概率论与数理统计 7.3置信区间
概率与统计学中的置信区间公式详解
概率与统计学中的置信区间公式详解在概率与统计学中,置信区间是一种常用的统计方法,用于对总体参数的估计和推断。
在进行统计分析时,我们往往只能通过对样本进行观察和测量,并根据样本数据来推断总体的特征。
而置信区间可以给出一个区间范围,来表达对总体参数的估计程度和不确定性。
本文将详解置信区间的概念与公式,并为读者提供详实的例子来解释如何计算和应用置信区间。
一、概念解析1.1 总体与样本在概率与统计学中,我们研究的对象分为总体和样本。
总体是指我们想要研究的所有个体或事件的集合,而样本是从总体中随机抽取出的一部分个体或事件组成的集合。
通过对样本的观察和测量,我们可以推断总体的特征。
1.2 参数与统计量总体的特征可以用参数来描述,参数是总体的指标或特征值。
例如,总体的平均值、方差和比例等都是参数。
而样本的特征可以用统计量来描述,统计量是样本的指标或特征值。
例如,样本的平均值、方差和比例等都是统计量。
通过样本统计量的计算,我们可以对总体参数进行估计和推断。
1.3 置信区间的含义置信区间是对总体参数的估计给出一个区间范围。
假设我们从总体中抽取了一个样本,并计算出样本的统计量,我们可以根据样本数据和统计原理构造一个区间,这个区间可以包含总体参数的真实值。
该区间被称为置信区间。
二、置信区间的计算2.1 正态分布总体的情况当总体满足正态分布的情况下,我们可以利用正态分布的性质来计算置信区间。
以总体均值为例,假设总体的标准差已知为σ,样本的样本均值为x,抽样个数为n,置信水平为1-α(通常取α=0.05),则置信区间的计算公式如下:置信区间 = x ± Zα/2 * (σ/√n)其中,Zα/2是标准正态分布的上侧α/2分位点,反映了置信水平的大小。
在常见的置信水平为95%的情况下,Zα/2大约等于1.96。
2.2 未知标准差的情况当总体的标准差未知时,我们可以利用样本标准差s来近似代替总体标准差σ,并根据样本数据构造置信区间。
概率论与数理统计复习7章
( n − 1) S 2 ( n − 1) S 2 = 1 − α 即P 2 <σ2 < 2 χα 2 ( n − 1) χ1−α 2 ( n − 1) ( n − 1) S 2 ( n − 1) S 2 置信区间为: 2 , χα 2 ( n − 1) χ12−α 2 ( n − 1)
则有:E ( X v ) = µv (θ1 , θ 2 ,⋯ , θ k ) 其v阶样本矩是:Av = 1 ∑ X iv n i =1
n
估计的未知参数,假定总体X 的k阶原点矩E ( X k ) 存在,
µ θ , θ ,⋯ , θ = A k 1 1 1 2 µ2 θ1, θ 2 ,⋯ , θ k = A2 用样本矩作为总体矩的估计,即令: ⋮ µ θ , θ ,⋯ , θ = A k k k 1 2 ɵ ɵ ˆ 解此方程即得 (θ1 , θ 2 ,⋯ , θ k )的一个矩估计量 θ 1 , θ 2 ,⋯ , θ k
+∞
−∞
xf ( x ) dx = ∫ θ x θ dx =
1 0
令E ( X ) = X ⇒
θ +1
θ
ˆ = X ⇒θ =
( )
X 1− X
θ +1
2
θ
7.2极大似然估计法
极大似然估计法: 设总体X 的概率密度为f ( x,θ ) (或分布率p( x,θ )),θ = (θ1 ,θ 2 ,⋯ ,θ k ) 为 未知参数,θ ∈ Θ, Θ为参数空间,即θ的取值范围。设 ( x1 , x2 ,⋯ , xn ) 是 样本 ( X 1 , X 2 ,⋯ , X n )的一个观察值:
i =1 n
概率统计之置信区间
概率统计之置信区间一、首先,置信区间到底是什么?置信度又是什么?.置信区间就是随机变量落在某一表范围内的概率有多大,而置信度就是给说这个概率的的一个数。
其实可以这么说,就是我现在我求一个随机变量,在某一个范围内的概率是0.95,那么这个范围就是置信区间,概率0.95是置信度?不是要是1-0.95才是,哈哈。
我想办法画个图给大家看看。
嘻嘻如此图非影印部分,就是1-α,我们要求的就是随机变量落在这个概率内的一个范围就是置信区间啦。
再插入几张图片还有几个如T 分布和F 分布,百度不好找图片我就不找了,F 分布图像有点像卡方的,而T 的有点像正态分布的。
大家意会就行了。
正态分布区间是),(,,T X XX ),,(22-1222222-1222∂∂∂∂-∂∂∂∂-f f F t t u u N )(),,(,基本就只用到这四个进行估算了,下面解释下,如何导出而不是死记这些公式。
1:确立μ的置信区间,而确立他有两种情况,第一就是2σ未知,一种是2σ可知。
当2σ可知时,我们可以由N(0,1)∽nσ/μ-—X ,这个上面,我们只有μ不知道。
那么知道是用这个后下一步做什么?1)X -(X S α1}n Sμn S { α;1}n S/μ-{n σ/μ-),1(X ∽σ1,/X N(0,1)T S σt t t σα1}n σμn σ{ α;1}n σ/μ-{2n1i i22α2α2α2α22222α2α2α2α-=-=-≤≤-=-=≤≤=--=-=-≤≤-=-=≤≤=∑=----n u X u X P u X uP X n S n nu X u X P u X uP ————注:化简后,得后就得到服从标准正态分布,最而上面说了)(而代替,可用分布可以不要用到分布,因为分布了,为何要用用不可知时,那我们就得当化简后得那么再下一个得到书上的公式了。
分布的式子同样就可以们的地个那我们再套用最上面我分布。
那么自然想到那么对于。
第七章7-3概率论与数理统计
3.以该区间内任一值作为的近似值,
误差不大于
s
6.2022
n t 2(n 1)=
2.1315 2=6.61 16
9
2 方差 2的置信区间 只讨论均值未知情形
由于
(n 1)S2 2
~
2(n 1)
取 (n 1)S2 作为枢轴量
2
对给定的置信水平1 ,确定分位数
2 1
2(n 1) , 2 2(n 1) ,
§4 正态总体均值与方差的区间估计
一 单个总体N (, 2 )的情形 设已给定置信水平为1-,并设
X1, X 2,L ,X n为总体N (, 2 )的样本,
X 和S 2分别是样本均值和方差.
1
1 均值的置信区间
(1) 2已知,均值的置信水平为1-
的置信区间为
简记为
X
n
z 2 ,
X
n
z
2
X
n
试求总体均值 的置信水平为0.95的
置信区间
6
解:这是单总体方差未知,总体均值 的区间估计问题.
均值 的置信水平为 1的置信区间为
s
s
x
n t 2(n 1), x
n
t
2(n1) 这里 1 0.95, / 2 0.025, n 1 15,
t / 2 (n 1) t0.025 (15) 2.1315
S
11 n1 n2
18
从而可得,在
12
2 2
2,但 2未知,
均值差1 2的置信水平为1-的置信区间
X Y t /2 (n1 n2 2)S
其中
1 n1
1 n2
S2
(n1
1)S12 (n2 1)S22 n1 n2 2
7.4单正态总体下未知参数的置信区间 课件- 《概率论与数理统计(第2版)》同步教学(人民邮电版)
2 的无偏估计为 ˆ 2
1 n
n i 1
X
2 i
2 ,
取 a b 满足
G ˆ 2, 2
1
2
n
(Xi
i 1
)2
~
2 n
P
a
1
2
n
(Xi
i1
)2
b
1
二、方差的置信区间
取
a
2 2
n,b
2 12
n
此时,对应的 2 的双侧1 置信区间为:
n
X
i
2
n
X
i
2
i1
, i1
.
第7章 参数估计
1
07
参数估计
目录/Contents
第7章 参数估计
2
7.1 点估计
7.2 点估计的良好性评判标准
7.3 置信区间
7.4 单正态总体下未知参数的置信区间
7.5
两个正态总体下未知参数的置信区间
目录/Contents
第7章 参数估计
3
7.4 单正态总体下未知参数的置信区间
一、均值的置信区间 二、方差的置信区间
故 的双侧 0.95 置信区间的观测值为[1485.69,1514.31] .
二、方差的置信区间
第7章 参数估计
12
1
期望 已知, 方差 2的双侧置信区间;
2
期望 未知, 方差 2的双侧置信区间.
二、方差的置信区间
第7章 参数估计
13
(1)期望 已知, 方差 2 的双侧置信区间
当 已知时,
0.95 的双侧置信区间.
解 由题设条件知 n 10, 0.05, x 1500, s 20, 查表得
概率与统计的置信区间
概率与统计的置信区间概率与统计是一门研究随机现象的学科,它通过数理统计方法对收集到的数据进行分析和推断,从而得出对总体特征的估计,并对这些估计结果进行可信程度的评估。
其中,置信区间是概率与统计中的一个重要概念,用于表示总体参数的估计值的可信程度。
本文将详细介绍概率与统计的置信区间的概念、计算方法以及在实际问题中的应用。
首先,我们来了解一下置信区间的概念。
在概率与统计中,我们经常需要对总体的某个参数进行估计,比如总体均值、总体比例等。
由于我们无法直接观察到总体的全部数据,只能通过对样本的观察和分析来获得对总体参数的估计。
但是,由于样本的随机性以及抽样误差的存在,样本估计值很可能与总体真值存在差异。
置信区间的概念就是用来表示我们对总体参数的估计结果的可信程度。
接下来,我们来看一下置信区间的计算方法。
一般而言,我们可以采用抽样分布的方法来计算置信区间。
在给定样本大小和抽样方法的情况下,我们可以获得样本统计量的分布,进而得到总体参数的估计分布。
然后,我们可以根据置信水平和样本统计量的分布特性,计算出总体参数的置信区间。
在计算置信区间时,置信水平是一个重要的参数,表示我们对置信区间的可信程度。
一般常用的置信水平有90%、95%和99%等。
置信水平越高,置信区间的宽度就越大,表示我们对总体参数的估计结果越保守。
在实际应用中,我们需要根据需求和数据特点来选择适当的置信水平。
除了计算置信区间,我们还需要对置信区间的解释和应用进行详细的说明。
在解释置信区间时,我们通常会说出“在置信水平α下,总体参数的真值有α的概率位于置信区间之内”。
这句话表示,在给定的置信水平下,我们可以有一定的把握认为总体参数的真值会落在计算出的置信区间范围内。
而在实际应用中,我们可以利用置信区间进行决策、做出推断和验证假设等。
最后,我们来看一下置信区间在实际问题中的应用。
置信区间的应用范围非常广泛,几乎涉及到任何需要进行参数估计的领域。
举个例子,假设我们想要估计某项产品的平均寿命,我们可以通过抽取一些样本进行寿命测试,然后计算出平均寿命的置信区间。
《概率论与数理统计》第三版--课后习题答案.-(1)
习题一:1.1 写出下列随机试验的样本空间:(1)某篮球运动员投篮时, 连续5 次都命中, 观察其投篮次数;解:连续5 次都命中,至少要投5次以上,故;(2)掷一颗匀称的骰子两次, 观察前后两次出现的点数之和;解:;(3)观察某医院一天内前来就诊的人数;解:医院一天内前来就诊的人数理论上可以从0到无穷,所以;(4)从编号为1,2,3,4,5 的5 件产品中任意取出两件, 观察取出哪两件产品;解:属于不放回抽样,故两件产品不会相同,编号必是一大一小,故:(5)检查两件产品是否合格;解:用0 表示合格, 1 表示不合格,则;(6)观察某地一天内的最高气温和最低气温(假设最低气温不低于T1, 最高气温不高于T2);解:用表示最低气温, 表示最高气温;考虑到这是一个二维的样本空间,故:;(7)在单位圆内任取两点, 观察这两点的距离;解:;(8)在长为的线段上任取一点, 该点将线段分成两段, 观察两线段的长度.解:;1.2(1)A 与B 都发生, 但C 不发生; ;(2)A 发生, 且B 与C 至少有一个发生;;(3)A,B,C 中至少有一个发生; ;(4)A,B,C 中恰有一个发生;;(5)A,B,C 中至少有两个发生; ;(6) A,B,C 中至多有一个发生;;(7) A;B;C 中至多有两个发生;(8) A,B,C 中恰有两个发生. ;注意:此类题目答案一般不唯一,有不同的表示方式。
1.3 设样本空间, 事件=,具体写出下列各事件:(1); (2) ; (3) ; (4)(1);(2) =;(3) =;(4) =1.6 按从小到大次序排列, 并说明理由.解:由于故,而由加法公式,有:1.7解:(1) 昆虫出现残翅或退化性眼睛对应事件概率为:(2)由于事件可以分解为互斥事件,昆虫出现残翅, 但没有退化性眼睛对应事件概率为:(3) 昆虫未出现残翅, 也无退化性眼睛的概率为:.1.8解:(1) 由于,故显然当时P(AB) 取到最大值。
概率论与数理统计习题7解答
习题七解答7。
1。
设n X X X ,,,21 为抽自二项分布B (m ,p) 的样本 试求p 的矩估计和极大似然估计.解:(1)求p 的矩估计.),(~p m B X ,因此总体的一阶原点矩为np EX ==1μ按矩法估计有X X n mp ni i ==∑=11因此p 的矩估计mXp=ˆ (2)求p 的极大似然估计。
参数P 的极大似然函数为∏=--=ni X m X X miii p p C p L 1)1()(∑-∑⎪⎪⎭⎫ ⎝⎛===-=∏ni ini ii X nm X ni x m p p C 1)1(1=)(ln p L )1(ln )(ln ln 111p X mn p X C ni i ni i n i x m i --++⎪⎪⎭⎫ ⎝⎛=∑∑∏===令dp p L d )(ln 0)(11111=--+=∑∑==ni i n i i X mn p X p即 0)()1(=-+-X n mn p X n p由此得P 的极大似然估计mXp=ˆ 7。
2设总体为指数分布 其概率密度函数为⎩⎨⎧≥=-.,0;0,)(其它x e x f x λλ求参数λ的矩估计和极大似然估计。
解 设n X X X ,,,21 为X 的一个样本。
(1)求λ的矩估计。
因为总体为指数分布,因此总体的一阶原点矩为λμ11==EX按矩法估计有X X n ni i ==∑=111λ因此λ的矩估计X1=λ(2)求λ的极大似然估计。
参数λ的极大似然函数为 []L e ex i nn x i ii n==-=-∏=∑λλλλ11lnL=n x i i nln λλ-=∑1似然方程为∂λ∂λλln ()L n x i i n=-=∑1=0 解得λ===∑nx xii n117.3设总体为],0[θ上的均匀分布 求参数θ的矩估计和极大似然估计。
解 设n X X X ,,,21 为X 的一个样本。
(1)求θ的矩估计。
总体的一阶原点矩为 2)(01θθμθθ====⎰⎰dx xdx x xf EX按矩法估计有X n ni i ==∑=1121ξθ因此θ的矩估计X 2ˆ=θ. (2)求参数θ的极大似然估计。
7.3置信区间 课件(共15张PPT)- 《概率论与数理统计(第2版)》同步教学(人民邮电版)
X
u1 2
n
,
X
u1 2
n
第7章 参数估计
15
4
称 θ为θ 的双侧1置信区间的下限; 称θ 为θ的双侧1置信区间的上限,
简称双侧置信下限或者上限. 抽样以后就得到置信区间的观测值:
θ x1, , xn , θ x1, , xn
置信区间
置信水平1 的几何解释
6
第7章 参数估计
5
置信区间
置信水平1 的几何解释
6
第7章 参数估计
6
置信区间
置信区间
第7章 参数估计
14
设 X1, X2 , Xn 是取自正态总体 N , 2 的一个样 本, 给定置信水平为1 ,
已知方差 2,求期望 的 双侧置信区间:
X1
Xn X
Xi
X2
θ
θ
X a X b
置信区间
则 a,b 满足
PX a X b 1
P
a
n
X
b
1
取 a u1 /,2 b u1 /,2
1 置信区间.
其中 θ θ X1, , Xn , θ θ X1, , Xn 都是统计量.
置信区间
第7章 参数估计
13
满足 P a G ˆ, b =1 的 a, b 可以有很多组解,常选择 a, b ,使得左右
两个尾部的概率各为 ,即
2
P G ˆ, b =P G ˆ, a . 2 这样得到的置信区间称为等尾置信区间.
置信水平95%的几何解释
6
第7章 参数估计
7
置信区间
置信水平50%的几何解释
6
第7章 参数估计
8
置信区间
概率论和数理统计(李慧斌)复习大纲-第7章-置信区间-Confidence-Intervals
概率论与数理统计(李慧斌)复习大纲Chapter 7 Confidence Intervals置信区间7.1 Sampling Distribution 抽样分布统计量的分布称为抽样分布。
在本节中,我们将从正态分布推导出随机样本的样本方差分布,以及样本均值和样本方差的各种函数的分布。
复习:Thm 5.5.2若X1, X2,…, X n独立且满足,i= 1,2,…,n,若C1, C2,…, C n不全为零,则Corollary 5.5.2 设随机变量X1, X2,…, X n组成随机样本,满足正态分布,其中均值μ和方差σ2,则7.2 χ2Distribution卡方分布定义:若随机变量X1, X2,…, X n独立同分布且其中每个随机变量都满足标准正态分布,所以有着以n阶自由度卡方分布(χ2distribution with n degrees of freedom),记作,n来源于独立随机变量中以n阶自由度的χ2分布的概率密度函数其中欧拉函数定义为χ2分布的性质:定理1定理2 (χ2分布的可加性)若X ~χ2 (n) , Y ~χ2(m),X, Y独立,则X+Y ~ χ2 (n+m)例:设X1, X2,…, X n是正态分布的随机样本,证明Thm 7.3.1 设X1, X2,…, X n是正态分布的随机样本,则:(1)与独立;(2)注:,虽然基于n个,但是它们之和为0,所以指定数量的n-1确定剩余值。
因此有n-1阶自由度。
结果表明,只有从正态分布中抽取随机样本,样本均值和样本方差才是独立的。
证明如下:的联合概率分布函数为其中A为正交矩阵(orthogonal matrix),且的联合概率分布函数为因此独立且⇒与独立且7.4 The t Distribution t分布定义:设X ~ N(0, 1), Y ~χ2 (n)且X和Y独立,则随机变量所满足的分布称为n阶自由度t分布,记作,其中的概率密度函数为t分布的性质:(1)f(x)图像呈钟型,且中心为0;(2)它的一般形状类似于平均分布0的正态分布的概率密度函数。
概率论与数理统计教程第七章答案
.第七章假设检验7.1设总体J〜N(4Q2),其中参数4, /为未知,试指出下面统计假设中哪些是简洁假设,哪些是复合假设:(1) W o: // = 0, σ = 1 ;(2) W o√∕ = O, σ>l5(3) ∕70:// <3, σ = 1 ;(4) % :0< 〃 <3 ;(5)W o :// = 0.解:(1)是简洁假设,其余位复合假设7.2设配么,…,25取自正态总体息(19),其中参数〃未知,无是子样均值,如对检验问题“0 :〃 = 〃o, M :4工从)取检验的拒绝域:c = {(x1,x2,∙∙∙,x25)r∣x-χ∕0∖≥c},试打算常数c ,使检验的显著性水平为0. 05_ Q解:由于J〜N(〃,9),故J~N(",二)在打。
成立的条件下,一/3 5cP o(∖ξ-^∖≥c) = P(∖ξ-μJ^∖≥-)=2 1-Φ(y) =0.05Φ(-) = 0.975,-= 1.96,所以c=L176°3 37. 3 设子样。
,乙,…,25取自正态总体,cr:已知,对假设检验%邛=μ0, H2> /J。
,取临界域c = {(X[,w,…,4):片>9)},(1)求此检验犯第一类错误概率为α时,犯其次类错误的概率夕,并争论它们之间的关系;(2)设〃o=0∙05, σ~=0. 004, a =0.05, n=9,求"=0.65 时不犯其次类错误的概率。
解:(1)在儿成立的条件下,F~N(∕o,军),此时a = P^ξ≥c^ = P0< σo σo )所以,包二为册=4_,,由此式解出c°=窄4f+为% ∖∣n在H∣成立的条件下,W ~ N",啊 ,此时nS = %<c°) = AI。
气L =①(^^~品)二①匹%=①(2δξ^历σoA∣-σ+A)-A-------------- y∕n)。
7.4单个正态总体均值与方差的区间估计
2
(n 1)S 2
2 1
/
2
(n
1)
1,
P
(n 1)S 2
2
/
2
(n
1)
(n
2 1
/2
1)S 2 (n
1)
1
,
即标准差 的置信水平为1 α 的一个置信区间为
n 1S ,
2 / 2(n 1)
n
2 1 /
1S 2(n
1)
.
11
概率论与数理统计
例2 (续例1) 求例1中总体标准差 的置信度为0.95 的置信区间.
506 508 499 503 504 510 497 512 514 505 493 496 506 502 509 496
设袋装糖果的质量服从正态分布, 试求总体均值
的置信度为 0.95 的置信区间.
(1) 2 38.44; (2) 2未知. 解: 1 0.95, 0.05
6
概率论与数理统计
b
3
概率论与数理统计
由P
z
/
2
X
/
n
z /2
1,
P X
n
z / 2
X
n
z
/
2
1
.
即的一个置信水平为1 的置信区间为
X
n
z / 2 , X
n
z / 2 .
置信区间的长度为
2
n
z / 2 .
4
概率论与数理统计
2 2未知
“枢轴量”
X ~ t(n 1)
1
S/ n
由
P{tα
2(n 1)
X S
概率论与数理统计必考点
进一步可得:
标准差 的一个置信度为 1 的置信区间
是 2 的无偏估计 ,
( n 1) S
2
*2 n
~ 2 ( n 1),
P243
*2 n 1 S 2 n 2 由P /2 n 1 1- /2 n 1 1 2 *2 *2 n 1 S n 1 S n n 有P 2 2 2 1 /2 n 1 1- /2 n 1
2. 求置信区间的一般步骤(共3步) (1) 寻求一个样本 1 , 2 , , n 的函数: Z Z (1 , 2 , , n ; ) 其中仅包含待估参数 , 并且Z的分布已知 且不依赖于任何未知参数(包括 ). (2) 对于给定的置信度1 , 决定出两个常数a, b, 使P{a Z (1 , 2 ,, n ; ) b} 1 .
设给定置信度为1 , 并设 1 , 2 , , n 为
*2 总体 N ( , 2 )的样本, , S n 分别是样本均值和
修正样本方差.
(1) 2 已知,求
的置信区间
的一个置信度为 1 的置信区间 X u1- /2 . n
1. 要求 以很大的可能被包含在区间 ( , ) 内,就是说,概率 P{ } 要尽可能大. 即要求估计尽量可靠. 2. 估计的精度要尽可能的高. 如要求区间 ˆ ˆ 尽可能短,或能体现该要求的其 长度 2 1 它准则. 可靠度与精度是一对矛盾, 一般是在保证可靠度的条件下 尽可能提高精度.
( 3)
未知,求
2
的置信区间
数理统计中的置信区间
数理统计中的置信区间数理统计作为应用数学的一部分,研究的是随机现象的数量特征及其规律。
其中的置信区间是统计分析中的一个重要概念,用于描述样本所包含总体参数的可信程度。
本文将从置信区间的定义、构建方法和应用实例三个方面来探讨置信区间在数理统计中的意义和作用。
一、置信区间的定义置信区间是指在一定置信水平下,总体参数的一个区间估计值。
在进行样本调查或者实验研究时,我们通常无法获得整个总体数据,而仅仅是获得了一个样本数据。
这时,我们需要通过从样本中获得一定的统计量,如样本均值、标准差等,来对总体的未知参数进行概率推断。
而置信区间是一种用来评估样本统计量对总体参数的估计精度的方法。
在这个过程中,我们需要先给出一个置信水平,也就是一个事件发生的概率。
例如,我们可以以95%的置信水平来估计总体参数。
这样,我们就可以根据样本数据计算出一个置信区间,其意义是:在一百次样本调查中,有95次会得到的置信区间会覆盖总体参数真实值。
二、置信区间的构建方法置信区间的构建方法有很多种,通常使用的有以下三种方法:1. 正态分布法:当总体服从正态分布时,我们可以采用正态分布来估计总体参数,并据此构建置信区间。
具体方法是:根据样本数据计算出样本均值和标准差,使用正态分布的双侧临界值来限定置信区间。
2. 学生t分布法:当总体的方差未知时,我们需要使用学生t分布来对样本均值进行估计,并据此构建置信区间。
具体方法是:根据样本数据计算出样本均值和标准差,然后根据置信水平和样本容量来查找t分布表,并据此来构建置信区间。
3. 二项分布法:当研究对象为二项分布时,我们需要使用二项分布来估计总体参数,并据此构建置信区间。
具体方法是:根据样本数据计算出样本成功率和样本容量,使用二项分布的双侧临界值来限定置信区间。
三、置信区间的应用实例置信区间在实际应用中有很多场景。
下面就以一些常见的例子来说明:1. 产品质量检验在产品生产过程中,需要对生产线上的产品进行质量检验。
概率论与数理统计期末考试之置信区间与拒绝域(含问题详解)
概率论与数理统计期末置信区间问题八〔1〕、从某同类零件中抽取9件,测得其长度为〔 单位:mm 〕: 6.0 5.7 5.8 6.5 7.0 6.3 5.6 6.1 5.0 设零件长度X 服从正态分布N (μ,1)。
求μ的置信度为0.95的置信区间。
0.050.050.025((9)=2.262, (8)=2.306, 1.960 )t t U =已知:解:由于零件的长度服从正态分布,所以~(0,1)x U N =0.025{||}0.95P U u <=所以μ的置信区间为0.0250.025(x u x u -+ 经计算 91916ii x x===∑μ的置信度为0.95的置信区间为 1133(6 1.96,6 1.96)-⨯+⨯ 即(5.347,6.653)八〔2〕、某车间生产滚珠,其直径X ~N (μ, 0.05),从某天的产品里随机抽出9个量得直径如下〔单位:毫米 〕:14.6 15.1 14.9 14.8 15.2 15.1 14.8 15.0 14.7假如该天产品直径的方差不变,试找出平均直径μ的置信度为0.95的置信区间。
0.050.050.025((9)=2.262, (8)=2.306, 1.960 )t t U =已知:解:由于滚珠的直径X 服从正态分布,所以~(0,1)x U N =0.025{||}0.95P U u <=所以μ的置信区间为:0.0250.025(x u x u -+ 经计算 919114.911ii x x===∑μ(14.911 1.96 1.96-+ 即(14.765,15.057)八〔3〕、工厂生产一种零件,其口径X (单位:毫米)服从正态分布2(,)N μσ,现从某日生产的零件中随机抽出9个,分别测得其口径如下:零件口径X 的标准差0.15σ=,求μ的置信度为0.95的置信区间。
0.050.050.025((9)=2.262, (8)=2.306, 1.960 )t t U =已知:解:由于零件的口径服从正态分布,所以~(0,1)x U N =0.025{||}0.95P U u <=所以μ的置信区间为:0.0250.025(x u x u -+ 经计算 919114.9ii x x===∑μ的置信度为0.95的置信区间为 0.150.1533(14.9 1.96,14.9 1.96)-⨯+⨯ 即(14.802 ,14.998)八〔4〕、随机抽取某种炮弹9发做实验,测得炮口速度的样本标准差S =3(m/s),设炮口速度服从正态分布,求这种炮弹的炮口速度的方差2σ的置信度为0.95的置信区间。
概率论与数理统计(理工类,第四版)吴赣昌主编课后习题答案第七章
写在前面:由于答案是一个个复制到word中,比较耗时耗力,故下载收取5分,希望需要的朋友给予理解和支持!PS:网上有一些没经我同意就将我的答案整合、转换成pdf,放在文库里的,虽然是免费的,但是窃取了我的劳动成果,希望有心的朋友支持我一下,下载我的原版答案。
第七章假设检验7.1 假设检验的基本概念习题1样本容量n确定后,在一个假设检验中,给定显著水平为α,设此第二类错误的概率为β,则必有(). (A)α+β=1;(B)α+β>1;(C)α+β<1;(D)α+β<2.解答:应选(D).当样本容量n确定后,α,β不能同时都很小,即α变小时,β变大;而β变小时,α变大.理论上,自然希望犯这两类错误的概率都很小,但α,β的大小关系不能确定,并且这两类错误不能同时发生,即α=1且β=1不会发生,故选(D).习题2设总体X∼N(μ,σ2),其中σ2已知,若要检验μ,需用统计量U=X¯-μ0σ/n.(1)若对单边检验,统计假设为H0:μ=μ0(μ0已知),H1:μ>μ0,则拒绝区间为;(2)若单边假设为H0:μ=μ0,H1:μ<μ0,则拒绝区间为(给定显著性水平为α,样本均值为X¯,样本容量为n,且可记u1-α为标准正态分布的(1-α)分位数).解答:应填(1)U>u1-α;(2)U<uα.由单侧检验及拒绝的概念即可得到.习题3如何理解假设检验所作出的“拒绝原假设H0”和“接受原假设H0”的判断?解答:拒绝H0是有说服力的,接受H0是没有充分说服力的. 因为假设检验的方法是概率性质的反证法,作为反证法就是必然要“推出矛盾”,才能得出“拒绝H0”的结论,这是有说服力的,如果“推不出矛盾”,这时只能说“目前还找不到拒绝H0的充分理由”,因此“不拒绝H0”或“接受H0”,这并没有肯定H0一定成立. 由于样本观察值是随机的,因此拒绝H0,不意味着H0是假的,接受H0也不意味着H0是真的,都存在着错误决策的可能.当原假设H0为真,而作出了拒绝H0的判断,这类决策错误称为第一类错误,又叫弃真错误,显然犯这类错误的概率为前述的小概率α:α=P(拒绝H0|H0为真);而原假设H0不真,却作出接受H0的判断,称这类错误为第二类错误,又称取伪错误,它发生的概率β为β=P(接受H0|H0不真).习题4犯第一类错误的概率α与犯第二类错误的概率β之间有何关系?解答:一般来说,当样本容量固定时,若减少犯一类错误的概率,则犯另一类错误的概率往往会增大.要它们同时减少,只有增加样本容量n.在实际问题中,总是控制犯第一类错误的概率α而使犯第二类错误的概率尽可能小.α的大小视具体实际问题而定,通常取α=0.05,0.005等值.习题5在假设检验中,如何理解指定的显著水平α?解答:我们希望所作的检验犯两类错误的概率尽可能都小,但实际上这是不可能的. 当样本容量n固定时,一般地,减少犯其中一个错误的概率就会增加犯另一个错误的概率. 因此,通常的作法是只要求犯第一类错误的概率不大于指定的显著水平α,因而根据小概率原理,最终结论为拒绝H0较为可靠,而最终判断力接受H0则不大可靠,其原因是不知道犯第二类错误的概率β究竟有多少,且α小,β就大,所以通常用“H0相容”,“不拒绝H0”等词语来代替“接受H0”,而“不拒绝H0”还包含有再进一步作抽样检验的意思.习题6在假设检验中,如何确定原假设H0和备择假设H1?解答:在实际中,通常把那些需要着重考虑的假设视为原假设H0,而与之对应的假设视为备择假设H1.(1)如果问题是要决定新方案是否比原方案好,往往将原方案取假设,而将新方案取为备择假设;(2)若提出一个假设,检验的目的仅仅是为了判断这个假设是否成立,这时直接取此假设为原假设H0即可.习题7假设检验的基本步骤有哪些?解答:根据反证法的思想和小概率原理,可将假设检验的步骤归纳如下:(1)根据问题的要求,提出原理假设H0和备择假设H1.(2)根据检验对象,构造检验统计量T(X1,X2,⋯,Xn),使当H0为真时,T有确定的分布.(3)由给定的显著水平α,查统计量T所服从的分布表,定出临界值λ,使P(∣T∣>λ)=α,或P(T>λ1)=P(T<λ2)=α/2,从而求出H0的拒绝域:∣T∣>λ或T>λ1,T<λ2.(4)由样本观察值计算统计量T的观察值t.(5)作出判断,将t的值与临界值比较大小作出结论:当t∈拒绝域量时,则拒绝H0,否则,不拒绝H0,即认为在显著水平α下,H0与实际情况差异不显著.习题8假设检验与区间估计有何异同?解答:假设检验与区间估计的提法虽不同,但解决问题的途径是相通的. 参数θ的置信水平为1-α的置信区间对应于双边假设检验在显著性水平α下的接受域;参数θ的置信水平为1-α的单侧置信区对应于单边假设检验在显著性水平α下的接受域.在总体的分布已知的条件下,假设检验与区间估计是从不同的角度回答同一个问题. 假设检验是判别原假设H0是否成立,而区间估计解决的是“多少”(或范围),前者是定性的,后者是定量的.习题9某天开工时,需检验自动包装工作是否正常. 根据以往的经验,其装包的质量在正常情况下服从正态分布N(100,1.52)(单位:kg).现抽测了9包,其质量为:99.3,98.7,100.5,101.2,98.3,99.7,99.5,102.0,100.5.问这天包装机工作是否正常?将这一问题化为假设检验问题. 写出假设检验的步骤(α=0.05).解答:(1)提出假设检验问题H0:μ=100,H1:μ≠100;(2)选取检验统计量U:U=X¯-1001.59,H0成立时, U∼N(0,1);(3)α=0.05,uα/2=1.96,拒绝域W={∣u∣>1.96};(4)x¯≈99.97,∣u∣=0.06.因∣u∣<uα/2=1.96,故接受H0,认为包装机工作正常.习题10设总体X∼N(μ,1),X1,X2,⋯,Xn是取自X的样本. 对于假设检验H0:μ=0,H1:μ≠0,取显著水平α,拒绝域为W={∣u∣>uα/2},其中u=nX¯,求:(1)当H0成立时, 犯第一类错误的概率α0;(2)当H0不成立时(若μ≠0),犯第二类错误的概率β.解答:(1)X∼N(μ,1),X¯∼N(μ,1/n),故nX¯=u∼N(0,1).α0=P{∣u∣>uα/2∣μ=0}=1-P{-uα/2≤u≤uα/2}=1-[Φ(uα/2)-Φ(-uα/2)]=1-[(1-α2)-α2]=α,即犯第一类错误的概率是显著水平α.(2)当H0不成立,即μ≠0时,犯第二类错误的概率为β=P{∣u∣≤uα/2∣E(X)=μ}=P{-uα/2≤u≤uα/2∣E(X)=μ}=P{-uα/2≤nX¯≤uα/2∣E(X)=μ}=P{-uα/2-nμ≤n(X¯-μ)≤uα/2-nμ∣E(X)=μ}=Φ(uα/2-nμ)-Φ(-uα/2-nμ).注1当μ→+∞或μ→-∞时,β→0.由此可见,当实际均值μ偏离原假设较大时,犯第二类错误的概率很小,检验效果较好.注2当μ≠0但接近于0时,β≈1-α.因α很小,故犯第二类错误的概率很大,检验效果较差.7.2 单正态总体的假设检验习题1已知某炼铁厂铁水含碳量服从正态分布N(4.55,0.1082).现在测定了9炉铁水,其平均含碳量为4.484.如果估计方差没有变化,可否认为现在生产的铁水平均含碳量仍为4.55(α=0.05)?解答:本问题是在α=0.05下检验假设H0:μ=4.55,H1:μ≠4.55.由于σ2=0.1082已知,所以可选取统计量U=X¯-4.550.108/9,在H0成立的条件下,U∼N(0,1),且此检验问题的拒绝域为∣U∣=∣X¯-4.550.108/9∣>uα/2,这里u=4.484-4.550.108/9≈-1.833,uα/2=1.96.显然∣u∣=1.833<1.96=uα/2.说明U没有落在拒绝域中,从而接受H0,即认为现在生产之铁水平均含碳量仍为4.55.习题2要求一种元件平均使用寿命不得低于1000小时,生产者从一批这种元件中随机抽取25件,测得其寿命的平均值为950小时. 已知该种元件寿命服从标准差为σ=100小时的正态分布,试在显著性水平α=0.05下确定这批元件是否合格?设总体均值为μ,μ未知,即需检验假设H0:μ≥1000,H1:μ<1000.解答:检验假设H0:μ≥1000,H1:μ<1000.这是单边假设检验问题. 由于方差σ2=0.05,故用u检验法. 对于显著性水平α=0.05,拒绝域为W={X¯-1000σ/n<-uα.查标准正态分布表,得u0.05=1.645.又知n=25,x¯=950,故可计算出x¯-1000σ/n=950-1000100/25=-2.5.因为-2.5<-1.645,故在α=0.05下拒绝H0,认为这批元件不合格.习题3打包机装糖入包,每包标准重为100kg.每天开工后,要检验所装糖包的总体期望值是否合乎标准(100kg).某日开工后,测得9包糖重如下(单位:kg):99.398.7100.5101.298.399.799.5102.1100.5打包机装糖的包得服从正态分布,问该天打包机工作是否正常(α=0.05)?解答:本问题是在α=0.05下检验假设H0:μ=100,H1:μ≠100.由于σ2未知,所以可选取统计量T=X¯-100S/n,在H0成立的条件下,T∼t(n-1),且此检验问题的拒绝域为∣T∣=∣X¯-100S/n∣>tα/2(n-1),这里t=x¯-100s/n≈99.978-1001.2122/9≈-0.0544,t0.025(8)=2.306.显然∣t∣=0.0544<2.306=t0.025(8),即t未落在拒绝域中,从而接受H0,即可以认为该天打包工作正常.习题4机器包装食盐,假设每袋盐的净重服从正态分布,规定每袋标准含量为500g,标准差不得超过10g.某天开工后,随机抽取9袋,测得净重如下(单位:g):497,507,510,475,515,484,488,524,491,试在显著性水平α=0.05下检验假设:H0:μ=500,H1:μ≠500.解答:x¯=499,s≈16.031,n=9,t=(x¯-μ0)sn=499-50016.0319=-0.1871,α=0.05,t0.025(8)=2.306.因∣t∣<t0.025(8),故接受H0,认为该天每袋平均质量可视为500g.习题5从清凉饮料自动售货机,随机抽样36杯,其平均含量为219(mL),标准差为14.2mL,在α=0.05的显著性水平下,试检验假设:H0:μ=μ0=222,H1:μ<μ0=222.解答:设总体X∼N(μ,σ2),X代表自动售货机售出的清凉饮料含量,检验假设H0:μ=μ0=222(mL),H1:μ<222(mL).由α=0.05,n=36,查表得t0.05(36-1)=1.6896,拒绝域为W={t=x¯-μ0s/n<-tα(n-1).计算t值并判断:t=219-22214.2/36≈-1.27>-1.6896,习题6某种导线的电阻服从正态分布N(μ,0.0052).今从新生产的一批导线中抽取9根,测其电阻,得s=0.008Ω,对于α=0.05,能否认为这批导线电阻的标准差仍为0.005?解答:本问题是在α=0.05下检验假设H0:σ2=0.0052,H1:σ2≠0.0052.选取统计量χ2=n-1σ2S2,在H0成立的条件下,χ2∼χ2(n-1),且此检验问题的拒绝域为χ2>χα/22(n-1)或χ2<χ1-α/22(n-1).这里χ2=9-10.0052s2=80.0052×0.0082=20.48,χ0.9752(8)=2.18,χ0.0252(8)=17.5.显然χ2落在拒绝域中,从而拒绝H0,即不能认为这批导线电阻的标准差仍为0.005.习题7某厂生产的铜丝,要求其折断力的方差不超过16N2.今从某日生产的铜丝中随机抽取容量为9的样本,测得其折断力如下(单位:N):289,286,285,286,285,284,285,286,298,292设总体服从正态分布,问该日生产的铜线的折断力的方差是否符合标准(α=0.05)?解答:检验问题为H0:σ2≤16,H1:σ2>16,n=9,s2≈20.3611,χ2=8×s216≈10.181,α=0.05,χ0.052(8)=15.507.因χ2<χ0.052(8)=15.507,故接受H0,可认为铜丝的折断力的方差不超过16N2.习题8过去经验显示,高三学生完成标准考试的时间为一正态变量,其标准差为6min.若随机样本为20位学生,其标准差为s=4.51,试在显著性水平α=0.05下,检验假设:H0:σ≥6,H1:σ<6.解答:H0:σ≥6,H1:σ<6.α=0.05,n-1=19,s=4.51,χ0.952(19)=10.117.拒绝域为W={χ2<10.117}.计算χ2值χ2=(20-1)×4.51262≈10.74.因为10.74>10.117,故接受H0,认为σ≥6.习题9测定某种溶液中的水分,它的10个测定值给出s=0.037%,设测定值总体服从正态分布,σ2为总体方差,σ2未知,试在α=0.05水平下检验假设:H0:σ≥0.04%,H1:σ<0.04%.解答:在α=0.05下,拒绝域为W={(n-1)S2σ02<χ1-α2(9).查χ2分布表得χ0.952(9)=3.325.计算得(n-1)s2σ02=(10-1)×(0.037\per)2(0.04\per)2≈7.7006>3.325,未落入拒绝域,故接受H0.sw=(5-1)×(1.971)2+(4-1)×(1.167)25+4-2≈1.674.查表得t0.005(7)=1.895.算得t=2.86-2.075-01.67415+14≈0.699<1.895.因为0.699<1.895,故不拒绝H0,认为此药无效.习题3据现在的推测,矮个子的人比高个子的人寿命要长一些.下面给出美国31个自然死亡的总统的寿命,将他们分为矮个子与高个子2类,列表如下:矮个子总统8579679080高个子总统6853637088746466606078716790737177725778675663648365假设2个寿命总体均服从正态分布且方差相等,试问这些数据是否符合上述推陈出推测(α=0.05)?解答:设μ1,μ2分别为矮个子与高个子总统的平均寿命,则检验问题为H0:μ1≤μ2,H1:μ1>μ2,n1=5,x¯=80.2,s1≈8.585,n2=26,y¯≈69.15,s2≈9.315,sw=4×8.5852+9.315229≈9.218,n1n2n1+n2≈2.048,t=(80.2-69.15)9.218×2.048≈2.455,α=0.05,t0.05(29)=1.6991,因t>t0.05(29)=1.6991,故拒绝H0,认为矮个子总统的寿命比高个子总统寿命长.习题4在20世纪70年代后期人们发现,酿造啤酒时,在麦芽干燥过程中形成致癌物质亚硝基二甲胺(NDMA).到了20世纪80年代初期,人们开发了一种新的麦芽干燥过程,下面给出了分别在新、老两种过程中形成的NDMA含量(以10亿份中的份数计):故拒绝H0,认为新、老过程中形成的NDMA平均含量差大于2.习题5有两台车床生产同一种型号的滚珠. 根据过去的经验,可以认为这两台车床生产的滚珠的直径都服从正态分布. 现要比较两台车床所生产滚珠的直径的方差,分别抽出8个和9个样品,测得滚珠的直径如下(单位:mm).甲车床xi:15.014.515.215.514.815.115.214.8乙车床yi:15.215.014.815.215.015.014.815.114.8问乙车床产品的方差是否比甲车床的小(α=0.05)?解答:以X,Y分别表示甲,乙二车床产品直径.X∼N(μ1,σ12),Y∼N(μ2,σ22),X,Y独立. 检验假设H0:σ12=σ22,H1:σ22<σ22.用F检验法, 在H0成立时F=S12S22∼F(n1-1,n2-1).由已知数据算得x¯≈15.01,y¯≈14.99,s12≈0.0955,s22≈0.0261,n1=8,n2=9,α=0.05.拒绝域为Rα={F>Fα(n1-1,n2-1)}.查F分布表得F0.05(8-1,9-1)=3.50.计算F值F=s12/s22=0.0955/0.0261≈3.66.因为3.66>3.50,故应否定H0,即认为乙车床产品的直径的方差比甲车床的小.习题6某灯泡厂采用一项新工艺的前后,分别抽取10个灯泡进行寿命试验. 计算得到:采用新工艺前灯泡寿命的样本均值为2460小时. 样本标准差为56小时;采用新工艺后灯泡寿命的样本均值为2550小时,样本标准差为48小时. 设灯泡的寿命服从正态分布,是否可以认为采用新工艺后灯泡的平均寿命有显著提高(α=0.01)?解答:(1)检验假设H0:σ12=σ22,H1:σ12≠σ22.应选取检验统计量F=S12/S22,若H0真, 则F∼F(m-1,n-1);对于给定的检验水平α=0.01,查自由度为(9,9)的F分布表得F0.005(9,9)=6.54;已知m=n=10,s1=56,s2=48,由此得统计量F的观察值为F=562/482≈1.36;因为F<F0.005(9,9),所以接受原假设H0,即可认为这两个总体的方差无显著差异.(2)检验假设H0′:μ1=μ2,H1′:μ1<μ2.按上述关于双总体方差的假设检验的结论知这两个总体的方差未知但相等,σ12=σ22,所以应选取检验统计量:T=X¯-Y¯(m-1)S12+(n-1)S22m+n-2(1m+1n),若H0′真,则T∼t(m+n-2);对给定的检验水平α=0.01,查自由度为m+n-2=18的t分布表得临界值计算t值t=z¯-0sz/n=-0.1-00.141/5≈-1.59>-2.776,故接受H0:μz=0,即在α=0.05下,认为两种分析方法所得的均值结果相同.7.4 关于一般总体数学期望的假设检验习题1设两总体X,Y分别服从泊松分布P(λ1),P(λ2),给定显著性水平α,试设计一个检验统计量,使之能确定检验H0:λ1=λ2,H1:λ1≠λ2的拒绝域,并说明设计的理论依据.解答:因非正态总体,故宜用大样统计,设X¯=1n1∑i=1n1Xi,S12=1n1-1∑i=1n1(Xi-X¯)2;Y¯=1n2∑i=1n2Yi,S22=1n2-1∑i=1n2(Yi-Y¯)2.\because(X¯-Y¯)-(λ1-λ2)S12n1+S22n2→N(0,1)∴可选用样本函数u=(X¯-Y¯)-(λ1-λ2)S12n1+S22n2作为拒绝域的检验统计量.习题2设某段高速公路上汽车限制速度为104.6km/h,现检验n=85辆汽车的样本,测出平均车速为x¯=106.7km/h,已知总体标准差为σ=13.4km/h,但不知总体是否服从正态分布. 在显著性水平α=0.05下,试检验高速公路上的汽车是否比限制速度104.6km/h显著地快?解答:设高速公路上的车速为随机变量X,近似有X∼N(μ,σ2),σ=13.4km/h,要检验假设H0:μ=μ0=104.6,H1:μ>104.6.α=0.05,n=85,uα=u0.05=1.645.拒绝域W={u=x¯-μ0σ/n>uα.由x¯=106.7,σ=13.4,μ0=104.6,n=85得u=106.7-104.613.4/85≈1.44<1.645.因为1.44<1.645,所以接受H0,即要α=0.05显著性水平下,没有明显的证据说明汽车行驶快于限制速度.习题3某药品广告上声称该药品对某种疾病和治愈率为90%,一家医院对该种药品临床使用120例,治愈85人,问该药品广告是否真实(α=0.02)?解答:设该药品对某种疾病的治愈率为p,随机变量X为X={1,临床者使用该药品治愈0,反之则X∼b(1,p),问题该归结为检验假设:H0:p=0.9,H1:p≠0.9.由于n=120足够大,可以用u检验法,所给样值(x1,x2,⋯,x120)中有85个1,35个0,所以x¯=1120∑i=1120xi=1120∑i=1851=85120≈0.71,又p0=0.9,以之代入统计量U得U的观察值为∣u∣=∣0.71-0.9∣0.9×0.1120=6.94>u0.01=2.33,故拒绝H0,即认为该药品不真实.习题4一位中学校长在报纸上看到这样的报道:“这一城市的初中学生平均每周看8小时电视.”她认为她所领导的学校,学生看电视时间明显小于该数字. 为此,她向她的学校的100名初中学生作了调查,得知平均每周看电视的时间x¯=6.5小时,样本标准差为s=2小时,问是否可以认为这位校长的看法是对的(α=0.05)?解答:检验假设H0:μ=8,H1:μ<8.由于n=100,所以T=X¯-μS/n近似服从N(0,1)分布,α=0.05,u0.05=1.645.又知x¯=6.5,s=2,故计算得t=6.5-82/100=-7.5,否定域W={X¯-8S/n<-u0.05.因为-7.5<-1.645,故否定H0,认为这位校长的看法是对的.习题5已知某种电子元件的使用寿命X(h)服从指数分布e(λ),抽查100个元件,得样本均值x¯=950(h),能否认为参数λ=0.001(α=0.05)?解答:由题意知X∼e(λ),E(X)=1/λ,D(X)=1/λ2,故当n充分大时u=x¯-1/λ1nλ=(x¯-1λ)λn=(λx¯-1)n(0,1).现在检验问题为H0:λ=0.001,H1:λ≠0.001,样本值u=(0.001×950-1)×100=0.5,α=0.05,u0.025=1.96.因∣u∣<u0.025=1.96,故接受H0,即可认为参数λ=0.001(即元件平均合适用寿命为1000h).习题6某产品的次品率为0.17,现对此产品进行新工艺试验,从中抽取400检查,发现次品56件,能否认为这项新工艺显著地影响产品质量(α=0.05)?解答:检验问题为H0:p=0.17,H1:p≠0.17,由题意知⌢p=mn=56400=0.14,u=(⌢p-p0)p0q0n=0.14-0.170.17×0.83×400≈-1.597,α=0.05,u0.025=1.96.因∣u∣<u0.025=1.96,故接受H0,即认为新工艺没有显著地影响产品质量.习题7某厂生产了一大批产品,按规定次品率p≤0.05才能出厂,否则不能出厂,现从产品中随机抽查50件,发现有4件次品,问该批产品能否出厂(α=0.05)?解答:问题归结为在α=0.05下,检验假设H0:p≤0.05,H1:p>0.05.这是一个单侧检验问题,用u检验法,H0的拒绝域为U=X¯-p0p0(1-p0)n>uα.已知n=50,p0=0.05,x¯=450=0.08,代入U的表达式得u=0.08-0.050.05×0.9550≈0.97<uα=u0.05=1.645,故接受H0,即认为这批产品可以出厂.习题8从选区A中抽取300名选民的选票,从选区B中抽取200名选民的选票,在这两组选票中,分别有168票和96票支持所提候选人,试在显著水平α=0.05下,检验两个选区之间对候选人的支持是否存在差异. 解答:这是两个比率的比较问题,待检假设为H0:p1=p2,H1:p1≠p2.由题设知n=300,μn=168,m=200,μm=96,p1=168320=0.56,p2=96200=0.48,p=μn+μmm+n=264500=0.528.U0∼=p1-p2p(1-p)(1n+1m)=0.56-0.480.528×0.472×1120≈1.755,由P{∣U∼∣>1.96}=α=0.05,得拒绝域∣U∼∣>1.96,因为U0∼=1.755<1.96,故接受H0,即两个选区之间无显著差异.7.5 分布拟合检验Ai k概率pi npi频数fi(fi-npi)2(fi-npi)2npiA001/108085250.3125A111/108093169 2.1125A221/108084160.2A331/10807910.0125A441/10807840.05A551/108069121 1.5125A661/108074360.45A771/10807181 1.0125A881/108091121 1.5125A991/108076160.2∑18007.375由于当H0为真时,χ2=∑i=0k(fi-npi)2npi∼χ2(k-1-r),且此检验问题的拒绝域为χ2≥χα2(k-1-r).这里χ2=7.375,查表知χ0.052(10-1-0)=χ0.052(9)=16.9,显然χ2=7.375<16.9=χ0.052(9),即χ2未落在拒绝域中,所以接受H0,即认为这个正20面体是由均匀材料制面的.习题2根据观察到的数据疵点数0 1 2 3 4 5 6频数fi 14 27 26 20 7 3 3检验整批零件上的疵点数是否服从泊松分布(α=0.05).解答:设X表示整批零件上的疵点数,则本问题是在α=0.05下检验假设H0:P{X=i}=λie-λi!,i=0,1,2,⋯.由于在H0中参数λ未具体给出,所以先估计λ的值. 由极大似然估计法得λ=x¯=1100(0×14+1×27+2×26+3×20+4×7+5×3+6×3)=2.将试验的所有可能结果分为7个互不相容的事件A0,A1,⋯,A7, 当H0成立时,P{X=i}有估计值p0=P{X=0}=e-2≈0.135335,p1=P{X=1}=2e-2≈0.27067,p2=P{X=2}=2e2≈0.270671,p3=P{X=3}≈0.180447,p4=P{X=4}=2/3e-2≈0.090224,p5=P{X=5}=4/15e-2≈0.036089, p6=P{X=6}=4/45e-2≈0.0120298. 列表如下:Ai k 概率pi npi 频数fi (fi-npi)2 (fi-npi)2npiA0 A1 A2 A3 A4 A5 A6 0 1 2 3 4 5 6 0.1353350.270671 0.270671 0.180447 0.090224 0.036089 0.0120298 13.5335 27.0671 27.0672 18.0447 9.02243.60891.2029813.83428 14 27 26 2073313 0.2176 0.0045 1.1387 3.8232 0.6960 0.01608 0.000166 0.04207 0.2118740.050310∑1000.3205当H0为真时,χ2=∑i=0k(fi-npi)2npi ∼χ2(k-1-r),且此检验问题的拒绝域为χ2≥χα2(k-1-r), 这里χ2=0.3205, 查表知χ0.052(5-1-1)=χ0.052(3)=7.815. 显然 χ2=0.3205<7.815=χ0.052(3).即χ2未落在拒绝域中,接受H0, 故可认为整批零件上的疵点数服从泊松分布.习题3检查了一本书的100页,记录各页中印刷错误的个数,其结果为错误个数fi0 1 2 3 4 5 6 ≥7含fi 个错误的页数 36 40 19 2 0 2 1 0问能否认为一页的印刷错误个数服从泊松分布(取α=0.05)? 解答:检验假设H0: 一页的印刷错误个数X 服从泊松分布, P{X=i}=λie -λi!,i=0,1,2,⋯.H0 不成立. 先估计未知参数λλ=x¯=1/100(0×36+1×40+2×19+3×2+4×0+5×2+6×1)=1. 在H0成立下pi =P {X=i}=(λ)ie-λi!=e-1i!,i=0,1,2,⋯. 用χ2检验法χ2=∑i =1k(fi-npi )2npi ∼χ2(k -r-1). 本题中r=1, 其中fi 为频数. H0的拒绝域为 Rα={χ2>χα2(k -r-1)}. 列表计算如下:n=100, 对每个{X=i}计算pi ,npi ,fi-npi ,(fi-npi )2/(npi )(i=1,2,⋯,7). 要求每一个npi ≥5.计算χ2值χ2=0.0170+0.2801+0.0202+1.1423=1.4596.习题6下表记录了2880个婴儿的出生时刻:试问婴儿的出生时刻是否服从均匀分布U[0,24](显著性水平α=0.05)?解答:原假设H0:F0(x), 由F0(x)算得pi=F0(i)-F0(i-1)=124,npi=2880×124=120 (i=1,2,⋯,24),于是χ2=∑i=124(fi-npi)2npi≈40.47,对α=0.05, 自由度n-1=23, 查χ2-分布表,得χα2(n-1)=35.17,因为χ2=40.47>35.17, 所以拒绝H0, 即可以认为婴儿出生时刻不服从均匀分布U[0,24].总习题解答习题1下面列出的是某工厂随机选取的20只部件的装配时间(min):9.8,10.4,10.6,9.6,9.7,9.9,10.9,11.1,9.6,10.2,10.3,9.6,9.9,11.2,10.6,9.8,10.5,10.1,10.5,9.7.设装配时间的总体服从正态分布N(μ,σ2),μ,σ2均未知,是否可以认为装配时间的均值显著地大于10(取α=0.05)?解答:检验假设H0:μ≤μ0=10,H1:μ>10.已知n=20,α=0.05,由数据算得x¯=10.2,s≈0.5099.因σ2未知,故用t检验法,拒绝域为W={X¯-μ0S/n>tα(n-1).计算得x¯-μ0s/n=10.2-100.5099/20≈1.7541.查t分布表得t0.05(19)=1.7291.因为1.7541>1.7291,故拒绝H0,可以认为装配时间的均值显著地大于10.习题2某地早稻收割根据长势估计平均亩产为310kg,收割时,随机抽取了10块,测出每块的实际亩产量为x1,x2,⋯,x10,计算得x¯=110∑i=110xi=320.如果已知早稻亩产量X服从正态分布N(μ,144),显著性水平α=0.05,试问所估产量是否正确?解答:这是一个正态分布总体,方差已知,对期望的假设检验问题,如果估计正确,则应有μ=310,因此我们先将问题表示成两个假设:①H0:μ=310,H1:μ≠310.接下来就要分析样本值来确定是接受H0,还是接受H1.当H0为真时,统计量②U=X¯-31012/10∼N(0,1),从而有③P{∣U∣>1.96}=0.05,拒绝域为(-∞,-1.96)∪(1.96,+∞).④计算U0=∣320-310∣12/n≈2.64>1.96,即拒绝H0,也就是有理由不相信H0是真的,故认为估产310kg不正确.习题3设某次考试的考生成绩服从正态分布,从中随机地抽取36位考生的成绩,算得平均成绩为66.5分,样本标准差为15分,问在显著水平0.05下,是否可认为这次考试全体考生的平均成绩为70分?并给出检验过程.(1)设这次考试全体考生的平均成绩X∼N(μ,σ2),则待检验假设H0:μ=70,备择假设H1:μ≠70;(2)在H0成立条件下选择统计量T=X¯-μ0S/n∼t(n-1);(3)在显著性水平0.05下,查t分布表,找出临界值tα/2(n-1)=t0.025(35)=2.0301,则拒绝域为(-∞,-2.0301)∪(2.0301,+∞);(4)计算t=∣66.5-70∣15/36=1.4∈(-2.0301,2.0301),故接受H0,因此可认为这次考试全体考生的平均成绩为70分.习题4设有来自正态总体的容量为100的样本,样本均值x¯=2.7,μ,σ2均未知,而∑i=1n(xi-x¯)2=225,在α=0.05水平下,检验下列假设(1)H0:μ=3,H1:μ≠3;(2)H0:σ2=2.5,H1:σ2≠2.5.解答:(1)由题意知n=100,x¯=2.7,s=199×225≈1.508,t=(2.7-3)1.508×100≈-1.9894,α=0.05,t0.025(99)≈t0.025(100)=1.984.因∣t∣=1.9894>t0.025(99)=1.984,故拒绝H0,即认为μ≠3.(2)由题意知χ2=∑i=1n(x1-x¯)22.5=2252.5=90,α=0.05,χ0.0252(99)≈χ0.0252(100)=129.56,χ0.9752(99)≈χ0.9752(100)=74.22,因χ0.9752(99)<χ2=90<χ0.0252(99),故接受H0,即可以认为σ2=2.5.习题5设某大学的男生体重X为正态总体,X∼N(μ,σ2),欲检验假设:H0:μ=68kg,H1:μ>68kg.已知σ=5,取显著性水平α=0.05,若当真正均值为69kg时,犯第二类错误的概率不超过β=0.05,求所需样本大小.解答:由第一类、第二类错误及分位数的定义,易于证明:对于某个给定的δ>0(∣μ-μ0∣≥δ),样本容量n应满足:n≥(uα+uβ)2σ2δ2.因为α=β=0.05,故uα=uβ=1.645,对其对立假设μ=69而言,取δ=1,则n=(uα+uβ)2σ2δ2=(1.645+1.645)2×251≈270.6,故取n=271.某装置的平均工作温度据制造厂家称不高于190∘C.今从一个由16台装置构成的随机样本测得工作温度的平均值和标准差分别为195∘C和8∘C,根据这些数据能否说明平均工作温度比制造厂所说的要高?(设α=0.05,并假设工作温度近似服从正态分布.)解答:设X为工作温度,则X∼N(μ,σ2).①待检假设H0:μ≤190,备择假设H1:μ>190;②在H0成立条件下,选择统计量T=X¯-μ0S/n≈t(n-1);③在显著性水平0.05下,查t分布表,找出临界值tα(n-1)=t0.05(15)=1.75,拒绝域为(1.75,+∞);④计算t=X¯-μ0S/n=195-1908/16=2.5>1.75,所以否定原假设H0,说明平均工作温度比制造厂所说的要高.习题7电工器材厂生产一批保险丝,抽取10根试验其熔断时间,结果为42657578715957685455假设熔断时间服从正态分布,能否认为整批保险丝的熔断时间的方差不大于80(α=0.05)?解答:①待检假设H0:σ2≤80,备择假设H1:σ2>80;②在H0成立时,选取统计量χ2=(n-1)S2σ02∼χ2(n-1);③由α=0.05,n-1=9,查χ2分布表,χα2(n-1)=χ0.052(9)=16.919;④计算样本值:x¯=110(42+65+75+78+71+59+57+68+54+55)=62.4,s2=19∑i=110(xi-x¯)2≈121.8,χ2=9×121.880≈13.7∈(0,16.919).故接受原假设H0即在α=0.05下,可认为整批保险丝的熔断时间的方差不大于80.习题8某系学生可以被允许选修3学分有实验物理课和4学分无实验物理课,11名学生选3学分的课,考试平均分数为85分,标准差为4.7分;17名学生选4学分的课,考试平均分数为79分,标准差为6.1分. 假定两总体近似服从方差相同的正态分布,试在显著性水平α=0.05下检验实验课程是否能使平均分数增加8分?解答:设有实验的课程考分X1∼N(μ1,σ12),无实验的课程考分X2∼N(μ2-σ22).假定σ12=σ22=σ2未知,检验假设H0:μ1-μ2=8,H1:μ1-μ2≠8.由题意知,选用t检验统计量,则拒绝域为W={∣x1¯-x2¯-(μ1-μ2)sw1n1+1n2∣>tα/2(n1+n2-2),其中sw2=(n1-1)s12+(n2-1)s22n1+n2-2.由x1¯=85,x2¯=79,n1=11,n2=17,s1=4.7,s2=6.1,算出sw=(11-1)×4.72+(17-1)×6.1211+17-2≈5.603.从而算出t值为t=85-79-85.603111+117≈-0.92,由α=0.05,查表得t0.025(11+17-2)=t0.025(25)=2.056,因为∣t∣=0.92<2.056,故接受H0,认为μ1-μ2=8.习题9某校从经常参加体育锻炼的男生中随机地选出50名,测得平均身高174.34厘米;从不经常参加体育锻炼的男生中随机地选50名,测得平均身高172.42厘米. 统计资料表明两种男生的身高都服从正态分布,其标准差分别为5.35厘米和6.11厘米,问该校经常参加锻炼的男生是否比不常参加锻炼的男生平均身高要高些(α=0.05)?解答:设X,Y分别表示常锻炼和不常锻炼男生的身高,由题设X∼N(μ1,5.352),Y∼N(μ2,6.112).①待检假设H0:μ1≤μ2,备择假设H1:μ1>μ2;②选取统计量U=X¯-Y¯σ12n+σ22m∼(H0成立)N(0,1);③对于α=0.05,查标准正态分布表,uα=u0.05=1.64;则拒绝域为(1.64,+∞);④计算u=174.34-172.425.35250+6.11250≈1.67>1.64,故否定原假设H0,即表明经常体育锻炼的男生平均身高比不经常体育锻炼的男生平均身高高些.习题10在漂白工艺中要改变温度对针织品断裂强力的影响,在两种不同温度下分别作了8次试验,测得断裂强力的数据如下(单位:kg):70∘C:20.818.819.820.921.519.521.021.280∘C:17.720.320.018.819.020.120.219.1判断两种温度下的强力有无差别(断裂强力可认为服从正态分布α=0.05)?解答:(1)本问题是在α=0.05下检验假设μ1=μ2,为此需要先检验σ12=σ22是否成立.H01:σ12=σ22,H11:σ12≠σ22.选取统计量F=S12S22,在H01成立的条件下,F∼F(n1-1,n2-1),且此检验问题的拒绝域为F>Fα/2(n1-1,n2-1)或F<F1-α/2(n1-1,n2-1).这里F=s12s22≈0.90550.8286≈1.0928,F0.025(7,7)=4.99,F0.975(7,7)=1F0.025(7,7)=14.99≈0.2004.显然F0.975(7,7)=0.2004<1.0928<4.99=F0.025(7,7).说明F未落在拒绝域中,从而接受H01,即认为两温度下的强力的方差没有显著变化,亦即σ12=σ22. (2)再检验假设H0ʹ:μ1=μ2,H0ʹ:μ1≠μ2,在H0ʹ成立的条件下,T=X1¯-X2¯(n1-1)S12+(n2-1)S22n1+n2-21n1+1n2∼t(n1+n2-2),且此检验问题的拒绝域为∣T∣>tα/2(n1+n2-2),这里T≈20.4-19.47×0.9055+7×0.82868+8-218+18≈2.148,显然∣T∣=2.148>2.145=t0.025(14).说明T落在拒绝域中,从而拒绝H0,即认为两种温度下的断裂强力有显著差别.习题11一出租车公司欲检验装配哪一种轮胎省油,以12部装有Ⅰ型轮胎的车辆进行预定的测试. 在不变换驾驶员的情况下,将这12部车辆换装Ⅱ型轮并重复测试,其汽油耗量如下表所示(单位:km/L).汽车编号i123456789101112Ⅰ型胎(xi)4.24.76.67.06.74.55.76.07.44.96.15.2Ⅱ型胎(yi)4.14.96.26.96.84.45.75.86.94.76.04.9假定两总体均服从正态分布,试在α=0.025的显著性水平下,检验安装Ⅰ型轮胎是否要双安装Ⅱ型轮胎省油?解答:设两种轮胎汽油消耗量之差为随机变量D,则取值为zi=xi-yi=0.1,-0.2,0.4,0.1,-0.1,0.1,0,0.2,0.5,0.2,0.1,0.3.设Z∼N(μz,σz2),σz2未知. 若消耗油相同,则μz=0;若Ⅰ型比Ⅱ型轮胎省油,则μz>0,于是检验假设H0:μz=0,H1:μz>0.由题意知z¯≈0.142,s≈0.198,n-1=12-1=11.α=0.025,查t分布表得t0.025(11)=2.201.所以,拒绝域为W={t>2.201}.由于样本值t=z¯-0s/n=0.142-00.198/12≈2.48>2.201,故拒绝H0:μz=0,即说明Ⅰ型轮胎省油.习题12有两台机器生产金属部件,分别在两台机器所生产的部件中各取一容量n1=60,n2=40的样本,测得部件重量(以kg计)的样本方差分别为s12=15.46,s22=9.66. 设两样本相互独立,两总体分别服从分布N(μ1,σ12),N(μ2,σ22).μi,σi2(i=1,2)均未知,试在α=0.05水平下检验假设H0:σ12≤σ22,H1:σ12>σ22.解答:在α=0.05下,检验假设H0:σ12≤σ22,H1:σ12>σ22,经计算p=1100×10(45+2×17+3×4+4×1+5×1)=1/10,故检验假设为H0:X∼B(10,1/10),即pi=P{X=i}=C10i(1/10)i(9/10)10-i,i=0,1,2,⋯,10.为了使npi≥5,将xi≥3合并,于是k=4,r=1.计算χ2的观察值,计算结果如下表:[200,300) [300,+∞)435843.466.9-0.4-8.90.0041.184∑300300 1.8631其中理论概率pi=p{ti≤T≤ti+1}=∫titi+1f(t)dt(i=1,2,3),p4=1-∑i=13pi,例如p1=P{T<100}=∫01000.005e-0.005tdt=1-e-0.5≈0.393.由k=4,未知参数个数r=0,查表知χα2(k-r-1)=χ0.052(3)=7.815.因χ2=1.8631<χ0.052(3)=7.815.故接受H0,即可认为灯泡的寿命服从该指数分布.习题16关于正态总体X∼N(μ,1)的数学期望有如下二者必居其一的假设,H0:μ=0,H1:μ=1.考虑检验规则:当X¯≥0.98时否定假设H0接受H1,其中X¯=(X1+⋯+X4)/4,而X1,⋯,X4是来自总体X的简单随机样本,试求检验的两类错误概率α和β.解答:易见,在假设“H0:μ=0”成立的条件下,X¯∼N(0,1/4),2X¯∼N(0,1);在假设“H1:μ=1”成立的条件下,X¯∼N(1,1/4),2(X¯-1)∼N(0,1).因此,由定义得α=P{X¯≥0.98∣μ=0}=P{2X¯≥1.96∣μ=0}=0.025,β=P{X¯<0.98∣μ=1}=P{2(X¯-1)<-0.04∣μ=1}=0.4840.习题17考察某城市购买A公司牛奶的比例,作假设H0:p=0.6,H1:p<0.6,随机抽取50个家属,设x为其中购买A公司牛奶的家庭数,拒绝域W={x≤24}.(1)H0成立时,求第一类错误的α;(2)H1成立且p=0.4时,求第二类错误的β(0.4);又当p=0.5时,求第二类错误的β(0.5).解答:由定义知(1)α=P{x≤24∣p=0.6}=Φ(24-50×0.650×0.6×0.4)≈Φ(-1.73)=1-Φ(1.73)=1-0.9528=0.0418.(2)β(0.4)=P{x>24∣p=0.4}=1-Φ(24-50×0.450×0.4×0.6)≈1-Φ(1.15)=1-0.8749=0.1251;。
《概率论与数理统计》课件第七章 参数估计
03
若存在, 是否惟一?
添加标题
1
2
3
4
5
6
对于同一个未知参数,不同的方法得到的估计量可能不同,于是提出问题
应该选用哪一种估计量? 用何标准来评价一个估计量的好坏?
常用标准
(1)无偏性
(3)一致性
(2)有效性
7.2 估计量的评选标准
无偏性
一致性
有效性
一 、无偏性
定义1 设 是未知参数θ的估计量
09
则称 有效.
10
比
11
例4 设 X1, X2, …, Xn 是X 的一个样本,
添加标题
问那个估计量最有效?
添加标题
解 ⑴
添加标题
由于
添加标题
验证
添加标题
都是
添加标题
的无偏估计.
都是总体均值
的无偏估计量.
故
D
C
A
B
因为
所以
更有效.
例5 设总体 X 的概率密度为
关于一致性的两个常用结论
1. 样本 k 阶矩是总体 k 阶矩的一致性估计量.
是 的一致估计量.
由大数定律证明
用切比雪夫不 等式证明
似然函数为
其中
解得参数θ和μ的矩估计量为
2
时
3
令
1
当
6
,故
5
,表明L是μ的严格递增函数,又
4
第二个似然方程求不出θ的估计值,观察
添加标题
所以当
01
添加标题
从而参数θ和μ的最大似然估计值分别为
03
添加标题
时L 取到最大值
02
添加标题
单个正态总体参数的置信区间_概率论与数理统计_[共4页]
142 概率论与数理统计 则称ˆθ为θ的相合估计量. 例如由第6章知,样本(1)k k ≥阶矩是总体X 的k 阶矩()k k E X μ=的相合估计量,进而若待估参数12(,,,)k g θμμμ=",其中g 为连续函数,则θ的矩估计量12ˆˆˆˆ(,,,)k g θμμμ="12(,,,)ng A A A ="是θ的相合估计量.由最大似然估计法得到的估计量,在一定条件下也具有相合性.相合性是对一个估计量的基本要求,若估计量不具有相合性,那么不论将样本容量n 取多么大,都不能将θ估计得足够准确,这样的估计量是不可取的.7.3置信区间前面讨论了参数的点估计,它是用样本算出的一个值去估计未知参数. 即点估计值仅仅是未知参数的一个近似值,它没有给出这个近似值的误差范围. 点估计方法不能回答估计量的可靠度与精度问题,不知道点估计值与总体参数的真值接近程度.若能给出一个估计区间,让我们能以较大把握来相信参数的真值被含在这个区间内,这样的估计就是所谓的区间估计.下面介绍区间估计的概念、方法,并重点讲述正态总体下参数的区间估计.7.3.1 置信区间的概念定义7.5 12,,,n X X X "是取自总体X 的一个样本,设θ为未知参数,对给定的数1α−(01)α<<,若存在统计量1212(,,,),(,,,),n n X X X X X X θθθθ==""使得{}1,P θθθα<<=− (7.6)则称随机区间(,θθ为θ的置信水平为1α−的置信区间,称1α−为置信度(置信水平),又分别称θ与θ为θ的置信下限与置信上限.如果取10.95α−=,那么(,θθ为θ的置信水平为0.95的置信区间,其含义是:重复抽样多次,得到多个样本值12(,,,)n x x x ",对应每个样本值确定一个置信区间(,θθ,每个区间要么包含了θ的真值,要么不包含θ的真值. 比如重复抽样100次,则其中大约有95个区间包含θ的真值,大约有5个区间不包含θ的真值.7.3.2 单个正态总体参数的置信区间正态总体是最常见的分布,下面我们讨论它的两个参数的置信区间.1.σ已知时,μ的置信区间设总体2~(,),X N μσ其中2σ已知,而μ为未知参数,12,,,n X X X "是取自总体X 的一个样本. 求μ的置信水平为1α−的置信区间.我们知道X 是μ的无偏估计,且有。
概率论与数理统计_7.3置信区间
其中 > 0为未知参数, X1, X2, „, Xn 是取自总体X的一组样本, 求 的极大似然估计量与矩估计量.
( 2) x 1 , 0 x 1; 设总体 X 的密度为 f ( x ; ) 0, 其它,
故有对数似然函数: ln L ( ) n ln ( 2 ) ( 1) ln xi , i 1 n ) n ( d ln L ln xi= 0 , 对 求导并令其为 0 可得似然方程: d 2 i 1 n ˆ 2 n 解得极大似然估计量: ln X i i 1 2 2 1 n n Xi X , (2)EX x f ( x ; ) dx 令 i 1 3 3
评选标准 无偏性 —— 估计量的期望值等于未知参数的真值.
• 样本 k 阶原点矩是总体 k 阶原点矩 的无偏估计量 ; • 样本方差 S 2 是总体方差 2 的无偏估计量 ; • 无偏估计量的函数未必是无偏估计量
有效性 —— 方差更小的无偏估计量.
• 在 的所有线性无偏估计量中, 样本均值 X 是最有效的.
2. 对于给定的置信水平 1- , 由概率 P ( | U | x ) , 查表求出分布的分位数 x , ( u / 2 ) 1 P ( |U | u /2 ) 2
─
例1 某乡农民在联产承包责任制前人均纯收入 X(单 位:元), 且 X ~ N (µ, 252). 推行联产承包责任制后, 在该乡抽得 ─ n =16 的样本, 得 x =325元, 假设 2 = 25 2 没有变化, 求 的置信水 平为 0. 95 的置信区间. 解 由于 =0.05 , 查正态分布表得 u0. 025 =1. 96 , | X | u / 2 | 325 | 1. 96 325 25 1. 96 325 25 1. 96 / n 25 / 16 16 16 即得置信区间 ( 312. 75 , 337. 25 ). 区间长度为 24. 25 如在上例中取 = 0. 01+ 0. 04 , 由正态分布上侧分位数定义知 0. 01 0. 04 1 ( u0. 01) 1 ( u0. 04 ) 1 ( u0. 01) ( u0. 04 ) 长度为 25. 5 1 P ( u0. 04 U u0. 01 ) 查表知 u0.01 2. 33 , u0. 04 1. 75 325 25 2. 33 325 25 1. 75
《置信区间详细定义及计算》PPT课件
2
它的概率分布,则问题可以迎刃而解了。
S 2 的概率分布是难以计算的,而
2
p y
2
(n 1)S 2
2
~
2 (n 1)
2
2
对于给定的 (0 1).
P{12 2
(n 1)
(n 1)S 2
2
2
2
(n 1)} 1
2 1
(n
1)
2
(n
1)
2
则所求μ的置信区间为
2
[6720
28
2.306]
即 [6650.9 , 6889.1]
3
则钢索所能承受的平均张力为 6650.9 kg/cm2
三、方差σ2的置信区间
已知总体 X ~ N (, 2)
下面我们将根据样本找出σ2 的置信区间, 这在研究
生产的稳定性与精度问题是需要的。 我们利用样本方差对σ2进行估计,由于不知道S2与
2
x
即 py
2
2
12 (n1) 2
p( y)d
y
0
2
2 1
(n
1)
2
(n
1)
x
2
2
p(y)d y
2
( n 1)
2
P{12 2
(n 1)
(n 1)S 2
2
2
2
(n
1)}
2
1
(n 1)S 2
P{
2
(n
1)
2
(n 1)S
2 1
(n
2
} 1)
1
2
2
则得到σ2随机区间
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
置信水平的概率意义: 置信水平为 0.95 是指 100 组样本值所得置信区间的实现
中, 约有95个能覆盖 , 而不是一个实现以 0.95 的概率覆盖了 .
并非一个实现以 1- 的概率覆盖了
估计的可靠度:
估计要尽量可靠,
即
P( ─
<
<─
)=
1-
要尽可能大.
要求 以很大的可能被包含在置信区间内 .
• 样本 k 阶原点矩是总体 k 阶原点矩 的无偏估计量 ;
• 样本方差 S 2 是总体方差 2 的无偏估计量 ;
• 无偏估计量的函数未必是无偏估计量
有效性 —— 方差更小的无偏估计量.
• 在 的所有线性无偏估计量中, 样本均值 X─ 是最有效的.
一致性 参数的点估计是用样本算得的一个值去估计未知参数. 使用 起来把握不大. 点估计值仅仅是未知参数的一个近似值, 它没有 反映出这个近似值的误差范围. 而区间估计正好弥补了点估计 的这个缺陷. 为了使估计的结论更可信, 需要引入 ( 8. 34 0.03 3.182 )% , ( 8. 34 0.03 3.182 )%
( u / 2
)
1
2
例2: 某厂生产的零件长度 X 服从 N( , 0.04),现从
该厂生产的零件中随机抽取6个,长度测量值如下 (单位:毫米):
14.6, 15.l, 14.9, 14.8, 15.2, 15.1.
求:µ 的置信系数为0.95的区间估计。
解:n = 6, = 0.05,z/2 = z0.025 = 1.96,2=0.22 .
,
n
u / 2
,
X
n
u /2 )可知,
( x)
10 若给定 n , l 随着 的减小而增大;
则 u/2 越大, l (就u越/2)大就, 越大, 这时 就越小.
20 若给定 , l 随着 n 的增大而减小;
且由于 l 与 n 成反比, 减小的速度并不快, 例如, n 由 100 增至 400 时, l 才能减小一半.
这个不等式就是我们所求的置信区间 ( , ) .
对于给定的置信水平, 根据估计量U 的分布, 确定
一个区间, 使得 U 取值于该区间的概率为置信水平.
(一) 单个正态总体置信区间的求法
设 X1, …, Xn 是总体 X ~ N( , 2)的样本, X ,─S2 分别是其样本
均值和样本方差, 求参数 、 2 的置信水平为1- 的置信区间.
通过计算,得 X 14.95,
所求置信区间为
X
n z 2,
X
n
z
2
14.79,
15.11 .
(2) 未知方差 2 时 —— 实用价值更大 !!
由于 ( X
n
u / 2
,
X
n
u / 2 )
与 有关,
故不能采用已知方差
的均值估计方法 —— 但其解决的思路一致.
n
u / 2 ) ,
简记为
X
n
u 2
求置信区间首先要明确问题:
是求什么参数的置信区间? 置信水平 1- 是多少?
一般步骤如下:
X
1 n
n i 1
Xi
1. 寻找未知参数 的一个^良好的点估计量 (X1, X2, …, Xn );
确定待估参数估计^ 量函数 U( 2. 对于给定的置信水平 1- ,
和 ( X1, X2 , , Xn ) 满足
P ( ) 1 ,
则称随机区间 ( , )为 的置信水平为1- 的双侧置信区间 . 和
分别称为置信下限和置信上限.
置信度 置信概率
1) 和 为两个统计量(由样本完全确定的已知函数);
2)( , ) 是随机区间, 代入样本值所得的普通区间称为置信区 间的实现.
§7.3 单个正态总体均值与方差的置信区间
譬如,在估计湖中鱼数的问题中, 若我们根据一个实际样本 得到鱼数 N 的极大似然估计为 1000 条.
但实际上, N 的真值可能大于 1000 条, 也 可能小于1000条.
一个可以想到的估计办法是:若我们能给
出一个区间,并告诉人们该区间包含未知参数 N的可靠度 (也称置 信系数).
用U
X
S / n
分布的分位数求
的置信区间.
由于 S 2是 2 的无偏估计量, 故可用 S 替代 的估计量:
由抽样分布定理知 T = X ~ t(n-1),
Sn
令 P{ |T| t 2 (n 1) } 1 ,
查 t 分布表确定上侧 /2 分位数 t/2(n -1),
求总体均值 的置信水平为 0. 95 的置信区间.
解 由于 /2=0. 025 ,自由度 n-1= 3, 查 t 分布表得 t0. 025 =3. 182,
将 x─ = 8. 34 %
代入 | X
S/ n
| t /2 得
| 8. 34
0.03/ 4
|
3.182
(8. 34 0.03 3.182)% (8. 34 0.03 3.182)%
) 的分布 ; 由概率 P(
|U
|
U
x
X / n
) ,
~
N
(0 , 1)
查表求出分布的分位数
x
,
(u/2 )
1
2
P( |U| u /2 )
3. 由分位数|U| x 确定置信区间 (─ ,─ )X. ( , ─ ) 就是 的 100(1- )% 的置信区间.
我们选取未知参P数(的某个 )估 计1量 ?^,①根据置信水平1- , 可以
找到一个正数 , 使得 P(|ˆ | ) 1 ,
只要知^道 的概率分布就可以确定 . 分布的分位数 ②
由不等式 |ˆ | 可以解出 :ˆ ˆ ③
(X
n
u / 2
,
X
n
u / 2 )
的长度是最短的, 故我们总取它作为置信水平为 1- 的置信区间.
一般地, 在概率密度为单峰且对称的情形下, a =-b 对应的 置信区间的长度为最短.
l 与 n , 的关系: 由置信区间公式( X
置信区间的长度 l 为:
l
2
n
u / 2
例
设总体
X
的密度为
f
(x;
)
(
2) x 1,
0 x 1;
0, 其它,
其中 > 0为未知参数, X1, X2, …, Xn 是取自总体X的一组样本,
求 的极大似然估计量与矩估计量.
解(1) 样本的似然函数为
L( )
n
f
(
xi
;
)
(
2)n (
x1 L
| X
Sn
|
t / 2 (n 1) X
S n
t
2 (n 1)
X
S n
t
2 (n 1)
(X
S n
t
2 (n 1) ,
X
S n
t
2(n1)
)即为
的置信度为
1-
的区间估计.
例3
为确定某种溶液中甲醛浓度, 测定总体服从正态
分布, 且其4 个独立测量值的平均值 x─ = 8. 34%, 样本标准差 s= 0. 03%,
平为 0. 95 的置信区间.
解 由于 =0.05 , 查正态分布表得 u0. 025 = 1. 96 ,
|
X
/
n
| u /2
| 325 | 1.96
25/ 16
325 25 1.96 325 25 1.96
16
16
即得置信区间 ( 312. 75 , 337. 25 ). 区间长度为 24. 25
即令按标|(准uX//正2 )n态|1分u布2 /2,的查双正侧态X分分布位n表u数可/的2 得定u义/X2P,(
|U |
②
n
u /2 ) ,
由分布求分位数
u / 2 ③ 由u/2确
定置信区间
即得置信区间( X
n
u / 2 ,
X
均值
((12))
已知方差 未知方差
2 2
方差 2
((12))
已知均值 未知均值
均值 1- 2
((12))
已知方差12,22 未知方差12,22,但相等!
方差
12/22
((12))
已知均值 未知均值
1, 1,
2 2
如何根据实际样本, 由给定的置信水平1- , 求出一个区间 ( , ), 使
要求估计尽量可靠.
估计的精度:
估计的精度要尽可能的高:即要求区间置信的长度尽可能短, 或能体现该要求的其它准则.
要求置信区间的长度尽可能短.
可靠度与精度是一对矛盾, 一般是在 保证可靠度的条件下尽可能提高精度.
二、置信区间的求法 (一) 单个正态总体
1. 2.
(二) 两个正态总体12..
325
25 2. 33 325
16
25 1.75 16
同一置信水平下的置信区间不唯一, 其长度也不相等.