结构有限元分析中的网格划分技术及其应用实例

合集下载

板结构有限元分析实例详解

板结构有限元分析实例详解

板结构有限元分析实例详解板结构是一种常见的结构形式,广泛应用于建筑、航空航天、机械、电子等领域。

板结构的特点是结构主要由板和边界构件组成,受到外加载荷作用时,产生弯曲和剪切变形。

为了评估板结构的强度和稳定性,可以使用有限元分析方法进行分析。

本文将以一座大跨度板结构为例,详解板结构有限元分析的步骤及其相关实例。

首先,我们需要对板结构进行几何建模。

通常情况下,板结构可以简化为二维平面问题。

我们可以使用专业的有限元分析软件,如ANSYS、ABAQUS等,进行几何建模。

在建模过程中,需要确定结构的几何形状、边界条件、加载方式等参数。

以一块长方形板作为例子,我们可以在软件中创建一个二维平面,并定义板的几何尺寸和材料属性。

接下来,我们需要对板结构进行网格划分。

有限元分析方法将结构划分为许多小的单元,然后对每个单元进行分析计算。

在板结构分析中,常用的单元类型包括矩形单元、三角形单元、四边形单元等。

我们可以根据实际需要选择适当的单元类型和网格密度,并利用软件自动生成板结构的网格。

然后,我们需要为板结构定义边界条件。

边界条件包括支撑条件和加载条件两个方面。

支撑条件描述了板结构受力的边界,通常包括固定支撑、滑动支撑、自由支撑等情况。

加载条件描述了外力或外载荷施加在板结构上的方式和大小。

在我们的例子中,假设板结构的四个边界均为固定支撑,我们可以在软件中设置相应的边界条件。

之后,我们需要为板结构定义材料属性。

板结构的材料属性包括弹性模量、泊松比、密度等参数。

这些参数描述了板结构在受力时的材料性能和特性。

我们需要根据实际的材料情况,为板结构指定合适的材料属性,并在软件中进行设置。

最后,我们可以对板结构进行有限元分析计算。

在软件中,我们可以选择合适的求解器和分析方法,进行结构的静力分析、动力分析、稳定性分析等。

通过有限元分析,我们可以得到板结构在受力状态下的变形、应力分布、应变分布等结果。

总之,通过板结构的有限元分析,我们可以对结构的强度、稳定性、振动等性能进行评估和优化。

有限元网格划分(讲稿) 27页PPT文档

有限元网格划分(讲稿) 27页PPT文档

Surface 采 用quad
Face 采用 quad
通过 sweep quad 创建Hex
Associated points 用于网格生成 Points 可 associated 于 curve 、 surface 硬点布置受global model tolerance 限制 被关联几何网格生成亦受限制 仅应用于 Paver 关联点亦可给被关联去除
在线curve或边edge上设置mesh seed 用以控制欲建模型的元素数目 与大小。
mesh seed 也用于调整网格密度 MSC.Patran 提供多种方法产生 seed
Uniform seed bias (等间隔) Non-uniform seed bias (不等间隔) Curve based seeding (依曲线参数而定) Tabular (列表输入) PCL function (PCL函数)
性,可进行parasolid 装配
有限元网格划分基础
ISOMESH 与 TETMESH的区别
由原丝体创建简单体 用Isomesh 划网格 附加工作多,但可使用hex
元素
Parasolid 体(复杂体)
简单体分割
对 parasolid 体直接划mesh
有限元网格划分基础
左图是一个硬点的
例子。说明了硬点 与网格之间的关系
硬线用于面网格生成 硬线布置受global model tolerance 限制 被关联几何网格生成亦受限制 硬线本身可加mesh seeded 仅应用于 Paver 关联线亦可给被关联去除
有限元网格划分基础
IsoMesher 可用于参数体
有限元网格划分基础
Mirror Plane
通过Create/Element/Edit菜单可以手动创建单元 需要注意的是:

有限元分析之网格

有限元分析之网格

有限元分析之网格展开全文网格它是什么网格是求解域物理离散的结果,是求解域数值离散的具体表现,更是偏微分方程求解的前提。

网格是求解域离散化的表现形式,可以说它是另外一种求解域,在有些时候你可以理解为它是附着在求解域上的一层皮肤。

通常它是由许多小格子彼此之间相互衔接在一起的,可以说它是单元的一个集。

因为整个区域形状或者工况复杂,想要一次求解出整个域是十分困难的,甚至是不可能的。

而将整个区域划分成有限多个小格子组成,单独的看每一个格子它又是简单的,在每个小格子上一次求解又变得相对容易,然后由所有的小格子得到整个区域的解。

可见,在整个求解过程中,网格是由大到小,又是由小到大,始终作为求解的基础条件。

上面图示为一个平面区域离散化以后的结果,每一个小格子称为一个单元,每个单元有四条边、四个顶点,称为单元的边界和节点。

外部条件作用在物理区域上,实际上就作用到了单元的边界之上。

单元之间边界是衔接在一起的,仅仅通过节点产生作用,故此需要将单元边界上的条件转化到节点之上,称为节点等效载荷。

为什么说网格是偏微分方程数值计算的前提呢?因为前面提到偏微分方程的复杂性使获得解析解极其困难,甚至是不可能实现,故此采用数值计算。

在方程数值计算过程中,诸如采用有限差分法,有限体积法以及有限元法,根本就是需要生成一组覆盖连续域的离散点和单元。

有限差分法就是用差分方程代替偏微分方程,而差分方程就是在离散点上建立的,PDE的离散通常是在点附近以泰勒级数展开,它不关心离散点之间如何变化。

有限元法是使用积分法建立代数方程组,必须考虑数值在网格节点之间的变化规律。

有限体积法是必须考虑数值在网格之间的变化规律,是基于离散单元求积分。

三种数值方法都是基于离散化的点或者单元建立方程,所以离散是求解的前提条件。

网格它有哪些类型?谈到网格的类型的时候,很多人(包括我自己)特别容易与单元混淆,毕竟网格下一级就是单元嘛。

网格是从离散域整体角度描述求解域,单元是从离散域局部角度描述求解域。

门座起重机门架结构的有限元分析_傅永华

门座起重机门架结构的有限元分析_傅永华

门座起重机门架结构的有限元分析武汉水利电力大学 傅永华门架结构是门座起重机的基础结构,设计时一般简化为杆系结构进行计算,即将其部件作为浅梁处理。

然而在实际工程中,许多圆筒门架的部件已不宜视为浅梁。

如某电厂的60t M 6022型门座起重机(图1),沿轴线方向计算高跨比:主梁为260/1050=1/4,下横梁为250/1050=1/4.2,均属于深图1 60t M 6022型门座起重机示意图梁范畴;圆筒与两侧立柱更甚,高跨比分别为320/490=1/1.54与250/320=1/1.28,显然作为刚架结构分析是有很大误差的。

当然,在具体设计中,可加大安全储备弥补这一缺陷,但难免带有盲目性。

而且作为一种复杂的薄壁箱形结构,不了解其应力场的具体分布情况,难以有效地优化结构。

本文以某电厂M6022型门座起重机(以下简称门机)为例,使用Super Sap93大型结构分析软件用板壳元建立力学模型计算,并在分析应力场分布特点的基础上,多次改变模型的局部结构反复计算,较合理地说明了这类结构的强度条件与加固措施。

1 模型建立1.1 单元划分圆筒门架结构是对称的,但门机工作时工况的变化不便于利用对称性,故采用四结点任意四边形板壳元建立整个结构的模型。

其中圆筒板厚18mm,主梁翼缘板厚18m m,腹板厚14mm,下横梁翼缘板厚16mm,腹板厚14mm 。

网格划分如图2所示,共1825个结点,1840个单元。

图2 圆筒门架结构网格节点图的升、降、存和取分别操作,而且是手离按钮即停止动作,有关检测和安全系统仍有效(门联锁除外),升降电机处于慢速状态。

3 安全系统垂直升降式立体停车库的安全系统是由车辆尺寸和重量检测系统、超速保护系统、升降传动机构失效保护系统、冲顶保护系统、沉底保护系统、联锁保护系统、消防系统和避雷装置等组成,其工作方式举例如下:(1)车辆尺寸和重量检测系统 当车超尺寸或超重y/超负荷0灯亮,否则/安全确认0灯亮y 车驶出y 关门y 结束。

有限元分析网格划分的关键技巧

有限元分析网格划分的关键技巧

网格规模和分辨率的选择是有限元分析网格划分中的重要环节。以下是选择 合理的网格规模和分辨率时需要考虑的几个因素:
1、分析精度:网格规模和分辨率越大,分析精度越高,但同时也会增加计 算成本。因此,需要在精度和成本之间找到平衡点。
2、计算资源:网格规模和分辨率越大,需要的计算资源越多,需要考虑计 算机硬件的性能和应用场景的需求。
4、三角形单元:适用于不规则区域和复杂结构的模拟,如表面模型等。
5、四边形单元:适用于规则区域和简单结构的模拟,如立方体、圆柱等。
6、高阶单元:高阶单元具有更高的计算精度,但同时也需要更多的计算资 源。
在选择合适的单元类型和阶次时,需要考虑以下因素:
1、分析精度:根据分析目标和实际需求,选择能够满足精度要求的单元类 型和阶次。
4、施加边界条件和载荷:对计算域的边界和加载条件进行定义,以模拟实 际工况。
5、进行有限元分析和求解:利用有限元分析软件进行计算,得到各节点处 的响应和位移等结果。
6、结果后处理:对分析结果进行可视化处理,如云图、动画等,以便更好 地理解和评估仿真结果。
技巧2:如何选择合适的单元类 型和阶次
5、经验准则:根据类似问题的经验和网格划分准则,可以指导网格规模和 分辨率的选择。例如,对于结构分析,通常建议最大单元尺寸不大于最小特征尺 寸的1/10。
技巧4:如何使用有限元分析软件自动划分网格
随着有限元分析软件的发展,越来越多的软件提供了自动划分网格的功能。 使用这些功能可以大大简化网格划分的过程,提高分析效率。下面介绍两种常见 的自动划分网格方法:
2、计算效率:在保证精度的前提下,尽量选择计算效率较高的单元类型和 阶次。
3、单元特性:了解各种单元类型的适用范围和局限性,以便在分析过程中 更好地满足实际需求。

机械零件有限元分析-5-第四讲-网格划

机械零件有限元分析-5-第四讲-网格划

THANKS
感谢观看
理现象。
均匀性
网格的分布应尽量均匀,以提 高计算精度和稳定性。
局部细化
对于关键区域或需要更高精度 的地方,应进行局部网格细化

边界条件处理
在边界区域,应根据实际情况 处理网格,以避免出现奇异性
和不合理的解。
03
网格划分的方法和技术
结构化网格划分
01
02
03
结构化网格
按照一定的规则和顺序对 有限元模型进行网格划分, 每个网格单元具有相同或 相似的形状和尺寸。
详细描述
对于形状不规则、结构复杂的机械零件,网格划分变得困难,需要采用特殊的有 限元网格划分方法,如自适应网格、非结构化网格等。
实例三:多物理场耦合的网格划分
总结词
多物理场、耦合、复杂度增加
详细描述
对于涉及多个物理场耦合的机械系统,如热-力耦合、流-固耦合等,网格划分变得更加复杂。需要采用多物理场 耦合的有限元网格划分方法,如分区耦合、全局耦合等。
网格划分的重要性和意义
网格划分是有限元分析的关键 环节,它决定了模型的离散精 度和计算规模。
合适的网格划分能够提高计算 精度,降低模型的自由度,从 而减少计算时间和资源消耗。
不合理的网格划分可能导致计 算精度降低,甚至出现数值不 稳定或计算失败的情况。
02
网格划分的基本概念
网格划分的定义
网格划分是将连续的物理模型离散化 为有限个小的单元,每个单元称为网 格或节点。
自适应移动节点
03
根据计算结果动态移动网格节点,以保持网格质量。
05
实例分析
实例一:简单零件的网格划分
总结词
规则、简单、容易划分
详细描述

有限元分析实例

有限元分析实例

有限元分析实例引言有限元分析(Finite Element Analysis,简称FEA)是一种工程分析方法,能够将连续体结构分割成有限个小单元,通过在每个小单元内建立方程模型,最终求解整个结构的力学行为。

本文将以一个实例来介绍有限元分析的基本过程和步骤。

实例背景我们将以一个简单的杆件弯曲问题为例来进行有限元分析。

假设有一根长度为L、截面积为A的杆件,材料的弹性模量为E,截面的转动惯性矩为I。

我们希望通过有限元分析来计算杆件在一定加载条件下的弯曲变形。

有限元网格的划分首先,我们需要将杆件划分成有限个小单元,即有限元网格。

常用的网格划分方法有三角形划分、四边形单元划分等。

根据具体问题的要求和复杂度,选择合适的划分方法。

单元的建立划分好网格后,我们需要在每个小单元内建立方程模型。

在弯曲问题中,常见的单元模型有梁单元、壳单元等。

在本实例中,我们选择梁单元作为杆件的单元模型。

对于梁单元,我们需要定义每个节点的位移和约束条件。

根据杆件的几何尺寸和材料属性,可以利用应变能量原理和几何相似原理,得到每个节点的位移和约束条件。

材料特性和加载条件的定义在进行有限元分析之前,我们需要定义材料的特性和加载条件。

对于本实例中的杆件,我们需要定义弹性模量E、截面积A和转动惯性矩I。

加载条件可以包括集中力、均布力、弯矩等。

在本实例中,假设杆件受到均布力,即沿杆件轴向的受力分布是均匀的。

单元方程的建立和求解在定义了材料特性和加载条件之后,我们可以根据每个梁单元的位移和约束条件,建立每个单元的方程模型。

常见的方程模型有刚度矩阵方法、位移法等。

根据所选的单元模型,选择合适的方程模型进行计算。

通过对每个单元的方程模型进行组装,我们可以得到整个结构的方程模型。

将加载条件带入,可以求解出整个结构在给定加载条件下的位移、应力等参数。

结果分析根据求解得到的位移信息,我们可以绘制出结构的变形图。

通过变形图,可以直观地观察到结构在弯曲条件下的变形情况。

有限元网格划分

有限元网格划分

本文讨论了有限元网格的重要概念,包括单元的分类、有限元误差的分类与影响因素;并讨论分析结果的收敛性控制方法,并由实例说明了网格质量及收敛性对取得准确分析结果的重要性。

同时讨论了一些重要网格控制的建议及其他网格设定的说明。

一、基本有限元网格概念1.单元概述几何体划分网格之前需要确定单元类型。

单元类型的选择应该根据分析类型、形状特征、计算数据特点、精度要求和计算的硬件条件等因素综合考虑。

为适应特殊的分析对象和边界条件,一些问题需要采用多种单元进行组合建模。

2.单元分类选择单元首先需要明确单元的类型,在结构有限元分析中主要有以下一些单元类型:平面应力单元、平面应变单元、轴对称实体单元、空间实体单元、板单元、壳单元、轴对称壳单元、杆单元、梁单元、弹簧单元、间隙单元、质量单元、摩擦单元、刚体单元和约束单元等。

根据不同的分类方法,上述单元可以分成以下不同的形式。

3.按照维度进行单元分类根据单元的维数特征,单元可以分为一维单元、二维单元和三维单元。

一维单元的网格为一条直线或者曲线。

直线表示由两个节点确定的线性单元。

曲线代表由两个以上的节点确定的高次单元,或者由具有确定形状的线性单元。

杆单元、梁单元和轴对称壳单元属于一维单元,如图1~图3所示。

二维单元的网格是一个平面或者曲面,它没有厚度方向的尺寸。

这类单元包括平面单元、轴对称实体单元、板单元、壳单元和复合材料壳单元等,如图4所示。

二维单元的形状通常具有三角形和四边形两种,在使用自动网格剖分时,这类单元要求的几何形状是表面模型或者实体模型的边界面。

采用薄壳单元通常具有相当好的计算效率。

三维单元的网格具有空间三个方向的尺寸,其形状具有四面体、五面体和六面体,这类单元包括空间实体单元和厚壳单元,如图5所示。

在自动网格划分时,它要求的是几何模型是实体模型(厚壳单元是曲面也可以)。

4.按照插值函数进行单元分类根据单元插值函数多项式的最高阶数多少,单元可以分为线性单元、二次单元、三次单元和更高次的单元。

ANSYS有限元网格划分浅析

ANSYS有限元网格划分浅析

ANSYS有限元网格划分浅析有限元分析作为现代工程设计领域中不行或缺的工具,旨在通过对复杂结构进行数值模拟,猜测其力学行为和性能。

而有限元网格划分作为有限元分析的前提条件,直接影响着分析结果的准确性和计算效率。

本文将对ANSYS有限元网格划分的原理和技巧进行浅析,并探讨其在工程设计中的应用。

一、有限元网格划分的基本原理有限元网格划分是将连续物体离散化成有限个离散单元,构建有限元模型的过程。

其原理主要涉及两个方面:几何划分和节点生成。

1.1 几何划分几何划分是将实际结构划分为有限单元的过程,主要包括自动划分和手动划分两种方式。

自动几何划分是ANSYS通过对实际结构进行自动网格划分的功能,依据用户指定的几何参数进行自适应划分,最大程度地保持结构的准确外形。

这种划分方法具有快速、高效的优点,特殊适用于复杂结构的网格划分。

手动几何划分是由用户通过手动操作构建网格划分,使用ANSYS提供的几何划分工具进行几何实体的划分和组合,依据结构外形和特点进行网格划分的方式。

这种划分方法需要用户具备一定的几何划分技巧和阅历,能够对结构进行合理的划分。

1.2 节点生成节点生成是指依据坐标系和几何划分,自动生成有限元网格中的节点坐标。

在划分完成后,节点将依据有限元单元的外形和尺寸进行生成。

节点生成过程中主要包括节点编号、坐标值和自由度的定义。

节点编号是为每个节点赐予唯一的标识,便利在后续分析中进行节点相关的计算;坐标值是节点在几何坐标系中的坐标值,用于描述节点在空间中的详尽位置;自由度的定义是为节点定义相应的位移或位移的导数,用于后续求解分析中的节点位移计算。

二、ANSYS有限元网格划分的技巧2.1 网格密度的控制网格密度是指网格单元数目与结构体积之比,其决定了有限元模型对结构细部行为的描述能力。

合理控制网格密度能够提高分析结果的准确性和计算效率。

一般来说,细节丰富的区域应接受较小的网格单元,而结构较简易的区域可以接受较大的网格单元。

ANSYS有限元分析实例

ANSYS有限元分析实例

ANSYS有限元分析实例假设我们需要分析一个简单的悬臂梁结构,该梁由一个固定端和一个自由端组成。

其几何形状和材料属性如下:梁的长度:L = 1000mm梁的宽度:W = 20mm梁的高度:H = 10mm梁的材料:钢材材料的弹性模量:E=210GPa材料的泊松比:υ=0.3在进行有限元分析之前,我们首先需要绘制悬臂梁的几何模型,并划分网格。

对于本例,我们可以使用ANSYS软件的几何建模工具进行绘制和网格划分。

然后,我们需要定义材料属性和加载条件。

在ANSYS中,可以通过分析系统中的属性表来定义材料属性。

在本例中,我们将定义钢材的弹性模量和泊松比。

接下来,我们将定义结构的约束和加载条件。

悬臂梁的固定端不允许位移,因此我们需要将其固定。

我们还需要定义在自由端施加的外部力或力矩。

在建立有限元模型之后,我们需要进行模型网格划分并设置网格精度。

在ANSYS中,可以选择适当的网格划分工具,例如自适应网格划分或手动划分。

完成网格划分后,我们可以应用适当的材料属性和加载条件。

在ANSYS中,可以使用强度分析工具来定义材料属性,并使用负载工具来定义加载条件。

我们可以在加载条件中指定施加在自由端的外部力或力矩。

然后,我们需要选择适当的求解器类型和求解方法。

在ANSYS中,可以选择静态结构分析求解器,并选择适当的求解器设置。

在求解器设置完成后,我们可以运行有限元分析,并获得结构的响应和性能结果。

在ANSYS中,可以查看和分析各个节点和单元的应力、应变、位移等结果。

最后,我们可以通过对结果进行后处理和分析,得出结构的安全性和性能评估。

在ANSYS中,可以使用后处理工具查看节点和单元的应力云图、变形云图、反应力云图等。

综上所述,这是一个使用ANSYS有限元分析进行静态结构分析的简单实例。

通过应用ANSYS软件的建模、网格划分、材料属性定义、加载条件定义、求解器设置、求解分析等步骤,我们可以获得悬臂梁结构在不同加载条件下的响应和性能结果。

有限元计算与强度分析-(二)几何建模及网格划分

有限元计算与强度分析-(二)几何建模及网格划分

1.2 ANSYS Workbench建模技术
1.2.10 激活新平面
• New Sketch :在激活平面上新建草图。 • 新草图放在树形目录中,且在相关平面的下方。 • 通过树形目录或下拉列表操作草图(激活)。 • 注意:下拉列表仅显示以当前激活平面为参照的草图(示例如下)。
激活XY平面
下拉列表中仅显示XY平面内 的草图
关注于一个点
“Sphere of Influence” (红色 显示) 已经定义。球体内所关 注实体的单元大小是给定的平 均单元大小。
关注于两个面
1.4 划分网格
1.4.2.2 局部网格控制
刷新单元)。 • 需要更新:数据一改变单元的输出也要相应的更新。 • 最新的。 • 发生输入变动: 单元是局部时新的,但上行数据发生变
化也可能导致其发生改变。
1.2 ANSYS Workbench建模技术
1.2.1 DesignModeler概述 – DesignModeler (DM) 是ANSYS Workbench的一个组成, 类似CAD的建模器,具有参数建模能力:
1.1.1启动Workbench
• 两种方式启动Workbench:
– 从windows开始菜单启动:
– 从其支持的CAD系统中启动
1.1 ANSYS Workbench概述
1.1.2Workbench的图形用户界面
• Workbench 的图形用户界面主要分成工具箱和项目概图 两部分:
工具箱
项目概图
1.4 划分网格
1.4.2.1 网格划分方法
• Sweep(扫掠划分):
– 扫掠划分单元(六面体,也可能是楔形体),否则就是四面体。 – 在mesh上点击鼠标右键选择Show Sweepable Bodies。 – Type :扫掠方向上的划分数目或单元大小。 – Sweep Bias Type: 扫掠方向上的间隔比例 – Src/Trg Selection:

有限元网格划分技术

有限元网格划分技术

对于有限元分析来说,网格划分是其中最关键的一个步骤,网格划分的好坏直接影响到解算的精度和速度。

网格化有三个步骤:定义单元属性(包括实常数)、在几何模型上定义网格属性、划分网格。

定义网格的属性主要是定义单元的形状、大小。

单元大小基本上在线段上定义,可以用线段数目或长度大小来划分,可以在线段建立后立刻声明,或整个实体模型完成后逐一声明。

采用Bottom-Up方式建立模型时,采用线段建立后立刻声明比较方便且不易出错。

例如声明线段数目和大小后,复制对象时其属性将会一起复制,完成上述操作后便可进行网格化命令。

网格化过程也可以逐步进行,即实体模型对象完成到某个阶段就进行网格话,如所得结果满意,则继续建立其他对象并网格化。

网格的划分可以分为自由网格(free meshing)、映射网格(mapped meshing)和扫略网格(sweep meshing)等。

一、自由网格划分自由网格划分是自动化程度最高的网格划分技术之一,它在面上可以自动生成三角形或四边形网格,在体上自动生成四面体网格。

通常情况下,可利用ANSYS的智能尺寸控制技术(SMARTSIZE 命令)来自动控制网格的大小和疏密分布,也可进行人工设置网格的大小(AESIZE、LESIZE、KESIZE、ESIZE等系列命令)并控制疏密分布以及选择分网算法等(MOPT命令)。

对于复杂几何模型而言,这种分网方法省时省力,但缺点是单元数量通常会很大,计算效率降低。

同时,由于这种方法对于三维复杂模型只能生成四面体单元,为了获得较好的计算精度,建议采用二次四面体单元(92号单元)。

如果选用的是六面体单元,则此方法自动将六面体单元退化为阶次一致的四面体单元,因此,最好不要选用线性(一阶次)的六面体单元(没有中间节点,比如45号单元),因为该单元退化后为线性的四面体单元,具有过大的刚度,计算精度较差;如果选用二次的六面体单元(比如95号单元),由于其是退化形式,节点数与其六面体原型单元一致,只是有多个节点在同一位置而已,因此,可以利用TCHG命令将模型中的退化形式的四面体单元变化为非退化的四面体单元(如92号单元),减少每个单元的节点数量,提高求解效率。

ANSYS有限元分析实例

ANSYS有限元分析实例

ANSYS有限元分析实例1.悬臂梁的结构分析悬臂梁是一种常见的结构,其呈直线形式,一端固定于支撑点,另一端自由悬挂。

在这个分析中,我们将使用ANSYS来确定悬臂梁的最大弯曲应力和挠度。

首先,我们需要创建悬臂梁的几何模型,并给出其材料属性和加载条件。

然后,在ANSYS中创建有限元模型,并进行网格划分。

接下来,进行力学分析,求解材料在给定加载下的应力和位移。

最后,通过对结果的后处理,得出最大弯曲应力和挠度。

2.螺旋桨的流体力学分析螺旋桨是一种能够产生推力的旋转装置,广泛应用于船舶、飞机等交通工具中。

螺旋桨的流体力学分析可以帮助我们确定其叶片的受力情况和推力性能。

在这个分析中,我们需要建立螺旋桨的几何模型,并给出流体的流速和压力条件。

然后,我们在ANSYS中创建螺旋桨的有限元模型,并进行网格划分。

通过求解流体场方程,计算叶片上的压力分布和受力情况。

最后,通过对结果的后处理,得出叶片的受力情况和推力性能。

3.散热片的热传导分析散热片是一种用于散热的装置,广泛应用于电子设备、电脑等领域。

散热片的热传导分析可以帮助我们确定散热片在给定热源条件下的温度分布和散热性能。

在这个分析中,我们需要建立散热片的几何模型,并给出材料的热导率和热源条件。

然后,我们在ANSYS中创建散热片的有限元模型,并进行网格划分。

通过求解热传导方程,计算散热片上各点的温度分布。

最后,通过对结果的后处理,得出散热片的温度分布和散热性能。

以上是三个ANSYS有限元分析的实例,分别涉及结构分析、流体力学分析和热传导分析。

通过这些实例,我们可以充分展示ANSYS在不同领域的应用,并帮助工程师和科研人员解决工程问题,提高设计效率和产品性能。

有限元网格划分方法

有限元网格划分方法

早期采用人工网格划分,速度慢、工作量大、出错率高,对复杂 空间结构划分困难。 对平面问题和较规则空间问题,为了对网格形式进行人为控制, 半自动网格划分也可取。 对复杂空间结构宜自动网格划分,显著提高划分速度,减轻工作 强度。
一、半自动划分方法 人机交互进行,分析人员确定结点位置和形成单元,但结点坐 标、节点和单元编号等由计算机自动完成。 1.设置定义坐标系 根据局部结构特点,建立和选取适当坐标系描述节点坐标:直 角坐标、柱坐标、球坐标? 2.定义节点 指定结点位置或由已有结点生成新结点。 3.定义单元 由节点或已有单元生成新单元。
二、网格疏密 网格疏密又称相对网格密度,指不同部位网格大小不同。 应力集中区(梯度变化较大处)应较密网格 计算精度不随网格数绝对增加,网格数应增加到关键部位。
132单元←→84单元 精度相当
网络有疏密时,要注意疏密之间的过渡。一般原则是网格尺 寸突变最少,以免畸形或质量较差的网络。
常见过渡方式: 1.单元过渡。用三角形过渡四边形、用四面体和五面体过渡六面 体。 2.强制过渡。用约束条件保持大小网格间的位移连续。这时大小 网格节点不可能完全重合,网格间有明显界面。 u u3 v v3 (1)多点约束等式 u2 1 , v2 1 2 2 (2)约束单元 3.自然过渡。大小网格间平滑过渡。其中网格会变形,质量降 低;网格尺寸越悬殊,过渡距离越近,网格质量影响越严重。
2.几何模型的建立与处理 (1)为使曲线某内点成为单元节点,曲线剪断。 (2)为使曲面某内线成为单元边,曲面剪断。 (3)为使实体某内面成为单元面,实体剪断
3.网格大小和疏密控制 (1)总体尺寸 (2)局部尺寸 设置离散偏差 设置曲线网格数 设置点附近网格尺寸
实体模型 曲面模型

有限元分析中圆、圆柱面以及圆柱体的网格划分

有限元分析中圆、圆柱面以及圆柱体的网格划分

有限元分析中圆、圆柱面以及圆柱体的网格划分简介:有限元分析中网格划分质量决定分析准确性,分析用时,甚至分析对错,掌握经典的几何体的划分是学习有限元的必经之路,本文对圆、圆柱体和圆柱面的网格划分方法给与简介,并给出ANSYS LS-DYNA的例题代码。

关键词:有限元分析;ANSYS;LS-DYNA;网格划分;圆柱体网格划分;圆柱面网格划分在网上找到ANSYS的圆、圆柱面以及柱划分方法,做了一点修改,改为ANSYS LS-DYNA的划分方法,进行发布。

1圆圆的划分思路是先将圆切分为四份,然后进行划分,划分结果如图1所示:图1 圆的网格划分结果代码如下:finish $ /clear $ /prep7et,1,plane82 $ r0=10 ! 定义单元类型和圆半径参数cyl4,,,r0 $ cyl4,3*r0,,,,r0 ! 创建两个圆面 A 和 B,拟分别进行不同的网格划分wprota,,90 $ asbw,all ! 将圆面水平切分wprota,,,90 $ asbw,all ! 将圆面 A 竖向切分wpoff,,,3*r0 $ asbw,all ! 移动工作平面,将圆面 B 竖向切分wpcsys,-1 ! 工作平面复位但不改变视图方向asel,s,loc,x,-r0,r0 ! 选择圆面 A 的所有面lsla,s ! 选择与圆面 A 相关的所有线lesize,all,,,8 ! 对上述线设置网格划分个数为 8(三条边时相等且为偶数)mshape,0,2d $ mshkey,1 ! 设置四边形单元、映射网格划分amesh,all ! 圆面 A 划分网格asel,s,loc,x,2*r0,4*r0 ! 选择圆面B的所有面lsla,s ! 选择与圆面 B 相关的所有线lesize,all,,,8 ! 对上述线设置网格划分个数为 8 lsel,r,length,,r0 ! 选择上述线中长度为半径的线lesize,all,,,8,0.1,1 ! 设置这些线的网格划分数和间隔比amesh,all $ allsel ! 圆面 B 划分网格2圆柱面圆柱面的划分结果如图2所示图2 圆柱面的网格划分结果finish/clear/prep7r0=10 !定义圆半径h0=50 !定义圆的高度et,1,shell163 !定义单元类型cyl4,,,r0adele,1 !删除面cm,l1cm,line !将几何元素分组形成组元k,50 !定义关键点k,51,,,h0l,50,51 !利用关键点定义线adrag,l1cm,,,,,,5 !沿线拉伸成面lsel,s,loc,z,0 !选择Z=0线lesize,all,,,6 !对线指定网格尺寸lsel,s,length,,h0 !选择线lesize,all,,,8mshape,0,2d !指定划分单元的形状mshkey,1 !指定映射网格划分amesh,all !在面中划分节点或线单元3圆柱体4圆柱用结构化网格划分的思路是将圆柱切分为四份,如图3所示,然后在进行划分,划分效果如图4所示。

网格划分原理与实例(最终版本)

网格划分原理与实例(最终版本)
六面体网格。 本质:等同于全手工网格制作。
案例1——多体组合复杂网格
约8万混合网格,含接触、预紧、非连续网格、材料非线 性和显式破坏。
KT形矩管桁架试件-反力架网格模型
案例2——屠龙刀:3D几何
几何模型
屠龙刀拓补结构
屠龙刀网格
屠龙刀网格模型(全结构化六面体方案)
好刀还需好刀法—— 屠龙也会砍缺!
难点: 1、接触分析中的非连续网格处理技术。 2、实体+板壳网格自由度耦合网格处理技术。
薄钢板踩踏屈曲——断裂、自接触、失稳、
非连续网格
难点: 1、接触分析中的非连续网格处理技术。 2、大变形大应变非线性问题的网格处理技术。
高难度案例——F6短舱CFD模型
共约540万结构化网格,质量0.25
机体
几何成形技术:
1、三维数值拟合成 像技术——计算几何 方法。 2、CT图形扫描点云 成像技术
全结构化六面体网格
拓补结构
网格成形,约21万网格
网格细部
难点: 1、影射路径复杂,且不唯一。 2、几何细部特征复杂,控制边界繁杂,完全捕捉很难。
其他案例—全结构化六面体网格
平键 轴承
难点:轴 向sweep 路径被平 键破坏
暖通模具—
五、六面体 难点:影射
混合网格
关系过于复 杂,需要混
合网格减少
网格数量
建筑结构案例——广告牌CFD
约50万结构化网格
难点: 1、Hexa贴体壁面网格捕捉近壁区流场特征。 2、实体+无厚度膜双侧非连续网格技术(inner wall+split)
案例——标准四坡结构CFD 约60万混合网格,包含覆面Grid
网格划分原理与案例(绪、 紧凑、工作、享受、艺术!

04-03车辆结构有限元建模技术-网格划分

04-03车辆结构有限元建模技术-网格划分
第8页,共10页。
三、网格划分
对于网格划分来说,选择网格划分的类型是 第一步,另外需要根据模型和电脑的配置选择合 适的网格尺寸(大小)和网格密度。具体设置如 下: Relevance Relevance Center Element Size 实例:画一个100×100 ×100的正方形
第9页,共10页。
三、网络划分
第10页,共10页。
车辆结构有限元分析
第1页,共10页。
第四章 车辆结构有限元建模技术
几何建模 接触
网格划分 载荷与约束
第2页,共10页。
三、网格划分
有限元分析的基本思想是把连续体划分为离散 的模型,划分网格的目的就是把连续体分解成可得 到精确解的适当数量的单元。
第3页,共10页。
三、网格划分
对于三维实体,划分网格的方法有: 自动划分方法(Automatic) 四面体划分(Tetrahedrons) 六面体占主体网格划分(Hex Dominant) 扫掠法(Sweep) 多域划分(MultiZone)
第7页,共10页。
三、网格划分
实例3:(MultiZone多域划分网格) 打开muti_zone.wbpj文件,双击B4
——Model,启动Mechanical-->点击Mesh-->右键 Insert-->Method-->在Detail Geometry选项中选择 实体,并在Method选项中选择MultiZone。
第4页,共10页。

三、网格划分
实例1: 打开automatic.wbpj文件,双击Model进入
Mechanical模块,分别采用Automatic、 Tetrahedrons和Sweep进行网格划分。 要求: 尝试改变网格大小; 尝试改变网格密度。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

结构有限元分析中的网格划分技术及其应用实例一、前言有限元网格划分是进行有限元数值模拟分析至关重要的一步,它直接影响着后续数值计算分析结果的精确性。

网格划分涉及单元的形状及其拓扑类型、单元类型、网格生成器的选择、网格的密度、单元的编号以及几何体素。

从几何表达上讲,梁和杆是相同的,从物理和数值求解上讲则是有区别的。

同理,平面应力和平面应变情况设计的单元求解方程也不相同。

在有限元数值求解中,单元的等效节点力、刚度矩阵、质量矩阵等均用数值积分生成,连续体单元以及壳、板、梁单元的面内均采用高斯(Gauss)积分,而壳、板、梁单元的厚度方向采用辛普生(Simpson)积分。

辛普生积分点的间隔是一定的,沿厚度分成奇数积分点。

由于不同单元的刚度矩阵不同,采用数值积分的求解方式不同,因此实际应用中,一定要采用合理的单元来模拟求解。

CAD软件中流行的实体建模包括基于特征的参数化建模和空间自由曲面混合造型两种方法。

Pro/E和SoildWorks是特征参数化造型的代表,而CATIA与Unigraphics等则将特征参数化和空间自由曲面混合造型有机的结合起来。

现有CAD软件对表面形态的表示法已经大大超过了CAE软件,因此,在将CAD实体模型导入CAE软件的过程中,必须将CAD模型中其他表示法的表面形态转换到CAE软件的表示法上,转换精度的高低取决于接口程序的好坏。

在转换过程中,程序需要解决好几何图形(曲线与曲面的空间位置)和拓扑关系(各图形数据的逻辑关系)两个关键问题。

其中几何图形的传递相对容易实现,而图形间的拓扑关系容易出现传递失败的情况。

数据传递面临的一个重大挑战是,将导入CAE程序的CAD模型改造成适合有限元分析的网格模型。

在很多情况下,导入CAE程序的模型可能包含许多设计细节,如细小的孔、狭窄的槽,甚至是建模过程中形成的小曲面等。

这些细节往往不是基于结构的考虑,保留这些细节,单元数量势必增加,甚至会掩盖问题的主要矛盾,对分析结果造成负面影响。

CAD模型的“完整性”问题是困扰网格剖分的障碍之一。

对于同一接口程序,数据传递的品质取决于CAD模型的精度。

部分CAD模型对制造检测来说具备足够的精度,但对有限元网格剖分来说却不能满足要求。

值得庆幸的是,这种问题通常可通过CAD软件的“完整性检查”来修正。

改造模型可取的办法是回到CAD系统中按照分析的要求修改模型。

一方面检查模型的完整性,另一方面剔除对分析无用的细节特征。

但在很多情况下,这种“回归”很难实现,模型的改造只有依靠CAE软件自身。

CAE中最直接的办法是依靠软件具有的“重构”功能,即剔除细部特征、缝补面和将小面“融入”大曲面等。

有些专用接口在模型传递过程中甚至允许自动完成这种工作,并且通过网格剖分器检验模型的“完整性”,如发现“完整性”不能满足要求,接口程序可自动进行“完整性”修复。

当几何模型距CAE分析的要求相差太大时,还可利用CAE程序的造型功能修正几何模型。

“布尔运算”是切除细节和修理非完整特征的有效工具之一。

目前数据传递一般可通过专用数据接口,CAE程序可与CAD程序“交流”后生成与CAE程序兼容的数据格式。

另一种方式是通过标准图形格式如IGES、SAT和ParaSolid传递。

现有的CAD平台与通用有限元平台一般通过IGES、STL、Step、Parasolid等格式来数据交换,早期IGES接口应用比较广泛,但由于该标准本身的不严格性,导致多数复杂模型的传递以失败告终,如图1所示为某汽车覆盖件在UGII中以IGES格式输出时产生的信息,可以看出其包含大量有限元分析不必要的几何信息。

而SAT与ParaSolid标准较为严格,被多数CAD程序采用。

由于典型通用有限元软件(如MSC.PATRAN、MSC.MARC、ANSYS、ABAQUS、ADINA等)的建模功能都不是很强,尤其是在面对包含复杂空间曲面的产品结构时表现出明显的不足,同时不利于建立后续的单元网格划分模型。

因此,利用现有CAD平台(如CATIA、UGII、PRO/E)完成网格划分工作,或借助专业网格划分软件HyperMesh、AIEnviroment等来完成任务是比较好的方法。

下面分别以包含大量空间自由曲面的汽车覆盖件产品和宇航业中常用的大型整体网格筋壳体为对象,简述有限元网格划分的基本原理方法和应用。

图1 IGES文件输出的图素信息分页二、有限元网格划分方法与基本原理1.有限元网格划分的指导思想有限元网格划分的指导思想是首先进行总体模型规划,包括物理模型的构造、单元类型的选择、网格密度的确定等多方面的内容。

在网格划分和初步求解时,做到先简单后复杂,先粗后精,2D单元和3D单元合理搭配使用。

为提高求解的效率要充分利用重复与对称等特征,由于工程结构一般具有重复对称或轴对称、镜象对称等特点,采用子结构或对称模型可以提高求解的效率和精度。

利用轴对称或子结构时要注意场合,如在进行模态分析、屈曲分析整体求解时,则应采用整体模型,同时选择合理的起点并设置合理的坐标系,可以提高求解的精度和效率,例如,轴对称场合多采用柱坐标系。

有限元分析的精度和效率与单元的密度和几何形状有着密切的关系,按照相应的误差准则和网格疏密程度,避免网格的畸形。

在网格重划分过程中常采用曲率控制、单元尺寸与数量控制、穿透控制等控制准则。

在选用单元时要注意剪力自锁、沙漏和网格扭曲、不可压缩材料的体积自锁等问题。

典型有限元软件平台都提供网格映射划分和自由适应划分的策略。

映射划分(Mapped/IsoMesh)用于曲线、曲面、实体的网格划分方法,可使用三角形、四边形、四面体、五面体和六面体,通过指定单元边长、网格数量等参数对网格进行严格控制,映射划分只用于规则的几何图素,对于裁剪曲面或者空间自由曲面等复杂几何体则难以控制。

自由网格划分(Free/Paver)用于空间自由曲面和复杂实体,采用三角形、四边形、四面体进行划分,采用网格数量、边长及曲率来控制网格的质量。

例如,在MSC.MARC中,其转换(Convert)用法是几何模型转换为网格模型,点转换为节点,曲线转换为线单元,面转换为三角形、四边形等。

网格自动划分(AutoMesh)则是在任意曲面上生成三角形或者四边形,对任意几何体生成四面体或者六面体。

网格重划分(Remesh)是在每一步计算过程中,检查各单元法向来判定各区域的曲率变化情况,在曲率较大变形剧烈的区域单元,进行网格加密重新划分,如此循环直到满足网格单元的曲率要求为止。

网格重划分的思想是通过网格加密的方法来提高分析的精度和效率。

网格自适应划分(Adaptive Refinement)的思想是在计算步中,升高不满足分析条件的低阶单元的阶次来提高分析的精度和效率,应用比较广泛。

自适应网格划分必须采用适当的单元,在保证单元阶次的基础上,原本已形成的单元刚度矩阵等特性保持不变,才能同时提高精度和效率。

阶谱单元(Hierachical Element)充分发挥了自适应网格划分的优点,在计算中通过不断增加初始单元的边上的节点数,从而使单元插值函数的阶次在前一阶的基础上不断增加,通过引入新增节点的插值函数来提高求解的精度和效率。

例如,三节点三角形单元升为六节点三角形单元,四节点四边形单元升阶为8节点四边形单元,四节点四面体单元升阶为8节点、10节点、20节点四面体。

2.有限元网格划分的基本方法有限元网格划分方法有两种,对于简单的结构多采用直接建立单元模型的网格直接生成法,当对象比较复杂时,多通过几何自动生成法来完成,即在几何元素描述的物理基础上自动离散成有限单元。

有限元单元可以按几何维数划分为一维、二维和三维单元,而在实际应用中采用拓扑结构单元,包括常用的质量单元、弹簧元、杆与梁管单元、平面三角形单元、平面四边形单元、膜单元、等参单元、壳单元和三维实体单元。

有限元网格划分,对于二维平面、三维曲面和三维实体网格有以下几种划分方法:(1)覆盖法:基于四边形的网格划分,要求网格划分的平面或曲面必须是完整裁减曲面,该曲面边界必须是裁减曲线;(2)前沿法:通过把曲面等参变换到二维空间进行网格划分,然后映射到三维空间曲面上,把曲面划分成完全的四边形单元或三角形单元;(3)Delaunay三角形法:主要用于由至少一条封闭曲线所围成的单连通域或多连通域内生成三角形单元,趋向于等边三角形。

充分考虑了几何形状中细微的几何特征,并在微小特征处划分成较细的单元,在不需要密网格处,采用稀疏单元网格。

(4)转换扩展法:针对曲面几何形状比较规则的几何区域进行网格划分,其网格生成速度快,网格质量高。

由节点扩展为线单元,从线单元生成平面二维单元,从二维单元生成三维单元。

它不仅仅用于三维网格的生成,同时可进行一维、二维网格和几何体的生成,包括移动、镜像、拉伸、旋转、扫描三维实体的扩展方式、扩展系数和扩展方向。

3.网格质量的评估单元的质量和数量对求解结果和求解过程影响较大,如果结构单元全部由等边三角形、正方形、正四面体、立方六面体等单元构成,则求解精度可接近实际值,但由于这种理想情况在实际工程结构中很难做到。

因此根据模型的不同特征,设计不同形状种类的网格,有助于改善网格的质量和求解精度。

单元质量评价一般可采用以下几个指标:(1)单元的边长比、面积比或体积比以正三角形、正四面体、正六面体为参考基准。

理想单元的边长比为1,可接受单元的边长比的范围线性单元长宽比小于3,二次单元小于10。

对于同形态的单元,线性单元对边长比的敏感性较高阶单元高,非线性比线性分析更敏感。

(2)扭曲度:单元面内的扭转和面外的翘曲程度。

(3)疏密过渡:网格的疏密主要表现为应力梯度方向和横向过渡情况,应力集中的情况应妥善处理,而对于分析影响较小的局部特征应分析其情况,如外圆角的影响比内圆角的影响小的多。

(4)节点编号排布:节点编号对于求解过程中的总体刚度矩阵的元素分布、分析耗时、内存及空间有一定的影响。

合理的节点、单元编号有助于利用刚度矩阵对称、带状分布、稀疏矩阵等方法提高求解效率,同时要注意消除重复的节点和单元。

4.装配结构中单元的协调(1)自由度不同的单元不协调:例如,ANSYS中SHELL63、BEAM4和SOLID45三种单元,前二者均包含六个自由度,而Solid45只包含三个平动自由度,因此后者只传递前二者的平动位移,不传递R旋转方向的位移。

(2)有相同自由度的单元不总是协调的:例如,ANSYS中BEAM3和SHELL41单元,Beam3具备平动方向的三个自由度,而SHELL41包括两个平动自由度(UX/UY)和一个旋转自由度(RTOTZ),因此SHELL41只能传递BEAM3的平动位移,不能传递旋转方向的值。

(3)ANSYS中三维梁单元与三维壳单元具有相同的六个自由度:壳单元旋转自由度与平面旋转刚度相关,为虚拟刚度,不是真实的自由度,同时,要注意三维梁单元与壳单元出现不匹配的问题。

相关文档
最新文档