高斯代数基本定理
1.3高斯定理
S,两底面到带电平面距离相同。
E dS E dS E dS E dS 2ES
s
左底
右底
側
圆柱形高斯面内电荷 q S
由高斯定理得
E
S
E
2ES S / 0
E 2 0
σ
33
E 20
0 场强方向指离平面; / 20 / 20
§1.3 高斯定理
/ 2 0 / 2 0
§1.3 高斯定理
ห้องสมุดไป่ตู้
一、 电场线(E 线)
1 电场线的 定义:
为定量的描述电场而人为的引入的一些曲线,
E3
目的是使电场形象化、直观化。
(1)方向: 电场线上各点的切线方向 表示电场中该点场强的方向。
E2
(2) 大小: 穿过垂直于该点场强方向的
E1
单位面积上的电场线的条数(电场线
的面密度)等于该点场强的大小。
E dN dS
E
电场线越密集,场强越大
dS
1
2. 电场线示例
几
+
种
电
荷
分
布
的
+
电
场
线
+
图
§1.3 高斯定理
-
+
-
2
3. 电场线的性质:
§1.3 高斯定理
1)电场线起于正电荷,终止于负电 荷;电荷是电场线的“源”和“尾闾 ”2)电场线不会在无电荷的地方中断;
3)电场线不会在无电荷的地方相交; q
(2)半径为R的均匀带电体密度为ρ
的长圆柱体。
R2
E
2 0 r
r
2 0
(r R) (r R)
高斯定理1+2+
高斯定理1+2+ (100)Gauss定理Gauss定理是由十九世纪德国数学家卡尔·弗里德里希·高斯在他的1786年著作中推导出来的一个重要定理,被称为高斯定理或高斯求和定理,它可以利用数学表达式用简洁的方式表达出某些数字的和,也可以用于算出一定范围内正整数的和。
一、高斯定理的基本定义高斯定理的基本定义是:若将一个事物的数目N连续排列,用符号S表示这个事物的和,则S可以用如下公式表示:S=N (N+1) / 2二、高斯定理的应用1、高斯定理可以用来求正整数序列的和。
例如:若有如下正整数序列:1,2,3, ..., 98, 99, 100,则用高斯定理求该序列的和为:S=100 (101) / 2=50502、高斯定理也可以用来求负整数序列的和。
例如:若有如下负整数序列:-1、-2、-3、...、-98, -99, -100,则用高斯定理求该序列的和为:S=(-100)(-101)/ 2 = -50503、高斯定理还可以用来解决数列的乘积与求余数的问题。
例如:对于代数方程组a+b = 15,a*b = 56,则可以用高斯定理进行求解:a+b = 15a*b = 56即可求得a = 7,b = 8四、高斯定理的推广1、求和高斯定理的推广:高斯定理的推广就是求和定理,对于于数字序列m, m + r, …, m + (n-1)r,可用下列公式进行求和:Sn = (n/2)*[2m + (n-1)r]其中n为数字序列中元素的总数。
例如:对于序列2, 4, 6, 8, 10中元素的和,可运用求和定理,得:Sn = (5/2)*[2*2 + (5-1)*2] = 302、积分高斯定理的推广:高斯定理的推广就是积分定理,对于于函数y = f(x)在[a, b]上的定积分,可用如下公式进行求解:I = (b - a) / 2 * [f(a) + f(b) + 2Σf(x)],其中f(x)为离散函数,a、b分别为函数f(x)定积分的下上限,n为f(x)函数离散点的个数。
高斯定理
均匀电场中穿过与电场垂直的平面S的电场线总 数,称为通过该平面的电场强度通量。 n ds
e ES
将曲面分割为无限多个面 元,称为面积元矢量
dS dSn
则电场穿过该面元的电通量为
d e E d S
电场穿过某曲面的电通量为
e E d S
q
l
E 0
高斯定理的应用
(2)当r>R 时,
q l
E 20 r
均匀带电圆柱面的电场分布
r l
1
20 R
E
Er 关系曲线
r
R
0
r
高斯定理的应用
例8-10 均匀带电无限大平面的电场. 解: 电场分布也应有面对称性, 方向沿法向。
E
E
σ
高斯定理的应用
作轴线与平面垂直的圆柱形高斯面,底面积为 S,两底面到带电平面距离相同。
sE dS 两底 E dS 2 ES 圆柱形高斯面内电荷 q S
由高斯定理得
S
E
E
2 ES S / 0
E 2 0
σ
高斯定理的应用
例8-9 均匀带电球体的电场。球半径为R,体电 荷密度为。 解: 电场分布也应有球对称性,方向沿径向。 作同心且半径为r的高斯面
§1.8利用高斯定理求 e 和 E (Using Gauss’s Theorem to Find eand E ) 1.求 e
[例1-4]
+q
-q
S1 S2 S3 解: 由高斯定理
如图,通过闭合面S1、 S2和S3的电通量分别为 1= ,2= , 3= .
高斯定理(电磁学)
证明方法
高斯定理的证明通常基于库仑定律、电场线性质和微积分等 基本原理。通过选择适当的闭合曲面和运用微积分中的高斯 公式,可以推导出高斯定理。
推导过程
首先,根据库仑定律,电场线从正电荷发出,终止于负电荷 或无穷远处。然后,通过选取适当的闭合曲面,将电荷包围 在其中,运用高斯公式和高斯定理的推导过程,最终得到高 斯定理的数学表述。
要点一
总结词
高斯定理在其他领域也有广泛的应用,如电场、量子力学 、光学等。
要点二
详细描述
高斯定理在电场中可以用来计算电场的分布和强度,以及 电通量的计算等问题。在量子力学中,高斯定理可以用来 研究波函数的性质和演化。在光学中,高斯定理可以用来 研究光场的分布和强度,以及光通量的计算等问题。
05
高斯定理的扩展和深化
磁场中的应用
总结词
高斯定理在磁场中也有广泛的应用,它可以 帮助我们理解和计算磁场的分布和强度。
详细描述
在磁场中,高斯定理可以用来计算球形区域 内磁场的分布和强度,通过球面上的磁场强 度的积分可以得到球内的磁场。此外,高斯 定理还可以用来研究磁场线的闭合性质,以 及磁通量的计算等问题。
其他领域的应用
引力场中的应用
总结词
高斯定理在引力场中也有重要的应用,它可以帮助我们理解和计算引力场的分布和强度。
详细描述
在引力场中,高斯定理可以用来计算球形区域内物质的质量分布,通过球面上的引力场强度的积分可以得到球内 的质量。此外,高斯定理还可以用来研究引力场的空间分布,通过球面上的引力场强度的分布,可以推导出球内 引力场的分布情况。
高斯定理的应用条件
适用范围
高斯定理适用于任何线性、非自相互作用、电荷连续分布的电场。对于非线性、 自相互作用或离散分布的电荷,高斯定理可能不适用。
高斯定理
λ
∑q
r
∑ q = λh
φ = ∫∫S EdS cosθ =
φ左底 = φ右底 = 0
φ = φ左底 + φ侧 + φ右底
ε0
h
Q E⊥dS , cosθ = 0
§4.高斯定理 / 五、解题方法及应用举例 高斯定理
φ = φ侧 = ∫∫侧 EdS cosθ
侧面上各点的场强 E 大小相等,方向 大小相等, 与法线相同。 与法线相同。
E = E+ − E− = 0
+σ
−σ
E+ E− E+
极板右侧
E = E+ − E− = 0
E+
E−
E−
两极板间
σ σ σ + = E = E+ + E− = 2ε 0 2ε 0 ε 0
§4.高斯定理 / 五、解题方法及应用举例 高斯定理
E
n
r
λ
φ = E ∫∫侧 dS
= E 2πrh =
∑q
ε0
λh = ε0
λ E= 2πε 0r
h
§4.高斯定理 / 五、解题方法及应用举例 高斯定理
例3:无限大带电平面,面电荷密度为 σ, :无限大带电平面, 求平面附近某点的电场强度。 求平面附近某点的电场强度。 解:作底面积为 S , 高为 h 的闭合圆柱面, 的闭合圆柱面, σ
S
r
ε0 σS 2ES = ε0 σ E= 2ε 0
§4.高斯定理 / 五、解题方法及应用举例 高斯定理
φ=
∑q
例4:两无限大带电平面(平行板电容 :两无限大带电平面( 器),面电荷密度分别为 +σ 和 −σ , ),面电荷密度分别为 电容器内、外的电场强度。 求:电容器内、外的电场强度。 解:极板左侧
德国数学家高斯_数学家高斯定理的故事
德国数学家高斯_数学家高斯定理的故事高斯,德国人,是一位世界上伟大的数学家、物理学家,他年少时就很机灵,聪明过人。
下面我们来看看数学家高斯定理的故事,欢迎阅读借鉴。
高斯(Gauss1777~1855)生于Brunswick,位于现在德国中北部。
他的祖父是农民,父亲是泥水匠,母亲是一个石匠的女儿,有一个很聪明的弟弟,高斯这位舅舅,对小高斯很照顾,偶而会给他一些指导,而父亲可以说是一名「大老粗」,认为只有力气能挣钱,学问这种劳什子对穷人是没有用的。
高斯很早就展现过人才华,三岁时就能够指出父亲帐册上的错误。
七岁时进了小学,在破旧的教室里上课,老师对学生并不好,常认为自己在穷乡僻壤教书是怀才不遇。
高斯十岁时,老师考了那道著名的「从一加到一百」,终于发现了高斯的才华,他知道自己的能力不足以教高斯,就从汉堡买了一本较深的数学书给高斯读。
同时,高斯和大他差不多十岁的助教Bartels变得很熟,而Bartels的能力也比老师高得多,后来成为大学教授,他教了高斯更多更深的数学。
老师和助教去拜访高斯的父亲,要他让高斯接受更高的教育,但是高斯的父亲认为儿子应该像他一样,作个泥水匠,而且也没有钱让高斯继续读书,最后的结论是——去找有钱有势的人当高斯的赞助人,虽然他们不知道要到哪里找。
经过这次的访问,高斯免除了每天晚上织布的工作,每天和Bartels讨论数学,但是不久之后,Bartels也没有什么东西可以教高斯了。
1788年高斯不顾父亲的反对进了高等学校。
数学老师看了高斯的作业后就要他不必再上数学课,而他的拉丁文不久也凌驾全班之上。
1791年高斯终于找到了资助人——布伦斯维克公爵费迪南(Braunschweig),答应尽一切可能帮助他,高斯的父亲再也没有反对的理由。
隔年,高斯进入Braunschweig学院。
这年,高斯十五岁。
在那里,高斯开始对高等数学作研究。
并且独立发现了二项式定理的一般形式、数论上的「二次互逆定理」(LawofQuadraticReciprocity)、质数分布定理(primenumertheorem)、及算术几何平均(arithmetic—geometricmean)。
5-3 高斯定理
q
高斯面
r
4 3 pR 3
可见,球体内场强随 线性增加 线性增加。 可见,球体内场强随r线性增加。 均匀带电球体电场强度曲线如 上图。 上图。
+ q + + + + + + + + + + + + + + + + + +
上页 下页 返回 退出
例2
均匀带电无限大平面的电场. 均匀带电无限大平面的电场. 高斯面:作轴线与平面垂直的圆柱形高斯面, 高斯面:作轴线与平面垂直的圆柱形高斯面, 底面积为S,两底面到带电平面距离相同。 底面积为 ,两底面到带电平面距离相同。
r E=
lr v e 2 r 2pe0R
上页 下页 返回 退出
(2)当r>R 时,
λ E= 2 0r πε
r E=
E λ 2πε0R
∑q = λl
矢量式为: 矢量式为:
r l er 2pe0r
Er 关系曲线
r
均匀带电圆柱面的电场分布
l
−1
∝r
R
0
r
上页 下页 返回 退出
均匀带电球体空腔部分的电场, 例4 均匀带电球体空腔部分的电场,球半径为R, 在球内挖去一个半径为r( 在球内挖去一个半径为 (r<R)的球体。 )的球体。 试证:空腔部分的电场为匀强电场,并求出该电场。 试证:空腔部分的电场为匀强电场,并求出该电场。 证明: 用补缺法证明。 证明: 用补缺法证明。 在空腔内任取一点p, 在空腔内任取一点 , 设该点场强为 E E r1 设想用一个半径为r且体电荷密度与大球相 设想用一个半径为 且体电荷密度与大球相 c 同的小球将空腔补上后, 同的小球将空腔补上后,p点场强变为 E 1 u r v o pE r uu
代数基本定理高斯证明
高斯在他的博士论文中证明了代数基本定理,即一个带有复数系数的n次代数方程g(x)=0,其中n为正整数,至少有一个复数解。
高斯给出了四种不同的证明方法,其中第一种方法是在他的博士论文中首次提出的。
高斯的第一种证明方法是通过纯粹的存在性证明,他并没有具体构造出多项式方程的解,而是证明了这样的解一定存在。
他的证明基于复数域的完备性,即任何复数多项式都可以表示为一次因式的乘积。
他通过考虑多项式的根和系数的关系,以及多项式的因式分解,证明了代数基本定理的正确性。
高斯的第二种证明方法是通过几何论据来证明的,但这种方法相对复杂,不是很容易理解。
第三种证明方法是通过判别式来证明的,即证明每两个根之差的乘积可以表示成多项式和它的导数的线性组合,这种方法也不易理解。
第四种证明方法是基于前三种方法的变种,但高斯更自由地使用了复数,使得证明更加简洁和易于理解。
总之,高斯的代数基本定理证明在数学史上具有重要地位,它不仅解决了长期以来数学家们对于多项式方程解的存在性的疑惑,而且为复数域的研究奠定了基础。
高斯的证明方法也展示了他在数学领域的卓越才华和创新思维。
高斯代数基本定理
高斯代数基本定理高斯代数基本定理(Gauss's fundamental theorem of algebra)是数学中的一个重要定理,它关于复数域上的多项式方程的根的存在性和特征进行了描述。
这个定理由德国数学家卡尔·弗里德里希·高斯在1799年提出并证明。
高斯代数基本定理主要论述了任何一个非零复系数多项式方程都至少有一个复根的性质。
也就是说,对于任意一个次数大于等于1的复系数多项式方程,总存在至少一个复数解。
高斯代数基本定理的重要性体现在以下几个方面:1. 根的存在性:高斯代数基本定理保证了多项式方程至少有一个复数解。
这对于解决方程问题是至关重要的,因为复数域上的根可以帮助我们找到方程的所有解。
2. 根的数量:高斯代数基本定理还给出了多项式方程的根的数量。
具体而言,高斯代数基本定理告诉我们,一个n次复系数多项式方程有且仅有n个复数根(包括重根)。
3. 复数域的重要性:高斯代数基本定理将多项式方程的根的存在性和复数域联系在一起。
它表明,要完全理解多项式方程的根,必须考虑复数域。
复数域扩展了实数域,使得我们能够更好地理解和解决多项式方程。
高斯代数基本定理的证明相对较为复杂,其中一个重要的思想是利用代数学中的因式分解原理。
具体证明过程可以通过数学专业的教材或论文来学习。
高斯代数基本定理的应用广泛,不仅在数学领域有重要意义,还在物理学、工程学和计算机科学等领域中发挥着重要作用。
例如,在信号处理领域,高斯代数基本定理被用于分析和处理信号的频域特性。
总结起来,高斯代数基本定理是数学中的一个重要定理,它保证了复系数多项式方程至少有一个复数根,并给出了根的数量。
该定理的存在性和特征为解决方程问题提供了重要的工具和理论基础。
同时,高斯代数基本定理的应用范围广泛,对于理解和解决实际问题具有重要意义。
《高等代数》数分高代定理大全
数分高代定理大全《髙等代数》第一章帶余除法对于P[x]中任意两个多项式/'(兀)与g(x),其中g(x)HO, —定有P[A]中的多项式q(x), r(x)存在,使/(x) = g(x)g(x) + r(x)成立,其中d(r(x)) < d(g(x)) 或者心)=0,并且这样的<?(x),r(x)是唯一决定的.定理1对于数域P上的任意两个多项式f(x)9g(x),其中g(x)H0,g(x)I/*(x)的充分必要条件是g(x)除/(x)的余式为零.定理2对于P[X]中任意两个多项式/(A), g(x),在P[x]中存在一个最大公因式d(x),且d(x)可以表示成f (x), g(x)的一个组合,即有P[x]中多项式M(X),V(A)使d(x) = w(x)/(x) + y(x)g(x).定理3 P[x]中两个多项式/(A-), g(x)互素的充分必要条件是有P[x]中的多项式/心),v(x)使«(x)/(x) + v(x)g(x) = 1 .定理 4 如果(f(x),g(x)) = l,且/(x)I g(x)h(x),那么f(x)I h(x).定理5如果“(X)是不可约多项式,那么对于任意的两个多项式/(x),g(x),由p(x) I f(x)gM一定推出p(x) I f(x)或者p(x)\ g(x).因式分解及唯一性定理数域P上每一个次数XI的多项式/(X)都可以唯一地分解成数域P上一些不可约多项式的乘积.所谓唯一性是说,如果有两个分解式f(X)= Pl (x)p2 (x)•- p s (x) = 4 (x)§2 (x) ••q (x),那么必有s = t ,并且适当排列因式的次序后有Pi(x) = c i q i(x),i = 1,2,•••,$,其中Cf(i = 1,2,…,s)是一些非零常数. 定理6如果不可约多项式"(x)是/(X)的k重因式(k>\),那么它是微商广(x)的—1重因式.定理7 (余数定理)用一次多项式A-6Z去除多项式/(X),所得的余式是一个常数,这个常数等于函数值/(&).定理8 P[x]中n次多项式(// > 0)在数域P中的根不可能多于〃个,重根按重数计算.定理9如果多项式/(x), g(x)的次数都不超过川,而它们对幵+ 1个不同的数弘冬,•••£+]有相同的值,即/g)= g(e),i = 1,2,•••/1 + 1,那么f(x) = g(x). 代数基本定理每个次数21的复系数多项式在复数域中有一根.复系数多项式因式分解定理每个次数的复系数多项式在复数域上都可以唯一地分解成一次因式的乘积.实系数多项式因式分解定理每个次数XI的实系数多项式在实数域上都可以唯一地分解成一次因式与二次不可约因式的乘积.定理10 (高斯(Gauss)引理)两个本原多项式的乘积还是本原多项式.定理11如果一非零的整系数多项式能够分解成两个次数较低的有理系数多项式的乘积,那么它一定能分解成两个次数较低的整系数多项式的乘积.定理12设/(朗=唧+%的+・•• +如是一个整系数多项式,而二是它的有理S根,其中互素,那么必有s\a n,r\a0.特别地,如果/(x)的首项系数"” =1 , 那么/(x)的有理根是整根,而且是心的因子.I定理13 (艾森斯坦(Eisenstein)判别法)设f(x) = a…x n + a…_x x n~x + • • •+a0是一个整系数多项式,如果有一个素数",使得1. p I a n ;2・PI勺_],%_2昇・・,°0;3・ p 2 / a ()那么/(x)在有理数域上是不可约的.第二章定理1对换改变排列的奇偶性.定理2任意一个"级排列与排列12・."都可以经过一系列对换互变,并且所作 对换的个数与这个排列有相同的奇偶性.立:a kA\ + % 人2 + ••• +a kn A m Cl \l A \ j + Cl 2!A 2 丿 + …+ 勺/帀定理4 (克拉默法则)如果线性方程组 a [X x A +a n x 2+-- + a Xn x n =b r“2內 + «22X 2 + ・・・ + a 2n X n = b 2,<°"內+°”2兀2+••• + %"="“ 4如…"J 的系数矩阵A=如如…①”♦ • • ♦ • •.a n\ Cl n2 …%.的行列式〃=国H 0 ,定理3设d =5 (':2 ,州表示元素®的代数余子式,则下列公式成〃,当《 =二 飞当kHi那么该线性方程组有解, 并且解是唯一的,解可以通过系数表为旦,… d=佥, 其中©是把矩阵A 中第丿•列换成方程组的常数项所成的行列式,即定理5如果齐次线性方程组4內+如七+•••+"],耳=°, 。
代数基本定理的几种证明
2014-3050-021 本科毕业论文(设计)代数基本定理的几种证明学生姓名:黄容学号:1050501021系院:数学系专业:数学与应用数学指导教师:覃跃海讲师提交日期:2014年4月27日毕业论文基本要求1.毕业论文的撰写应结合专业学习,选取具有创新价值和实践意义的论题.2.论文篇幅一般为理科以3000至5000字为宜.3.论文应观点明确,中心突出,论据充分,数据可靠,层次分明,逻辑清楚,文字流畅,结构严谨.4.论文字体规范按《广东第二师范学院本科生毕业论文管理办法(试行)》和“论文样板”执行.5.论文应书写工整,标点正确,用微机打印后,装订成册.本科毕业论文(设计)诚信声明本人郑重声明:所呈交的本科毕业论文(设计),是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议,除文中已经注明引用的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品成果.对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明.本人完全意识到本声明的法律结果由本人承担.学生签名:时间:年月日关于论文(设计)使用授权的说明本人完全了解广东第二师范学院关于收集、保存、使用学位论文的规定,即:1.按照学校要求提交学位论文的印刷本和电子版本;2.学校有权保存学位论文的印刷本和电子版,并提供目录检索与阅览服务,在校园网上提供服务;3.学校可以采用影印、缩印、数字化或其它复制手段保存论文;本人同意上述规定.学生签名:时间:年月摘要代数基本定理是代数学上一个重要的定理,甚至在整个数学上都起着基础作用.最早在1629年由荷兰数学家吉拉尔在他的论著《代数新发现》提出, 然而没有给出证明.1637年迪卡儿也都提出这个定理,但同样没有给出证明.一直到一百年多后, 于1746年达朗贝尔才给出第一个证明.到十八世纪后半叶,欧拉等人也给出一些证明,然而这些证明都不够严格,都先是假设了一些条件,然后才得出证明.直到1799年高斯才给出了第一个实质的证明.在二十世纪以前该定理对于代数学都是起着核心的作用,因为代数学所研究的对象都是建立在复数域上的, 因此也就之称为代数基本定理.然而直到现在该定理却还是没有纯代数证法,用纯代数证明该定理却是十分困难的,很多人相信根本不存在纯代数的证法.不过后来随着复变理论的发展,该定理已成为其他一些定理的推论了,用复函数理论可以很完美的证明了.现在据说也已经有了两百多种证法.虽然前人已做了很多研究,但从多方面知识总结这些证明还是很有意义的.本论文基于多项式、柯西积分定理、儒歇定理、刘维尔定理、最大模定理和最小模定理这几个方面介绍了代数基本定理的几种证法.[关键词]:代数基本定理;多项式;柯西积分定理;儒歇定理;刘维尔定理AbstractFundamental Theorem of Algebra is one of the important theorem of algebra, and even in the whole of mathematics plays a fundamental role. First in 1629 by the Dutch mathematician Girard in his treatise "Algebra newly discovered" put forward, but he did not give proof. In 1637, Descartes are also raised this theorem without proof. Been to more than a hundred years later, Jean le Rond d'Alembert was given the first proof in 1746. Until 1799 Gauss was given the first real proof in the twentieth century before the theorem of algebra for all plays a central role, because the object being studied algebra are built on complex field, so it's called the fundamental Theorem of Algebra. However, until now the theorem is no purely algebraic proofs, many people believe that it does not exist. With the development of complex variable theory, this theorem has become a corollary of some other theorem, and with a complex function theory can be proved perfectly. Now said to have already had more than two hundred kinds of proofs.Although the fundamental theorem of algebra predecessors have done a lot of research. Summarize these methods still makes sense. This paper based on polynomial, Cauchy integral theorem, Ro che’s theorem, Lowville Theorem, the maximum modulus theorem and the minimum modulus theorem.[Key Words]:Fundamental Theorem of Algebra; Polynomial; Cauchy integral theorem; Roche’s theorem; Lowville Theorem目录摘要 (I)Abstract (II)1. 引言 ................................................................................................................... - 1 -2.1. 利用多项式证明..................................................................................... - 2 -2.1.1. 引理................................................................................................ - 2 -2.1.2. 利用多项式证明代数基本定理.................................................... - 2 -2.2. 利用柯西积分定理证明......................................................................... - 3 -2.2.1. 柯西积分定理................................................................................ - 3 -2.2.2. 利用柯西积分定理证明代数基本定理........................................ - 4 -2.3. 利用刘维尔定理证明............................................................................. - 5 -2.3.1. 刘维尔定理.................................................................................... - 5 -2.3.2. 利用刘维尔定理证明代数基本定理............................................ - 6 -2.4. 利用儒歇定理证明................................................................................. - 7 -2.4.1. 儒歇定理........................................................................................ - 7 -2.4.2. 利用儒歇定理证明代数基本定理................................................ - 7 -2.5. 利用最大模定理证明............................................................................. - 8 -2.5.1. 最大模定理.................................................................................... - 8 -2.5.2. 利用最大模定理证明代数基本定理............................................ - 9 -2.6. 利用最小模定理证明........................................................................... - 10 -2.6.1. 最小模定理.................................................................................. - 10 -2.6.2. 利用最小模定理证明代数基本定理.......................................... - 10 -3. 总结 ................................................................................................................. - 11 - 参考文献.............................................................................................................. - 12 -致谢……………………………………………………………………………….-12 -代数基本定理的几种证明1. 引言一元一次方程只有一个实数根,而在复数域内有两个根,那么一元N 次方程在复数域上会不会有N 个根?另外,在积分运算中部分分式法也有与这样的问题,所有实系数多项式是不是都可以分解成一次因式的乘积或者分解成实系数的一次因式和二次因式的乘积?上述这些问题关键在于证明代数基本定理.根据钟玉泉编写的《复变函数论》,代数基本定理的具体描述为:任何n 次多项式方程在复数域中至少有一个根.根据该定理我们可以直接得到一个结果,在复数域内对于所有n 次多项式方程有且只有n 个根[1].可见证明代数基本定理意义十分重要.这个定理最早在1629年由荷兰数学家吉拉德在他的论著《代数新发现》中提出,但没有得到证明。
代数基本定理 高斯证明方法
代数基本定理高斯证明方法摘要:1.介绍代数基本定理2.介绍高斯证明方法3.分析高斯证明方法的优点和不足4.当代数基本定理应用于实际问题时,高斯证明方法的作用正文:代数基本定理是数学领域中的一条重要定理,它阐述了代数结构的基本性质。
高斯证明方法是历史上第一种证明该定理的方法,具有一定的代表性。
本文将对高斯证明方法进行详细介绍,并分析其优点和不足。
同时,探讨当代数基本定理应用于实际问题时,高斯证明方法在其中的作用。
首先,我们来了解一下代数基本定理。
代数基本定理分为两部分:部分是关于有限域上的代数结构的,另一部分是关于无限域上的代数结构的。
该定理的核心内容是:任何一个有限维度的代数结构,都可以同构到一个向量空间。
而在无限维度的情况下,代数结构可以看作是一个无限维向量空间的一部分。
接下来,我们来了解高斯证明方法。
高斯证明方法是基于高斯消元法的一种证明方法,主要用于解决线性方程组问题。
高斯证明方法的步骤如下:1.构建一个线性方程组,其中包含待求解的变量。
2.对线性方程组进行高斯消元,得到一个简化后的方程组。
3.求解简化后的方程组,得到一组解。
4.验证这组解是否满足原方程组,若满足,则证明完成。
高斯证明方法的优点在于其简洁、易懂,适用于各种线性方程组的求解。
然而,它也存在一定的不足。
首先,高斯证明方法仅适用于线性方程组,对于非线性方程组问题无能为力。
其次,在实际应用中,高斯消元法可能会遇到矩阵主元元素为0的情况,导致计算过程中出现错误。
尽管如此,当代数基本定理应用于实际问题时,高斯证明方法仍具有一定的作用。
例如,在密码学领域,代数基本定理为加密算法的设计提供了理论基础。
在高斯证明方法的帮助下,我们可以更好地理解加密算法的安全性,并寻找合适的加密方案。
此外,在计算机科学领域,代数基本定理为图论问题的求解提供了理论支持。
通过高斯证明方法,我们可以更加高效地解决图论中的问题。
总之,代数基本定理是数学领域中的一条基本定理,高斯证明方法是历史上第一种证明该定理的方法。
高斯定律
1、高斯定理的内容通过任意一个闭合三、高斯定理曲面的电通量等于包围在该闭合面内所有电荷电量的代数和除以,与闭合面外的电荷无关。
用公式表示,得这个闭合面习惯上叫高斯面。
闭合面内的电荷可能有正有负,电量的代数和指的是正负电荷电量的代数和。
2、高斯定理的证明(1)单个点电荷包围在同心球面内设空间有一点电荷,其周围激发电场。
以为球心,为半径作一球面为高斯面。
则高斯面上各点场强的大小相等,方向沿矢径方向向外。
在高斯面上取一面元,则通过的电通量为通过整个高斯面的电通量为(2)单个点电荷包围在任意闭合曲面内在闭合曲面内以为球心,为半径作一任意球面为高斯面。
在面上取一面元,则通过的电通量为通过整个闭合曲面的电通量为(3)单个点电荷在任意闭合曲面外以为顶点作一锥面,立体角为。
锥面在闭合曲面上截取了两个面元,,它们到顶点的距离分别为,则通过和的电通量为即和的数值相等,符号相反,它们的代数和为零。
而通过整个闭合曲面的电通量是通过这样一对对面元的电通量之和,因而也等于零。
(4)多个点电荷的情形设空间同时存在个点电荷,其中在高斯面之内,在高斯面之外。
设面上任一点的场强为,由场强叠加原理,得式中是各点电荷单独存在时的场强。
穿过面的电通量为高斯定理是静电场的两条基本定理之一,它反映了静电场的基本性质:静电场是有源场,"源"即电荷。
此外高斯定理不仅对静电场适用,对变化的电场也适用,它是电磁场理论的基本方程之一。
四、应用高斯定理求场强1、均匀带电球壳的场强设有一半径为的球壳均匀带电,其所带电量为,求球壳内外的电场强度。
解:(1)、球壳外的场强通过点以为球心、为半径作一封闭球面为高斯面。
由于对称性,该面上场强的数值都相同,方向沿半径向外。
应用高斯定理,得所以(2)、球壳内的场强通过点以为球心、为半径作一封闭球面为高斯面。
由于对称性,该面上场强的数值都相同,方向沿半径向外。
应用高斯定理,得所以2、均匀带电球体的场强设有一半径为的均匀带电球体,其所带电荷的体密度为,求球体内外的电场强度。
介质中的高斯定理
高斯定理是电磁学中的一条基本定理,也被称为高斯电场定理或高斯法则。
它描述了电场在闭合曲面上的通量与该闭合曲面所包围的电荷量之间的关系。
高斯定理可以表述为:闭合曲面上的电场通量等于该闭合曲面所包围的电荷量的代数和的1/ε₀倍,其中ε₀是真空中的介电常数(ε₀ ≈ 8.854 × 10⁻¹² F/m)。
数学上,高斯定理可以用以下方程式表示:
∮ E · dA = Q/ε₀
其中,∮表示曲面积分,E 是电场矢量,dA 是曲面元素的面积矢量,Q 是闭合曲面所包围的电荷量。
高斯定理的应用范围很广,可以用于计算各种电场分布情况下的电场强度。
通过选择合适的闭合曲面和确定其中的电荷分布情况,可以利用高斯定理简化电场问题的计算。
高斯定理也适用于其他物理量的通量计算,例如磁场的磁通量。
代数基本定理
代数基本定理
代数基本定理﹝Fundamental Theorem of Algebra﹞是指:对于复数域,每个次数不少于1的复系数多项式在复数域中至少有一根。
由此推出,一个n次复系数多项式在复数域内有且只有n个根,重根按重数计算。
这个定理的最原始思想是印度数学家婆什迦罗﹝1114-1185?﹞在1150年提出的。
他提出了一元二次方程的求根公式,发现了负数作为方程根的可能性,并开始触及方程根的个数,即一元二次方程有两个根。
婆什迦罗把此想法称为《丽罗娃提》﹝Lilavati﹞,这个词原意是「美丽」,也是他女儿的名称。
1629年荷兰数学家吉拉尔在《代数新发现》中提出他的猜测,并断言n次多项式方程有n个根,但是没有给出证明。
1637年笛卡儿﹝1596-1650﹞在他的《几何学》的第三卷中提出:一个多少次的方程便有多少个根,包括他不承认的虚根与负根。
欧拉在1742年12月15日在给朋友的一封信中明确地提出:任意次数的实系数多项式都能够分解成一次和二次因式的乘积。
达朗贝尔、拉格朗日和欧拉都曾试过证明此定理,可惜证明并不完全。
高斯在1799年给出了第一个实质证明,但仍欠严格。
后来他又给出另外三个证明﹝1814-1815,1816,1848-1850﹞,而「代数基本定理」一名亦被认为是高斯提出的。
高斯研究代数基本定理的方法开创了探讨数学中存在性问题的新途径。
20世纪以前,代数学所研究的对象都是建立在实数域或复数域之上,因此代数基本定理在当时曾起到核心的作用。
高 斯 定 理
1.3 高斯定理
静电场是由电荷所激发的,通过电场空间某一给定闭合 曲面的电通量与激发电场的场源电荷必定有确定的关系。德 国科学家高斯通过缜密运算论证了这个关系,并提出了著名 的高斯定理。该定理给出了通过任何曲面S的电通量φe与闭 合曲面内部所包围的电荷之间的关系。下面就以点电荷为例 来讨论。
(3)利用高斯定理解出场强E。
【例7-4】求点电荷Q的电场强度的分布情况。
S
0
由此可见,通过此球面的电通量等于球面内的电荷量q除以 真空电容率ε0 ,与球面半径无关。
(2)一个正点电荷q,被任意闭合曲 面S′和球面S同时包围,如下图所示。根 据电力线的连续性可知,凡是通过球面S 的电力线都一定通过曲面S′。所以通过闭 合曲面S′的电通量等于通过球面S的电通 量,均为 q/ε0 。
物理学
高斯定理
1.1 电场线
电场线是空间中一系列假想的曲线,主要反映电场的特
征,描述电场中各点场强E的大小和方向。为此,对电场线作
如下规定:
(1)电场线上每一点的切线方向与该点场强E的方向一
致。这样,电场线的方向就反映了场强方向的分布情况。
(2)在任一场点,使通过垂直于场强E的单位面积的电
场线数目(称为电场线密度),正比于该点处场强E的大小。
2.非均匀电场的电通量
在非均匀电场中,为了求出通过任意曲面S的电通量φe, 可以把曲面S分成无限多个面元dS,如下图所示。此时,面元 dS可以近似看成一个平面,并且在面元的范围内电场强度可 以近似看成大小相等、方向相同的匀强电场。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高斯代数基本定理
高斯代数基本定理(Gauss's Fundamental Theorem of Algebra)是现代代数学中的一个重要定理,它揭示了复数域上代数方程的根的存在性。
该定理由德国数学家卡尔·弗里德里希·高斯于1799年首次提出,并在1828年发表。
在代数学中,一个代数方程是形如f(x) = 0的方程,其中f(x)是一个多项式函数,而x是未知数。
高斯代数基本定理指出,对于任何次数大于等于1的复系数多项式方程,总存在至少一个复数根。
具体来说,高斯代数基本定理可以表述为:任何一个次数大于等于1的复系数多项式方程f(x) = 0,在复数域上总有解。
换句话说,复数域上的代数方程总能够被复数根解决。
为了更好地理解高斯代数基本定理,我们可以通过一个简单的例子来说明。
考虑方程x^2 + 1 = 0,其中x是未知数。
根据高斯代数基本定理,我们知道这个方程在复数域上必定有解。
实际上,这个方程的解是x = ±i,其中i是虚数单位。
高斯代数基本定理的证明并不简单,它需要使用复数域的性质和代数学的基本概念。
高斯通过将复数域扩展为复平面,并利用复数的极坐标形式来证明了这个定理。
他的证明是基于代数学中的重要定理之一,即代数基本定理(Fundamental Theorem of Algebra),
它指出任何一个次数大于等于1的复系数多项式方程在复数域上至少有一个复数根。
高斯代数基本定理的重要性不仅在于它解决了复数域上的代数方程,还在于它为代数学的发展奠定了基础。
通过这个定理,我们能够更深入地研究多项式方程的性质和解的特征。
它在代数学、数论、几何学等领域都有广泛的应用。
除了在理论研究中的应用,高斯代数基本定理还在实际问题中发挥着重要作用。
例如,在工程和科学领域中,我们经常需要解决各种复杂的方程和模型。
高斯代数基本定理提供了一种有效的方法来确定方程的解的存在性,并为我们提供了解决问题的思路和方法。
高斯代数基本定理是代数学中的一个重要定理,它揭示了复数域上代数方程的根的存在性。
这个定理的发现和证明为代数学的发展和实际问题的解决提供了重要的基础。
通过深入研究和应用高斯代数基本定理,我们能够更好地理解和解决各种复杂的代数方程。