二次根式(全章)
(完整版)第十六章二次根式知识点总结大全
二次根式【知识回顾】1.二次根式:式子a (a ≥0)叫做二次根式。
2.最简二次根式:必须同时满足下列条件: ⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。
3.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。
4.二次根式的性质:(1)(a )2=a (a ≥0); (2)==a a 25.二次根式的运算:(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术平方根代替而移到根号外面;如果被开方数是代数和的形式,那么先分解因式,变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.(a≥0,b≥0);=(b≥0,a>0). (4)有理数的加法交换律、结合律,乘法交换律及结合律,乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.a (a >0)a -(a <0)0 (a =0);【典型例题】1、概念与性质例1、下列各式1)-,其中是二次根式的是_________(填序号).例2、求下列二次根式中字母的取值范围(1)xx--+315;(2)22)-(x例3、在根式1) ,最简二次根式是()A.1) 2) B.3) 4) C.1) 3) D.1) 4)例4、已知:的值。
求代数式22,211881-+-+++-+-=xyyxxyyxxxy例5、已知数a,b,若=b-a,则( )A. a>bB. a<bC. a≥bD. a≤b2、二次根式的化简与计算例1. 将根号外的a 移到根号内,得 ( )A. ;B. -;C. -;D.例2. 把(a -b )-1a -b 化成最简二次根式例3、计算:例4、先化简,再求值:11()b a b b a a b ++++,其中a=512,b=512.例5、如图,实数a 、b 在数轴上的位置,化简 :222()a b a b ---4、比较数值 (1)、根式变形法当0,0a b >>时,①如果a b >>a b <<例1、 比较与(2)、平方法当0,0a b >>时,①如果22a b >,则a b >;②如果22a b <,则a b <。
2020华师大版九年级数学上 二次根式(全章)习题及答案
【文库独家】二次根式21.1 二次根式:1. 有意义的条件是 。
2. 当__________3. 11m +有意义,则m 的取值范围是 。
4. 当__________x 是二次根式。
5. 在实数范围内分解因式:429__________,2__________x x -=-+=。
6. 2x =,则x 的取值范围是 。
7. 2x =-,则x 的取值范围是 。
8. )1x 的结果是 。
9. 当15x ≤5_____________x -=。
10. 把的根号外的因式移到根号内等于 。
11. 11x =+成立的条件是 。
12. 若1a b -+()2005_____________a b -=。
13. )()()230,2,12,20,3,1,x y y x xx x y +=--++中,二次根式有( )A. 2个B. 3个C. 4个D. 5个 14. 下列各式一定是二次根式的是( )15. 若23a )A. 52a -B. 12a -C. 25a -D. 21a -16. 若A ==( )A. 24a +B. 22a +C. ()222a + D. ()224a +17. 若1a ≤)A. (1a -B. (1a -C. (1a -D. (1a -18.=x 的取值范围是( ) A. 2x ≠ B. 0x ≥ C. 2x D. 2x ≥19.)A. 0B. 42a -C. 24a -D. 24a -或42a - 20. 下面的推导中开始出错的步骤是( )()()()()23123224==-==∴=-∴=- A. ()1 B. ()2 C. ()3 D. ()4 21.2440y y -+=,求xy 的值。
22. 当a 1取值最小,并求出这个最小值。
23. 去掉下列各根式内的分母:())10x ())21x24. 已知2310x x -+=25. 已知,a b (10b -=,求20052006a b -的值。
最新人教版八年级数学下册第16章二次根式全套课件PPT(完美版)
A≥0且B≠0.
A 1有意义的条件:
B
巩固练习
2. x取何值时,下列二次根式有意义?
(1) x 1
x≥1
(4) 1 x x>0
(2) 3x
x≤0
(5) x3
x≥0
(3) 4x2
x为全体实数
(6) 1 x2 x≠0
(7)
x 1 x3
(
x
2)0
(8)
x 2 (9) x2 1
x
∴当x=1时, x2 2x 1 在实数范围内有意义. (2)∵无论x为任何实数,-x2-2x-3=-(x+1)2-2<0, ∴无论x为任何实数, x2 2x 3 在实数范围内都无意义.
归纳小结:被开方数是多项式时,需要对组成多项式的项 进行恰当分组凑成含完全平方的形式,再进行分析讨论.
探究新知
归纳总结
一般地,我们把形如 a (a 0) 的式子叫做二 次根式. “ ”称为二次根号.
注意:a可以是数,也可以是式.
两个必备特征
①外貌特征:含有“ ” ②内在特征:被开方数a ≥0
探究新知
素养考点 1 利用二次根式的定义识别二次根式
例1 下列各式中,哪些是二次根式?哪些不是?
(1) 14 ; (2)81; (3) - 0.8 ;(4)-3x (x 0)
(1) 32
是
(2) -12 不是
(3)3 8
(4)4 a2
不是
不是
(5) - m (m 0) 是
(8) - x2 1
不是
(6) 2a 1 不是
(9)4 2
是
(7) a2 2a 3
是
1
人教版初中数学八年级下册第十六章:二次根式(全章教案)
第十六章二次根式教材简析本章的内容主要包括:二次根式的概念和性质、二次根式的乘除、二次根式的加减.在中考中,本章重在考查二次根式的概念和性质以及运用二次根式的运算法则进行化简、求值.教学指导【本章重点】二次根式的性质和运算.【本章难点】灵活运用二次根式的性质及运算法则进行相关的化简与实数的简单运算.【本章思想方法】1.掌握类比思想.如:类比算术平方根的概念理解二次根式的性质,类比整式的运算法则理解二次根式的运算法则.2.掌握分类讨论思想.如:在进行二次根式的化简时,当被开方数中有字母且没有给出字母的取值范围时,应考虑对字母的取值进行分类讨论.3.体会整体思想.如:在求含有二次根式的代数式的值时,有时从整体角度考虑,将已知条件和待求值的式子进行变形后整体代入求值.课时计划16.1二次根式2课时16.2二次根式的乘除2课时16.3二次根式的加减2课时16.1二次根式第1课时二次根式的概念教学目标一、基本目标【知识与技能】理解并掌握二次根式的概念,掌握二次根式中被开方数的取值范围和二次根式的取值范围.【过程与方法】经历观察、比较、总结二次根式概念和被开方数取值范围的过程,发展学生的归纳概括能力.【情感态度与价值观】经历观察、比较和应用等数学活动,感受数学活动充满了探索性和创造性,体验发现的快乐,并提高应用意识.二、重难点目标【教学重点】二次根式的概念,二次根式有意义的条件.【教学难点】求二次根式中字母的取值范围.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P2~P3的内容,完成下面练习.【3 min反馈】1.一个正数有两个平方根;0的平方根为0;在实数范围内,负数没有平方根.因此,在实数范围内开平方时,被开方数只能是正数或0.2.一般地,我们把形如a(a≥0)的式子叫做二次根式,“”称为二次根号.3.下列式子中,不是二次根式的是(B)A.45B.-3C.a2+3D.2 3环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】下列各式中,哪些是二次根式,哪些不是二次根式?11,-5,(-7)2,313,15-16,3-x(x≤3),-x(x≥0),(a-1)2,-x2-5,(a-b)2(ab≥0).【互动探索】(引发学生思考)要判断一个根式是不是二次根式,一是看根指数是不是2,二是看被开方数是不是非负数.【解答】因为11,(-7)2,15-16=130,3-x(x≤3),(a-1)2,(a-b)2(ab≥0)中的根指数都是2,且被开方数均为非负数,所以都是二次根式.313的根指数不是2,-5,-x(x≥0),-x2-5的被开方数都小于0,所以不是二次根式.【互动总结】(学生总结,老师点评)判断一个式子是不是二次根式,要看所给的式子是否具备以下条件:(1)带二次根号;(2)被开方数是非负数.【例2】当x________,x+3+1x+1在实数范围内有意义.【互动探索】(引发学生思考)二次根式有意义要满足什么条件?本题是否还要考虑其他条件?【分析】要使x+3+1x+1在实数范围内有意义,必须同时满足被开方数x+3≥0和分母x+1≠0,解得x≥-3且x≠-1.【答案】≥-3且x≠-1【互动总结】(学生总结,老师点评)使一个代数式有意义的未知数的取值范围通常要考虑三种情况:一是分母不为零,二是偶次方根的被开方数为非负数,三是零次幂的底数不为零.活动2巩固练习(学生独学)1.下列式子中,是二次根式的是(A)A.-7B.3 7C.x D.x 2.使式子-(x-5)2有意义的未知数x有(B) A.0 个B.1 个C.2 个D.无数个3.当x是多少时,2x+3x+x2在实数范围内有意义?解:依题意,得⎩⎪⎨⎪⎧2x +3≥0,x ≠0,解得⎩⎪⎨⎪⎧x ≥-32,x ≠0.∴当x ≥-32且x ≠0时,2x +33+x 2在实数范围内没有意义.活动3 拓展延伸(学生对学)【例3】若实数x 、y 满足y >x -2+6-3x +3,求|y -3|-(x -y )2的值.【互动探索】要求|y -3|-(x -y )2的值,需确定出x 、y 的取值范围.根据式子y >x -2+6-3x +3,可以确定出x 、y 的取值范围.【解答】由题意,得x -2≥0且6-3x ≥0, 解得x =2,则y >3.故|y -3|-(x -y )2=y -3-y +2=2-3=-1.【互动总结】(学生总结,老师点评)利用二次根式有意义的条件求出x 的值,从而确定y 的取值范围,然后利用二次根式的性质化简代数式.环节3 课堂小结,当堂达标 (学生总结,老师点评)二次根式⎩⎪⎨⎪⎧概念有意义的条件——被开方数是非负数练习设计请完成本课时对应训练!第2课时 二次根式的性质教学目标一、基本目标 【知识与技能】理解a (a ≥0)是一个非负数、(a )2=a (a ≥0)和a 2=a (a ≥0),并利用它们进行计算和化简;了解代数式的概念.【过程与方法】在明确(a )2=a (a ≥0)和a 2=a (a ≥0)的算理的过程中,感受数学的实用性;通过小组合作交流,培养学生的合作意识.【情感态度与价值观】通过二次根式的相关计算,进而解决一些实际问题,培养学生解决问题的能力. 二、重难点目标 【教学重点】 二次根式的性质. 【教学难点】运用二次根式的性质进行有关计算.教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P3~P4的内容,完成下面练习. 【3 min 反馈】1.(1)当a >0时,a 表示a ;(2)当a =0时,a 表示0概括:一般地,a (a ≥0)是一个非负数.2.教材P3“探究”,根据算术平方根的意义填空: (1)(4)2=4; (2)2=2;⎝⎛⎭⎫132=13; (0)2=0. (2)一般地,(a )2=a (a ≥0). 3.教材P4“探究”,填空: (1)22=2;0.012=0.01; ⎝⎛⎭⎫232=23; 02=0.(2)一般地,a 2=a (a ≥0).教师点拨:二次根式的三个性质:(1)a (a ≥0)是一个非负数;(2)(a )2=a (a ≥0);(3)a 2=a (a ≥0).4.用基本运算符号把数或表示数的字母连结起来的式子,我们称这样的式子为代数式. 5.计算:0.019 6×22 500=21;549=73. 环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】计算:(1)( 1.5)2; (2)(25)2; (3)16; (4)(-5)2.【互动探索】(引发学生思考)一个非负数的算术平方根的平方等于什么?当二次根式的被开方数是一个完全平方数,开方时有什么规则?【解答】(1)()1.52 =1.5. (2)(25)2=22×(5)2=4×5=20. (3)16=(42)=4. (4)()-52=52=5.【互动总结】(学生总结,老师点评)一个非负数的算术平方根的平方等于这个非负数.当二次根式的被开方数是一个完全平方数时,a 2=||a =⎩⎨⎧a ()a ≥0;-a()a <0.【例2】化简下列二次根式. (1)8a 3b (a ≥0,b ≥0); (2)(-36)×169×(-9).【互动探索】(引发学生思考)根据开方的定义化简.注意:二次根式的结果是最简二次根式.【解答】(1)8a 3b =22·a 2·2ab =(2a )2·2ab =2a 2ab . (2)(-36)×169×(-9)=36×169×9=6×13×3=234.【互动总结】(学生总结,老师点评)(1)若被开方数中含有负因数,则应先化成正因数;(2)将二次根式尽量化简,使被开方数(式)中不含能开得尽方的因数(式),即化为最简二次根式.活动2 巩固练习(学生独学) 1.下列各式正确的是( D ) A .(-4)×(-9)=-4×-9 B .16+94=16×94C .449=4×49D .4×9=4×92.计算:(1)(9)2; (2)-(3)2; (3)64; (4)a 2+2a +1. 解:(1)9. (2)-3. (3)8. (4)a 2+2a +1=()a +12=||a +1.当a ≥-1时,原式=a +1;当a <-1时,原式=-a-1.3.已知实数a 、b 在数轴上的位置如图所示,化简:(a +1)2+2(b -1)2-|a -b |.解:从数轴上a 、b 的位置关系,可知-2<a <-1,1<b <2,且b >a ,故a +1<0,b -1>0,a -b <0,原式=|a +1|+2|b -1|-|a -b |=-(a +1)+2(b -1)+(a -b )=b -3.活动3 拓展延伸(学生对学)【例3】 已知a 、b 、c 是△ABC 的三边长,化简(a +b +c )2-(b +c -a )2+(c -b -a )2. 【互动探索】根据三角形的三边关系,得出b +c >a ,b +a >c .根据二次根式的性质得出含有绝对值的式子,然后去绝对值符号合并即可.【解答】∵a 、b 、c 是△ABC 的三边长,∴b +c >a ,b +a >c ,∴原式=|a +b +c |-|b +c -a |+|c -b -a |=a +b +c -(b +c -a )+(b +a -c )=a +b +c -b -c +a +b +a -c =3a +b -c .【互动总结】(学生总结,老师点评)解答本题的关键是根据三角形的三边关系得出不等关系,进行变换后,结合二次根式的性质进行化简.环节3 课堂小结,当堂达标 (学生总结,老师点评)二次根式的性质⎩⎪⎨⎪⎧a ≥0(a ≥0)(a )2=a (a ≥0)a 2=|a |=⎩⎪⎨⎪⎧a (a ≥0)a (a <0)练习设计请完成本课时对应训练!16.2二次根式的乘除第1课时二次根式的乘法教学目标一、基本目标【知识与技能】理解a·b=ab(a≥0,b≥0),ab=a·b(a≥0,b≥0),并利用它们进行计算和化简.【过程与方法】经历“探索——发现——猜想——验证”的过程,引导学生体会合情推理与演绎推理的相互依赖、相互补充的关系;培养学生用规范的数学语言进行表达的习惯和能力.【情感态度与价值观】鼓励学生积极参与数学活动,激发学生的好奇心和求知欲,体验数学活动中的探索和创新,感受数学的严谨性.二、重难点目标【教学重点】二次根式的乘法运算法则.【教学难点】运用二次根式的乘法运算法则进行简单的运算.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P6~P7的内容,完成下面练习.【3 min反馈】1.教材P6“探究”,计算下列各式,观察计算结果,你能发现什么规律?(1)4×9=6,4×9=6;(2)16×25=20,16×25=20;(3)25×36=30,25×36=30.a≥0,b≥0.规律:一般地,二次根式的乘法法则是a·b=ab()2.把a·b=ab反过来,就得到ab=a·b,利用它可以进行二次根式的化简.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】计算:(1)3×5; (2)13×27; (3)9×27; (4)12× 6. 【互动探索】(引发学生思考)利用二次根式的乘法运算法则进行计算. 【解答】(1)3×5=15. (2)13×27=13×27=9=3. (3)9×27=9×27=92×3=9 3. (4)12×6=12×6= 3. 【互动总结】(学生总结,老师点评)利用二次根式的乘法运算法则进行计算时,注意被开方数必须是非负数.【例2】化简:(1)9×16; (2)16×81; (3)81×100; (4)4a 2b 3; (5)54.【互动探索】(引发学生思考)利用二次根式积的算术平方根的性质进行化简时,需要注意什么?【解答】(1)9×16=9×16=3×4=12. (2)16×81=16×81=4×9=36. (3)81×100=81×100=9×10=90. (4)4a 2b 3=4·a 2·b 3=2·a ·b 2·b =2ab b . (5)54=9×6=32×6=3 6.【互动总结】(学生总结,老师点评)积的算术平方根是二次根式乘法法则的逆用,注意被开方数必须是非负数.活动2 巩固练习(学生独学)1.等式x +1·x -1=x 2-1成立的条件是( A ) A .x ≥1 B .x ≥-1 C .-1≤x ≤1 D .x ≥1或x ≤-12.计算: (1)12×3; (2)23×315; (3)23×3512×5936. 解:(1)6. (2)310. (3)18.3.判断下列各式是否正确,不正确的请予以改正: (1)(-4)×(-9)=-4×-9; (2)41225×25=4×1225×25=4×1225×25=412=8 3. 解:(1)不正确.改正:(-4)×(-9)=4×9=36=6. (2)不正确. 改正:41225×25=11225×25=11225×25=112=47. 活动3 拓展延伸(学生对学) 【例3】比较大小:(1)35与53; (2)-413与-511.【互动探索】由于根号外的因数不为1,可以将根号外的因数移到根号内,再比较被开方数的大小.【解答】(1)35=9×5=45, 53=25×3=75. 因为45<75,所以35<5 3. (2)-413=-16×13=-208, -511=-25×11=-275.因为208<275,所以-208>-275,所以-413>-511.【互动总结】(学生总结,老师点评)要比较两个二次根式的大小,可以先运用二次根式的乘法运算法则,将根号外的数移到根号内,再比较被开方数的大小.环节3 课堂小结,当堂达标 (学生总结,老师点评)练习设计请完成本课时对应训练!第2课时二次根式的除法教学目标一、基本目标【知识与技能】1.理解ab=ab(a≥0,b>0)和ab=ab(a≥0,b>0)及利用它们进行运算;2.理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式.【过程与方法】通过计算或化简的结果来提炼出最简二次根式的概念,并根据它的特点来检验最后结果是否满足最简二次根式的要求.【情感态度与价值观】在经历二次根式除法运算法则的过程中,获得成就感,建立学习数学的信心和兴趣.二、重难点目标【教学重点】最简二次根式的概念,二次根式的除法运算法则.【教学难点】二次根式商的算术平方根的运用.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P8~P10的内容,完成下面练习.【3 min反馈】(一)二次根式的除法1.教材P8“探究”,计算下列各式,观察计算结果,你能发现什么规律?(1)49=23,49=23;(2)1625=45,1625=45;(3)3649=67,3649=67.规律:一般地,二次根式的除法法则是ab=ab()a≥0,b>0.2.把ab=ab反过来,就得到ab=ab()a≥0,b>0,利用它可以进行二次根式的化简.(二)最简二次根式1.观察教材P8~P9例4、例5、例6中各小题的最后结果,比如22,310,2aa等,可以发现这些式子有如下两个特点:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式.2.在二次根式的运算中,一般要把最后结果化为最简二次根式,并且分母中不含二次根式.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】计算:(1)123;(2)32÷18;(3)14÷116;(4)648.【互动探索】(引发学生思考)利用二次根式的除法运算法则进行计算.【解答】(1)原式=123=4=2 .(2)原式=32÷18=32×8=3×4=2 3.(3)原式=14÷116=14×16=4=2.(4)原式=648=8=2 2.【互动总结】(学生总结,老师点评)利用二次根式的除法运算法则进行计算时,注意被开方数必须是非负数,结果必须是最简二次根式.【例2】化简:(1)364;(2)64b29a2;(3)35;(4)22-1.【互动探索】(引发学生思考)利用二次根式的除法运算法则和商的算术平方根的性质将二次根式进行化简.【解答】(1)原式=364=38.(2)原式=64b29a2=8b3a.(3)原式=35=3×55×5=155.(4)原式=2×()2+1()2-1()2+1=2+22-1=2+ 2. 【互动总结】(学生总结,老师点评)利用二次根式的除法运算法则和商的算术平方根的性质将二次根式进行化简时,注意将结果化为最简二次根式.活动2 巩固练习(学生独学) 1.计算113÷213÷125的结果是( A ) A .27 5B .27C . 2D .272.如果xy(y >0)是二次根式,那么化为最简二次根式是( C ) A .xy(y >0) B .xy (y >0) C .xyy(y >0) D .以上都不对3.化简: (1)483; (2)0.7; (3)23-1; (4)6-56+5. 解:(1)4. (2)7010. (3)3+1. (4)11-230. 活动3 拓展延伸(学生对学) 【例3】已知9-x x -6=9-xx -6,且x 为偶数,求(1+x )x 2-5x +4x 2-1的值.【互动探索】等式形式符合商的算术平方根公式→确定x 的取值范围→化简所求式子【解答】由题意,得⎩⎪⎨⎪⎧ 9-x ≥0,x -6>0,即⎩⎪⎨⎪⎧x ≤9,x >6,∴6<x ≤9.∵x 为偶数,∴x =8, ∴原式=(1+x )(x -4)(x -1)(x +1)(x -1)=(1+x )x -4x +1=(1+x )x -4(x +1)=(1+x )(x -4). ∴当x =8时,原式=4×9=6.【互动总结】(学生总结,老师点评)根据商的算术平方根的性质化简时,分子中被开方数是非负数,分母中被开方数是正数.环节3课堂小结,当堂达标(学生总结,老师点评)练习设计请完成本课时对应训练!16.3二次根式的加减第1课时二次根式的加减教学目标一、基本目标【知识与技能】通过合并被开方数相同的二次根式,会进行二次根式的加法与减法运算.【过程与方法】在分析问题的过程中,渗透对二次根式加减法的理解,再总结经验,用它来指导二次根式的计算和化简.【情感态度与价值观】鼓励学生积极参与数学活动,体会合作学习的先进性.二、重难点目标【教学重点】会将二次根式化为最简二次根式,掌握二次根式加减法的运算.【教学难点】运用二次根式的加减运算解决问题.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P12~P13的内容,完成下面练习.【3 min反馈】1.一般地,二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.2.计算下列各式.(1)22+32;(2)28-38+58;(3)7+27+9×7;(4)33-23+ 2.解:(1)原式=(2+3)2=5 2.(2)原式=(2-3+5)8=48=8 2.(3)原式=7+27+37=(1+2+3)7=67.(4) 原式=(3-2)3+2=3+ 2.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】计算: (1)27+13+12; (2)32+48-8+3; (3)3⎝⎛⎭⎫22-63+ 1.5-223;(4)()6-222+()23-1()23+1.【互动探索】(引发学生思考)运用二次根式的加减法法则及乘法公式进行计算,在计算时要注意哪些问题?【解答】(1)27+13+12=33+33+23=1633. (2)32+48-8+3=32+43-22+3=2+5 3. (3)3⎝⎛⎭⎫22-63+ 1.5-223=26-2+62-223=326-53 2.(4)()6-222+()23-1()23+1=6-412+8+()12-1=25-8 3.【互动总结】(学生总结,老师点评)计算二次根式的加减法时,先把二次根式化为最简二次根式,再合并同类二次根式.计算二次根式的混合运算时,注意运算顺序.【例2】已知a -5-2+b -5+2=0,求a 2+b 2+7的值.【互动探索】(引发学生思考)根据算术平方根的非负性,可得a =5+2,b = 5-2,然后再代入求值即可.【解答】由题意,得a -5-2=0,b -5+2=0,解得a =5+2,b =5-2,a 2+b 2+7=5+4+45+5+4-45+7=5.【互动总结】(学生总结,老师点评)此题主要考查了二次根式的加减,关键是掌握算术平方根具有非负性.活动2 巩固练习(学生独学) 1.计算32-2的值是( D ) A .2 B .3 C . 2D .2 22.若最简二次根式3a -8与17-2a 可以合并,则a =5. 3.计算: (1)348-913+312; (2)(48+20)+(12-5). 解:(1)=15 3. (2)63+ 5. 活动3 拓展延伸(学生对学)【例3】已知4x 2+y 2-4x -6y +10=0,求23x 9x +y 2x y 3-x 21x -5x yx的值. 【互动探索】先将已知等式进行变形,把它配成完全平方式,得(2x -1)2+(y -3)2=0,即可求出x 、y 的值.再根据二次根式的加减运算,先把各项化成最简二次根式,再合并同类二次根式,最后代入求值.【解答】∵4x 2+y 2-4x -6y +10=4x 2-4x +1+y 2-6y +9=(2x -1)2+(y -3)2=0,∴x =12,y =3. 原式=23x 9x +y 2x y3-x 21x+5x y x=2x x +xy -x x +5xy =x x +6xy . 当x =12,y =3时,原式=12×12+632=24+3 6. 【互动总结】(学生总结,老师点评)化简求值时一般是先化简为最简二次根式,再代入求值.化简时不能跨度太大,缺少必要的步骤易造成错解.环节3 课堂小结,当堂达标 (学生总结,老师点评)二次根式的加减法则:二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.练习设计请完成本课时对应训练!第2课时 二次根式的混合运算教学目标一、基本目标 【知识与技能】掌握含有二次根式的混合运算和含有二次根式的乘法公式的应用. 【过程与方法】复习整式运算知识并将该知识应用于含有二次根式的混合运算. 【情感态度与价值观】理解知识间的类比,进一步体会数学学习方法的重要性. 二、重难点目标 【教学重点】熟练地进行二次根式的混合运算,进一步提高运算能力. 【教学难点】正确地运用二次根式混合运算法则及运算律进行运算,并把结果化简.教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P14的内容,完成下面练习. 【3 min 反馈】1.二次根式的混合运算顺序与整式的混合运算顺序一样,即先乘方,再乘除,最后加减,有括号的先算括号里面的.2.在二次根式的运算中,多项式乘法法则和乘法公式仍然适用. 3.计算: (1)13×27; (2)35; (3)80-45; (4)(25-2)2. 解:(1)3. (2)155. (3) 5. (4)22-410. 环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】计算: (1)12223×9145÷35; (2)⎝⎛⎭⎫312-213+48÷23+⎝⎛⎭⎫132;(3)2-(3+2)÷3.【互动探索】(引发学生思考)如何进行二次根式的混合运算? 【解答】(1)原式=12×9×83×145×53=12×9×229= 2. (2)原式=⎝⎛⎭⎫63-233+43÷23+13=2833×123+13=143+13=5. (3)原式=2-3+23=2-1-233.【互动总结】(学生总结,老师点评)二次根式的混合运算顺序与整式的混合运算顺序一样,即先乘方,再乘除,最后加减,有括号的先算括号里面的.【例2】计算:(1)(2+3-6)(2-3+6); (2)(2-1)2+22(3-2)(3+2); (3)⎝⎛⎭⎫6-1332-3424×(-26).【互动探索】(引发学生思考)(1)利用平方差公式进行计算即可;(2)先利用完全平方公式和平方差公式进行计算即可;(3)利用乘法分配律进行计算即可.【解答】(1)原式=[2+(3-6)][2-(3-6)]=(2)2-(3-6)2=2-(9-218)=2-9+62=-7+6 2.(2)原式=2-22+1+22×(3-2)=2-22+1+22=3. (3)原式=⎝⎛⎭⎫6-66-326×(-26)=-236×(-26)=8. 【互动总结】(学生总结,老师点评)利用乘法公式进行二次根式混合运算的关键是熟记常见的乘法公式;在二次根式的混合运算中,整式乘法的运算律同样适用.活动2 巩固练习(学生独学) 1.下列计算:①(2)2=2;② (-2)2=2;③(-23)2=12;④(2+3)( 2-3)=-1.其中正确的有( D )A .1个B .2个C .3个D .4个2.如果(2+2)2=a +b 2(a ,b 为有理数),则a = 6,b = 4. 3.计算: (1)(6+8)×3; (2)(46-32)÷22; (3)(5+6)(3-5); (4)(10+7)(10-7).解:(1)32+2 6.(2)23-32.(3)13-3 5.(4)3.活动3拓展延伸(学生对学)【例3】先化简,再求值:1x+y+1y+yx x+y,其中x=5+12,y=5-12.【互动探索】化简式子→代入x、y的值进行计算【解答】1x+y+1y+yx(x+y)=xyxy(x+y)+x(x+y)xy(x+y)+y2xy(x+y)=xy+x(x+y)+y2xy(x+y)=(x+y)2xy(x+y)=x+y xy.当x=5+12,y=5-12时,x+y=5,xy=1,所以原式= 5.【互动总结】(学生总结,老师点评)求代数式的值,如果直接代入计算比较繁琐,可以根据式子特点,整体代入进行计算.环节3课堂小结,当堂达标(学生总结,老师点评)二次根式的混合运算同整式的混合运算顺序相同,乘法公式和乘法法则同样适用.练习设计请完成本课时对应训练!。
16章二次根式全章测试题
第16章 二次根式一、选择题(每小题2分,共20分)1.有意义,那么x 的取值范围是( ) A.3x ≠ B.3x < C.3x > D.3x ≥2.12a -,那么( ) A.a <12 B.错误!未找到引用源。
≤12 C.a >12D.a ≥123.能够合并,那么a 的值为( )A.2B.3C.4D.54.已知3y =错误!未找到引用源。
, 则2xy 的值为( )A.15-B.15C.152-D.1525..对于二次根式92+x ,以下说法不正确的是 ( )A .它是一个正数B .是一个无理数C .是最简二次根式D .它的最小值是3 6.下列计算正确的是 ( )①69494=-⋅-=--))((;②69494=⋅=--))((;③145454522=-⋅+=-;④145452222=-=-; A .1个 B .2个 C .3个 D .4个7. 下列式子中二次根式的个数有 ( ) ⑴31;⑵3-;⑶12+-x ;⑷38;⑸231)(-;⑹)(11>-x x ;⑺322++x x .A .2个B .3个C .4个D .5个8.y b x a +的有理化因式是 ( )A .y x +B .y x -C .y b x a -D .y b x a +9.下列二次根式中,最简二次根式是 ( )A .23aB .31C .153D .143 10.计算:abab b a 1⋅÷等于 ( ) A .ab ab 21 B .ab ab 1 C .ab b1D .ab b 二、填空题(每小题3分,共24分)11.实数范围分解因式:⑴52-x =⑵742-a = (3)2223y x-=12.比较大小;______错误!未找到引用源。
;23-______32-. 13.计算:(1)=-222425 (2)=⋅baa b 182____________;(3)=⋅b a 10253___________.14.已知a ,b 为两个连续的整数,且a b ,则a b -= . 15.若实数y x ,2(0y =,则xy 的值为 .16.已知,a b 为有理数,,m n 分别表示5的整数部分和小数部分, 且21amn bn +=,则2a b += .17.当x___________时,x 31-是二次根式;当a=3时,则=+215a ___________.18.已知:2420-=x ,则221x x +的值是___________;若xx x x --=--3232成立,则x 满足_____________________. 三、解答题(46分)19.⑴))((36163--⋅-; ⑵63312⋅⋅;⑶521312321⨯÷;⑷)(b a b b a 1223÷⋅.(5)1); (6)20.先化简,再求值:(1)((6)a a a a --,其中12a =(2)111x x ⎛⎫- ⎪+⎝⎭其中x .21. (6分)已知22x y ==+,求下列代数式的值:(1)222x xy y ++ ; (2)22x y -.22.(6分)一个三角形的三边长分别为54 (1)求它的周长(要求结果化简); (2)请你给出一个适当的x 值,使它的周长为整数,并求出此时三角形周长的值.23.(4分)已知,a b 为等腰三角形的两条边长,且,a b满足4b ,求此三角形的周长.24.(6分)阅读下面问题:1=;2=. (1的值;(2(n 为正整数)的值; (3⋅⋅⋅25.(8分)小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:23(1+=,善于思考的小明进行了一下探索:设2(a m ++ (其中,,,a b m n均为正整数),则有2222a m n +=++, ∴ 222,2a m n b mn =+=.这样小明就找到一种把部分a +. 请仿照小明的方法探索并解决下列问题:(1)当,,,a b m n均为正整数时,若2(a m ++,用含有,m n 的式子分别表示a ,b ,得a =______,b =__________. (2)利用所探索的结论,找一组正整数,,,a b m n 填空:.(答案不唯一)(3)若2(a m ++,且,,a m n 均为正整数,求a 的值.。
八年级数学下册二次根式(全章)习题及答案(含答案)
二次根式16.1 二次根式:1. 有意义的条件是 。
2. 当__________3. 11m +有意义,则m 的取值范围是 。
4. 当__________x 是二次根式。
5. 在实数范围内分解因式:429__________,2__________x x -=-+=。
6. 2x =,则x 的取值范围是 。
7. 2x =-,则x 的取值范围是 。
8. )1x 的结果是 。
9. 当15x ≤5_____________x -=。
10. 把的根号外的因式移到根号内等于 。
11. 11x =+成立的条件是 。
12. 若1a b -+互为相反数,则()2005_____________a b -=。
13. )()()230,2,12,20,3,1,x y y x xx x y +=--++中,二次根式有( )A. 2个B. 3个C. 4个D. 5个 14. 下列各式一定是二次根式的是( )15. 若23a ,则)A. 52a -B. 12a -C. 25a -D. 21a -16. 若A ==( )A. 24a + B. 22a + C. ()222a + D. ()224a +17. 若1a≤)A. (1a-B. (1a-C. (1a-D. (1a-18.=x的取值范围是()A. 2x ≠ B. 0x≥ C. 2x D. 2x≥19.)A. 0B. 42a- C. 24a- D. 24a-或42a-20. 下面的推导中开始出错的步骤是()()()()()2311223224==-==∴=-∴=-A. ()1B. ()2C. ()3D. ()421.2440y y-+=,求xy的值。
22. 当a取什么值时,代数式1取值最小,并求出这个最小值。
23. 去掉下列各根式内的分母:())10x ())21x24. 已知2310x x -+=25. 已知,a b (10b -=,求20052006a b -的值。
16.2 二次根式的乘除1. 当0a ≤,0b__________=。
二次根式全章同步练习(含答案)
同步练习 (2)二次根式 (2)第1课时21.1二次根式(1) (2)第2课时21.1二次根式(2) (3)第3课时21.1二次根式(3) (3)第4课时21.2二次根式的乘除(1) (4)第5课时21.2二次根式的乘除(2) (6)第6课时21.2二次根式的乘除(3) (7)第7课时21.3二次根式的加减(1) (8)第8课时21.3 二次根式的加减(2) (9)第9课时21.3 二次根式的加减(3) (10)第10课时第21章二次根式单元复习(1) (12)第11课时第21章二次根式单元复习(2) (13)第12课时二次根式全章练习 (14)第13课时21.3二次根式的加减 (17)答案: (19)二次根式的乘除 (22)第1课时课堂练习 (22)第1课时课堂练习答案 (24)第2课时课堂练习 (24)第2课时课堂练习答案 (25)第3课时课堂练习 (26)第3课时课堂练习答案 (28)二次根式的加减 (29)答案 (32)同步练习二次根式第1课时21.1二次根式(1)一、选择题1.下列式子中,是二次根式的是()D.x2.下列式子中,不是二次根式的是()D.1 x3.已知一个正方形的面积是5,那么它的边长是()A.5 C.15D.以上皆不对二、填空题1.形如________的式子叫做二次根式.2.面积为a的正方形的边长为________.3.负数________平方根.三、综合提高题1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,•底面应做成正方形,试问底面边长应是多少?2.当x是多少时,x+x2在实数范围内有意义?3.4.x有()个.A.0B.1C.2D.无数5.已知a、b,求a、b的值.第2课时 21.1二次根式(2)一、选择题1.、个数是( ).A.4B.3C.2D.12.数a 没有算术平方根,则a 的取值范围是( ).A.a>0B.a ≥0C.a<0D.a=0二、填空题1.()2=________.2.x+1是一个_______数.三、综合提高题1.计算(1)2 (2)-2 (3)(12)2 (4)()2(5)2.把下列非负数写成一个数的平方的形式:(1)5 (2)3.4 (3)16(4)x (x ≥0)3.=0,求x y 的值.4.在实数范围内分解下列因式:(1)x 2-2 (2)x 4-9 3x 2-5第3课时 21.1二次根式(3)一、选择题的值是().A.0B.23C.423D.以上都不对2.a≥0比较它们的结果,下面四个选项中正确的是().二、填空题2.是一个正整数,则正整数m的最小值是________.三、综合提高题1.先化简再求值:当a=9时,求的值,甲乙两人的解答如下:甲的解答为:原式(1-a)=1;乙的解答为:原式=a+(a-1)=2a-1=17.两种解答中,_______的解答是错误的,错误的原因是__________.2.若│1995-a│=a,求a-19952的值.(提示:先由a-2000≥0,判断1995-a•的值是正数还是负数,去掉绝对值)3. 若-3≤x≤2时,试化简│x-2│。
二次根式全章教案(8课时)
初二数学二次根式全章教案授课时间:年月日第周星期课时序号一、课前导学:学生自学课本2-3页内容,并完成下列问题 1. 温故而知新:(1)如果一个数x 的平方等于a ,即2x =a ,那么x 叫做a 的,记为x =,(2)如果一个非负数x 的平方等于a ,即2x =a (0≥x ),那么非负数x 叫做a 的,记为x =, (3)计算下列各式的值:=,=,=,=,=,2)9(=,2.一般地我们把形如()叫做二次根式,a 叫做_____________, 3. 试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?3, 16-, 34, )0(3≥a a , 12+x4.根据算术平方根意义计算 :(1) 2)4( (2)(3)2)5.0( (4)2)31(根据计算结果,你能得出结论: (0≥a ), 5.计算:(1)2)23( (2)2)52(- 二、合作、交流、展示: 1.理解二次根式概念(1)二次根式a 中,字母a 必须满足 ; (2)二次根式与算术平方根有何关系呢? (3)当0≥a 时,a 是什么数?教 学 过 程 设 计2)3(________)(2=a【归纳】二次根式的双重非负性: 2.当x 取何值时,下列各二次根式有意义(1); (2)x 322- (3)2)2(-x (4)x--21 3.若,则= ,4.已知,求xy的值.【收获感悟】:, 三、巩固与应用1. 若x -在实数范围内有意义,则x 为(), A.正数 B.负数 C.非负数 D.非正数2.当x 时,二次根式x 35-有意义,3. 在式子xx+-121中,x 的取值范围是____________.4.在实数范围内因式分解:①72-x ② 4a 2-115a 的值为___________. 6.已知42-x +y x +2=0,则=-y x _____________. 7.已知+3,求y x 的值.8.拓展提高:已知a 、b =b +4,求a 、b 的值.四、小结:1.二次根式的概念:; 2.二次根式的性质:(1),(2); 3.巧用非负数解题. 五、作业:《作业本》第1页. 六、课后反思:授课时间: 年 月 日 第 周 星 期 课时序号 43-x 20a -2a b -一、课前导学:学生自学课本第4页内容,并完成下列问题 1.计算:=24=23.0=2)52(=20观察其结果与根号内幂底数的关系,归纳得到:当=≥2,0a a 时2.计算:=-2)4(=-2)3.0(=-2)52(=-2)20( 观察其结果与根号内幂底数的关系,归纳得到:当=<2,0a a 时 3.【归纳】二次根式的性质:=2a = 4.化简下列各式:(1)=22.0(2)=-2)3.0( (3)=-2)4( (4)()22a =(0<a )5.代数式:用基本运算符号把连接起来的式子叫做代数式. 二、合作、交流、展示:1.理解二次根式三条基本性质: (1)双重非负性:a 0() (2)()=2a () (3) =2a2.【讨论】二次根式的性质:)0()(2≥=a a a 与a a =2有什么区别与联系?教 学 过 程 设 计3.化简下列各式(1))0(42≥x x (2) 4x (3))3()3(2≥-a a4.已知2<x <3,化简:3)2(2-+-x x5.已知a 、b 、c 在数轴上的位置如图所示,化简b b c c a a ---++-22)(.三、巩固与应用 1. 课本第4页练习2; 2.2)4(-π= ;3.a 、b 、c 为三角形的三条边,则=--+-+c a b c b a 2)(________; 4.你能运用公式a a =2比较53与34的大小吗?5.当x = 6.拓展提高:(1)已知0<x <1,化简:4)1(2+-xx -4)1(2-+xx(2)已知实数a 满足a a a =-+-2014)2013(2,求22013-a 的值.四、小结:1.二次根式的性质:,,;2.灵活运用二次根式的性质解题. 五、作业:《作业本》第2页. 六、课后反思:授课时间: 年 月 日 第 周 星 期 课时序号一、课前导学:学生自学课本6-7页内容,并完成下列问题1、探究 ⑴ 计算下列各式,观察计算结果:①×=______ ,=_______ ② × =_______ ,=_______ ③ × =_______ , =_______ ⑵ 仔细观察上题中的规律,猜想b a ∙=()0,0≥≥b a (二次根式乘法法则)再例举两个例子验证你的猜想:; 2、计算× =;×= ;274∙= ;123∙=3、乘法公式反过来得到:=ab ()0,0≥≥b a ,4、填空:⑴=∙=⨯=24248;=∙=⨯=292918;⑵请你用上述方法化简下列二次根式: 12=; 27=; 48=; 72=; 98=; 250x =;二、合作、交流、展示:1.二次根式的乘法法则:b a ∙=,注意:乘法法则成立的条件是: (为什么?)2、积的算术平方根的性质(乘法法则的逆向运用)=ab 注意:⑴性质成立的条件是:(为什么?) ⑵如何化简:()()94-⨯-?4994⨯16252516⨯1003636100⨯23563、例题1 计算:⑴3127⨯ ⑵4510152⨯ ⑶1531372⨯-例题2 化简:⑴()()8116-⨯- ⑵3225b a ⑶4499ab ⑷【收获感悟】:如何进行二次根式的化简,例题3 计算:⑴714⨯ ⑵10253⨯ ⑶ xy x 31122⨯-三、巩固与应用 1、等式成立的条件是( )A .x ≥1B .x ≥-1C .-1≤x ≤1D .x ≥1或x ≤-12、下列各等式成立的是( ). A.4×2=8B .5×4=20 C.5×2=10 D .y x y x +=+224、不改变式子的值,把根号外的数移到根号里面: ⑴=32 ; ⑵313=;⑶ -=62 5、比较下列两数的大小:⑴227 ⑵347 ⑶23-32-6、已知一个三角形的一条边长为502,这条边上的高为83,求这个三角形的面积.7、计算:(1)6×(-2); (28、(拓展)化简⑴a a 1 ⑵aa 1-四、小结:1.二次根式的乘法法则:; 2.积的算术平方根的性质:, 五、作业:《作业本》第3页. 六、课后反思:授课时间: 年 月 日 第 周 星 期 课时序号 2212b a 1112-=-∙+x x x 55532532686一、课前导学:学生自学课本第8-9页内容,并完成下列问题 1、写出二次根式的乘法法则和积的算术平方根的性质b a ∙=,=ab2、计算: (1)38×(-46) (2)3612ab ab ⨯3、填空: (1;(2; (3;(4.你能发现什么规律呢?一般地,对二次根式的除法规定:二次根式的除法法则商的算术平方根的性质 4、计算:(1)312(2)16141÷5、化简:(1)257(2)932(3))0,0(42522≥>b a a b 二、合作、交流、展示:仿照课本例题利用二次根式的除法法则和商的算术平方根的性质完成以下题目1、计算:(1(2(3)52154【温馨提示】:当二次根式前面有系数时,类比单项式除以单项式法则进行计算:即系数之商作为商的系数,教 学 过 程 设 计被开方数之商为被开方数。
初中数学同步训练必刷题(人教版八年级下册 第十六章 二次根式 全章测试卷)(学生版)
初中数学同步训练必刷题(人教版八年级下册第十六章二次根式全章测试卷)一、单选题(每题3分,共30分)1.(2022八下·中山期末)式子√x+3在实数范围内有意义,则x的取值范围是()A.x≠-3B.x≥−3C.x≥3D.x≥02.(2022八下·番禺期末)下列计算正确的是()A.√22=2B.√(−2)2=﹣2C.√−83=2D.√(−2)2=±2 3.(2022八下·防城港期末)下列各式中,是最简二次根式的为().A.√52B.√2C.√27D.√134.(2022八下·拱墅期末)−√2×√5=()A.√10B.−√10C.√7D.−√75.(2022八下·朝阳期末)若√63n是整数,则正整数n的最小值是()A.3B.7C.9D.636.(2022八下·潢川期中)下列关于2√6的表述错误的是()A.2√6是最简二次根式B.2√6是无理数C.2√6就是2×√6D.2√6大于57.(2022八下·临海期末)下列计算正确的是()A.√2+√3=√5B.2√2−√2=1C.√6×√2=2√3D.√(−2)2=−2 8.(2022八下·滨海期末)化简后,与√2的被开方数相同的二次根式是()A.√10B.√12C.√12D.√169.(2022八下·藁城期末)下列四个算式中,正确的是() A.√(−1)2=−1B.√5−√2=√3 C.√(−4)×(−9)=√−4×√−9D.√12÷√3=210.已知a=√2+1,b=√2−1,则a与b的关系是()A.相等B.互为相反数C.互为倒数D.平方值相等二、填空题(每题3分,共30分)11.(2022八下·镇海区期末)代数式2√1−x有意义,则x的取值范围是. 12.(2022八下·诸暨期末)当x=-2时,二次根式√2−7x的值是13.(2021八下·澄海期末)计算√3×√15√5的结果是.14.(2021八下·建华期末)若0≤a≤3 ,则√a2+√a2−6a+9=.15.(2021八下·新罗期末)长方形的宽是√3,面积为2√6,则长方形的长为16.(2022八下·诸暨期末)已知x,y均为实数,y=√x−2+√2−x+5,则x+y的值为17.(2022八下·灌云期末)如果最简二次根式√x+3与最简二次根式√1+2x是同类二次根式,则x=.18.(2021八下·营口期末)计算:√12+|√3−2|=.19.(2021八下·平泉期末)已知:√12+3√13=a√3+√3=b√3,则b a=.20.(2021八下·曲靖期末)如图是一个简单的数值运算程序,当输入x的值为√6时,则输出的值为.三、解答题(共6题,共60分)21.(2022八下·涿州期末)计算(1)2√7−√7(2)(√5+√6)(√6−√5)(3)(√12−√13)×√3(4)√8+√18√222.如图A,B,C三点表示的数分别为a,b,c.利用图形化简:|a−b|−√(c−b)2+√(a−c)2.23.(2019八下·岱岳期末)在一个边长为(2 √3+3 √5)cm的正方形的内部挖去一个长为(2 √3+ √10)cm,宽为(√6﹣√5)cm的矩形,求剩余部分图形的面积.24.(2020八下·潢川期中)(1)当x=54时,求√x+1的值;(2)①x为何值时二次根式√12−x的值是10?②当x=▲时二次根式√12−x有最小值.25.挖掘问题中所隐含的条件,解答下列问题:(1)如果√(x−2)2=2-x,那么()A.x<2B.x≤2C.x>2D.x≥2(2)已知√(x−3)2−(√2−x)2=2x,求x的值.(3)已知a,b是实数,且b>√a−2-2 √2−a+1,请化简:√1−2b+b2−√a2.26.(2020八下·北京期中)小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:3+2√2=(1+√2)2,善于思考的小明利用完全平方公式进行了以下探索:3+2√2=12+2×1×√2+(√2)2=(1+√2)2.请你仿照小明的方法解决下列问题:(1)7−4√3=(a−b√3)2,则a=,b=;的算术平方根,求4x2+4x−2020的值;(2)已知x是2−√32(3)当1≤x≤2时,化简√x+2√x−1√x−2√x−1=.答案解析部分1.【答案】B【知识点】二次根式有意义的条件【解析】【解答】解:依题意有x+3≥0,即x≥−3时,二次根式有意义.故答案为:B.【分析】根据题意先求出x+3≥0,再求解即可。
第五讲二次根式PPT课件
(2)( 10-3)2012·( 10+3)2013. 解 原式=( 10-3)2012·( 10+3)2012·( 10+3) =[( 10-3)( 10+3)]2012·( 10+3) =[( 10)2-32]2012·( 10+3) =(10-9)2012·( 10+3)=1×( 10+3)= 10+3.
4. 同类二次根式:把几个二次根式化为最 简二次根式以后,它们的被开方数相同.
常考类型剖析
类型一 二次根式有意义的条件
例1(’14巴中)要使式子 m 1 有意
m 1
义,则实数m的取值范围是
(D)
A. m>-1
B. m≥-1 C. m>-1且m≠1 D. m≥-1且m≠1
第4课时┃ 数的开方及二次根式 考点1 二次根式的相关概念与性质
当堂检测
1.[2014·拱墅二模] 16的值等于
(A)
A.4 B.-4 C.±2 D.2
2.[2014·孝感] 下列二次根式中,不能与 2合并的是
(C )
A.
1 2
B. 8
C.
12
D. 18
考点聚焦
杭考探究
当堂检测
第4课时┃ 数的开方及二次根式
3.[2014·济宁] 如果 ab>0,a+b<0,那么下面各式:①
C. 27÷ 3=3
D. (-3)2=-3
解析 27÷ 3= 27÷3= 9=3.
(2)计算: 24- 23+ 23-2
1 6
解 原式=2 6-12 6+13 6-13 6=32 6.
二次根式全章总复习
二次根式全章总复习三个概念概念1 二次根式1.下列各式一定是二次根式的是( ) 2.下列式子中为二次根式的是( ) a B .x +1 C .1-x D .x +1 A .8 B .-1 C . 2 D .x(x <0)3.在代数式:①;②;③;④;⑤;⑥中,一定是二次根式的有( )A.5个 B.4个 C.3个 D.2个 4.二次根式13)3(2++m m 的值是( )A .23B .32C .22D .0 5.已知a 为实数,下列式子一定有意义的是( )A. B. C. D.6.已知x ,y 为实数,且满足1+x -(y -1)1-y =0,那么x 2 016-y 2 017的值是多少?概念2 代数式1.下列式子中属于代数式的有( )①0;②a ;③x +y =2;④x -5;⑤2a ;⑥a 2+1;⑦a ≠1;⑧x ≤3. A .7个 B .6个 C .5个 D .4个2.农民张大伯因病住院,手术费为a 元,其他费用为b 元,由于参加农村合作医疗,手术费报销85%,其他费用报销60%,则张大伯此次住院共报销_________________元(用代数式表示). 概念3 最简二次根式1.二次根式45a ,2a 3,8a ,b ,13(其中a ,b 均大于或等于0)中,是最简二次根式的有_________个。
2.把下列各式化成最简二次根式.(1) 1.25; (2)4a 3b +8a 2b(a ≥0,b ≥0); (3)-n m 2(mn >0); (4)x -y x +y(x ≠y).3.下列二次根式中,哪些是最简二次根式?哪些不是?不是最简二次根式的请说明理由.412-402,8-x 2,22,x 2-4x +4(x>2),-x 12x ,0.75ab ,ab 2(b>0,a>0),9x 2+16y 2,(a +b )2(a -b )(a>b>0),x 3,x 3.二次根式的性质性质1 (a)2=a(a ≥0)1,下列计算正确的是( )A .-(7)2=-7 B .(5)2=25 C .(9)2=±9 D .-⎝⎛⎭⎪⎫-9162=916 2.在实数范围内分解因式:x 4-9=________.3.要使等式(8-x)2=x -8成立,则x =________. 性质2 a 2=a(a ≥0)1.实数a 在数轴上对应点的位置如图所示,则(a -4)2+(a -11)2化简后为( ) A .7 B .-7C .2a -15 D .无法确定 2.若成立,则m 的取值范围是__________3.已知三角形的两边长分别为3和5,第三边长为c ,化简:c 2-4c +4-14c 2-4c +16.4.先化简再求值:当a =5时,求a +1-2a +a 2的值,甲、乙两人的解答如下:甲的解答为:原式=a +(1-a )2=a +(1-a)=1;乙的解答为:原式=a +(1-a )2=a +(a -1)=2a -1=9. 请问谁的解答正确?请说明理由.性质3 积的算术平方根1.化简24的结果是( )A .4 6 B .2 6 C .6 2 D .8 32.能使得(3-a )(a +1)=3-a ·a +1成立的所有整数a 的和是________. 3.若3)3(-⋅=-m m m m ,则m 的取值范围是4.将根号外的移到根号内; .性质4 商的算术平方根1.化简下列二次根式:(1)449; (2)121b516a2(a <0,b >0).性质5。
华师大九年级(上)教案-第22章-二次根式(全)
22.1. 二次根式(1)教学内容二次根式的概念及其运用 教学目标a ≥0)的意义解答具体题目. 提出问题,根据问题给出概念,应用概念解决实际问题. 教学重难点关键1a ≥0)的式子叫做二次根式的概念;2a ≥0)”解决具体问题. 教学过程 回顾当a 是正数时,a 表示a 的算术平方根,即正数a 的正的平方根. 当a 是零时,a 等于0,它表示零的平方根,也叫做零的算术平方根. 当a 是负数时,a 没有意义.概括a (a ≥0)表示非负数a 的算术平方根,也就是说,a (a ≥0)是一个非负数,它的平方等于a .即有:(1)a ≥0(a ≥0);(2)2)(a =a (a ≥0).形如a (a ≥0)的式子叫做二次根式.注意在二次根式a 中,字母a 必须满足a ≥0,即被开方数必须是非负数.例 x 是怎样的实数时,二次根式1-x 有意义?分析 要使二次根式有意义,必须且只须被开方数是非负数. 解被开方数x-1≥0,即x ≥1.所以,当x ≥1时,二次根式1-x 有意义.思考2a 等于什么?我们不妨取a 的一些值,如2,-2,3,-3,……分别计算对应的a2的值,看看有什么规律:概括:当a ≥0时,a a =2; 当a <0时,a a -=2.这是二次根式的又一重要性质.如果二次根式的被开方数是一个完全平方,运用这个性质,可以将它“开方”出来,从而达到化简的目的.例如:22)2(4x x ==2x (x ≥0); 2224)(x x x ==.练习1.x 取什么实数时,下列各式有意义.(1)x 43-; (2)23-x ;(3)2)3(-x ; (4)x x 3443-+-拓展例当x +11x +在实数范围内有意义?分析11x +0和11x +中的x+1≠0.解:依题意,得23010x x +≥⎧⎨+≠⎩由①得:x ≥-32由②得:x ≠-1当x ≥-32且x ≠-111x +在实数范围内有意义.例(1)已知,求xy的值.(答案:2)(2),求a 2004+b 2004的值.(答案:25) 归纳小结(学生活动,老师点评) 本节课要掌握:1(a ≥0)的式子叫做二次根式,2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数. 布置作业1. 教材P422.1 二次根式(2)教学内容1a ≥0)是一个非负数;2.2=a (a ≥0). 教学目标a ≥02=a (a ≥0),并利用它们进行计算和化简.a ≥0)是一个非负数,用具体数据2=a (a ≥0);最后运用结论严谨解题.教学重难点关键1a ≥0)是一个非负数;)2=a (a ≥0)及其运用.2a ≥0)是一个非负数;•2=a (a ≥0).教学过程一、复习引入 (学生活动)口答 1.什么叫二次根式?2.当a ≥0a<0 [老师点评(略).] 二、探究新知 议一议:(学生分组讨论,提问解答)(a ≥0)是一个什么数呢?老师点评:根据学生讨论和上面的练习,我们可以得出做一做:根据算术平方根的意义填空:2=_______;)2=_______;2=______;2=_______;(2=______;2=_______;)2=_______.4的算术平方根,根据算术平方根的意义,是一个平方等于4)2=4.同理可得:)2=2,2=9,)2=3,2=13,)2=72,)2=0,所以例1 计算1.2 2.(2 3.2 4.(2)2分析)2=a (a ≥0)的结论解题.解:2 =32,(2 =32·2=32·5=45,2=56,274=. 三、巩固练习计算下列各式的值:2 2 2 )2 (222- 四、应用拓展 例2 计算1.2(x ≥0) 2.2 3.2 4.2分析:(1)因为x ≥0,所以x+1>0;(2)a 2≥0;(3)a 2+2a+1=(a+1)≥0;(4)4x 2-12x+9=(2x )2-2·2x ·3+32=(2x-3)2≥0.所以上面的4)2=a (a ≥0)的重要结论解题.解:(1)因为x ≥0,所以x+1>0,2=x+1(2)∵a 2≥02=a 2(3)∵a 2+2a+1=(a+1)2 , 又∵(a+1)2≥0,∴a 2+2a+1≥0 2+2a+1(4)∵4x 2-12x+9=(2x )2-2·2x ·3+32=(2x-3)2 , 又∵(2x-3)2≥0∴4x 2-12x+9≥02=4x 2-12x+9例3在实数范围内分解下列因式:(1)x 2-3 (2)x 4-4 (3) 2x 2-3五、归纳小结 本节课应掌握:1a ≥0)是一个非负数;2.2=a (a ≥0);反之:a=2(a ≥0).六、布置作业1.教材P教学反思:22.1 二次根式(3)教学内容a(a≥0)教学目标(a≥0)并利用它进行计算和化简.(a≥0),并利用这个结论解决具体问题.教学重难点关键1a(a≥0).2.难点:探究结论.3.关键:讲清a≥0a才成立.教学过程一、复习引入老师口述并板收上两节课的重要内容;1(a≥0)的式子叫做二次根式;2a≥0)是一个非负数;3.2=a(a≥0).那么,我们猜想当a≥0是否也成立呢?下面我们就来探究这个问题.二、探究新知(学生活动)填空:=_______;=________.(老师点评):根据算术平方根的意义,我们可以得到:110=23=0=37.例1 化简(1 (2 (3 (4分析:因为(1)9=-32,(2)(-4)2=42,(3)25=52,(4)(-3)2=32(a ≥0)•去化简.解:(1 (2=4(3 (4 三、巩固练习 教材P .四、应用拓展例2 填空:当a ≥0;当a<0,•并根据这一性质回答下列问题.(1,则a 可以是什么数? (2,则a 可以是什么数?(3,则a 可以是什么数?分析(a ≥0),∴要填第一个空格可以根据这个结论,第二空格就不行,应变形,使“( )2”中的数是正数,因为,当a ≤0-a ≥0.(1)根据结论求条件;(2)根据第二个填空的分析,逆向思想;(3)根据(1)、(2)│a │,而│a │要大于a ,只有什么时候才能保证呢?a<0.解:(1,所以a ≥0; (2,所以a ≤0;(3)因为当a ≥0,即使a>a 所以a 不存在;当a<0,,即使-a>a ,a<0综上,a<0例3当x>2 五、归纳小结(a ≥0)及其运用,同时理解当a<0a 的应用拓展. 六、布置作业1.先化简再求值:当a=9时,求甲的解答为:原式(1-a)=1;乙的解答为:原式(a-1)=2a-1=17.两种解答中,_______的解答是错误的,错误的原因是__________.2.若│1995-a│=a,求a-19952的值.(提示:先由a-2000≥0,判断1995-a•的值是正数还是负数,去掉绝对值)3. 若-3≤x≤2时,试化简│x-2│教学反思:22.2 二次根式的乘除第一课时教学内容a≥0,b≥0)(a≥0,b≥0)及其运用.教学目标a≥0,b≥0)(a≥0,b≥0),并利用它们进行计算和化简a≥0,b≥0)并运用它进行计算;•利用逆(a≥0,b≥0)并运用它进行解题和化简.教学重难点关键(a≥0,b≥0)(a≥0,b≥0)及它们的运用.a≥0,b≥0).a⨯,如=或关键:要讲清(a<0,b<0)=b.教学方法:三疑三探教学过程一、设疑自探——解疑合探自探1.(学生活动)请同学们完成下列各题.1.填空(1=______;(2=_______=________.(3.参考上面的结果,用“>、<或=”填空.2.利用计算器计算填空(1,(2(3(4(5.(学生活动)让3、4个同学上台总结规律.老师点评:(1)被开方数都是正数;(2)两个二次根式的乘除等于一个二次根式,•并且把这两个二次根式中的数相乘,作为等号另一边二次根式中的被开方数.一般地,对二次根式的乘法规定为反过来:合探1. 计算(1(2(3(4分析:(a≥0,b≥0)计算即可.合探2 化简(1(2(3(4(5(a≥0,b≥0)直接化简即可.二、质疑再探:同学们,通过学习你还有什么问题或疑问?与同伴交流一下!三、应用拓展判断下列各式是否正确,不正确的请予以改正:(1=(2=4四、巩固练习(1)计算(学生练习,老师点评)①②×(2) 化简: ; ;五、归纳小结(师生共同归纳)本节课应掌握:(1(a≥0,b≥0)(a≥0,b≥0)及其运用.六、作业设计一、选择题1,•那么此直角三角形斜边长是().A.cm B.C.9cm D.27cm2.化简).A B C.D.x-=)311A.x≥1 B.x≥-1 C.-1≤x≤1 D.x≥1或x≤-14.下列各等式成立的是().A.×B.×C.×D.×二、填空题1.2.自由落体的公式为S=12gt2(g为重力加速度,它的值为10m/s2),若物体下落的高度为720m,则下落的时间是_________.三、综合提高题探究过程:观察下列各式及其验证过程.(1)验证:===(2)验证:=同理可得:==,……通过上述探究你能猜测出:(a>0),并验证你的结论.教后反思:22.2 二次根式的乘除第二课时教学内容a≥0,b>0)a≥0,b>0)及利用它们进行计算和化简.教学目标a≥0,b>0a≥0,b>0)及利用它们进行运算.利用具体数据,通过学生练习活动,发现规律,归纳出除法规定,并用逆向思维写出逆向等式及利用它们进行计算和化简.教学重难点关键1a≥0,b>0)a≥0,b>0)及利用它们进行计算和化简.2.难点关键:发现规律,归纳出二次根式的除法规定.教学方法三疑三探教学过程一、设疑自探——解疑合探自探1.(学生活动)请同学们完成下列各题:1.填空(1;(2=_____;(3;(4=________.2.利用计算器计算填空:(1=_____,(2=_____,(3=____,(4=_____.每组推荐一名学生上台阐述运算结果.(老师点评)刚才同学们都练习都很好,上台的同学也回答得十分准确,根据大家的练习和回答,我们进行合探:二次根式的除法规定:一般地,对二次根式的除法规定:下面我们利用这个规定来计算和化简一些题目.合探1.计算:(1 (2 (3 (4分析:上面4a ≥0,b>0)便可直接得出答案.合探2.化简:(1 (2 (3 (4(a ≥0,b>0)就可以达到化简之目的. 三、质疑再探:同学们,通过学习你还有什么问题或疑问?与同伴交流一下!四、应用拓展=,且x 为偶数,求(1+x 的值.分析:a ≥0,b>0时才能成立. 因此得到9-x ≥0且x-6>0,即6<x ≤9,又因为x 为偶数,所以x=8.五、归纳小结(师生共同归纳)a ≥0,b>0a ≥0,b>0)及其运用.六、作业设计 一、选择题1÷的结果是( ).A .27B .27C D2====数学上将这种把分母的根号去掉的过程称作“分母有理化”,那么,化简的结果是( ). A .2 B .6 C .13D二、填空题 1.分母有理化:(1)=_________;(2)=________;(3)2.已知x=3,y=4,z=5_______.三、综合提高题计算(1·(m>0,n>0)(2)(a>0)教后反思:22.2 二次根式的乘除(3)第三课时教学内容最简二次根式的概念及利用最简二次根式的概念进行二次根式的化简运算.教学目标理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式.通过计算或化简的结果来提炼出最简二次根式的概念,并根据它的特点来检验最后结果是否满足最简二次根式的要求.重难点关键1.重点:最简二次根式的运用.2.难点关键:会判断这个二次根式是否是最简二次根式.教学方法三疑三探教学过程一、设疑自探——解疑合探自探1.(学生活动)请同学们完成下列各题(请三位同学上台板书)B A C计算(1(2,(3自探2.观察上面计算题的最后结果,可以发现这些式子中的二次根式有什么特点?(有如下两个特点:1.被开方数不含分母;2.被开方数中不含能开得尽方的因数或因式.)我们把满足上述两个条件的二次根式,叫做最简二次根式.合探1.把下面的二次根式化为最简二次根式:(1)合探2.如图,在Rt△ABC中,∠C=90°,AC=,BC=6cm,求AB的长.132====6.5(cm)因此AB的长为.三、质疑再探:同学们,通过学习你还有什么问题或疑问?与同伴交流一下!四、应用拓展观察下列各式,通过分母有理化,把不是最简二次根式的化成最简二次根式:121=-,=,从计算结果中找出规律,并利用这一规律计算+))的值.分析:由题意可知,本题所给的是一组分母有理化的式子,因此,分母有理化后就可以达到化简的目的.五、归纳小结(师生共同归纳)本节课应掌握:最简二次根式的概念及其运用.六、作业设计一、选择题1y>0)是二次根式,那么,化为最简二次根式是().A(y>0)By>0)C(y>0)D.以上都不对2.把(a-1a-1)移入根号内得( ).A B C . D . 3.在下列各式中,化简正确的是( )A B =±12C 2D .4的结果是( )A .B .C .D .二、填空题1.(x ≥0)2._________.三、综合提高题1.已知a 确,•请写出正确的解答过程:·1a(a-12.若x 、y 为实数,且y x y -的值.教后反思:22.3 二次根式的加减(1)第一课时教学内容二次根式的加减教学目标理解和掌握二次根式加减的方法.重难点关键1.重点:二次根式化简为最简根式.2.难点关键:会判定是否是最简二次根式.教学方法三疑三探教学过程一、设疑自探——解疑合探自探(学生活动):计算下列各式.(1)(2)(3(4)因此,二次根式的被开方数相同是可以合并的,如可以合并吗?可以的.(板书)所以,二次根式加减时,可以先将二次根式化成最简二次根式,•再将被开方数相同的二次根式进行合并.合探1.计算(1(2分析:第一步,将不是最简二次根式的项化为最简二次根式;第二步,将相同的最简二次根式进行合并.合探2.计算(1)(2))+三、质疑再探:同学们,通过学习你还有什么问题或疑问?与同伴交流一下!四、应用拓展已知4x 2+y 2-4x-6y+10=0,求(23+y 2-(x )的值.分析:本题首先将已知等式进行变形,把它配成完全平方式,得(2x-1)2+(y-3)2=0,即x=12,y=3.其次,根据二次根式的加减运算,先把各项化成最简二次根式,•再合并同类二次根式,最后代入求值.五、归纳小结(师生共同归纳) 本节课应掌握:(1)不是最简二次根式的,应化成最简二次根式;(2)相同的最简二次根式进行合并.六、作业设计 一、选择题1.以下二次根式:;;是同类二次根式的是( ).A .①和②B .②和③C .①和④D .③和④2.下列各式:①;②17=1,其中错误的有( ).A .3个B .2个C .1个D .0个 二、填空题1、是同类二次根式的有________.2.计算二次根式-3的最后结果是________. 三、综合提高题1≈2.236)-)的值.(结果精确到0.01)2.先化简,再求值.(-(,其中x=32,y=27. 教后反思:22.3 二次根式的加减(2)第二课时教学内容 利用二次根式化简的数学思想解应用题. 教学目标 运用二次根式、化简解应用题.重难点关键讲清如何解答应用题既是本节课的重点,又是本节课的难点、关键点. 教学方法 三疑三探 教学过程一、设疑自探——解疑合探上节课,我们已经学习了二次根式如何加减的问题,我们把它归为两个步骤:第一步,先将二次根式化成最简二次根式;第二步,再将被开方数相同的二次根式进行合并,下面我们研究三道题以做巩固.自探1.如图所示的Rt △ABC 中,∠B=90°,点P 从点B 开始沿BA 边以1厘米/•秒的速度向点A 移动;同时,点Q 也从点B 开始沿BC 边以2厘米/秒的速度向点C 移动.问:几秒后△PBQ 的面积为35平方厘米?PQ 的距离是多少厘米?(结果用最简二次根式表示)BAC QP(分析:设x 秒后△PBQ 的面积为35平方厘米,那么PB=x ,BQ=2x ,•根据三角形面积公式就可以求出x 的值.解:设x 后△PBQ 的面积为35平方厘米. 则有PB=x ,BQ=2x 依题意,得:12x ·2x=35 x 2=35PBQ 的面积为35平方厘米.===PBQ 的面积为35平方厘米,PQ 的距离为厘米.)自探2.要焊接如图所示的钢架,大约需要多少米钢材(精确到)?(分析:此框架是由AB 、BC 、BD 、AC 组成,所以要求钢架的钢材,•只需知道这四段的长度.BAC2m1m4mD解:由勾股定理,得=所需钢材长度为+7≈3×2.24+7≈13.7(m )答:要焊接一个如图所示的钢架,大约需要的钢材.)三、质疑再探:同学们,通过学习你还有什么问题或疑问?与同伴交流一下! 四、应用拓展若最简根式3a a 、b 的值.(•同类二次根式就是被开方数相同的最简二次根式)分析:同类二次根式是指几个二次根式化成最简二次根式后,被开方数相同;•事实上,根式|b|类二次根式的定义得3a-•b=•2,2a-b+6=4a+3b .由题意得432632a b a b a b +=-+⎧⎨-=⎩ ∴24632a b a b +=⎧⎨-=⎩ ∴a=1,b=1五、归纳小结(师生共同归纳)本节课应掌握运用最简二次根式的合并原理解决实际问题. 六、作业设计 一、选择题1.已知直角三角形的两条直角边的长分别为5和5,那么斜边的长应为( ).(•结果用最简二次根式)A .BC .D .以上都不对2.小明想自己钉一个长与宽分别为30cm 和20cm 的长方形的木框,•为了增加其稳定性,他沿长方形的对角线又钉上了一根木条,木条的长应为( )米.(结果同最简二次根式表示)A .BC .D . 二、填空题1.某地有一长方形鱼塘,已知鱼塘的长是宽的2倍,它的面积是1600m 2,•鱼塘的宽是_______m .(结果用最简二次根式)2.已知等腰直角三角形的直角边的边长为,•那么这个等腰直角三角形的周长是________.(结果用最简二次根式) 三、综合提高题1与n 是同类二次根式,求m 、n 的值.2.同学们,我们以前学过完全平方公式a 2±2ab+b 2=(a ±b )2,你一定熟练掌握了吧!现在,我们又学习了二次根式,那么所有的正数(包括0)都可以看作是一个数的平方,如3=2,5=()2,你知道是谁的二次根式呢?下面我们观察: (-1)2=()2-2·12 反之,-1)2 ∴=-1)2-1求:(1; (2(3(4,则m、n与a、b的关系是什么?并说明理由.教后反思:22.3 二次根式的加减(3)第三课时教学内容含有二次根式的单项式与单项式相乘、相除;多项式与单项式相乘、相除;多项式与多项式相乘、相除;乘法公式的应用.教学目标含有二次根式的式子进行乘除运算和含有二次根式的多项式乘法公式的应用.复习整式运算知识并将该知识运用于含有二次根式的式子的乘除、乘方等运算.重难点关键重点:二次根式的乘除、乘方等运算规律;难点关键:由整式运算知识迁移到含二次根式的运算.教学方法三疑三探教学过程一、设疑自探——解疑合探自探1.(学生活动):请同学们完成下列各题:1.计算(1)(2x+y)·zx (2)(2x2y+3xy2)÷xy2.计算(1)(2x+3y)(2x-3y)(2)(2x+1)2+(2x-1)2老师点评:这些内容是对八年级上册整式运算的再现.它主要有(1)•单项式×单项式;(2)单项式×多项式;(3)多项式÷单项式;(4)完全平方公式;(5)平方差公式的运用.如果把上面的x、y、z改写成二次根式呢?以上的运算规律是否仍成立呢?•仍成立.整式运算中的x、y、z是一种字母,它的意义十分广泛,可以代表所有一切,•当然也可以代表二次根式,所以,整式中的运算规律也适用于二次根式.自探2.计算:(1)(2)()÷分析:刚才已经分析,二次根式仍然满足整式的运算规律,•所以直接可用整式的运算规律.自探3.计算:(1))( (2)))分析:刚才已经分析,二次根式的多项式乘以多项式运算在乘法公式运算中仍然成立.三、质疑再探:同学们,通过学习你还有什么问题或疑问?与同伴交流一下!四、应用拓展 已知x b a -=2-x a b-,其中a 、b 是实数,且a+b ≠0,分析)=1,因此对代数式的化简,可先将分母有理化,再通过解含有字母系数的一元一次方程得到x 的值,代入化简得结果即可.解:原式=(x+1) =4x+2∵x b a -=2-x a b- ∴b (x-b )=2ab-a (x-a ) ∴bx-b 2=2ab-ax+a 2∴(a+b )x=a 2+2ab+b 2 ∴(a+b )x=(a+b )2 ∵a+b ≠0 ∴x=a+b∴原式=4x+2=4(a+b )+2五、归纳小结(师生共同归纳)本节课应掌握二次根式的乘、除、乘方等运算.六、作业设计一、选择题1.的值是( ).A .203B .23C .23D .2032 ).A .2B .3C .4D .1二、填空题1.(-12)2的计算结果(用最简根式表示)是________.2.((-()2的计算结果(用最简二次根式表示)是_______.3.若-1,则x 2+2x+1=________.4.已知,,则a2b-ab2=_________.三、综合提高题1时,(结果用最简二次根式表示)2.当教后反思:。
二次根式全章复习
①都是形如 a 的式子,
②a都是非负数.
一般地,形如 a(a≥0)的式子叫做二次根式.
其中a为整式或分式,a叫做被开方式.
1.判断下列各式是否是二次根式.
5 ( × ) a (a 0)( × ) 3 8 ( × ) a (a 0)( √ )
2. 下列各式一定是二次根式的是( C ).
A. x +1 B. x2 1
(2)如图所示,AD⊥DC于D,
A
BC⊥CD于C,
若点P为线段CD上动点。
B
①则AD=__2__ BC=__1__
DP C
拓展2
已知△ABP的一边AB= 10,
(1)在如图所示的4×4的方格中画出格点△ABP,使
三角形的三边为 5, 5, 10,
(2)如图所示,AD⊥DC于D,
A
BC⊥CD于C,
若点P为线段CD上动点。
1
a +1
2 1
1 2a
3 a 32
解:(1)由题意得:
a +1 0 a 1
即当 a 1 时, a +1 有意义.
(2)a 1 2
a (3) 为任意实数
求二次根式中字母的取值范围的基本依据:
①被开方数不小于零;
②分母中有字母时,要保证分母不为零。
1、 x取何值时,下列二次根式有意义?
(1) x 1 x 1 (2) 3x x 0
B
② 设DP=a,请用含a的代数式表
示AP,BP。则AP=___a_2_+_4____,
D
PC
B③P=当__a_(=_31__a时)_2_+,_1_则。PA+PB=__2__5__,当a=3,则PA+PB=_1_+__1_3_
人教版八年级数学下册第十六章 二次根式(全章)教案
16.1 二次根式[学习目标]理解二次根式的概念,并利用(a≥0)的意义解答具体题目.教学重点:形如(a≥0)的式子叫做二次根式的概念教学难点:利用“(a≥0)”解决具体问题.教法:1、引导发现法: 2、讲练结合法:学法:1、类比的方法、2、阅读的方法、3、分组讨论法4、练习法[学习过程]一、板书课题(一)讲述:同学们,我们来学习 16.1 二次根式二、出示目标(一)过渡语:要达到什么教学目标呢?请看投影:(二)屏幕显示学习目标理解二次根式的概念,并利用(a≥0)的意义解答具体题目.三、指导自学(一)过渡语:怎样才能当堂达到学习目标呢?请同学们按照指导认真自学.(二)出示自学自导自学指导认真看课本P2全部内容:1.思考“思考1、2”中的问题,完成思考1中的问题,理解二次根式的概念及二次根式有无意义的条件。
2.注意例题1的格式和步骤。
3.讨论回答思考2中的问题。
.如有疑问,可请教同桌或举手问老师.5分钟后,比谁能做对与例题类似的题.四、先学(一)学生看书,教师巡视,师督促每一位学生认真、紧张的自学,鼓励学生质疑问难.(二)过渡语:同学们,看完的请举手?懂了的请举手?好,下面就比一比,看谁能正确做出检测题.(三)检测 : P.3 练习1、2题。
学生练习,教师巡视。
(收集错误进行二次备课)五、后教教师引导学生评议、订正。
归纳小结:1.形如(a≥0)的式子叫做二次根式,“”称为二次根号.2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.五、当堂训练:一、选择题1.下列各式中①;②;③;④;⑤;⑥一定是二次根式的有()个。
A . 1 个 B. 2个 C. 3个 D. 4个2. 若,则b的值为()A.0 B.0或1 C.b≤3 D.b≥33.已知一个正方形的面积是5,那么它的边长是()A .5BC D.以上皆不对二、填空题1.形如________的式子叫做二次根式. 2.面积为a的正方形的边长为________. 3.负数________平方根.三、综合提高题1.若+有意义,则=_______.2.使式子有意义的未知数x有()个.A.0 B.1 C.2 D.无数3.当x是多少时,+在实数范围内有意义?4. 已知y=++5,求的值.教学反思:16.1 二次根式(2)[学习目标]理解(a≥0)是一个非负数和()2=a(a≥0),并利用它们进行计算和化简.教学重点:(a≥0)是一个非负数;()2=a(a≥0)及其运用.教学难点:导出(a≥0)是一个非负数;•用探究()2=a(a≥0).教法:1、引导发现法: 2、讲练结合法:学法:1、类比的方法2、阅读的方法3、分组讨论法4、练习法[学习过程]一、板书课题:16.1 二次根式(2)讲述:同学们,我们来学习16.1 二次根式(2)二、出示目标(一)过渡语:要达到什么教学目标呢?请看投影:(二)屏幕显示学习目标理解(a≥0)是一个非负数和()2=a(a≥0),并利用它们进行计算和化简.三、指导自学(一)过渡语:怎样才能当堂达到学习目标呢?请同学们按照指导认真自学.(二)出示自学自导自学指导认真看课本P.3“探究”至例2结束。
第1部分 第1章 第4节 二次根式
3.同类二次根式 几个二次根式化成② 最简二次根式 后,如果③ 被开方数 相同,这 几个二次根式称为同类二次根式.如 8与 2是同类二次根式.同类二次根 式可以合并,合并同类二次根式与合并同类项类似.
(2 2)2=8②;由①+②得:x2+y2+z2-xy-yz-xz=-2+8=6.
当代数式是由分式和二次根式结合时,常忽略分母不
为 0 而出错
(2019·恩施二模)使式子 x2x-+11有意义的 x 的取值范围是
A.x≥-1
B.x≥-1 且 x≠±1
(
)
C.x>-1 【错解】 A
D.x>-1 且 x≠1
= 2a
= (a+b)2-c2·c2-(a-b)2
4
4
= a+2b+c·a+2b-c·c+a2-b·b+2c-a
= p(p-a)(p-b)(p-c).
这充分说明海伦公式和秦九韶公式实质上是同一个公式,所以我们也
称公式①为海伦—秦九韶公式.
3.(2019·新泰期中)我国南宋著名数学家秦九韶在他的著作《数书九 章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个 三角形的三边长分别为 a,b,c,则该三角形的面积为 S=
先将各二次根式化为④ 最简二次根式 ,然后合并同类二次根式.
2.二次根式的乘除
(1)二次根式的乘法: a· b=⑤ ab (a≥0,b≥0);(2)二次根式的
除法: a=⑥ b
a b (a≥0,b>0);
初二数学《二次根式》全章测试含答案
《二次根式》全章检测班级____________姓名_________________成绩_____________一、选择题:(每小题3分,共24分)1.若32-x 是二次根式,则x 应满足的条件是( ) A. 23>x B. 23≥x C. 23<x D. 23≤x 2.下列二次根式中,是最简二次根式的是( ) A .2.0B .x1C .22b a - D .a 43.下列变形中,正确的是( ) A. (23)2=2×3=6 B.2)52(-=-52C.169+=169+ D.)4()9(-⨯-=49⨯4.若a a -=-1)1(2,则a 的取值范围是( ) A .1a >B .1≥aC .1a <D .1≤a5.化简后,与2的被开方数相同的二次根式是( )A.12 B. 18 C.41D. 32 6.实数a 在数轴上的位置如图所示,化简2)2(1-+-a a =( ) A .23a - B. 3- C .1 D .1- 7.下列各式中,一定成立的是( ) A.2)(b a +=a +b B. 22)1(+a =a 2+1C.12-a =1+a ·1-a D.b a =b1ab8.等腰三角形两边分别为32和25,那么这个三角形的周长是( )1- 0 12aA.2534+B.21034+C.2534+或21032+D.21032+ 二、填空题:(每小题3分,共24分) 9.使1-x x有意义的x 的取值范围是_______________ 10.若0442=+-++y y y x ,则xy 的值为________ 11.若0<n ,则化简3227m n =12.在实数范围内分解因式:94-x =_____________________13.当21<x <1时,122+-x x -241x x +-=______________ 14.如果最简二次根式a b b -3和22+-a b 是同类二次根式,则ab =_____________15.若322--+-=x x y ,则y x 的值为__________16.已知b a 、分别是5的整数部分和小数部分,则ba 1-=_____________ 三、解答题:17.计算:(每小题5分,共30分) (1) 3118122++- (2)213675÷⨯(3) 2524(35)36-++(4) (33+22)(23-32)(5) 12112(322)(223)(336)+-+-(6)322327633aa a a a -+18.先化简,再求值:(每小题6分,共12分) (1)(6x y x +33xy y )-(4y xy+36xy ),其中x =32,y =3(2) 已知x 为偶数,且a a a a a a a aa a a 39612-1,3131222-+---+--=--求的值四、解答题:(每小题5分,共10分) 19.已知4,4=-=+ab b a ,求aba b a b +的值20.先观察规律:, (454)51,34341,23231,12121-=+-=--=+-=+再利用这一规律计算下列式子的值:)12002)(200120021 (3)41231121(+++++++++参考答案:1 2 3 4 5 6 7 8 BCDDBCBD910 111210≠≥x x 且-4 m mn 33-)3)(3)(3(2-++x x x13141516232+-x 1 81 5- 17. (1)33524- (2) 10 (3) 465230-++ (4) 636- (5) 30202- (6) 33a a18. (1) 223,--xy (2) 23,11a a +-19. 4,2--ab 20. 2001。
九年级数学二次根式全章
易错难点剖析及注意事项提醒
01
易错点一:忽视被开方数的非负性
02
在解决二次根式问题时,要确保被开方数是非负数,否则 二次根式无意义。
03
易错点二:忽视二次根式的化简
04
在进行二次根式运算时,要先将二次根式化为最简形式, 再进行运算,否则可能导致结果错误。
05
易错点三:忽视运算过程中的符号问题
06
在进行二次根式运算时,要注意符号问题,特别是在进行 加减运算时,要确保同类二次根式的符号一致。
应用场景
适用于含有公因式的二次根式化简。
示例
$sqrt{18a^3b^4c^5}=sqrt{9a^2b^4c^4
times
2ac}=sqrt{9a^2b^4c^4}
times
sqrt{2ac}=3ab^2c^2sqrt{2ac}$
典型例题解析与思路拓展
01
典型例题
$sqrt{75}-sqrt{54}+sqrt{96}-sqrt{108}$
03 二次根式化简技巧与方法
完全平方公式在化简中应用
完全平方公式
01
$(a+b)^2=a^2+2ab+b^2$ 和 $(a-b)^2=a^2-2ab+b^2$
应用场景
02
当二次根式中含有完全平方项时,可以直接应用完全平方公式
进行化简。
示例
03
$sqrt{4+4sqrt{3}+3}=sqrt{(2+sqrt{3})^2}=2+sqrt{3}$
九年级数学二次根式全章
目 录
• 二次根式基本概念与性质 • 二次根式四则运算规则 • 二次根式化简技巧与方法 • 二次根式在生活实际问题中应用 • 复杂二次根式处理和转换策略 • 总结回顾与拓展延伸
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次根式
21.1 二次根式:
1.
2. 当__________
3. 11
m +有意义,则m 的取值范围是 。
4. 当__________x
5. 在实数范围内分解因式:429__________,2__________x x -=-+=。
6. 2x =,则x 的取值范围是 。
7. 2x =-,则x 的取值范围是 。
8. )1x 的结果是 。
9. 当15x ≤ 5_____________x -=。
10. 把的根号外的因式移到根号内等于 。
11. =
成立的条件是 。
12. 若1a b -+与互为相反数,则()2005
_____________
a b -=。
13. )))020x y x x y =-+ 中,二次
根式有( )A. 2个 B. 3个 C. 4个 D. 5个 14. 下列各式一定是二次根式的是( )
15. 若23a )
A. 52a -
B. 12a -
C. 25a -
D. 21a -
16. 若A =
=( )
A. 24a +
B. 22a +
C. ()2
22a + D. ()2
24a +
17. 若1a ≤,则 )
A. ()1a -(1a -
C. ()1a -(1a -
18. =
成立的x 的取值范围是( )
A. 2x ≠
B. 0x ≥
C. 2x
D. 2x ≥
19.
的值是( )
A. 0
B. 42a -
C. 24a -
D. 24a -或42a - 20.
下面的推导中开始出错的步骤是( )
(
)
(
)
()()
123224==
⋅⋅⋅⋅⋅-=
=
∴=-∴=-
A. ()1
B. ()2
C. ()3
D. ()
4
21. 2440y y -+=,求xy 的值。
22.
当a 1取值最小,并求出这个最小值。
21.2 二次根式的乘除
1. 当0a ≤,0
b __________=。
2.
_____,______m n ==。
3.
__________==。
4.
计算:_____________÷=。
5.
面积为,则长方形的长约为 (精确到0.01)。
6. 下列各式不是最简二次根式的是(
)
4
8. 对于所有实数,a b ,下列等式总能成立的是(
)
A. 2
a b
=+a b =+
22
a b
=+
a b =
+
9.
--
)
A. -
-
--
C. -=-
不能确定 10. )
A. 它是一个非负数
B. 它是一个无理数
C. 它是最简二次根式
D. 它的最小值为3 11. 计算:
()1()2
()(
()30,0a b -≥≥ ())40,0a b
21.3 二次根式的加减
1. )
4. 下列根式中,是最简二次根式的是( )
7. x ,小数部分为y y -的值是( )
A. 3
B. 8. 下列式子中正确的是( )
+=a b =-
C. (a b =-
D.
2
2
=
=
+
11. ,,则它的周长是 cm 。
13. 已知x y ==33_________x y xy +=。
14. 已知
x =21________x x -+=。
15. ))
2000
2001
22
______________=。
16. 计算:
⑴.
- ⑵(
231⎛
-
+-
+ ⎝
⑶. (()2
771+-- ⑷. ((((2
2
2
2
1111++--
19.
已知:11a a
+=+22
1a a
+
的值。
21. 已知
()
1
1039
32
2
++=+-+-y x x x y x ,求
的值。
答案:
21.1 二次根式: 1. 4x ≥; 2. 122
x -≤≤
; 3. 01m m ≤≠-且; 4. 任意实数;
5. (
)(
(2
2
3;x x x x ++--; 6. 0x ≥;7. 2x ≤; 8. 1x -; 9. 4;
10. 11. 1x ≥; 12. -1; 13——20:CCCABCDB 21. 4; 22. 12
a =-
,最小值为1; 23. (
)(
)()
3
121x
x
x +;
25. -2
21.2 二次根式的乘除:
1. -
2. 1、2;
3. 18;
4. -5;
5. 2.83; 6——10: DDCAB
11. ()()()(
)()(
)2221.6,2.15,3.20,4.5.1,6.x a b ab a -- 12. (
)(
)()123.0ab ;
13. (
)(
)1.2.--
21.3 二次根式的加减: 1——8:BAACCCCC
10. 1、1;
11. (; 12. 1; 13. 10;
14. 4-;
2; 16. (
)(
)(
)()122,3.454.4
-+;
17. ()(
)()()()21.4,23.
,4.1x y y x
-+-;
18. 5;
19. 9+ 20. -1; 21. 2。