数字图像处理实验报告3

合集下载

数字图像处理实验报告

数字图像处理实验报告

数字图像处理实验报告1. 引言数字图像处理是使用计算机来处理和优化图像的一种技术。

在本实验中,我们将探索几种常见的数字图像处理方法,并使用Python编程语言和相关库来实现。

2. 实验目的本实验的主要目的是:1.了解图像的基本特性和数字图像处理的基本原理;2.熟悉Python编程语言和相关图像处理库的使用;3.实现常见的图像处理算法并进行实验验证。

3. 实验方法在本实验中,我们使用Python编程语言和以下相关库来实现图像处理算法:•OpenCV:用于图像读取、显示和保存等基本操作;•Numpy:用于图像数据的处理和算术运算;•Matplotlib:用于图像的可视化和结果展示。

以下是实验涉及到的图像处理方法和步骤:1.图像读取和显示:使用OpenCV库读取图像,使用Matplotlib库显示图像;2.图像的灰度化:将彩色图像转换为灰度图像;3.图像的二值化:将灰度图像转换为黑白二值图像;4.图像的平滑处理:使用平滑滤波器对图像进行平滑处理,如均值滤波和高斯滤波;5.图像的边缘检测:使用边缘检测算法对图像进行边缘检测,如Sobel算子和Canny算子;6.图像的直方图均衡化:对灰度图像进行直方图均衡化,增强图像的对比度。

4. 实验过程和结果4.1 图像读取和显示首先,我们使用OpenCV库读取一张图像,并使用Matplotlib库显示该图像:import cv2import matplotlib.pyplot as plt# 读取图像img = cv2.imread('image.jpg')# 显示图像plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) plt.axis('off')plt.show()4.2 图像的灰度化接下来,我们将彩色图像转换为灰度图像:# 灰度化图像gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 显示灰度图像plt.imshow(gray_img, cmap='gray')plt.axis('off')plt.show()4.3 图像的二值化然后,我们将灰度图像转换为黑白二值图像:# 二值化图像_, binary_img = cv2.threshold(gray_img, 128, 255, cv2.THRESH_BINARY)# 显示二值图像plt.imshow(binary_img, cmap='gray')plt.axis('off')plt.show()4.4 图像的平滑处理接下来,我们使用平滑滤波器对图像进行平滑处理,例如使用5x5的均值滤波器和高斯滤波器:# 均值滤波mean_img = cv2.blur(img, (5, 5))# 高斯滤波gaussian_img = cv2.GaussianBlur(img, (5, 5), 0) # 显示平滑处理后的图像plt.figure(figsize=(10, 5))plt.subplot(121)plt.imshow(cv2.cvtColor(mean_img, cv2.COLOR_BGR2R GB))plt.title('Mean Filter')plt.axis('off')plt.subplot(122)plt.imshow(cv2.cvtColor(gaussian_img, cv2.COLOR_B GR2RGB))plt.title('Gaussian Filter')plt.axis('off')plt.show()4.5 图像的边缘检测然后,我们使用边缘检测算法对图像进行边缘检测,例如使用Sobel算子和Canny算子:# 边缘检测sobel_img = cv2.Sobel(gray_img, cv2.CV_8U, 1, 1, ksize=3)canny_img = cv2.Canny(gray_img, 50, 150)# 显示边缘检测结果plt.figure(figsize=(10, 5))plt.subplot(121)plt.imshow(sobel_img, cmap='gray')plt.title('Sobel Operator')plt.axis('off')plt.subplot(122)plt.imshow(canny_img, cmap='gray')plt.title('Canny Operator')plt.axis('off')plt.show()4.6 图像的直方图均衡化最后,我们对灰度图像进行直方图均衡化,以增强图像的对比度:# 直方图均衡化equalized_img = cv2.equalizeHist(gray_img)# 显示直方图均衡化结果plt.imshow(equalized_img, cmap='gray')plt.axis('off')plt.show()5. 实验总结通过本实验,我们熟悉了数字图像处理的基本方法和步骤,并使用Python编程语言和相关库实现了图像的读取、显示、灰度化、二值化、平滑处理、边缘检测和直方图均衡化等操作。

数字图像处理实习报告

数字图像处理实习报告

数字图像处理实习报告
本次实习主要任务是进行数字图像处理相关工作,包括图像的预处理、特征提取、图像分割和图像识别等方面的工作。

实习过程中,我主要负责了图像处理算法的编写与优化,以及实验数据的收集与分析。

通过这次实习,我对数字图像处理技术有了更深入的了解,并且提升了自己的编程能力和团队协作能力。

在图像处理算法的编写与优化过程中,我主要使用了Python
语言和常用的图像处理库,如OpenCV和PIL等。

我研究了不同的图像处理算法,并对其进行了实验验证,优化了算法的性能和效果。

通过这些工作,我深入了解了图像处理算法的实现原理和优化方法,提升了自己在图像处理领域的技术水平。

在实验数据的收集与分析过程中,我主要负责了实验数据的采集和整理工作。

我使用了各种图像采集设备,包括相机、摄像头等,对不同场景下的图像进行了采集和整理。

然后我利用Python和Matlab等工具对实验数据进行了分析和结果展示,
为后续的图像处理算法提供了重要的支持和参考。

总的来说,这次实习让我对数字图像处理有了更深入的了解,提升了自己的技术能力和实践能力。

我在实习过程中遇到了不少困难和挑战,但通过团队合作和自我努力,最终都得以克服,取得了一定的成果。

通过这次实习,我深刻地感受到了数字图像处理技术的重要性和广阔的应用前景,也对自己未来的发展方向有了更清晰的认识。

希望通过这次实习的经历,我能够为将来的学习和工作打下坚实的基础。

数字图像处理实验报告

数字图像处理实验报告

数字图像处理实验报告数字图像处理实验报告(一)实验目的1.理解数字图像处理的基本概念与原理。

2.掌握数字图像处理的基本方法。

3.掌握常用数字滤波器的性质和使用方法。

4.熟练应用数字图像处理软件进行图像处理。

实验器材计算机、MATLAB软件实验内容1.图像的读写与显示首先,我们需要在MATLAB中读入一幅图像,并进行显示。

% 导入图像文件I = imread('myimage.jpg');% 显示图像imshow(I);2.图像的分辨率与色彩空间转换数字图像处理中的一个重要概念是图像的分辨率,通常用像素数量表示。

图像的分辨率越高,代表着图像包含更多的像素,从而更具细节和清晰度。

在数字图像处理中,常常需要将一幅图像从一种色彩空间转换为另一种色彩空间。

RGB色彩空间是最常见的图像色彩空间之一,并且常常作为其他色彩空间的基础。

% 转换图像色彩空间J = rgb2gray(I);% 显示转换后的图像imshow(J);3.图像的增强与滤波图像的增强通常指的是对图像的对比度、亮度和清晰度等方面进行调整,以改善图像的质量和可读性。

数字图像处理中的滤波是一种常用的图像增强方法。

滤波器是一个能够对图像进行局部操作的矩阵,它能够提取或抑制特定的图像特征。

% 对图像进行平滑滤波K = imgaussfilt(J, 1);% 显示滤波后的图像imshow(K);4.数字图像处理在实际应用中的例子数字图像处理在很多实际应用中被广泛应用。

这些应用包括医疗成像、计算机视觉、人脸识别、安防监控等。

下面是数字图像处理在人脸识别应用中的一个简单例子。

% 导入图像文件I = imread('face.jpg');% 进行人脸检测faceDetector = vision.CascadeObjectDetector;bbox = step(faceDetector, I);% 在图像上标记人脸位置IFaces = insertObjectAnnotation(I, 'rectangle', bbox, 'Face');imshow(IFaces);实验结论通过本次实验,我已经能够理解数字图像处理的基本概念与原理,掌握数字图像处理的基本方法,熟练应用数字图像处理软件进行图像处理。

数字图像处理实验报告

数字图像处理实验报告

实验三、图像的傅立叶变换一、实验目的1、了解图像变换的意义和手段;2、熟悉傅里叶变换的性质;3、熟练掌握FFT变换及其应用;4、通过实验了解二维频谱的分布特点;5、通过本实验掌握利用MATLAB编程实现数字图像的傅立叶变换。

二、实验设备1、计算机;2、MATLAB软件;3、记录用的笔、纸。

4、移动式存储器(软盘、U盘等)。

三、实验原理1、应用傅立叶变换进行图像处理傅里叶变换是线性系统分析的一个有力工具,它能够定量地分析诸如数字化系统、采样点、电子放大器、卷积滤波器、噪音和显示点等的作用。

通过实验培养这项技能,将有助于解决大多数图像处理问题。

2、傅立叶(Fourier)变换的定义二维Fourier变换和二维离散傅立叶变换为:图像的傅立叶变换与一维信号的傅立叶变换变换一样,有快速算法,具体参1见相关书目,有关傅立叶变换的快速算法的程序不难找到。

实际上,现在有实现傅立叶变换的芯片,可以实时实现傅立叶变换。

四、实验步骤1、打开计算机,启动MATLAB程序;2、利用MatLab工具箱中的函数编制FFT频谱显示的函数;3、 a).调入、显示“实验一”获得的图像;图像存储格式应为“.gif”;b)对这幅图像做FFT并利用自编的函数显示其频谱;4、实现数字图像傅立叶变换的部分参考程序:I=imread(‘原图像名.gif’); %读入原图像文件imshow(I); %显示原图像fftI=fft2(I); %二维离散傅立叶变换sfftI=fftshift(fftI); %直流分量移到频谱中心RR=real(sfftI); %取傅立叶变换的实部II=imag(sfftI); %取傅立叶变换的虚部A=sqrt(RR.^2+II.^2);%计算频谱幅值A=(A-min(min(A)))/(max(max(A))-min(min(A)))*225; %归一化figure; %设定窗口imshow(A); %显示原图像的频谱五、实验数据记录输入数字图像傅立叶变换的代码如下:I=imread(‘fengshu.gif’);imshow(I);fftI=fft2(I);sfftI=fftshift(fftI);RR=real(sfftI);II=imag(sfftI);A=sqrt(RR.^2+II.^2);A=(A-min(min(A)))/(max(max(A))-min(min(A)))*225;figure;imshow(A);运行以上程序原图像经傅立叶变换后的图像3实验四、图像的离散余弦变换和哈达玛变换一、实验目的1、了解图像离散余弦变换和逆变换的原理;2、理解离散余弦变换系数的特点;3、理解离散余弦变换在图像数据压缩中的应用;4、理解哈达玛变换的原理。

《数字图像处理》实验报告

《数字图像处理》实验报告

《数字图像处理》实验报告数字图像处理是一门将图像进行数字化处理的学科,它通过计算机算法和技术手段对图像进行分析、增强、压缩和重建等操作。

在本次实验中,我们学习了数字图像处理的基本概念和常用算法,并通过实验来探索其应用和效果。

首先,我们进行了图像的读取和显示实验。

通过使用Python中的OpenCV库,我们能够轻松地读取图像文件,并将其显示在屏幕上。

这为我们后续的实验奠定了基础。

同时,我们还学习了图像的像素表示方法,了解了图像由像素点组成的原理。

这使我们能够更好地理解后续实验中的算法和操作。

接下来,我们进行了图像的灰度化实验。

灰度化是将彩色图像转换为灰度图像的过程。

在实验中,我们使用了不同的算法来实现灰度化操作,包括平均值法、最大值法和加权平均法等。

通过比较不同算法得到的灰度图像,我们发现不同算法对图像的处理效果有所差异,这使我们深入理解了灰度化的原理和应用。

随后,我们进行了图像的直方图均衡化实验。

直方图均衡化是一种用于增强图像对比度的方法。

在实验中,我们使用了直方图均衡化算法来对图像进行处理,并观察了处理前后的效果变化。

通过实验,我们发现直方图均衡化能够显著提高图像的对比度,使图像更加清晰和鲜明。

在进一步探索图像处理技术的过程中,我们进行了图像的滤波实验。

滤波是一种常用的图像处理操作,它通过对图像进行卷积操作来实现。

在实验中,我们学习了不同类型的滤波器,包括均值滤波器、高斯滤波器和中值滤波器等。

通过比较不同滤波器对图像的处理效果,我们发现每种滤波器都有其适用的场景和效果。

此外,我们还进行了图像的边缘检测实验。

边缘检测是一种用于提取图像边缘信息的方法。

在实验中,我们学习了不同的边缘检测算法,包括Sobel算子、Canny算子和Laplacian算子等。

通过比较不同算法对图像的处理效果,我们发现每种算法都有其独特的特点和应用。

最后,我们进行了图像的压缩实验。

图像压缩是一种将图像数据进行压缩以减小文件大小的方法。

数字图像处理实验三:图像的复原

数字图像处理实验三:图像的复原

南京工程学院通信工程学院实验报告课程名称数字图像处理C实验项目名称实验三图像的复原实验班级算通111 学生姓名夏婷学号 208110408 实验时间 2014年5月5日实验地点信息楼C322实验成绩评定指导教师签名年月日实验三、图像的恢复一、实验类型:验证性实验二、实验目的1. 掌握退化模型的建立方法。

2. 掌握图像恢复的基本原理。

三、实验设备:安装有MATLAB 软件的计算机四、实验原理一幅退化的图像可以近似地用方程g=Hf+n 表示,其中g 为图像,H为变形算子,又称为点扩散函数(PSF ),f 为原始的真实图像,n 为附加噪声,它在图像捕获过程中产生并且使图像质量变坏。

其中,PSF 是一个很重要的因素,它的值直接影响到恢复后图像的质量。

I=imread(‘peppers.png’);I=I(60+[1:256],222+[1:256],:);figure;imshow(I);LEN=31;THETA=11;PSF=fspecial(‘motion’,LEN,THETA);Blurred=imfilter(I,PSF,’circular’,’conv’);figure;imshow(Blurred);MATLAB 工具箱中有4 个图像恢复函数,如表3-1 所示。

这4 个函数都以一个PSF 和模糊图像作为主要变量。

deconvwnr 函数使用维纳滤波对图像恢复,求取最小二乘解,deconvreg 函数实现约束去卷积,求取有约束的最小二乘解,可以设置对输出图像的约束。

deconvlucy 函数实现了一个加速衰减的Lucy-Richardson 算法。

该函数采用优化技术和泊松统计量进行多次迭代。

使用该函数,不需要提供有关模糊图像中附加噪声的信息。

deconvblind 函数使用的是盲去卷积算法,它在不知道PSF 的情况下进行恢复。

调用deconvblind 函数时,将PSF 的初值作为一个变量进行传递。

数字图像处理 实验报告(完整版)

数字图像处理 实验报告(完整版)

数字图像处理实验一 MATLAB数字图像处理初步一、显示图像1.利用imread( )函数读取一幅图像,假设其名为lily.tif,存入一个数组中;2.利用whos 命令提取该读入图像flower.tif的基本信息;3.利用imshow()函数来显示这幅图像;实验结果如下图:源代码:>>I=imread('lily.tif')>> whos I>> imshow(I)二、压缩图像4.利用imfinfo函数来获取图像文件的压缩,颜色等等其他的详细信息;5.利用imwrite()函数来压缩这幅图象,将其保存为一幅压缩了像素的jpg文件,设为lily.jpg;语法:imwrite(原图像,新图像,‘quality’,q), q取0-100。

6.同样利用imwrite()函数将最初读入的tif图象另存为一幅bmp图像,设为flily.bmp。

7.用imread()读入图像Sunset.jpg和Winter.jpg;8.用imfinfo()获取图像Sunset.jpg和Winter.jpg的大小;9.用figure,imshow()分别将Sunset.jpg和Winter.jpg显示出来,观察两幅图像的质量。

其中9的实验结果如下图:源代码:4~6(接上面两个) >>I=imread('lily.tif')>> imfinfo 'lily.tif';>> imwrite(I,'lily.jpg','quality',20);>> imwrite(I,'lily.bmp');7~9 >>I=imread('Sunset.jpg');>>J=imread('Winter.jpg')>>imfinfo 'Sunset.jpg'>> imfinfo 'Winter.jpg'>>figure(1),imshow('Sunset.jpg')>>figure(2),imshow('Winter.jpg')三、二值化图像10.用im2bw将一幅灰度图像转化为二值图像,并且用imshow显示出来观察图像的特征。

数字图像处理实验报告(五个实验全)

数字图像处理实验报告(五个实验全)

数字图像处理实验报告(五个实验全)实验⼀ Matlab图像⼯具的使⽤1、读图I=imread('lena.jpg');imshow(I);2、读⼊⼀幅RGB图像,变换为灰度图像和⼆值图像,并在同⼀个窗⼝内分成三个⼦窗⼝来分别显⽰RGB图像和灰度图像。

a=imread('lena.jpg')i = rgb2gray(a)I = im2bw(a,0.5)subplot(3,1,1);imshow(a);subplot(3,1,2);imshow(i);subplot(3,1,3);imshow(I);原图像灰度图像⼆值图像实验⼆图像变换1、对⼀幅图像进⾏平移,显⽰原始图像与处理后图像,分别对其进⾏傅⾥叶变换,显⽰变换后结果,分析原图的傅⾥叶谱与平移后傅⾥叶频谱的对应关系。

s=imread('beauty.jpg');i=rgb2gray(s)i=double(i)j=fft2(i);k=fftshift(j); 原图像原图的傅⾥叶频谱l=log(abs(k));m=fftshift(j);RR=real(m);II=imag(m);A=sqrt(RR.^2+II.^2);A=(A-min(min(A)))/(max(max(A)))*255;b=circshift(s,[800 450]);b=rgb2gray(b)b=double(b) 平移后的图像平移后的傅⾥叶频谱c=fft2(b);e=fftshift(c);l=log(abs(e));f=fftshift(c);WW=real(f);ZZ=imag(f);B=sqrt(WW.^2+ZZ.^2);B=(B-min(min(B)))/(max(max(B)))*255;subplot(2,2,1);imshow(s);subplot(2,2,2);imshow(uint8(b));subplot(2,2,3);imshow(A);subplot(2,2,4);imshow(B);2、对⼀幅图像进⾏旋转,显⽰原始图像与处理后图像,分别对其进⾏傅⾥叶变换,显⽰变换后结果,分析原图的傅⾥叶谱与旋转后傅⾥叶频谱的对应关系。

数字图像处理实验报告实验三

数字图像处理实验报告实验三
2.设计一个检测图3-2中边缘的程序,要求结果类似图3-3,并附原理说明
代码:
I=imread('lines.png');
F=rgb2gray(I);
subplot(2,2,1);
imshow(I);
title('原始图像');
thread=130/255;
subplot(2,2,2);
imhist(F);
图5-2 添上一层(漆)
3.开运算open:
4.闭close:
5.HMT(Hit-Miss Transform:击中——击不中变换)
条件严格的模板匹配
模板由两部分组成。 :物体, :背景。
图5-3 击不中变换示意图
性质:
(1) 时,
(2)
6.细化/粗化
(1)细化(Thin)
去掉满足匹配条件的点。
图5-4 细化示意图
se = strel('ball',5,5);
I2 = imerode(I,se);
imshow(I), title('Original')
figure, imshow(I2), title('Eroded')
Matlab用imopen函数实现图像开运算。用法为:
imopen(I,se);
I为图像源,se为结构元素
构造一个中心具有菱形结构的结构元素,R为跟中心点的距离
SE = strel('rectangle',MN)
构造一个矩形的结构元素,MN可写在[3 4],表示3行4列
SE = strel('square',W)
构造一个正方形的矩阵。

数字图像处理实验报告

数字图像处理实验报告

数字图像处理实验报告实验一数字图像的获取一、实验目的1、了解图像的实际获取过程。

2、巩固图像空间分辨率和灰度级分辨率、邻域等重要概念。

3、熟练掌握图像读、写、显示、类型转换等matlab函数的用法。

二、实验内容1、读取一幅彩色图像,将该彩色图像转化为灰度图像,再将灰度图像转化为索引图像并显示所有图像。

2、编程实现空间分辨率变化的效果。

三、实验原理1、图像读、写、显示I=imread(‘image.jpg’)Imview(I)Imshow(I)Imwrite(I,’wodeimage.jpg’)2、图像类型转换I=mat2gray(A,[amin,amax]);按指定的取值区间[amin,amax]将数据矩阵A转化为灰度图像I,amin对应灰度0,amax对应1,也可以不指定该区间。

[x,map]=gray2ind(I,n);按指定的灰度级n将灰度图像转化为索引图像,n默认为64I=ind2gray(x,map);索引图像转化为灰度图像I=grb2gray(RGB);真彩色图像转化为灰度图像[x,map]=rgb2ind(RGB);真彩色图像转化为索引图像RGB=ind2rgb(x,map);索引图像转化为真彩色图像BW=im2bw(I,level);将灰度图像转化为二值图像,level取值在[0,1]之间BW=im2bw(x,map,level);将索引图像转化为二值图像,level取值在[0,1]之间BW=im2bw(RGB,level);将真彩色图像转化为二值图像,level取值在[0,1]之间四、实验代码及结果1、in=imread('peppers.png');i=rgb2gray(in);[x,map]=gray2ind(i,128);subplot(131),imshow(in)subplot(132),imshow(i)subplot(133),imshow(x),colormap(map)2、%空间分辨率变化的效果clc,close all,cleari=imread('cameraman.tif');i=imresize(i,[256,256]);i1=i(1:2:end,1:2:end);[m1,n1]=size(i)i2=i1(1:2:end,1:2:end);[m2,n2]=size(i2)i3=i2(1:2:end,1:2:end);[m3,n3]=size(i3)subplot(221),imshow(i),xlabel('256x256')subplot(222),imshow(i1),xlabel('128x128')subplot(223),imshow(i2),xlabel('64x64')subplot(224),imshow(i3),xlabel('32x32')256 x 256128 x 12864 x 6432 x 32实验二图像的几何变换一、实验目的掌握图像的基本几何变换的方法1、图像的平移2、图像的旋转二、实验内容练习用matalb 命令实现图像的平移、旋转操作1、.编写实现图像平移的函数2、用imread 命令从你的硬盘读取一幅256×256灰度图;3、调用平移函数,将256×256灰度图平移100行200列,在同一个窗口中显示平移前和平移后的图像。

数字图像处理实验报告

数字图像处理实验报告

数字图像处理实验报告引言数字图像处理是一门研究如何对图像进行数字化处理的学科,它的应用广泛,涵盖了图像的获取、增强、压缩、分割等多个方面。

本次实验旨在探索数字图像处理的基本原理和常用技术,并通过实践操作加深对数字图像处理的理解。

实验目的1.学习掌握数字图像处理的基本原理;2.熟悉常用的数字图像处理工具和方法;3.实践应用数字图像处理技术解决实际问题。

实验环境在本次实验中,我们使用了以下环境和工具:- 操作系统:Windows 10 - 编程语言:Python - 图像处理库:OpenCV实验步骤步骤一:图像获取与显示首先,我们需要获取一张待处理的图像,并对其进行显示。

在Python中,我们可以使用OpenCV库来实现图像的读取和显示。

以下是示例代码:import cv2# 读取图像image = cv2.imread('image.jpg')# 显示图像cv2.imshow('Image', image)cv2.waitKey(0)cv2.destroyAllWindows()步骤二:图像增强图像增强是数字图像处理中常用的技术之一,旨在改善图像的质量和可视化效果。

常见的图像增强技术包括灰度转换、直方图均衡化、滤波器等。

以下是示例代码:import cv2# 读取图像image = cv2.imread('image.jpg')# 灰度转换gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GR AY)# 直方图均衡化equalized_image = cv2.equalizeHist(gray_image)# 高斯滤波器blurred_image = cv2.GaussianBlur(equalized_image, (5, 5), 0)# 边缘增强enhanced_image = cv2.Canny(blurred_image, 100, 20 0)# 显示图像cv2.imshow('Enhanced Image', enhanced_image)cv2.waitKey(0)cv2.destroyAllWindows()步骤三:图像压缩图像压缩是数字图像处理中的重要话题,旨在减少图像的存储空间和传输带宽。

数字图像处理实验报告

数字图像处理实验报告

[键入公司名称]数字图像处理实验报告班级:姓名:学号:目录实验一:matlab数字图像处理初步 (3)一.实验目的 (3)二.实验内容 (3)三.实验步骤 (3)实验二:图像的傅立叶变换 (7)一.实验目的 (7)二.实验原理 (7)三.实验内容 (8)四.实验步骤 (8)实验三:数字图像的频域滤波 (9)一.实验目的 (9)二.实验原理 (9)三.实验内容 (10)四.实验步骤 (11)实验四:图象旋转 (14)一.实验目的 (14)二.实验原理 (14)三.实验内容 (14)四.实验步骤 (14)实验五: 图象压缩 (16)一. 实验目的 (16)二.实验内容 (16)二.实验步骤 (16)实验一:matlab数字图像处理初步一.实验目的1、学习在matlab环境下对图像文件的I/O操作,为读取各种格式的图像文件和后续进行图像处理打下基础2、熟悉matlab操作环境3、熟悉matlab的一些指令语句二.实验内容利用matlab为用户提供的专门函数从图像格式的文件中读/写图像数据、显示图像,以及查询图像文件的信息三.实验步骤1、利用imshow显示MATLAB自带的图像在控制台输入>> I=imread('H:\a.bmp');>> imshow(I)弹出窗口显示图像2、用(imfinfo)功能得到图像的相关信息;>> info=imfinfo('autumn.tif');>> info结果为Filename: Filename: 'D:\MATLAB7\toolbox\images\imdemos\autumn.tif' FileModDate: '04-Dec-2000 21:57:54'FileSize: 213642Format: 'tif'FormatVersion: []Width: 345Height: 206BitDepth: 24ColorType: 'truecolor'FormatSignature: [73 73 42 0]ByteOrder: 'little-endian'NewSubfileType: 0BitsPerSample: [8 8 8]Compression: 'Uncompressed'PhotometricInterpretation: 'RGB'StripOffsets: [30x1 double]SamplesPerPixel: 3RowsPerStrip: 7StripByteCounts: [30x1 double]XResolution: 72YResolution: 72ResolutionUnit: 'Inch'Colormap: []PlanarConfiguration: 'Chunky'TileWidth: []TileLength: []TileOffsets: []TileByteCounts: []Orientation: 1FillOrder: 1GrayResponseUnit: 0.0100MaxSampleValue: [255 255 255]MinSampleValue: 0Thresholding: 13、利用显示颜色条功能(colorbar)在图像的左边画一条颜色亮度显示条>> colorbar(I)显示结果为4、读取一幅RGB彩色图像,将其转换为灰度图像,并在同一窗口显示原图>>RGB=imread('autumn.tif'); [m,n,p]=size(RGB) ; %矩阵大小>>I=rgb2gray(RGB) ; % 真彩色图像转换为灰度图像>>I1=im2bw(I) ; % 灰色图像二值画>>I2=~I1; %对二值图像取反>>subplot(1,2,1),imshow(RGB); >>subplot(1,2,2),imshow(I); >>figure % 新建个图形窗口>>subplot(1,3,1),imshow(I); >>subplot(1,3,2),imshow(I1); >>subplot(1,3,3),imshow(I2); 结果为:实验二:图像的傅立叶变换一.实验目的1、理解离散傅立叶变换的基本原理2、掌握应用MATLAB语言进行FFT及逆变换的方法二.实验原理Matlab 函数 fft、fft2 和 fftn 分别可以实现一维、二维和 N 维 DFT 算法;而函数 ifft、ifft2 和 ifftn 则用来计算反 DFT 。

数字图像处理实验三中值滤波和均值滤波实验报告

数字图像处理实验三中值滤波和均值滤波实验报告

数字图像处理实验三均值滤波、中值滤波的计算机实现12281166 崔雪莹计科1202 班一、实验目的:1)熟悉均值滤波、中值滤波处理的理论基础;2)掌握均值滤波、中值滤波的计算机实现方法;3)学习VC++ 6。

0 的编程方法;4)验证均值滤波、中值滤波处理理论;5)观察均值滤波、中值滤波处理的结果。

二、实验的软、硬件平台:硬件:微型图像处理系统,包括:主机,PC机;摄像机;软件:操作系统:WINDOWS2000或WINDOWSXP应用软件:VC++6.0三、实验内容:1)握高级语言编程技术;2)编制均值滤波、中值滤波处理程序的方法;3)编译并生成可执行文件;4)考察处理结果。

四、实验要求:1)学习VC+确6。

0编程的步骤及流程;2)编写均值滤波、中值滤波的程序;3)编译并改错;4)把该程序嵌入试验二给出的界面中(作适当修改);5)提交程序及文档;6)写出本次实验的体会。

五、实验结果截图实验均值滤波采用的是3X3的方块,取周围的像素点取得其均值代替原像素点。

边缘像素的处理方法是复制边缘的像素点,增加一个边框,计算里面的像素值得均值滤波。

均值氓浜1W赵六、实验体会本次实验在前一次的实验基础上增加均值滤波和中值滤波,对于椒盐噪声的处理,发现中值滤波的效果更为好一点,而均值滤波是的整个图像变得模糊了一点,效果差异较大。

本次实验更加增加了对数字图像处理的了解与学习。

七、实验程序代码注释及分析// HistDemoADIg.h :头文件//#in elude "ImageWnd.h"#pragma once// CHistDemoADIg 对话框classCHistDemoADIg : public CDialogEx{//构造public:CHistDemoADlg(CWnd* pParent = NULL); // 标准构造函数intnWidth;intnHeight;intnLen;intnByteWidth;BYTE *lpBackup;BYTE *lpBitmap;BYTE *lpBits;CStringFileName;CImageWndsource,dest;// 对话框数据enum { IDD = IDD_HISTDEMOA_DIALOG };protected:virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV 支持// 实现protected:HICON m_hIcon;// 生成的消息映射函数virtual BOOL OnInitDialog();afx_msg void OnSysCommand(UINT nID, LPARAM lParam);afx_msg void OnPaint();afx_msg HCURSOR OnQueryDragIcon();DECLARE_MESSAGE_MAP()public:voidLoadBitmap(void);afx_msg void OnOpen();afx_msg void OnHist();voidHistogramEq(void);voidNoColor(void);void HistogramEq1(intnWidth,intnHeight,BYTE *lpInput,BYTE *lpOutput);voidMeanFilter(intnWidth,intnHeight,BYTE *lpInput,BYTE *lpOutput);voidMedianFilter(intnWidth,intnHeight,BYTE *lpInput,BYTE *lpOutput); afx_msgvoid OnBnClickedClose();afx_msg void OnBnClickedMeanfilter();afx_msg void OnBnClickedMedianfilter();};HistDemoADlg.cpp 对HistDemoADlg.h 进行具体的实现,OnOpen() 函数响应ID 为IDC_OPEN的按钮事件,而且会调取文件选择对话框,选取文件之后,会显示在原始图像区域显示对应的位图图像,OnHist()函数会响应ID为IDC_HIST的按钮事件,调用HistogramEq()进行直方图均衡化的处理,HistogramEq()会调用HistogramEq1()进行直方图均衡化的处理,并用dst.setlmage()显示处理之后的图像,以及NoColor()函数,对原始图像转化为灰度图像之后再显示。

数字图像处理实验报告

数字图像处理实验报告

数字图像处理实验报告图像处理课程的目标是培养学生的试验综合素质与能力。

使学生通过实践,理解相关理论学问,将各类学问信息进行新的组合,制造出新的方法和新的思路,提高学生的科学试验与实际动手操作能力[1]。

从影像科筛选有价值的图像,建成影像学数字化试验教育平台,系统运行正常;具备图像上传、图像管理、图像检索与扫瞄、试验报告提交、老师批阅等功能;能满意使用要求[2]。

1.试验内容设计思路1.1项目建设内容和方法数字图像处理的内容:完整的数字图像处理大体上分为图像信息的猎取,存储,传送,处理,输出,和显示几个方面。

数字图像信息的猎取主要是把一幅图像转换成适合输入计算机和数字设备的数字信号,包括摄取图像,光、电转换及数字化。

数字图像信息的存储,数字图像信息的突出特点是数据量巨大,为了解决海量存储问题,数字图像的存储主要研究图像压缩,图像格式及图像数据库技术。

数字图像信息的传送数字图像信息的传送可分为系统内部传送与远距离传送[4]数字图像信息处理包括图像变换,图像增加,图像复原,彩色与多光谱处理图像重建,小波变换,图像编码,形态学,目标表示与描述。

数字图像输出和显示,最终目的是为人和机器供应一幅便于解释和识别的图像,数字图像的输出和显示也是数字图像处理的重要内容之一。

1.2数字图像处理的方法大致可以分为两大类,既空域法和频域法空域法:是把图像看做平面中各个像素组成的集合,然后直接对一维和二维函数进行相应处理,依据新图像生成方法的不同,空域处理法可为点处理法,区处理法,叠代处理法,跟踪处理法,位移不变与位移可变处理法。

点处理法的优点,点处理的典型用途a)灰度处理b)图像二值处理点处理方法的优点a)可用LUT方法快速实现b)节省存储空间。

区处理法,邻域处理法。

它依据输入图像的小邻域的像素值,按某些函数得到输出像素。

区处理法主要用于图象平滑和图像的锐化。

叠代处理法:叠代就是反复进行某些处理运算,图像叠代处理也是如此,拉普拉斯算子或平滑处理的结果是物体轮廓,该图像轮廓边缘太宽或粗细不一,要经过多次叠代把它处理成单像素轮廓——图像细化。

数字图像处理实验报告

数字图像处理实验报告

数字图像处理实验报告一、引言数字图像处理是一门涉及图像获取、图像处理和图像分析的重要学科,广泛应用于计算机科学、电子工程、通信技术等领域。

本报告旨在介绍并总结我所进行的数字图像处理实验,讨论实验的目的、方法、结果和分析。

二、实验目的通过本次实验,旨在掌握和理解数字图像处理的基本原理和常见技术,包括灰度变换、空间域滤波、频域滤波等,以及层次分割、边缘检测和形态学处理等高级应用技术。

三、实验方法1. 寻找合适的图像在实验中,我选用了一张自然风景图像作为处理对象。

这张图像包含丰富的纹理和颜色信息,适合用于多种图像处理方法的验证和比较。

2. 灰度变换灰度变换是数字图像处理中常见的基础操作,可以通过对图像的像素灰度值进行线性或非线性变换,来调整图像的对比度、亮度等特征。

在实验中,我利用线性灰度变换方法将原始彩色图像转换为灰度图像,并进行对比度的调整,观察处理结果的变化。

3. 空间域滤波空间域滤波是一种基于像素邻域的图像处理方法,常用于图像去噪、边缘增强等应用。

我使用了平滑滤波和锐化滤波两种方法,并针对不同的滤波算子和参数进行了实验和比较,评估其对图像细节和边缘保留的影响。

4. 频域滤波频域滤波是一种基于图像的频谱特征的图像处理方法,广泛应用于图像增强、去噪和特征提取等方面。

我利用傅里叶变换将图像从空间域转换到频域,采用理想低通滤波器和巴特沃斯低通滤波器进行图像的模糊处理,并进行了实验对比和分析。

5. 高级应用技术在实验中,我还研究了数字图像处理中的一些高级应用技术,包括层次分割、边缘检测和形态学处理。

通过应用不同的算法和参数,我实现了图像区域分割、提取图像边缘和形态学形状变换等效果,评估处理结果的准确性和稳定性。

四、实验结果与分析通过对以上实验方法的实施,我获得了一系列处理后的图像,并进行了结果的比较和分析。

在灰度变换实验中,我发现线性变换对图像的对比度有较大影响,但对图像的细节变化不敏感;在空间域滤波实验中,平滑滤波可以有效降噪,但会导致图像细节损失,而锐化滤波可以增强图像的边缘效果,但也容易引入噪声;在频域滤波实验中,理想低通滤波对图像的模糊效果明显,而巴特沃斯低通滤波器可以在一定程度上保留图像的高频细节信息;在高级应用技术实验中,边缘检测和形态学处理对提取图像边缘和形状变换非常有效,但参数的选择会对结果产生较大影响。

数字图像处理实验报告(附答案解析)

数字图像处理实验报告(附答案解析)

实验一常用MATLAB图像处理命令一、实验目的1、熟悉并掌握MA TLAB工具的使用;2、实现图像的读取、显示、代数运算和简单变换。

二、实验环境MATLAB 6.5以上版本、WIN XP或WIN2000计算机三、常用函数●读写图像文件1 imreadimread函数用于读入各种图像文件,如:a=imread('e:\w01.tif')2 imwriteimwrite函数用于写入图像文件,如:imwrite(a,'e:\w02.tif',’tif’) 3 imfinfoimfinfo函数用于读取图像文件的有关信息,如:imfinfo('e:\w01.tif') ●图像的显示1imageimage函数是MATLAB提供的最原始的图像显示函数,如:a=[1,2,3,4;4,5,6,7;8,9,10,11,12];image(a);2 imshowimshow函数用于图像文件的显示,如:i=imread('e:\w01.tif');imshow(i);title(‘原图像’)%加上图像标题3 colorbarcolorbar函数用显示图像的颜色条,如:i=imread('e:\w01.tif');imshow(i);colorbar;4 figurefigure函数用于设定图像显示窗口,如:figure(1); /figure(2);5 subplot把图形窗口分成多个矩形部分,每个部分可以分别用来进行显示。

Subplot(m,n,p)分成m*n个小窗口,在第p个窗口中创建坐标轴为当前坐标轴,用于显示图形。

6 plot绘制二维图形plot(y)Plot(x,y)xy可以是向量、矩阵。

图像类型转换1 rgb2gray//灰色把真彩图像转换为灰度图像i=rgb2gray(j)2 im2bw//黑白通过阈值化方法把图像转换为二值图像I=im2bw(j,level)Level表示灰度阈值,取值范围0~1(即0.n),表示阈值取自原图像灰度范围的n%3 imresize改变图像的大小I=imresize(j,[m n])将图像j大小调整为m行n列图像运算1 imadd两幅图像相加,要求同样大小,同种数据类型Z=imadd(x,y)表示图像x+y2 imsubstract两幅图像相减,要求同样大小,同种数据类型Z=imsubtract(x,y)表示图像x-y3 immultiplyZ=immultiply(x,y)表示图像x*y4 imdivideZ=imdivide(x,y)表示图像x/y5:m = imadjust(a,[,],[0.5;1]) ;%图像变亮n = imadjust(a,[,],[0;0.5]) ;%图像变暗g=255-a;%负片效果四、实验内容(请将实验程序填写在下方合适的位置,实验图像结果拷屏粘贴)1、读入一幅RGB图像,变换为灰度图像和二值图像,并在同一个窗口内分成三个子窗口来分别显示RGB图像和灰度图像,注上文字标题。

数字图像处理实验报告

数字图像处理实验报告

数字图象处理实验报告主要是图象的几何变换的编程实现,详细包括图象的读取、改写,图象平移,图象的镜像,图象的转置,比例缩放,旋转变换等.详细要求如下:1.编程实现图象平移,要求平移后的图象大小不变;2.编程实现图象的镜像;3.编程实现图象的转置;4.编程实现图象的比例缩放,要求分别用双线性插值和最近邻插值两种方法来实现,并比较两种方法的缩放效果;5.编程实现以任意角度对图象发展旋转变换,要求分别用双线性插值和最近邻插值两种方法来实现,并比较两种方法的旋转效果.本实验的目的是使学生熟悉并掌握图象处理编程环境,掌握图象平移、镜像、转置和旋转等几何变换的方法,并能通过程序设计实现图象文件的读、写操作,及图象平移、镜像、转置和旋转等几何变换的程序实现.3.1 实验所用编程环境:Visual C++(简称VC)是微软公司提供的基于C/C++的应用程序集成开辟工具.VC拥有丰富的功能和大量的扩展库,使用它能有效的创立高性能的Windows应用程序和Web应用程序.VC除了提供高效的C/C++编译器外,还提供了大量的可重用类和组件,包括著名的微软根抵类库(MFC)和活动模板类库(ATL),因此它是软件开辟人员不可多得的开辟工具.VC丰富的功能和大量的扩展库,类的重用特性以及它对函数库、DLL库的支持能使程序更好的模块化,并且通过向导程序大大简化了库资源的使用和应用程序的开辟,正由于VC具有明显的优势,于是我选择了它来作为数字图象几何变换的开辟工具.在本程序的开辟过程中,VC的核心知识、消息映射机制、对话框控件编程等都得到了生动的表达和灵便的应用.3.2 实验处理的对象:256色的BMP(BIT MAP )格式图象BMP(BIT MAP )位图的文件构造:详细组成图: BITMAPFILEHEADER位图文件头(只用于BMP文件) bfType=”BM” bfSize bfReserved1bfReserved2bfOffBitsbiSizebiWidthbiHeightbiPlanesbiBitCountbiCompressionbiSizeImagebiXPelsPerMeterbiYPelsPerMeterbiClrUsedbiClrImportant单色DIB有2个表项16色DIB有16个表项或者更少256色DIB有256个表项或者更少真彩色DIB没有调色板每一个表项长度为4字节(32位)像素按照每行每列的顺序罗列每一行的字节数必须是4的整数倍BITMAPINFOHEADER 位图信息头 Palette 调色板 DIBPixels DIB图象数据1. BMP文件组成BMP文件由文件头、位图信息头、颜色信息和图形数据四部份组成.2. BMP文件头BMP文件头数据构造含有BMP文件的类型(必须为BMP)、文件大小(以字节为单位)、位图文件保存字(必须为0)和位图起始位置(以相对于位图文件头的偏移量表示)等信息.3. 位图信息头BMP位图信息头数据用于说明位图的尺寸(宽度,高度等都是以像素为单位,大小以字节为单位, 水平和垂直分辨率以每米像素数为单位) ,目标设备的级别,每一个像素所需的位数, 位图压缩类型(必须是 0)等信息.4. 颜色表颜色表用于说明位图中的颜色,它有假设干个表项,每一个表项是一个RGBQUAD类型的构造,定义一种颜色.详细包含蓝色、红色、绿色的亮度(值范围为0-255)位图信息头和颜色表组成位图信息5. 位图数据位图数据记录了位图的每一个像素值,记录顺序是在扫描行内是从左到右,扫描行之间是从下到上.Windows一个扫描行所占的字节数必须是 4的倍数(即以long为单位),缺乏的以0填充.3.3 BMP(BIT MAP )位图的显示:①普通显示方法:1. 申请内存空间用于存放位图文件2. 位图文件读入所申请内存空间中3. 在函数中用创立显示用位图, 用函数创立兼容DC,用函数选择显示删除位图但以上方法的缺点是: 1)显示速度慢; 2) 内存占用大; 3) 位图在缩小显示时图形失真大,(可通过安装字体平滑软件来解决); 4) 在低颜色位数的设备上(如256显示模式)显示高颜色位数的图形(如真彩色)图形失真严重.②BMP位图缩放显示 :用视频函数来显示位图,内存占用少,速度快,而且还可以对图形发展淡化(Dithering )处理.淡化处理是一种图形算法,可以用来在一个支持比图象所用颜色要少的设备上显示彩色图象.BMP位图显示方法如下:1. 翻开视频函数,普通放在在构造函数中2. 申请内存空间用于存放位图文件3. 位图文件读入所申请内存空间中4. 在 函数中 显示位图5. 关闭视频函数 ,普通放在在析构函数中以上方法的优点是: 1)显示速度快; 2) 内存占用少; 3) 缩放显示时图形失真小,4) 在低颜色位数的设备上显示高颜色位数的图形图形时失真小; 5) 通过直接处理位图数据,可以制作简单动画.3.4 程序中用到的访问函数Windows支持一些重要的DIB访问函数,但是这些函数都还没有被封装到MFC中,这些函数主要有:1. SetDIBitsToDevice函数:该函数可以直接在显示器或者打印机上显示DIB. 在显示时不发展缩放处理.2. StretchDIBits函数:该函数可以缩放显示DIB于显示器和打印机上.3. GetDIBits函数:还函数利用申请到的内存,由GDI位图来构造DIB.通过该函数,可以对DIB的格式发展控制,可以指定每一个像素颜色的位数,而且可以指定是否发展压缩.4. CreateDIBitmap函数:利用该函数可以从DIB出发来创立GDI位图.5. CreateDIBSection函数:该函数能创立一种特殊的DIB,称为DIB项,然后返回一个GDI位图句柄.6. LoadImage函数:该函数可以直接从磁盘文件中读入一个位图,并返回一个DIB句柄.7. DrawDibDraw函数:Windows提供了窗口视频(VFW)组件,Visual C++支持该组件.VFW中的DrawDibDraw函数是一个可以替代StretchDIBits的函数.它的最主要的优点是可以使用颤动颜色,并且提高显示DIB的速度,缺点是必须将VFW代码连接到进程中.3.5 图象的几何变换图象的几何变换,通常包括图象的平移、图象的镜像变换、图像的转置、图象的缩放和图象的旋转等.实验目的:本实验内容旨在让学生通过用VC等高级语言编写数字图象处理的一些根本算法程序,来稳固和掌握图象处理技术的根本技能,提高实际动手能力,并通过实际编程了解图象处理软件的实现的根本原理。

数字图像处理实验报告

数字图像处理实验报告

数字图像处理实验报告数字图像处理实验报告一、引言数字图像处理是计算机科学与工程领域中的一个重要研究方向。

通过使用数字化技术,对图像进行采集、传输、存储和处理,可以实现对图像的增强、恢复、分析和识别等功能。

本实验旨在通过对数字图像处理算法的实践应用,探索图像处理的原理和方法。

二、实验目的本实验的主要目的是掌握数字图像处理的基本概念和算法,并通过实际操作加深对图像处理原理的理解。

具体目标包括:1. 学习使用图像处理软件,如Photoshop或Matlab等。

2. 掌握图像增强的方法,如直方图均衡化、滤波和锐化等。

3. 理解图像压缩和编码的原理,如JPEG和PNG等格式。

4. 了解图像分割和边缘检测的基本算法,如阈值分割和Canny边缘检测等。

三、实验过程1. 图像增强图像增强是指通过一系列算法和技术,改善图像的质量和视觉效果。

在实验中,我们可以使用直方图均衡化算法来增强图像的对比度和亮度。

该算法通过将图像的像素值映射到一个更大的范围内,使得图像的亮度分布更加均匀。

2. 图像滤波图像滤波是指通过一系列滤波器对图像进行处理,以实现去噪、平滑和锐化等效果。

在实验中,我们可以使用平滑滤波器(如均值滤波器和高斯滤波器)来去除图像中的噪声。

同时,我们还可以使用锐化滤波器(如拉普拉斯滤波器和Sobel滤波器)来增强图像的边缘和细节。

3. 图像压缩和编码图像压缩是指通过减少图像的数据量来减小图像文件的大小,从而实现存储和传输的效率提升。

在实验中,我们可以使用JPEG和PNG等压缩算法来对图像进行压缩和编码。

JPEG算法通过对图像的频域进行离散余弦变换和量化,实现对图像的有损压缩。

而PNG算法则采用无损压缩的方式,通过对图像的差值编码和哈夫曼编码,实现对图像的高效压缩。

4. 图像分割和边缘检测图像分割是指将图像分成若干个区域,以实现对图像的目标提取和图像分析的目的。

而边缘检测是指通过检测图像中的边缘和轮廓,实现对图像的形状分析和目标识别。

《数字图像处理》实验报告

《数字图像处理》实验报告

《数字图像处理》实验报告数字图像处理是计算机科学与技术领域中的一个重要分支,它涉及到对图像进行获取、处理、分析和显示等一系列操作。

在本次实验中,我们将学习和探索数字图像处理的基本概念和技术,并通过实验来加深对这些概念和技术的理解。

首先,我们需要了解数字图像的基本概念。

数字图像是由像素组成的二维矩阵,每个像素代表图像中的一个点,像素的灰度值或颜色值决定了该点的亮度或颜色。

在实验中,我们将使用灰度图像进行处理,其中每个像素的灰度值表示了该点的亮度。

在数字图像处理中,最基本的操作之一是图像的获取和显示。

我们可以通过摄像头或者从文件中读取图像数据,然后将其显示在计算机屏幕上。

通过这种方式,我们可以对图像进行观察和分析,为后续的处理操作做好准备。

接下来,我们将学习一些常见的图像处理操作。

其中之一是图像的灰度化处理。

通过将彩色图像转换为灰度图像,我们可以减少图像数据的维度,简化后续处理的复杂度。

灰度化处理的方法有多种,例如将彩色图像的RGB三个通道的像素值取平均值,或者使用加权平均值的方法来计算灰度值。

另一个常见的图像处理操作是图像的平滑处理。

图像平滑可以减少图像中的噪声,并使得图像更加清晰。

常用的图像平滑方法包括均值滤波和高斯滤波。

均值滤波通过计算像素周围邻域像素的平均值来平滑图像,而高斯滤波则使用一个高斯核函数来加权平均邻域像素的值。

除了平滑处理,图像的锐化处理也是数字图像处理中的一个重要操作。

图像的锐化可以增强图像的边缘和细节,使得图像更加清晰和鲜明。

常用的图像锐化方法包括拉普拉斯算子和Sobel算子。

这些算子通过计算像素周围邻域像素的差异来检测边缘,并增强边缘的灰度值。

此外,我们还将学习一些图像的变换操作。

其中之一是图像的缩放和旋转。

通过缩放操作,我们可以改变图像的尺寸,使其适应不同的显示设备或应用场景。

而旋转操作可以将图像按照一定的角度进行旋转,以达到某种特定的效果。

最后,我们将学习一些图像的特征提取和分析方法。

数字图像处理实验报告

数字图像处理实验报告

数字图像处理实验报告数字图像处理实验报告第一章总论数字图像处理是计算机图形学、数字信号处理等学科交叉的一门学科。

它是基于数字计算机对图像信号进行数字处理的一种方法。

数字图像处理技术已广泛应用于医学影像诊断、遥感图像处理、图像识别、安防监控等领域,在当今社会中具有不可替代的重要作用。

本次实验主要介绍了数字图像处理的基本方法,包括图像采集、图像增强、图像恢复、图像分割、图像压缩等几个方面。

在实验过程中,我们采用了一些常用的数字图像处理方法,并通过 Matlab 图像处理工具箱进行实现和验证。

第二章实验过程2.1 图像采集在数字图像处理中,图像采集是一个重要的步骤。

采集到的图像质量直接影响到后续处理结果的准确性。

本次实验使用的图像是一张 TIF 格式的彩色图像,通过 Matlab 读取图像文件并显示,代码如下:```Matlabim = imread('test.tif');imshow(im);```执行代码后,可以得到如下图所示的图像:![image_1.png](./images/image_1.png)2.2 图像增强图像增强是指利用某些方法使图像具有更好的视觉效果或者变得更适合某种应用。

本次实验我们主要采用直方图均衡化、灰度变换等方法进行图像增强。

2.2.1 直方图均衡化直方图均衡化是一种常用的增强方法,它可以增加图像的对比度和亮度,使图像更加清晰。

代码实现如下:```Matlabim_eq = histeq(im);imshow(im_eq);```执行代码后,会得到直方图均衡化后的图像,如下图所示:![image_2.png](./images/image_2.png)可以看出,经过直方图均衡化处理后,图像的对比度和亮度得到了明显提高。

2.2.2 灰度变换灰度变换是一种用于调整图像灰度级别的方法。

通过变换某些像素的灰度级别,可以增强图像的视觉效果。

本次实验我们采用对数变换和幂函数变换两种方法进行灰度变换。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验三图像分割实验
一.实验目的
1. 掌握基本的图像分割方法
2.观察图像分割的效果
3.加深对边缘提取的理解
二.实验原理
1.边缘检测:图象的边缘是指图象局部区域亮度变化显著的部分,该区域
的灰度剖面一般可以看作是一个阶跃,既从一个灰度值在很小的缓冲区
域内急剧变化到另一个灰度相差较大的灰度值。

图象的边缘部分集中了
图象的大部分信息,图象边缘的确定与提取对于整个图象场景的识别与
理解是非常重要的,同时也是图象分割所依赖的重要特征,边缘检测主
要是图象的灰度变化的度量、检测和定位。

2.灰度阈值分割即是先确定一个处于图像灰度取值范围内的灰度阈值,然
后将图像中各个像素的灰度值与这个阈值相比较:划分成像素灰度大于
阈值的一类和小于阈值的一类。

3. 双峰法的原理及其简单:它认为图像由前景和背景组成,在灰度直方图
上,前后二景都形成高峰,在双峰之间的最低谷处就是图像的阈值所在
三.实验内容
1.实验步骤
1.打开matlab编程环境;
2.利用“imread”函数导入图像数据;
3.利用“imshow”显示所读入的图像数据;
4.进行图像分割处理;
5.记录和整理实验报告;
2. 按下面要求编写程序并运行结果
1. 用sobel方法对一幅灰度图像进行边缘提
I=imread('cameraman.bmp');
R=double(I(:,:,1));
G=double(I(:,:,2));
B=double(I(:,:,3));
[rows,cols]=size(R);
I=0.299*R+0.587*G+0.114*B;
[H,W]=size(I);
M=double(I);
J=M;
for i=2:H-1
for j=2:W-1
J(i,j)=abs(M(i-1,j+1)-M(i-1,j-1)+2*M(i,j+1)-2*M(i,j-
1)+M(i+1,j+1)-M(i+1,j-1))+abs(M(i-1,j-1)-M(i+1,j-1)+
2*M(i-1,j)-2*M(i+1,j)+M(i-1,j+1)-M(i+1,j+1));
end;
end;
for i=2:H-1
for j=2:W-1
if J(i,j)>254
J(i,j)=255;
else
J(i,j)=0;
end
end
end
subplot(1,2,1);imshow(uint8(I));title('原图');
subplot(1,2,2);imshow(uint8(J));title('Sobel 处理后');
2.用 Laplacian-Gaussian方法对一幅灰度图像进行边缘提取
I = imread('cameraman.bmp');
R=double(I(:,:,1));
G=double(I(:,:,2));
B=double(I(:,:,3));
[rows,cols]=size(R);
I=0.299*R+0.587*G+0.114*B;
s=fftshift(fft2(I));
[M,N]=size(s);
n=2;
d0=400;
n1=floor(M/2);
n2=floor(N/2);
for i=1:M
for j=1:N
d=sqrt((i-n1)^2+(j-n2)^2);
h=1*exp(-1/2*(d^2/d0^2));
s(i,j)=h*s(i,j);
end
end
s=ifftshift(s);
s=uint8(real(ifft2(s))); subplot(1,2,1),imshow(s);
title('GLPF滤波');
s=double(s);
[r,c]= size(s);
R=zeros(r,c);
core1=[-1 -1 -1;-1 8 -1;-1 -1 -1];
core2=[0 -1 0;-1 4 -1;0 -1 0];
for x=2:r-1
for y=2:c-1
Z=[s(x-1,y-1) s(x-1,y) s(x-1,y+1);
s(x,y-1) s(x,y) s(x,y+1);
s(x+1,y-1) s(x+1,y) s(x+1,y+1)];
A=core1*Z;
B=core2*Z;
R(x,y)=max(abs(sum(sum(A))),abs(sum(sum(B))));
end
end
for x=2:r-1
for y=2:c-1
if R(x,y)>250
R(x,y)=255;
else
R(x,y)=0;
end
end
end
subplot(1,2,2),imshow(uint8(R));title('拉普拉斯处理后 ');
3. 利用双峰法对一幅灰度图像进行灰度分割处理
I = imread('lena.bmp');
I=double(I);
sum_obj=0;
obj_counter=0;
sum_backgnd=0;
backgnd_counter=0;
[rows,cols]=size(I);
cols_c=floor(cols/20);
rows_c=floor(rows/20);
corners=[I(1:rows_c,1:cols_c);I(1:rows_c,(end-cols_c+1):end);I((en d-rows_c+1):end,1:cols_c);I((end-rows_c+1):end,(end-cols_c+1):end) ];
threshold=mean(mean(corners));
while 1
for i=1:rows
for j=1:cols
if(I(i,j)>threshold)
sum_obj=sum_obj+I(i,j);
obj_counter=obj_counter+1;
else
sum_backgnd=sum_backgnd+I(i,j);
backgnd_counter=backgnd_counter+1;
end
end
end
new_threshold=((sum_backgnd/backgnd_counter)+(sum_obj/obj_counter))/2 ;
if(abs(threshold-new_threshold)<=0.01)
break;
end
threshold=new_threshold;
end
for i=1:rows
for j=1:cols
If(I(i,j)<=threshold)
I(i,j)=0;
else
I(i,j)=255;
end
end
end
imshow(I);
四.实验结果及分析
1. sobel边缘提取
placian-Gaussian方法边缘提取
3.双峰法对一幅灰度图像进行灰度分割处理
五.实验小结与体会
1.本次实验以图像分割为主线,涉及边缘提取
2. 通过实验结果的比较,对课堂上的理论有了直观的认识,也为更好的理
解理论奠定了基础,培养了兴趣。

相关文档
最新文档