sin(-300)的关系该多好啊!谈谈你的想法?课中环节三、尝试理解活动1:合作学习、探究公式二问题1:探究sin300与sin2100的关系?问题2:探究sinα与sin(π+α)cos(π+α)tan(π+α)的关系?问题3:总结公式的结构特征及推导过程?活动2:合作学习,探究公式三、公式四并总结公式二、三、四的特点四、深刻理解参考课本例题解析,先用1分钟独立思考,然后合作交流2分钟,并小结解题思想与方法。
例1:完成上面的表格并给公式命名例2:利用公式求下列各三角函数值:(1)sin; (2)cos();(3)tan(-2040°)解题回顾(小组合作):由例2,你对公式一二三四的作用有什么认识?你能自己归纳一下把任意角的三角函数转化为锐角三角函数的步骤吗?五、展示分享先用1分钟独立思考,然后合作交流2分钟,由代表与大家分享方法与困惑,并小结解题思想与方法例3:化简:六、实践反馈活动1:小试牛刀P27页1,2,3活动2:挑战极限已知sin(π+α)=(α为第四象限角),求cos(π+α)+tan(-α)的值。
《任意角三角函数的定义》 导学案
《任意角三角函数的定义》导学案一、学习目标1、理解任意角三角函数的定义。
2、掌握正弦、余弦、正切函数在各象限的符号。
3、会利用任意角三角函数的定义求三角函数值。
二、学习重点1、任意角三角函数的定义。
2、利用定义求三角函数值。
三、学习难点理解任意角三角函数的定义中,点的坐标与角的终边之间的关系。
四、知识回顾1、初中锐角三角函数的定义:在直角三角形中,锐角的正弦、余弦、正切分别是对边与斜边、邻边与斜边、对边与邻边的比值。
2、平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。
水平的数轴称为x 轴,竖直的数轴称为y 轴,两坐标轴的交点为原点。
五、新课导入在初中,我们学习了锐角三角函数,那么对于任意角,如何定义三角函数呢?这就是我们本节课要研究的内容。
六、知识讲解1、任意角三角函数的定义设α是一个任意角,它的终边与单位圆交于点 P(x,y),那么:(1)正弦函数:sinα = y(2)余弦函数:cosα = x(3)正切函数:tanα = y/x (x≠0)这里要注意,单位圆是指以原点为圆心,以单位长度为半径的圆。
2、三角函数值在各象限的符号(1)正弦函数:第一、二象限为正,第三、四象限为负。
(2)余弦函数:第一、四象限为正,第二、三象限为负。
(3)正切函数:第一、三象限为正,第二、四象限为负。
记忆口诀:“一全正,二正弦,三正切,四余弦”。
3、利用定义求三角函数值已知角α的终边上一点的坐标,可先求出该点到原点的距离 r,然后根据三角函数的定义求出相应的三角函数值。
例如,已知角α的终边上一点 P(3, -4),则 r =√(3²+(-4)²)= 5。
sinα =-4/5,cosα = 3/5,tanα =-4/3 。
七、例题讲解例1:已知角α的终边经过点P(-3, 4),求sinα,cosα,tanα的值。
解:r =√((-3)²+ 4²) = 5sinα = 4/5cosα =-3/5tanα =-4/3例 2:确定下列各角的正弦、余弦、正切函数值的符号。
三角函数的有关计算导学案 (2)
第一章 直角三角形的边角关系§1.1 从梯子的倾斜程度谈起学习目标1、 经历探索直角三角形中边角关系的过程2、 理解锐角三角函数(正切、正弦、余弦)的意义,并能够举例说明3、 能够运用三角函数表示直角三角形中两边的比4、 能够根据直角三角形中的边角关系,进行简单的计算学习重点和难点重点:理解正切、正弦、余弦函数的定义 难点:理解正切、正弦、余弦函数的定义学习过程第一单元一、引入课题直角三角形是特殊的三角形,无论是边,还是角,它都有其它三角形所没有的性质。
这一章,我们继续学习直角三角形的边角关系。
二、自主学习1、梯子的倾斜程度梯子是我们是日常生活中常见的物体。
(1)在图1-1中,梯子AB 和EF 哪个更陡?你是怎样判断的?你有几种判断方法?(2)在图1-2中,梯子AB 和EF 哪个更陡?你是怎样判断的?你有几种判断方法? 归纳小结:如果梯子的长度不变,那么墙高与地面的比值 ,则梯子越陡; 如果墙的高度不变,那么底边与梯子的长度的比值 ,则梯子越陡; 如果底边的长度相同,那么墙的高与梯子的高的比值 ,则梯子越陡; 2、想一想如图1-3,小明想通过测量11C B 及1AC ,算出它们的比,来说明 梯子的倾斜程度;而小亮则认为,通过测量22C B 及2AC ,算出它们 的比,也能说明梯子的倾斜程度,你同意小亮的看法吗? (1)直角三角形11C AB 和直角三角形22C AB 有什么关系?(2)111AC C B 和222AC C B 有什么关系? (3)如果改变2B 在梯子上的位置呢?比值 。
由此我们得出结论:当直角三角形中的锐角确定之后,它的对边与邻边之比也 。
二、明确概念通过对前面的问题的讨论,我们知道可以用倾斜角的对边与邻边之比来刻画梯子的倾斜程度。
当倾斜角确定时,其对边与邻边的比值随之确定。
这一比值只与倾斜角的 有关,而与直角三角形的大小 。
正切函数(1)明确各边的名称 (2)的邻边的对边A A A ∠∠=tan(3)明确要求:1)必须是直角三角形;2)A tan 表示的是∠A 的对边与∠A 的邻边的比值。
锐角三角函数(第三课时)导学案
年级:九年级 班级: 学生姓名: 制作人: 不知名 编号:2023-1228.1锐角三角函数(第三课时)【学习目标】1.经历探索30°、45°、60°角的三角函数值的过程,进一步体会三角函数的意义;(重点)2.能够进行30°、45°、60°角的三角函数值的计算;(重点)3.能够结合30°、45°、60°的三角函数值解决简单实际问题.(难点)【预学案】1.一个直角三角形中,一个锐角的正弦是怎么定义的? ;一个锐角的余弦是怎么定义的? ;一个锐角的正切是怎么定义的? .2.互余的两角之间的三角函数关系:若∠A +∠B =90°,则sin A cos B ,cos A sin B ,tan A ·tan B = .【探究案】1.两块三角尺中有几个不同的锐角?各是多少度?这几个锐角的正弦值、余弦值和正切值各是多少?30°、45°、60°角的正弦值、余弦值和正切值如下表:2.求下列各式的值.(1)cos 260°+sin 260°. (2)-tan45°.3.如图,在Rt △ABC 中,∠C = 90°,AB =,BC =,求 ∠A 的度数; cos 45sin 45︒︒634.如图,AO 是圆锥的高,OB 是底面半径,AO =OB ,求的度数.【检测案】1. ,锐角的度数应是( )A.40°B.30°C.20°D. 10° 2. 已知∠A 为锐角,,则下列正确的是( ) 3. 在 △ABC 中,若,则∠C = . 4. 求下列各式的值:5. 如图,在△ABC 中,∠A =30°, ,求 AB 的长度.6. 已知,△ABC 中的∠A 和∠B 满足| tan B |+(2 sin A )2=0,求∠A ,∠B 的度数。
三角函数 导学案
直角三角形边角关系导学案一、定义二、典型例题例1、如图,在Rt△ABC中,若tan A=,AB=10,则△ABC的面积为()1题2题1、如图,在平面直角坐标系中,第一象限内的点P在射线OA上,OP=13,cosα=,则点P的坐标2、如图,D为平面直角坐标系内一点,OD与x轴构成∠1,那么tan∠1=()3、如图,在平面直角坐标系xOy中,AB=2,连结AB并延长至C,连结OC,若满足OC2=BC•AC,tanα=3,则点C的坐标为()3题4题5题4、如图,△ABC中,∠ACB=90°,CD⊥AB于D,若∠BCD=30°,则sin∠A=.5、如图,在△ABC中,∠B=30°,tan C=,AD⊥BC于点D.若AD=4,求BC的长.6、如图,△ABC的顶点B,C的坐标分别是(1,0),(0,),且∠ABC=90°,∠A=30°,求点A的坐标.6题7题7、已知△ABC中,∠C=90°,tan A=12,D是AC上一点,∠CBD=∠A,则cos∠CDB的值为()8、如图,在Rt△ABC中,∠C=90°,sin A=,BC=,则AC的长为()A.B.3C.D.23.在Rt△ABC中,∠C=90°,BC=2,,则AC的长是()A.B.3C.D.例2、△ABC中∠C=90°,若AB=2,∠A=α,则AC的长为()A.2sinαB.2cosαC.D.1、.Rt△ABC的边长都扩大2倍,则sin A的值()A.不变B.变大C.变小D.无法判断18.如果将Rt△ABC各边的长度都扩大到原来的2倍,那么锐角∠A的正切值()A.扩大到原来的2倍B.扩大到原来的4倍C.没有变化D.缩小到原来的一半19.把△ABC三边的长度都扩大为原来的3倍,则锐角A的余弦值()A.不变B.缩小为原来的C.扩大为原来的3倍D.无法确定20.将Rt△ABC的各边长都缩小到原来的,则锐角A的正切值()A.不变B.缩小为原来的C.扩大为原来的2倍D.缩小为原来的5.在Rt△ABC中,∠B=90°,如果∠A=α,BC=a,那么AC的长是()A.a•tanαB.a•cotαC.D.6.在Rt△ABC中,∠B=90°,如果∠A=α,BC=α.那么AC的长是()A.α•tanαB.α•tanαα•cotαC.D.例3、如图,在四边形ABCD中,∠B=∠D=90°,AB=3,BC=2,tan A=,则CD的值为()1、如图,在△ABC中,sin B=,tan C=,AB=4,则AC的长为.1题2题2、如图,在△ABC中,∠A=45°,tan B=,BC=10,则AB的长为.3、在△ABC中,∠B=120°,AB=4,BC=2,求AC的长.3题例3、如图,△ABC的顶点是正方形网格的格点,则cos∠ABC的值为()42题2、如图,在边长相同的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB与CD相交于点P,则∠APD的余弦值为()1.如图所示,△ABC的顶点是正方形网格的格点,则tan B的值为()A.B.C.D.11题4题7题4.如图,△ABC的顶点在正方形网格的格点上,则tan∠ABC的值为()A.B.1C.D.7.如图所示,网格中的每个小正方形的边长都是1,△ABC的顶点都在交点处,则∠ABC的正弦值为()A.B.C.D.8.如图,点A、B、O都在格点上,则∠AOB的正弦值是()B.C.D.A.8题9题10题9.如图,点A,B,C在正方形网格的格点处,sin∠ABC等于()A.B.C.D.10.如图,在网格图形中,点A、O、B均在格点上,则tan∠AOB的值为()A.B.2C.D.11.如图,在正方形方格纸中,每个小正方形的边长都是1,点A,B,C,D都在格点处,AB与CD相交于点O,则sin∠BOD的值是()B.C.D.A.11题12题14题15题12.三角形在正方形网格纸中的位置如图所示,则sinα的值是()A.B.C.D.14.在正方形网格中,△ABC的位置如图所示,则cos A的值是()A.B.C.D.15.如图所示,△ABC的顶点在正方形网格的格点上,则tan A的值为()A.B.C.2D.216.如图,点A、B、C均在边长为1的正方形网格的格点上,则sin∠BAC的值为()B.1C.D.A.B.16题17题22题17.如图,网格中小正方形的边长均为1,△ABC的顶点都在格点上,则cos∠BAC等于()A.B.C.D.22.如图,在正方形方格纸中,每个小的四边形都是相同的正方形,A,B,C,D都在格点处,AB与CD相交于点P,则sin∠APC的值为()A.B.C.D.23.如图,在正方形方格纸中,每个小的四边形都是相同的正方形,点A,B,C,D都在格点处,AB与CD相交于点O,则tan∠BOD的值是()B.C.D.A.B.22题23题25题24.如图,△ABC的顶点均在正方形网格的格点上,则sin∠ABC的值为()A.B.2C.D.25.如图,将△ABC放在每个小正方形的边长为1的网格中,点A,B,C在格点上,则∠A 正切值是()27.如图所示,在边长相同的小正方形组成的网格中,两条经过格点的线段相交所成的锐角为α,则夹角α的正弦值为()A.B.C.D.128.如图在4×4的正方形方格图形中,小正方形的顶点称为格点△ABC的顶点都在格点上,则∠BAC的正弦值是()A.B.C.D.529.如图,点A、B、C都在边长为1的正方形格点上,连接AB、BC,则cos∠ABC的值为()A.B.C.D.1特殊角三角函数导学案一、推导30O 45O60OSinCostan二、典型例题例1、.在△ABC中,若sin A=,cos B=,∠A,∠B都是锐角,则∠C的度数是()1、已知α为锐角,且2cos(α+10°)=,则α等于2、王明同学遇到了这样一道题,,则锐角α的度数为3、已知,α+45°为锐角,则α=.4、△ABC中,∠A,∠B都是锐角,若cos A=,tan B=1,则∠C=.5、若sin(x﹣20°)=,则x=.例2、在△ABC中,若|sin A﹣|+(cos B﹣)2=0,且∠A、∠B为锐角,则∠C的度数是.7.在△ABC中,若,则∠C=.8.在△ABC中,∠A、∠B为锐角,且|sin A﹣|+(﹣3tan B)2=0,则∠C=度.9.若(3tan A﹣)2+|2sin B﹣|=0,则以∠A、∠B为内角的△ABC的形状是.10、在△ABC中,若,则∠C的度数为.例3、计算:2cos45°+2sin60°﹣tan60°.2sin30°﹣tan45°+cos230°.sin30°﹣tan30°•tan60°+cos245°.2cos60°+2sin30°+3tan45°.sin30°+|sin60°﹣1|﹣(﹣1)2021 2cos45°+(π﹣3.14)0+|1﹣|+()﹣1 (﹣1)0+()﹣2+|﹣2|+tan60°|1﹣|+(2022﹣π)0+(﹣)﹣2﹣tan60°﹣4sin30°+|﹣2| |﹣3|﹣2tan45°+(﹣1)2022﹣(﹣π)0()﹣1﹣+3tan30°+|﹣2|2cos60°﹣(﹣)﹣2+|2﹣|﹣(π﹣2020)0.﹣(2021﹣π)0+|5﹣|﹣tan60°.2cos30°﹣(﹣3)﹣2+(π﹣)0﹣tan60°.sin45°﹣|2﹣|+(π﹣1)0+(﹣)﹣1.(﹣2)﹣2+3tan30°﹣|﹣2|+(π﹣2022)0.。
《简单的三角恒等变换》 导学案
《简单的三角恒等变换》导学案一、学习目标1、能够运用两角和与差的正弦、余弦、正切公式进行简单的恒等变换。
2、掌握二倍角的正弦、余弦、正切公式,并能进行简单的应用。
3、通过三角恒等变换,培养逻辑推理和数学运算能力。
二、重点难点1、重点(1)两角和与差的正弦、余弦、正切公式的应用。
(2)二倍角公式的应用。
2、难点(1)灵活运用三角公式进行恒等变换。
(2)三角恒等变换在解决实际问题中的应用。
三、知识回顾1、两角和与差的正弦、余弦、正切公式(1)\(\sin(\alpha +\beta) =\sin\alpha\cos\beta +\cos\alpha\sin\beta\)(2)\(\sin(\alpha \beta) =\sin\alpha\cos\beta \cos\alpha\sin\beta\)(3)\(\cos(\alpha +\beta) =\cos\alpha\cos\beta \sin\alpha\sin\beta\)(4)\(\cos(\alpha \beta) =\cos\alpha\cos\beta +\sin\alpha\sin\beta\)(5)\(\tan(\alpha +\beta) =\frac{\tan\alpha +\tan\beta}{1 \tan\alpha\tan\beta}\)(6)\(\tan(\alpha \beta) =\frac{\tan\alpha \tan\beta}{1 +\tan\alpha\tan\beta}\)2、二倍角公式(1)\(\sin 2\alpha = 2\sin\alpha\cos\alpha\)(2)\(\cos 2\alpha =\cos^2\alpha \sin^2\alpha =2\cos^2\alpha 1 = 1 2\sin^2\alpha\)(3)\(\tan 2\alpha =\frac{2\tan\alpha}{1 \tan^2\alpha}\)四、新课导入在数学中,三角恒等变换是解决三角函数问题的重要工具。
三角函数线导学案
1.2.2三角函数线课前预习学案一、预习目标:了解三角函数线的基本做法.二、预习内容:1、 叫做有向线段。
2、当角的终边上一点(,)P x y 的坐标满足_______________时,有三角函数正弦、余弦、正切值的几何表示——三角函数线。
设任意角α的顶点在原点O , 重合,终边与 相交与点P (,)x y 过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,它与角α的 交与点T .由四个图看出:当角α的终边不在坐标轴上时,有向线段,OM x MP y ==,于是有sin 1y y y MP r α====,_______ cos 1x xx OMr α====,________ tan y MP ATATx OM OAα====._________ 我们就分别称有向线段,,MP OM AT 为正弦线、余弦线、正切线。
课内探究学案一、学习目标(1)了解如何利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用正弦线、余弦线、正切线表示出来;(2)掌握用单位圆中的线段表示三角函数值,从而使学生对三角函数的定义域、值域有更深的理解。
二、学习重难点重点: 三角函数线的正确应用 难点:三角函数线的正确理解.(Ⅳ)(Ⅲ)三、学习过程 (一)复习: 1.三角函数定义在直角坐标系中,设α是一个任意角,α终边上任意一点P (除了原点)的坐标为(,)x y ,它与原点的距离为(0)r r ==>,那么(1)比值_______叫做α的正弦,记作_______,即________ (2)比值_______叫做α的余弦,记作_______,即_________ (3)比值_______叫做α的正切,记作_______,即_________; 2.三角函数的定义域、值域3.三角函数的符号由三角函数的定义,以及各象限内点的坐标的符号,我们可以得知: ①正弦值yr对于第一、二象限为_____(0,0y r >>),对于第三、四象限为____(0,0y r <>);②余弦值xr对于第一、四象限为_____(0,0x r >>),对于第二、三象限为____(0,0x r <>);③正切值yx对于第一、三象限为_______(,x y 同号),对于第二、四象限为______(,x y 异号).4.诱导公式由三角函数的定义,就可知道:__________________________即有:_________________________ _________________________ _________________________(二)例题例1、若π4 <θ < π2 ,则下列不等式中成立的是 ( )A .sin θ>cos θ>tan θB .cos θ>tan θ>sin θC . tan θ>sin θ>cos θD .sin θ>tan θ>cos θ例2..利用三角函数线比较下列各组数的大小:1. 32sin π与54sin π2. tan 32π与tan 54π当堂检测1.当2kπ-π4≤α≤2kπ+π4(k ∈Z )时,化简1-2sin αcos α+1+2sin αcos α的结果是________.2.已知sin αcos α=18且π4<α<π2,则cos α-sin α=______.3、若-2π3≤θ≤π6 ,利用三角函数线,可得sin θ的取值范围是 .4、若∣cos α∣<∣sin α∣,则∈α .5、试作出角α= 7π6正弦线、余弦线、正切线.课后练习与提高一、选择题1、角α(0<α<2π)的正、余弦线的长度相等,且正、余弦符号相异.那么α的值为( )A .π4B .3π4C .7π4D .3π4 或 7π42、若0<α<2π,且sin α<23 , cos α> 12 .利用三角函数线,得到α的取值范围是( )A .(-π3 ,π3 )B .(0,π3 )C .(5π3 ,2π)D .(0,π3 )∪(5π3 ,2π)3、依据三角函数线,作出如下四个判断: ①sinπ6 =sin 7π6 ;②cos (-π4 )=cos π4 ;③tan π8 >tan 3π8 ;④sin 3π5 >sin 4π5. 其中判断正确的有 ( )A .1个B .2个C .3个D .4个4、如果,42ππ<θ<那么下列各式中正确的是( ) A. cos tan sin θ<θ<θ B. sin cos tan θ<θ<θ C. tan sin cos θ<θ<θ D. cos sin tan θ<θ<θ5. 已知α的终边过(-a 39,2+a )且0cos ≤α,0sin >α,则α的取值范围是 。
锐角三角函数的定义 导学案
锐角三角函数的定义导学案姓名:一、引入直角三角形中的定理BD CBA二、三角函数定义B三、解直角三角函数例1:△ABC中,∠C=90°.已知:c= 83,∠A=60°,求∠B、a、b.1、△ABC中,∠C=90°,已知:a=36,∠A=30°,求∠B、b、c.2、在△ABC中,∠C=90°,BC=2,2sin3A ,求解直角三角形另两条边3、在△ABC 中,∠ACB =90°,cosA=33,AB =8cm ,则△ABC 的面积为4、由下列条件解直角三角形:在Rt △ABC 中,∠C=90°:(1)已知a=4,c=24, (2)已知b=10,∠B=60°.例2:在Rt △ABC 中,∠C =90°,a =2,b =3,则cosA = ,sinB = ,tanB = 。
1、直角三角形ABC 的面积为24cm 2,直角边AB 为6cm ,∠A 是锐角,则sinA = 。
2、如图,在Rt △ABC 中,CD 是斜边AB 上的中线,已知CD =2,AC =3,则sinB 的值是( )3、在△ABC 中,∠C=90°,AB=5,AC=4,则cosB = ,sinA = ,tanA = 。
cosA = ,sinB = ,tanB = 。
4、如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB ,tan ∠BCD=,AC=12,则BC= .5、在Rt△ABC 中,∠C=90°,AB=3,BC=1,则sinA="______," tanA=" _______," cosA=_______ SinB="______," tanB=" _______," cosB=_______6、如图,在菱形ABCD 中,DE ⊥AB , 垂足为E , DE =8cm , , 则菱形ABCD 的面积是__________.7、如图,正方形网格中,每一个小正方形的边长都是 , 四边形的四个顶点都在格点上,为边的中点,若把四边形绕着点顺时针旋转.【小题1】画出四边形旋转后的图形;【小题2】设点旋转后的对应点为 , 则;【小题3】求点在旋转过程中所经过的路径长.例3:已知tan α=125,α是锐角,则sin α= 。
《三角函数的诱导公式》 导学案
《三角函数的诱导公式》导学案一、学习目标1、理解三角函数的诱导公式的推导过程。
2、掌握三角函数的诱导公式,并能熟练运用它们进行三角函数的求值、化简和证明。
3、通过诱导公式的学习,体会数学中的化归思想和数形结合思想。
二、学习重难点1、重点(1)诱导公式的推导和记忆。
(2)运用诱导公式进行三角函数的化简和求值。
2、难点(1)诱导公式的灵活运用。
(2)诱导公式中角的变化规律的理解和掌握。
三、知识回顾1、任意角三角函数的定义设角α的终边上任意一点 P 的坐标为(x, y),r =√(x²+ y²) ,则sinα = y/r ,cosα = x/r ,tanα = y/x (x ≠ 0)。
2、终边相同角的三角函数值的关系终边相同的角的同名三角函数值相等,即:sin(α + k·360°)=sinα ,cos(α + k·360°)=cosα ,tan(α + k·360°)=tanα (k ∈ Z)。
四、诱导公式推导1、公式一sin(α +2kπ) =sinα ,cos(α +2kπ) =cosα ,tan(α +2kπ) =tanα (k ∈ Z)推导:因为终边相同的角的同名三角函数值相等,角α与角α +2kπ(k ∈ Z)终边相同,所以它们的三角函数值相等。
2、公式二sin(π +α) =sinα ,cos(π +α) =cosα ,tan(π +α) =tanα推导:设角α的终边与单位圆交于点 P(x, y),则角π +α的终边与单位圆交于点 P'(x, y)。
所以sin(π +α) = y =sinα ,cos(π +α) = x =cosα ,tan(π +α)= y/(x) =tanα 。
3、公式三sin(α) =sinα ,cos(α) =cosα ,tan(α) =tanα推导:设角α的终边与单位圆交于点 P(x, y),则角α的终边与单位圆交于点 P'(x, y)。
1.2.1 任意角的三角函数导学案
鸡西市第十九中学学案
问题2 如图,锐角任取一点P (a ,b OP r ==;= = ;OM
== .
问题3 如图所示,在直角坐标系中,以原点为圆心,以单位长度为半径的圆为单位圆.锐角α的终边与单位圆交于tan α= .
【单位圆定义任意角三角】么: 叫做α的正弦,记作α,即cos α= ;y
x
叫做
【终边定义定义任意角的三角函数】
试一试:
角34π与单位圆的交点坐标为角2π与单位圆的交点坐标为小结:根据三角函数的定义可知,三角函数是一个和点P (x ,y )离原点的距离无关
三角函数值的符号在以后学习中经常用到,必须熟记,可根据定义记,也可按以下口诀一全正,二正弦,三正切,四余弦(是正的).
判断下列各式的符号:
cos α(其中α是第二象限角);(2)sin 285°cos(-105°);(3)sin 3·cos 4·tan
若sin αcos α<0,则α是第________象限角.
代数式:sin 2·cos 3·tan 4的符号是_________.。
苏科版九年级数学教案《三角函数》导学案全章
《三角函数》导学案一、导学目标1.了解三角函数的定义和性质。
2.掌握三角函数在坐标系上的图象及其性质。
3.熟练运用三角函数的基本公式解决相关问题。
二、导学内容1.三角函数定义及基本性质(1)角度的定义:角度是指通过两条射线,以其公共端点为顶点,将平面分成两部分的区域。
(2)单位圆:半径为1的圆,圆心为原点O。
角度的终边与单位圆的交点称为角度的端点。
(3)弧度制与度数制的转换:-1个圆的弧度等于2π弧度;-1弧度等于180/π度。
(4)正弦、余弦和正切的定义:-在单位圆上,角度A的正弦(正弦值)是角A终边上的纵坐标值;-在单位圆上,角度A的余弦(余弦值)是角A终边上的横坐标值;-在单位圆上,角度A的正切(正切值)是角A终边上的纵坐标值与横坐标值的比。
2.三角函数的图象与性质(1)正弦函数sin(x)的图象:一条在坐标轴上下波动的曲线,周期为2π,最小值为-1,最大值为1(2)余弦函数cos(x)的图象:一条在坐标轴上下波动的曲线,周期为2π,最小值为-1,最大值为1(3)正切函数tan(x)的图象:一条在坐标轴上下无限延伸的直线,周期为π,有奇数个渐近线。
3.三角函数的基本公式(1)正弦函数的基本公式:sin(A+B) = sin(A)cos(B) +cos(A)sin(B)。
(2)余弦函数的基本公式:cos(A+B) = cos(A)cos(B) -sin(A)sin(B)。
(3)正切函数的基本公式:tan(A+B) = (tan(A) + tan(B))/(1 -tan(A)tan(B))。
三、导学要点1.仔细阅读教材相关内容,理解角度的定义和三角函数的定义及基本性质。
2.利用单位圆的性质,掌握角度的弧度制与度数制的转换方法。
3.观察并分析正弦、余弦和正切函数在坐标系上的图象,理解其周期、最大值、最小值等基本性质。
4.熟练掌握三角函数的基本公式,并能够灵活运用解决相关问题。
四、导学题目1.将45°转换成弧度制。
高中数学《同角三角函数的基本关系》导学案
第一章三角函数第二节同角三角函数的基本关系(第2课时)一、学习目标1.识记同角三角函数的基本关系。
2.初步掌握其应用。
【重点、难点】同角三角函数的基本关系及其应用。
二、学习过程【情景创设】1.阅读教材,根据下面的知识结构图阅读教材,并识记同角三角函数间的关系式,初步掌握其应用.【导入新课】1.三角函数的推广定义:设角α终边上任一点坐标(x,y),它与原点距离为r,则()2.正切函数y=tan α的定义域:3.同角三角函数基本关系(1)写出下列各角的三角函数值,观察它们的值,猜想它们之间的联系.(30°、45°、60°)(2)从以上的过程中,你能发现什么一般规律?你能否用代数式表示这些规律?(3)根据以上探究过程,试着写出同角三角函数基本关系.a.平方关系:_______________.b.商数关系:_____________【典型例题】例1.21sin7π-的结果是___________.2.已知tanα=错误!未找到引用源。
,α∈错误!未找到引用源。
,则cosα的值是.【变式拓展】1.已知α∈错误!未找到引用源。
,sinα=错误!未找到引用源。
,则cosα= ( )A.错误!未找到引用源。
B.-错误!未找到引用源。
C.-错误!未找到引用源。
D.错误!未找到引用源。
2.若α是第三象限角,则错误!未找到引用源。
+错误!未找到引用源。
的值为( )A.3B.-3C.1D.-1三、总结反思1.对同角三角函数基本关系的三点说明(1)关系式中的角一定是同角,否则公式可能不成立,如sin230°+cos260°≠1.(2)同角不要拘泥于形式,将α换成或2α也成立,如22sin2sin cos 1,tan .222cos 2αααα+==α (3)商的关系中要注意公式中的隐含条件,cos α≠0,即k (k Z).2πα≠π+∈2.同角三角函数基本关系式的变形形式(1)平方关系:1-sin2α=cos2α,1-cos2α=sin2α. (2)商数关系:sin sin tan cos ,cos .tan αα=ααα=α四、随堂检测 1.若tan α=2,则错误!未找到引用源。
1.3 三角函数的计算 导学案(有答案)
1.3使用计算器进行三角函数的计算导学案班级:_____________姓名:_____________一、学习目标1、会用计算器由角求三角函数值,由三角函数值求角二、自主探究:阅读课本p14-16如图1-11,当登山缆车的吊箱经过点A到达点B时,它走过了200m.已知缆车行驶的路线与水平面的夹角为∠α=16°,那么缆车垂直上升的距离是多少?解:用计算器求三角函数时,结果一般有10个数位,本书约定,如无特别说明,计算结果一般精确到万分位。
三.随堂练习2.一个人由山底爬到山顶,需要先爬40°的山坡300m,再爬30°的山坡100米,求山高(结果精确到0.1m)3.求图中避雷针CD的长度(结果精确到0.01m)四.当堂测试1.用计算器求下列各式的值:(1)tan32°(2)cos24.53°(3)sin62°11’(4)tan39°39’39’’2.如图,物华大厦离小伟家60m,小伟从自家的窗中眺望大厦,并测得大厦顶部的仰角是45°,而大厦底部的俯角是37°,求该大厦的高度(结果精确到0.1m)答案:三.随堂练习1.略2.解:300×sin40+100×sin30=242.8 m答:山高242.8 m3.解:在直角△ABC中,AB=20,∠CAB=50°,BC= AB×tan50°在直角△ABD中,AB=20,∠DAB=56°,BD= AB×tan56°所以CD=DB-CB=AB×tan56°-AB×tan50°=20×(tan56°-tan50°)≈5.82米答:图中避雷针CD的长度是5.82米四.当堂测试1.略2.解:如图所示,在Rt△ADE中,∵∠DAE﹦45°,AE﹦60m∴DE﹦AE﹦60m.在RtRt△AEC中,∵∠CAE﹦37°,AE﹦60m,答:该大厦的高度约为105.2m.。
《锐角三角函数》 导学案
《锐角三角函数》导学案一、学习目标1、理解锐角三角函数的定义,能够准确说出正弦、余弦、正切的概念。
2、掌握锐角三角函数的求值方法,会利用已知条件求出锐角的三角函数值。
3、能够运用锐角三角函数解决与直角三角形相关的实际问题。
二、学习重难点1、重点(1)锐角三角函数的概念,包括正弦、余弦、正切的定义。
(2)特殊锐角(30°、45°、60°)的三角函数值及其应用。
2、难点(1)理解锐角三角函数的本质,以及如何在直角三角形中准确地表示出三角函数值。
(2)运用锐角三角函数解决实际问题时,如何将实际问题转化为数学模型。
三、知识回顾1、直角三角形的性质(1)直角三角形的两个锐角互余。
(2)直角三角形斜边的平方等于两直角边的平方和(勾股定理)。
2、相似三角形的性质(1)对应角相等,对应边成比例。
(2)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比。
四、新课导入在生活中,我们常常会遇到需要测量高度、距离等问题,比如测量大树的高度、河流的宽度等。
而这些问题往往可以通过直角三角形的知识来解决。
今天,我们就来学习一种新的数学工具——锐角三角函数,它将帮助我们更方便、更准确地解决这类问题。
五、知识讲解1、锐角三角函数的定义在直角三角形中,如果一个锐角的对边与斜边的比值是一个固定值,那么这个比值就叫做这个锐角的正弦,记作 sinA。
即 sinA =对边/斜边。
同理,如果一个锐角的邻边与斜边的比值是一个固定值,那么这个比值就叫做这个锐角的余弦,记作 cosA。
即 cosA =邻边/斜边。
如果一个锐角的对边与邻边的比值是一个固定值,那么这个比值就叫做这个锐角的正切,记作 tanA。
即 tanA =对边/邻边。
例如,在直角三角形 ABC 中,∠C = 90°,∠A 为锐角,BC 为∠A 的对边,AC 为∠A 的邻边,AB 为斜边。
则 sinA = BC / AB,cosA = AC / AB,tanA = BC / AC。
高中数学 1.2 任意角的三角函数导学案 新人教A版必修4 学案
某某省某某市三水区实验中学高中数学 1.2 任意角的三角函数导学案新人教A版必修4【学习目标】1.掌握任意角的三角函数的定义。
2.已知角α终边上一点,会求角α的各三角函数值。
【重点难点】1. 熟练求值。
2. 理解任意角的三角函数的定义。
【预习指导】1.阅读教材第11~13页。
2.回顾初中学过的锐角三角函数的定义?(如图)在Rt△ABC中,sinA= ,cosA= , tanA= .3.思考:你能用直角坐标系中角的终边上的点的坐标来表示锐角三角函数吗?点的位置对这三个比值有影响吗?4.在平面直角坐标系中,我们称以______为圆心,以__________为半径的圆为单位圆。
【合作探究】1. 例题研讨:例1:求下列各角的正弦、余弦、正切值:π、4π、3π、53π(讨论求法→试求(学生板演)→订正)ABC→小结:画角的终边与单位圆,求交点,求值.例2:已知角α的终边经过点P(-4,-3),求角α的正弦、余弦和正切值.(学生试求→订正→小结解法)2. 任意角的三角函数的定义:①思考:已知角α终边上任意一点P (x, y),如何求它的三角函数值呢?②定义:一般地,设角α终边上任意一点的坐标为P (x,y),它与原点的距离为r,则sinα=;cosα=;tanα=.③讨论:这三个比值与点P的位置是否有关?当α的终边落在x轴、y轴上时,哪些三角函数值无意义?任何实数是不是都有三角函数值?为什么?【达标测评】(参考《全优》P7)1.若角α终边上有一点P(0,3),则下列函数值无意义的是() A.tan α B.sin αC.cos α D.无法确定2.已知角α的终边经过点P(m,-3),且cosα=-45,则m等于( )A.-114 B.114C.-4 D.43.若点P(4,y)是角α终边上一点,且sin α=-35,则y的值是________.【归纳小结】单位圆定义任意角的三角函数;2.由终边上任一点求任意角的三角函数;【巩固练习】(各班可按实际情况安排)1.练习:教材P15:1,3;2.作业:教材P15:2.第二课时:任意角的三角函数(二)【学习目标】1. 掌握各象限的三角函数值的符号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第28章三角函数及其应用导学案(复习)
学习目标:
1.掌握三角函数的定义并会解直角三角形;
2.能把实际问题转化为数学(三角函数)问
题,从而用三角函数的知识解决问题。
考点一 锐角三角函数定义
例1 如图28-2所示,∠BAC 位于6×6的方格纸中,则 tan ∠BAC =________.
考点二 特殊角的三角函数值的考查
例2 计算:
2(2cos45°-sin60°)+244
-tan 230°.
考点三 解直角三角形
例3 已知:如图28-4所示,在Rt △ABC 中,∠C =90°,AC = 3.点D 为BC 边上一点,且BD =2AD ,∠ADC =60°.求△ABC 的周长.(结果保留根号)
考点四 解直角三角形在实际中的应用 例4 [2010·广州] 目前世界上最高的电视塔是广州新电视
塔.如图28-5所示,新电视塔高AB为610米,远处有一栋大楼,某人在楼底C处测得塔顶B的仰角为45°,在楼顶D处测得塔顶B的仰角为39°.
(1)求大楼与电视塔之间的距离AC;
(2)求大楼的高度CD(精确到1米).(tan39°≈0.81)
考考你:(2016·山西)太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业,如图是太阳能电池板支撑架的截面图,其中的粗线表示支撑角钢,太阳能电池板与支撑角钢AB的长度相同,均为300cm,AB的倾斜角为300,BE=CA=50cm,支撑角钢CD,EF与底座地基台面接触点分别为D,F,CD垂直
于地面,EF AB于点E.两个底座地基高度相同(即点D,F到地面的垂直距离相同),均为30cm,点A到地面的垂直
距离为50cm,求支撑角钢CD和EF的长度各是多少cm(结果保留根号)。