2020届高中数学:函数零点个数的判断

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020届高中数学 第 1 页 共 1 页 2020届高中数学:函数零点个数的判断

1. (2015·湖北)f (x )=2sin x sin ⎝⎛⎭

⎫x +π2-x 2的零点个数为________. 解:f (x )=2sin x cos x -x 2=sin2x -x 2,则函数的零点即为函数y =sin2x 与函数y =x 2图象的交点,如图所示,两图象有2个交点,则函数有2个零点.

故填2.

【点拨】函数零点个数的判断方法:(1)直接求零点,令f (x )=0,有几个解就有几个零点;(2)零点存在性定理,要求函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,应注意:①满足条件的零点可能不惟一;②不满足条件时,也可能有零点,因此一般要再结合函数的图象与性质确定函数零点个数;(3)利用图象交点个数,作出两函数图象,观察其交点个数即得零点个数.

2. (2016·南昌二模)已知函数y =f (x )是周期为2的周期函数,且当x ∈[-1,1]时,f (x )=2|x |-1,则函数F (x )=f (x )-|lg x |的零点个数是( )

A .9

B .10

C .11

D .18

解:在坐标平面内画出y =f (x )与y =|lg x |的大致图象如图,由图象可知,它们共有10个不同的交点,因此函数F (x )=f (x )-|lg x |的零点个数是10.

故选B .

相关文档
最新文档