实验三 语音信号的频域分析

合集下载

语音信号处理实验报告实验二

语音信号处理实验报告实验二

语音信号处理实验报告实验二一、实验目的本次语音信号处理实验的目的是深入了解语音信号的特性,掌握语音信号处理的基本方法和技术,并通过实际操作和数据分析来验证和巩固所学的理论知识。

具体而言,本次实验旨在:1、熟悉语音信号的采集和预处理过程,包括录音设备的使用、音频格式的转换以及噪声去除等操作。

2、掌握语音信号的时域和频域分析方法,能够使用相关工具和算法计算语音信号的短时能量、短时过零率、频谱等特征参数。

3、研究语音信号的编码和解码技术,了解不同编码算法对语音质量和数据压缩率的影响。

4、通过实验,培养我们的动手能力、问题解决能力和团队协作精神,提高我们对语音信号处理领域的兴趣和探索欲望。

二、实验原理(一)语音信号的采集和预处理语音信号的采集通常使用麦克风等设备将声音转换为电信号,然后通过模数转换器(ADC)将模拟信号转换为数字信号。

在采集过程中,可能会引入噪声和干扰,因此需要进行预处理,如滤波、降噪等操作,以提高信号的质量。

(二)语音信号的时域分析时域分析是对语音信号在时间轴上的特征进行分析。

常用的时域参数包括短时能量、短时过零率等。

短时能量反映了语音信号在短时间内的能量分布情况,短时过零率则表示信号在单位时间内穿过零电平的次数,可用于区分清音和浊音。

(三)语音信号的频域分析频域分析是将语音信号从时域转换到频域进行分析。

通过快速傅里叶变换(FFT)可以得到语音信号的频谱,从而了解信号的频率成分和分布情况。

(四)语音信号的编码和解码语音编码的目的是在保证一定语音质量的前提下,尽可能降低编码比特率,以减少存储空间和传输带宽的需求。

常见的编码算法有脉冲编码调制(PCM)、自适应差分脉冲编码调制(ADPCM)等。

三、实验设备和软件1、计算机一台2、音频采集设备(如麦克风)3、音频处理软件(如 Audacity、Matlab 等)四、实验步骤(一)语音信号的采集使用麦克风和音频采集软件录制一段语音,保存为常见的音频格式(如 WAV)。

语音信号的频域分析

语音信号的频域分析

实验二:语音信号的频域分析实验目的:以MATLAB 为工具,研究语音信号的频域特性,以及这些特性在《语音信号处理》中的应用情况。

实验要求:利用所给语音数据,分析语音的频谱、语谱图、基音频率、共振峰等频域参数。

要求会求取这些参数,并举例说明这些参数在语音信号处理中的应用。

实验内容:1、 语音信号的频谱分析1.1加载“ma1_1”语音数据。

基于DFT 变换,画出其中一帧数据(采样频率为8kHz ,帧长为37.5ms ,每帧有300个样点)的频域波形(对数幅度谱)。

load ma1_1;x = ma1_1 (4161:4460); plot (x)N = 1024; k = - N/2:N/2-1;X = fftshift (fft (x.*hann (length (x)),N));plot (k,20*log10 (abs(X))), axis ([0 fix(N/2) -inf inf ])已知该帧信号的时域波形如图(a )所示,相应的10阶LPC 谱如图(b )所示。

问题1:这帧语音是清音还是浊音?基于DFT 求出的对数幅度谱和相应的LPC 谱相比,两者有什么联系和区别?问题2:根据这帧基于DFT 的对数幅度谱,如何估计出共振峰频率和基音周期?问题3:时域对语音信号进行加窗,反映在频域,其窗谱对基于DFT 的对数幅度谱有何影响?如何估计出窗谱的主瓣宽度?1.2对于浊音语音,可以利用其频谱)(ωX 具有丰富的谐波分量的特点,求出其谐波乘积谱:∏==R r r X HPSx 1)()(ωω式中,R 一般取为5。

在谐波乘积谱中,基频分量变得很大,更易于估计基音周期。

1.3加载“vowels.mat”语音数据,分别画出一帧/i/和一帧/u/(采样频率为10kHz,帧长为30ms,每帧有300个样点)的基于DFT的对数幅度谱。

其Matlab代码如下:load vowelsx = vowels.i_1(2001:2300);N = 1024; k= -N/2:N/2-1;X = fftshift (fft (x.*hann (length(x)),N));plot (k,20*log10(abs(X))), axis([0 fix(N/2) 0 100])x = vowels.u_1(2001:2300);N= 1024; k = -N/2:N/2-1;X = fftshift (fft (x.*hann(length(x)),N));plot (k,20*log10(abs(X))), axis([0 fix(N/2) 0 100])1.4画出一帧清音语音的基于DFT的对数幅度谱。

语音信号处理第3章-语音信号分析

语音信号处理第3章-语音信号分析

0.54 0.46cos[2n /( N 1)], 0 n ( N 1) (n) 0, n else
信息科学与工程学院 东南大学
预处理
窗函数的形状和长度对短时参数特征影响 很大 1.窗口形状
时域:要减小时间窗两端的坡度,使窗口边缘 两端不引起急剧变化而平滑过渡到零,这样可 以使截取出的语音波形缓慢降为零,减小语音 帧的截断效应; 频域:要有较窄的3dB带宽以及较大的旁瓣衰 减(较小的边带最大值)。这里只以典型的矩形 窗和汉明窗为例进行比较。
0
20
40
60
80
100
120
140
160
0.1 0.05 0 -0.05 -0.1
0
20
40
60
80 k = -21
100
120
140
160
信息科学与工程学院
东南大学
0.1 0.05 0 -0.05 -0.1
0
20
40
60
80
100
120
140
160
0.1 0.05 0 -0.05 -0.1
0
20
信息科学与工程学院 东南大学
矩形窗与汉明窗的比较
窗类型
矩形窗 汉明窗
旁瓣峰值
-13 -41
主瓣宽度
4π/N 8π/N
最小阻带衰减
-21 -53
汉明窗的主瓣宽度比矩形窗大一倍,即带宽约增 加一倍,同时其带外衰减也比矩形窗大一倍多, 汉明窗比矩形窗更为合适。因此,对语音信号的 短时分析来说,窗口的形状是至关重要的。
信息科学与工程学院 东南大学
数字化和预处理
经过数字化和预处理过程,语音信号就已 经被分割成一帧一帧的加过窗函数的短时 平稳信号 对每一个短时语音帧,利用数字信号处理 技术来提取语音特征参数。

语音信号的频域分析概述

语音信号的频域分析概述

第3页
2021年12月8日星期三
从广义上讲,语音信号的频域分析包括语音信号的 频谱、频谱包络、功率谱、倒频谱等。常用的频域分析 方法有带通滤波器组法、傅里叶变换法、线性预测法等 几种。本节介绍语音信号的傅里叶分析法。
短时傅里叶变换最重要的应用是语音分析与合成系 统,因为由短时博里叶变换可以精确地恢复语音波形。
第4页
2021年12月8日星期三语音信号及单片机处理语音信号及单片机处理
语音信号的频域分析概述
在语音信号处理中,傅里叶表示一直起主要作用。 其原因在于:一方面,稳态语音的生成模型由线性系统 组成,此系统由一个随时间周期变化或随机变化的源所 激励,因而系统输出频谱反映了激励与声道频率响应特 性;另一方面,语音信号的频谱具有非常明显的语言声 学意义,可以获得某些重要的语音特征(如共振峰频率 和带宽等)。
第2页
2021年12月8日星期三
语音信号是非平稳信号,其非平稳性是由发音器官 的物理运动过程而产生的。这个运动过程与声波振动 的速度比起来要缓慢得多,因此可以假定它在10~30 ms这样短的时间段内是平稳的。所以对语音信号处理 来说,短时分析的方法是有效的。短时分析应用于频 域分析就是短时傅里叶变换,相应的频谱称为“短时 谱”,即有限长度的傅里叶变换。

语音信号采集与时频域分析正文

语音信号采集与时频域分析正文

第一章引言语音信号是一种非平稳的时变信号,它携带着各种信息。

在语音编码、语音合成、语音识别和语音增强等语音处理中无一例外需要提取语音中包含的各种信息。

语音信号分析的目的就在与方便有效的提取并表示语音信号所携带的信息。

语音信号分析可以分为时域和频域等处理方法。

语音信号可以认为在短时间内(一般认为在 10~30ms 的短时间内)近似不变,因而可以将其看作是一个准稳态过程, 即语音信号具有短时平稳性。

任何语音信号的分析和处理必须建立在“短时”的基础上, 即进行“短时分析”。

时域分析:直接对语音信号的时域波形进行分析,提取的特征参数有短时能量,短时平均过零率,短时自相关函数等。

频域分析:对语音信号采样,并进行傅里叶变换来进行频域分析。

主要分析的特征参数:短时谱、倒谱、语谱图等。

本文采集作者的声音信号为基本的原始信号。

对语音信号进行时频域分析后,进行加白噪声处理并进行了相关分析,设计滤波器并运用所设计的滤波器对加噪信号进行滤波, 绘制滤波后信号的时域波形和频谱。

整体设计框图如下图所示:图1.1时频域分析设计图图1.2加噪滤波分析流程图第二章 语音信号时域分析语音信号的时域分析可直接对语音信号进行时域波形分析,在此只只针对语音信号的短时能量、短时平均过零率、短时自相关函数进行讨论。

2.1窗口选择由人类的发生机理可知,语音信号具有短时平稳性,因此在分析讨论中需要对语音信号进行加窗处理进而保证每个短时语音长度为10~30ms 。

通常选择矩形窗和哈明窗能得到较理想的“短时分析”设计要求。

两种窗函数的时域波形如下图2.1所示:samplew (n )samplew (n )图2.1 矩形窗和Hamming 窗的时域波形矩形窗的定义:一个N 点的矩形窗函数定义为如下{1,00,()n Nw n ≤<=其他(2.1)哈明窗的定义:一个N 点的哈明窗函数定义为如下0.540.46cos(2),010,()n n NN w n π-≤<-⎧⎨⎩其他= (2.2)这两种窗函数都有低通特性,通过分析这两种窗的频率响应幅度特性可以发现(如图2.2):矩形窗的主瓣宽度小(4*pi/N ),具有较高的频率分辨率,旁瓣峰值大(-13.3dB ),会导致泄漏现象;哈明窗的主瓣宽8*pi/N ,旁瓣峰值低(-42.7dB ),可以有效的克服泄漏现象,具有更平滑的低通特性。

语音信号处理实验报告

语音信号处理实验报告

通信与信息工程学院信息处理综合实验报告班级:电子信息工程1502班指导教师:设计时间:2018/10/22-2018/11/23评语:通信与信息工程学院二〇一八年实验题目:语音信号分析与处理一、实验内容1. 设计内容利用MATLAB对采集的原始语音信号及加入人为干扰后的信号进行频谱分析,使用窗函数法设计滤波器滤除噪声、并恢复信号。

2.设计任务与要求1. 基本部分(1)录制语音信号并对其进行采样;画出采样后语音信号的时域波形和频谱图。

(2)对所录制的语音信号加入干扰噪声,并对加入噪声的信号进行频谱分析;画出加噪后信号的时域波形和频谱图。

(3)分别利用矩形窗、三角形窗、Hanning窗、Hamming窗及Blackman 窗几种函数设计数字滤波器滤除噪声,并画出各种函数所设计的滤波器的频率响应。

(4)画出使用几种滤波器滤波后信号时域波形和频谱,对滤波前后的信号、几种滤波器滤波后的信号进行对比,分析信号处理前后及使用不同滤波器的变化;回放语音信号。

2. 提高部分(5)录制一段音乐信号并对其进行采样;画出采样后语音信号的时域波形和频谱图。

(6)利用MATLAB产生一个不同于以上频段的信号;画出信号频谱图。

(7)将上述两段信号叠加,并加入干扰噪声,尝试多次逐渐加大噪声功率,对加入噪声的信号进行频谱分析;画出加噪后信号的时域波形和频谱图。

(8)选用一种合适的窗函数设计数字滤波器,画出滤波后音乐信号时域波形和频谱,对滤波前后的信号进行对比,回放音乐信号。

二、实验原理1.设计原理分析本设计主要是对语音信号的时频进行分析,并对语音信号加噪后设计滤波器对其进行滤波处理,对语音信号加噪声前后的频谱进行比较分析,对合成语音信号滤波前后进行频谱的分析比较。

首先用PC机WINDOWS下的录音机录制一段语音信号,并保存入MATLAB软件的根目录下,再运行MATLAB仿真软件把录制好的语音信号用audioread函数加载入MATLAB仿真软件的工作环境中,输入命令对语音信号进行时域,频谱变换。

语音信号处理实验报告

语音信号处理实验报告

语音信号处理实验报告——语音信号分析实验一.实验目的及原理语音信号分析是语音信号处理的前提和基础,只有分析出可表示语音信号本质特征的参数,才有可能利用这些参数进行高效的语音通信、语音合成和语音识别等处理,并且语音合成的音质好坏和语音识别率的高低,都取决于对语音信号分析的准确性和精确性;贯穿语音分析全过程的是“短时分析技术”;因为从整体来看,语音信号的特性及表征其本质特征的参数均是随时间变化的,所以它是一个非平稳态过程,但是在一个短时间范围内一般认为在10~30ms的时间内,其特性基本保持不变,即相对稳定,可将其看做一个准稳态过程,即语音信号具有短时平稳性;所以要将语音信号分帧来分析其特征参数,帧长一般取为10ms~30ms;二.实验过程男声及女声蓝色为时域信号,红色为每一帧的能量,绿色为每一帧的过零率某一帧的自相关函数3.频域分析①一帧信号的倒谱分析和FFT及LPC分析②男声和女声的倒谱分析对应的倒谱系数:,,……对应的LPC预测系数:1,,,,,……原语音波形一帧语音波形一帧语音的倒谱③浊音和清音的倒谱分析④浊音和清音的FFT分析和LPC分析红色为FFT图像,绿色为LPC图像三.实验结果分析1.时域分析实验中采用的是汉明窗,窗的长度对能否由短时能量反应语音信号的变化起着决定性影响;这里窗长合适,En能够反应语音信号幅度变化;同时,从图像可以看出,En可以作为区分浊音和清音的特征参数;短时过零率表示一帧语音中语音信号波形穿过横轴零电平的次数;从图中可以看出,短时能量和过零率可以近似为互补的情况,短时能量大的地方过零率小,短时能量小的地方过零率较大;从浊音和清音的时域分析可以看出,清音过零率高,浊音过零率低;从男声女声的时域信号对比图中可以看出,女音信号在高频率分布得更多,女声信号在高频段的能量分布更多,并且女声有较高的过零率,这是因为语音信号中的高频段有较高的过零率;2.频域分析这里对信号进行快速傅里叶变换FFT,可以发现,当窗口函数不同,傅里叶变换的结果也不相同;根据信号的时宽带宽之积为一常数这一性质,可以知道窗口宽度与主瓣宽度成反比,N越大,主瓣越窄;汉明窗在频谱范围中的分辨率较高,而且旁瓣的衰减大,具有频谱泄露少的有点,所以在实验中采用的是具有较小上下冲的汉明窗;为了使频域信号的频率分辨率较高,所取的DFT及相应的FFT点数应该足够多,但时域信号的长度受到采样率和和短时性的限制,这里可以采用补零的办法,对补零后的序列进行FFT变换;从实验仿真图可以看出浊音的频率分布比清音高;3.倒谱分析通过实验可以发现,倒谱的基音检测与语音加窗的选择也是有关系的;如果窗函数选择矩形窗,在许多情况下倒谱中的基音峰将变得不清晰,窗函数选择汉明窗较为合理,可以发现,加汉明窗的倒谱基音峰较为突出;在典型的浊音清音倒谱对比中,理论上浊音倒谱基音峰应比较突出,而清音不出现这种尖峰,只是在倒谱的低时域部分包含关于声道冲激响应的信息;实验仿真的图形不是很理想;4.线性预测分析从实验中可以发现,LPC谱估计具有一个特点,在信号能量较大的区域即接近谱的峰值处,LPC谱和信号谱很接近;而在信号能量较低的区域即接近谱的谷底处,则相差比较大;在浊音清音对比中,可以发现,对呈现谐波特征的浊音语音谱来说这个特点很明显,就是在谐波成分处LPC谱匹配信号谱的效果要远比谐波之间好得多;在实验中,当P值增加到一定程度,预测平方误差的改善就不很明显了,而且会增加计算量,一般取为8~14,这里P取为10;5.基音周期估计①自互相关函数法②短时平均幅度差法③倒谱分析法共偏移92+32=124个偏移点16000/124=可以发现,上面三种方法计算得到的基音周期基本相同;。

语音信号的频谱分析实验报告

语音信号的频谱分析实验报告

语音信号的频谱分析实验报告1 引言1.1 实验背景及意义随着信息技术的飞速发展,语音信号处理技术在通信、语音识别、音频编辑等领域发挥着越来越重要的作用。

频谱分析作为语音信号处理的核心技术之一,能够揭示语音信号的频率结构,对于理解语音的本质、提升语音处理技术的性能具有重要意义。

本实验旨在通过频谱分析,深入探究语音信号的内在特性,为相关领域的研究提供理论支持和技术参考。

1.2 实验目的本实验的主要目的是掌握语音信号的频谱分析方法,通过实际操作,理解频谱分析的基本原理及其在语音信号处理中的应用。

具体目标包括:1.学习并掌握语音信号的时域与频域表示方法;2.学习并掌握傅里叶变换(FFT)及短时傅里叶变换(STFT)的原理及其在语音信号频谱分析中的应用;3.分析语音信号的频谱特征,为后续的语音识别、降噪等处理提供依据。

1.3 实验方法与工具本实验采用以下方法与工具:1.实验方法:采用对比实验的方法,对原始语音信号及其频谱进行分析,探讨不同参数设置对频谱分析结果的影响。

2.实验工具:使用MATLAB软件进行实验,利用其强大的信号处理功能实现语音信号的采集、处理和频谱分析。

MATLAB具有以下优点:- 丰富的信号处理函数库,方便快速实现各种算法;- 图形化编程环境,便于观察实验结果; - 高度可扩展性,支持自定义函数和工具箱。

2. 语音信号基本概念2.1 语音信号的特性语音信号是人类交流的主要方式之一,它具有以下特性:•时变性:语音信号随着时间变化,其波形不断改变,即使在同一发音人的连续发音中,同一音素的波形也有所不同。

•非周期性:与简单的正弦波等周期性信号不同,语音信号在短时间内是非周期的,具有随机性质。

•频率特性:人的发声器官产生的语音信号主要频率范围在20Hz到4kHz之间,不同语言和方言的频率分布可能有所差异。

•幅度特性:语音信号的幅度变化较大,通常需要通过预处理进行归一化处理,以便于分析。

•短时平稳性:尽管语音信号整体上是非平稳的,但在短时间内(大约20-30ms),可以近似认为是平稳的,这是进行短时傅里叶变换(STFT)的理论基础。

声学信号的频域分析方法研究

声学信号的频域分析方法研究

声学信号的频域分析方法研究声学信号的频域分析方法是一种重要的信号处理技术,它在声学领域中具有广泛的应用。

频域分析方法可以将声学信号转换为频谱图,从而更好地理解信号的特征和性质。

本文将介绍几种常见的声学信号频域分析方法,并探讨它们的应用和局限性。

一、傅里叶变换傅里叶变换是频域分析的基础,它可以将时域信号转换为频域信号。

通过傅里叶变换,我们可以得到声学信号的频谱信息,包括频率成分和幅度。

傅里叶变换广泛应用于音频处理、语音识别、音乐分析等领域。

然而,傅里叶变换存在一些问题,比如需要对整个信号进行变换,计算量大,且无法处理非平稳信号。

二、短时傅里叶变换为了克服傅里叶变换的局限性,短时傅里叶变换(STFT)被提出。

STFT将信号分割为多个小段,然后对每个小段进行傅里叶变换。

这样可以得到信号在不同时间段的频谱信息,从而更好地分析非平稳信号。

STFT广泛应用于语音信号处理、音乐合成等领域。

然而,STFT在时间和频率分辨率上存在一定的矛盾,无法同时获得高时间和高频率分辨率。

三、小波变换小波变换是一种时频分析方法,它可以在时间和频率上同时提供较好的分辨率。

小波变换通过使用一组基函数,将信号分解为不同频率的子信号。

小波变换在声音信号的压缩、去噪、特征提取等方面具有重要应用。

然而,小波变换的计算复杂度较高,选择合适的小波函数也是一个挑战。

四、自适应滤波自适应滤波是一种基于自适应算法的频域分析方法。

它通过不断调整滤波器的参数,使得输出信号与期望信号之间的误差最小化。

自适应滤波广泛应用于语音增强、噪声抑制等领域。

然而,自适应滤波对初始参数的选择较为敏感,且计算复杂度较高。

五、时频分析时频分析是一种将信号在时域和频域上同时分析的方法。

时频分析可以提供信号的瞬时频率、瞬时幅度等信息,对于非平稳信号的分析具有重要意义。

时频分析方法包括瞬时频率分析、瞬时幅度分析、瞬时相位分析等。

时频分析在声音信号的谱包络提取、乐器识别等方面具有广泛应用。

实验1 语音信号时域与频域分析

实验1 语音信号时域与频域分析
• 首先对语音信号序列进行成对采样地查对采样 以确定是否发生过零 ,若发生符号变化 , 则表 示有一次过零 ,而后进行一阶差分计算 ,再求 取绝对值 , 最后进行低通滤波。
例: 任选一段语音信号 ,对其进行采样 , 画出采 样以后的时域波形。
[x1,fs]=wavread ( "c :\wang .wav ") ; %读取语音信 号
x),FrameLen4, FrameInc)), 2) ; subplot (5, 1,5) ;plot (amp) ; title ( " 短 时 平 均 能 量 图 "
四 、实验报告要求
1 、简述实验目的和实验原理; 2 、matlab程序清单及结果图形; 3 、实验结果分析
添加:VOICEBOX工具箱
MATLAB\r2007b\toolbox\ voicebox")) • 检验是否成功设置的方法:
which activlev.m
N太小 , 滤波器的通带变宽 , 短时能量随时间有剧烈 变化 , 不能得到平滑的能量函数。
• 窗口的选择(长度的确定)又需相对不同的基 音周期来选择 。通常情况下 , 一个语音帧内应 含有1—7个基音周期 。然而不同的人其基音周 期变化范围很大 , 因此窗口宽度(N) 的选择 有一个折衷选择为100—200(即10—20ms持续 时间) 。
语音信号特性是随时间而变化的 , 是一个非平稳 的随机过程 。但从另一方面 , 在一个相对短时间范 围内其特性基本保持不变 。对于这种特点是语音信 号处理的一个重要出发点 。 因此我们可以采用平稳 过程的分析处理方法来处理语音。
时域分析
• 时域分析是语音分析中最早使用 ,应用范围最 广的一种方法。
x),FrameLen 1, FrameInc)), 2) ; subplot (5, 1,2) ;plot (amp) ; title ( " 短 时 平 均 能 量 图 "

语音信号的时域及频域特征

语音信号的时域及频域特征

e
,这个窗函数有如下
性质:

w(t t 0 ) dt 0


w(t ) dt 1


fˆ w ( ) |t 0 dt 0
jt
f (t ) w(t t ) e
0 0 0
jt
dt dt0



(10)
1 x[m] h[n r ] w[r m] m rS 2
e
j ( n m )
d
1 由于 2
1 , m n j ( n m ) e d 0 , m n

(11)
右边 x[n] h[n r ] w[r n] x[n] r
24
25
4.2.2. 频域上的基音检测方法
在频域中,常常是用谐波分析法,即对浊音信号的谱线结构进行分析来计算得到基 音周期。
[注意] 在频域上可能不存在与基频对应的谱线。
4.3. 基音的平滑
由于在基音的提取过程中不可避免地要产生误差, 主要是基音周期减半或加倍的现 象(根据方法的不同,误差的现象会有所不同) 。一般情况下 90%左右的基音周期都会 被准确提取,但是总有少部分的基音是提取不准确的。因此需要采取平滑的方法去掉这 些奇异点。 在语音编码和汉语四声识别中,基音平滑直接影响到系统的性能。
rS


jn
d
(9)
公式(8)中的 短时谱。
h[n r ] X (r , ) 项可以理解为利用插值滤波器 h[r ] 得到在 n 时刻的
rS
9
证明:
右边
1 2

语音信号_实验报告

语音信号_实验报告

一、实验目的1. 理解语音信号的基本特性及其在数字信号处理中的应用。

2. 掌握语音信号的采样、量化、编码等基本处理方法。

3. 学习语音信号的时域、频域分析技术。

4. 熟悉语音信号的增强、降噪等处理方法。

二、实验原理语音信号是一种非平稳信号,其特性随时间变化。

在数字信号处理中,我们通常采用采样、量化、编码等方法将语音信号转换为数字信号,以便于后续处理和分析。

三、实验内容1. 语音信号的采集与预处理- 使用麦克风采集一段语音信号。

- 对采集到的语音信号进行预加重处理,提高高频成分的幅度。

- 对预加重后的语音信号进行采样,采样频率为8kHz。

2. 语音信号的时域分析- 画出语音信号的时域波形图。

- 计算语音信号的短时能量和短时平均过零率,分析语音信号的时域特性。

3. 语音信号的频域分析- 对语音信号进行快速傅里叶变换(FFT)分析,得到其频谱图。

- 分析语音信号的频谱特性,提取关键频段。

4. 语音信号的增强与降噪- 在语音信号中加入噪声,模拟实际应用场景。

- 使用谱减法对加噪语音信号进行降噪处理。

- 对降噪后的语音信号进行主观评价,比较降噪效果。

5. 语音信号的回放与对比- 对原始语音信号和降噪后的语音信号进行回放。

- 对比分析两种语音信号的时域波形、频谱图和听觉效果。

四、实验步骤1. 采集语音信号- 使用麦克风采集一段时长为5秒的语音信号。

- 将采集到的语音信号保存为.wav格式。

2. 预处理- 使用Matlab中的preemphasis函数对采集到的语音信号进行预加重处理。

- 设置预加重系数为0.97。

3. 时域分析- 使用Matlab中的plot函数画出语音信号的时域波形图。

- 使用Matlab中的energy和zero crossing rate函数计算语音信号的短时能量和短时平均过零率。

4. 频域分析- 使用Matlab中的fft函数对语音信号进行FFT变换。

- 使用Matlab中的plot函数画出语音信号的频谱图。

浅析语音信号频谱分析方法

浅析语音信号频谱分析方法

浅析语音信号频谱分析方法摘要:语音信号的频域分析就是分析语音信号的频域持征。

从广义上讲,语音信号的频域分析包括语音信号的频谱、功率谱、倒频谱、频谱包络分析等,而常用的频域分析方法有带通滤波器组法、傅里叶变换法、线件预测法等几种。

下面着重介绍前两种分析方法。

关键词:频谱分析、带通滤波器组法、傅里叶变换法傅里叶分析法因为语音波是一个非平稳过程,因此适用于周期、瞬变或平稳随机信号的标准傅里叶变换不能用来直接表示语音信号,而应该用短时傅里叶变换对语音信号的频谱进行分析,相应的频谱称为“短时谱”。

利用短时博里叶变换求语音的短时谱对第n 帧语音信号Xn(m)进行傅里叶变换(离散时域傅里叶变换,DTFT),可得到短时傅里叶变换,其定义如下:10()()N j w j w n n n m X e x m e --==∑(3-7)由定义可知,短时傅里叶变换实际就是窗选语音信号的标准傅里叶变换。

这里,窗w(n-m)是一个“滑动的”窗口,它随n 的变化而沿着序列X(n)滑动。

由于窗口是有限长度的,满足绝对可和条件,所以这个变换是存在的。

当然窗口函数不同,博里叶变换的结果也将不同。

设语音信号序列和窗口序列的标准傅早叶变换均存在。

当n 取固定值时,w(n-m)的傅里叶变换为:()()jw n jw n jw m w n m e e W e ∞---=-∞-=⋅∑(3-8)根据卷积定理,有:()()()jw jw jwn jw n X e X e e W e --⎡⎤=⋅⋅⎣⎦ (3-9) 因为上式右边两个卷积项均为关于角频率w 的以2π为周期的连续函数,所以也可将其写成以下的卷积积分形式:()-1()()()2jw j jn j w n X e W e e X e d θθθθ∏+∏⎡⎤⎡⎤=⋅⎣⎦⎣⎦∏⎰ (3-10) 即,假设x(m)的DTFT 是()jw X e ,且()w m 的DTFT 是()jw W e ,那么()jw n X e 是()jw X e 和()jw W e 的的周期卷积。

播音语音实验报告总结(3篇)

播音语音实验报告总结(3篇)

第1篇一、实验目的本次播音语音实验旨在通过一系列的语音处理和分析,深入了解语音信号的基本特性,掌握语音信号处理的基本方法,并学会使用相关软件进行语音信号的采集、处理和分析。

通过实验,提高对语音信号处理技术的认识和实际操作能力。

二、实验原理语音信号处理是现代通信、语音识别、语音合成等领域的基础技术。

实验过程中,我们主要学习了以下原理:1. 语音信号采集:通过麦克风采集语音信号,将其转换为数字信号。

2. 时域分析:分析语音信号的波形、幅度、频率等特性。

3. 频域分析:将时域信号转换为频域信号,分析信号的频谱特性。

4. 语音处理算法:如滤波、降噪、增强、压缩等,提高语音信号质量。

5. 语音识别:通过特征提取和模式识别技术,实现语音信号到文字的转换。

三、实验过程1. 语音信号采集:使用麦克风采集一段普通话语音信号,并将其保存为WAV格式。

2. 时域分析:- 使用MATLAB软件打开WAV文件,观察语音信号的波形。

- 计算语音信号的幅度、频率等参数。

- 分析语音信号的时域特性,如过零率、平均幅度等。

3. 频域分析:- 使用MATLAB软件进行快速傅里叶变换(FFT),将时域信号转换为频域信号。

- 分析语音信号的频谱特性,如频率成分、能量分布等。

4. 语音处理:- 使用MATLAB软件实现滤波、降噪、增强、压缩等处理算法。

- 观察处理前后语音信号的变化,评估处理效果。

5. 语音识别:- 使用现有的语音识别工具(如Google语音识别API)对处理后的语音信号进行识别。

- 分析识别结果,评估语音识别系统的性能。

四、实验结果与分析1. 时域分析:- 观察到语音信号的波形具有明显的周期性,频率成分集中在200Hz到4kHz之间。

- 语音信号的幅度随时间变化较大,具有非线性特性。

2. 频域分析:- FFT结果显示,语音信号的频谱具有明显的频带特性,主要集中在300Hz到3.5kHz之间。

- 频谱能量分布不均匀,存在明显的峰值,对应语音信号的基频及其谐波。

语音信号的频域分析

语音信号的频域分析
n
图5.2 同济大学电子与信息工程学院 - 5 用移动窗选取语音段示意图 赵晓群 教授
w(n m)
m
第5章
语音信号的频域分析
5.3
短时 Fourier 变换(STFT)的定义和性质
x(m)的短时 Fourier 变换(STFT)Xn(ejω)的定义:
X n (e ) m x(m) w(n m)e-jm
◆准确地恢复原信号的唯一约束条件是 w(0)≠0 。
同济大学电子与信息工程学院
- 7 -
赵晓群 教授
第5章
语音信号的频域分析
5.3
短时 Fourier 变换(STFT)的定义和性质
由STFT的谱 Xn(ejω) 求解 x(m) 的 Fourier 变换 X(ejω) 方法。 假设 x(m) 和 w(m) 的 Fourier 变换都存在,即:
j
式中, w(n)是窗函数。 ◆为位于 n 处的窗口观察到的窗选语音短段的 Fourier 变换; ◆ n 取不同值时,取出不同的语音短段;
◆ Xn(ejω) 是频率ω 和时间 n 的函数;有时-频性。
要求: STFT 存在,则对所有 n 值,一定绝对可和。 ◆因窗宽有限,或无限冲激响应窗函数,其有效宽度有限, 故满足绝对可和。
语音是非平稳信号,源于发声器官的物理运动过程。
◆在短时间段(如10 ~ 30 ms)内可认为是平稳的; ◆用时间依赖处理方法分析处理。
同济大学电子与信息工程学院 - 2 赵晓群 教授
第 5章
语音信号的频域分析
5.1
概述
短时 Fourier 分析(时间依赖 Fourier 变换):
用稳态分析处理非平稳信号的一种方法 语音的频域分析:包括语音信号的频谱、功率谱、倒频谱、 频谱包络等, 常用频域分析方法:带通滤波器组法、Fourier 变换法、

语音信号谱分析及去噪处理

语音信号谱分析及去噪处理

实验三:语音信号谱分析及去噪处理1、实验目的(1)通过对实际采集的语音信号进行分析和处理,获得数字信号处理实际应用的认识。

(2)掌握数字信号谱分析的知识。

(3)掌握数字滤波器设计的知识,并通过对语音信号的去噪处理,获得数字滤波器实际应用的知识。

2、实验内容(1)用麦克风自行采集两段语音信号[高频噪声、人声+高频噪声](.wav格式)。

(2)通过Matlab读入采集信号,观察其采样频率,并绘图采样信号。

(3)通过Matlab对语音信号进行谱分析,分析出噪声的频带。

(4)设计一滤波器,对叠加入噪声的语音信号进行去噪处理。

绘图并发声去噪后的信号。

3、实验步骤(1)利用麦克风采集一段5s以内的语音信号。

利用格式工厂软件对语音信号进行预处理。

通常语音信号为单声道,采样频率为8000Hz,语音信号为.wav格式。

(2)通过Matlab读入语音信号及其采样频率(使用Matlab库函数wavread),在Matlab软件的workspace工作平台上观察读入的语音信号,在Matlab中,对入的语音信号为一维矩阵。

应注意,库函数wavread自动将语音信号幅度归一化[-1,1]区间范围。

使用Matlab库函数plot 绘图语音信号,并使用库函数sound发音语音信号。

(3)分析噪声的频谱。

在这里进行谱分析的目的,是了解噪声信号的频谱特性,为去噪滤波器的技术指标提供依据。

(4)通过Matlab对语音信号进行谱分析。

应注意,对信号进行谱分析,在实验一中已经详细介绍过。

在这里进行谱分析的目的,是了解本段语音信号的频谱特性,为去噪滤波器的技术指标提供依据。

(5)根据语音信号及噪声信号的频谱特性,自行设计一滤波器,对叠加入噪声的语音信号进行去噪处理。

最后绘图并发声去噪后的信号。

应注意,数字滤波器的实际应考虑实际需求,合理制定滤波器的技术指标。

4、实验原理用麦克风采集一段语音信号,绘制波形并观察其频谱,添加一段随机信号,给定相应的滤波器指标,用脉冲响应不变法设计的一个满足指标的巴特沃斯IIR滤波器,对该语音信号进行滤波去噪处理,比较滤波前后的波形和频谱并进行分析。

语音信号的频谱分析实验报告

 语音信号的频谱分析实验报告

综合设计实验语音信号的频谱分析一、实验内容录制一段个人自己的语音信号,并对录制的信号进行采样;画出采样后语音信号的时域波形和频谱图;在语音信号中增加正弦噪声信号(自己设置几个频率的正弦信号),对加入噪声信号后的语音信号进行频谱分析;给定滤波器的性能指标,采用窗函数法和双线性变换设计数字滤波器,并画出滤波器的频率响应;然后用自己设计的滤波器对采集的信号进行滤波,画出滤波后信号的时域波形和频谱,并对滤波前后的信号进行对比试听,分析信号的变化。

二、实现步骤1.语音信号的采集利用Windows下的录音机,录制一段自己的话音(“信号与系统”),时间在3s内。

然后在Matlab软件平台下,利用函数wavread对语音信号进行采样,采样频率设置为4kHz。

[y,fs,bits]=wavread('j.wav',[1024 63500]);sound(y,fs,bits);2.语音信号的频谱分析要求首先画出语音信号的时域波形;然后对语音号进行傅里叶变换,得到信号的频谱特性。

在采集得到的语音信号中加入正弦噪声信号(频率为10kHz),然后对加入噪声信号后的语音号进行傅里叶变换,得到信号的频谱特性。

并利用sound试听前后语音信号的不同。

3. 设计滤波器设计一个理想低通滤波器,滤除正弦噪声信号,得到信号的频谱特性。

要求采样卷积计算的方式滤除噪声,并利用sound试听滤波前后语音信号的不同。

1、语音信号的采集[y,fs,bits]=wavread('j.wav',[1024 63500]);sound(y,fs,bits);2、语音信号的频谱分析Y=fft(y,4096);figure(1);plot(y);title('语音信号的时域波形');figure(2);plot(abs(Y));title('语音信号的频谱特性');IIR 数字滤波器低通clear;close all;[y,fs,bits]=wavread('j.wav',[1024 63500]);Y=fft(y,4096);fb=1000;fc=1200;As=100;Ap=1;fs=22050;wc=2*fc/fs; wb=2*fb/fs;[n,wn]=ellipord(wc,wb,Ap,As);[b,a]=ellip(n,Ap,As,wn);figure(1);freqz(b,a,512,fs);x=filter(b,a,y);X=fft(x,4096);figure(2);subplot(2,2,1);plot(y);title('滤波前信号波形');subplot(2,2,2);plot(abs(Y));title('滤波前信号频谱');Subplot(2, 2 ,3);plot(x);title('滤波后信号波形');Subplot(2, 2 ,4);plot(abs(X));title('滤波后信号频谱');sound(x,fs,bits);IIR 高通wp=2*pi*4800/18000;wr=2*pi*5000/18000;Ap=1;Ar=15;T=1[N,wn]=buttord(wp/pi,wr/pi,Ap,Ar);[b,a]=butter(N,wn,'high');[db,mag,pha,grd,w]=freqz_m(b,a);subplot(211);plot(w/pi,mag);title('数字巴特沃茨高通滤波器幅度响应|Ha(J\Omega)|'); subplot(212);plot(w/pi,db);title('数字巴特沃茨高通滤波器幅度响应(db)');[y,Fs,nbite]=wavread('j.wav',[1024 63500]);Y=fft(y,4096);x=filter(b,a,y);X=fft(x,4096);figure(3)subplot(211);plot(y);title('原时域波形');subplot(212);plot(x);title('滤波后信号波形');figure(4)subplot(211);plot(abs(Y));title('原频谱频谱');subplot(212);plot(abs(X));title('滤波后信号频谱');sound(x,Fs);IIR 带通wp=[1200*pi*2/9000,3000*2*pi/9000];wr=[1000*2*pi/9000,3200*2*pi/9000];Ap=1;Ar=10 0;[N,wn]=buttord(wp/pi,wr/pi,Ap,Ar);[b,a]=butter(N,wn,'bandpass');[db,mag,pha,grd,w]=freqz_m(b,a);subplot(211);plot(w/pi,mag);title('数字巴特沃茨带通滤波器幅度响应|Ha(J\Omega)|');subplot(212);plot(w/pi,db);title('数字巴特沃茨带通滤波器幅度响应(db)');[y,Fs,nbite]=wavread('j.wav');Y=fft(y,4096);x=filter(b,a,y);X=fft(x,4096);figure(3)subplot(211);plot(y);title('原时域波形');subplot(212);plot(x);title('滤波后信号波形');figure(4)subplot(211);plot(abs(Y));title('原频谱频谱');subplot(212);plot(abs(X));title('滤波后信号频谱');sound(x,Fs);FIR 数字滤波器FIR 低通fsamp=8000;rp=1;rs=100;fcuts=[1000 1200];d1=(10^(rp/20)-1)/(10^(rp/20)+1);d2=10^(-rs/20);mags=[1 0];devs=[d1 d2];[n,wn,beta,ftype]=kaiserord(fcuts,mags,devs,fsamp); hh=fir1(n,wn,ftype,kaiser(n+1,beta),'noscale'); freqz(hh);[y,Fs,nbite]=wavread('j.wav');Y=fft(y,4096);x=fftfilt(hh,y);X=fft(x,4096);figure(2)subplot(211);plot(y);title('原时域波形');subplot(212);plot(x);title('滤波后信号波形'); figure(3)subplot(211);plot(abs(Y));title('原频谱频谱'); subplot(212);plot(abs(X));title('滤波后信号频谱'); sound(x,Fs);FIR 高通wc=2*pi*4800;wp=5000*2*pi/18000;f=[0.5333,0.5556]; m=[0,1];rp=1;rs=100;d1=(10^(rp/20)-1)/(10^(rp/20)+1);d2=10^(-rs/20); rip=[d2,d1];[N,fo,mo,w]=remezord(f,m,rip);N=N+2;hn=remez(N,fo,mo,w);[hw,w]=freqz(hn,1);plot(w/pi,20*log10(abs(hw)));[y,Fs,nbite]=wavread('j.wav');Y=fft(y,4096);x=fftfilt(hn,y);X=fft(x,4096);figure(2)subplot(211);plot(y);title('原时域波形');subplot(212);plot(x);title('滤波后信号波形');figure(3)subplot(211);plot(abs(Y));title('原频谱频谱');subplot(212);plot(abs(X));title('滤波后信号频谱');sound(x,Fs);FIR 带通wp1=2*pi*1200/8000;wp2=3000*2*pi/8000;wc1=2*pi*1000/8000;wc2=2*pi*3200*8000; f=[0.25,0.30,0.75,0.80][n,wn,bta,ftype]=kaiserord([0.25,0.30,0.75,0.80],[0 1 0],[0.01 0.1087 0.01]);h1=fir1(n,wn,ftype,kaiser(n+1,bta),'noscale');[hh1,w1]=freqz(h1,1,256);figure(1);plot(w1/pi,20*log10(abs(hh1)));grid;[y,Fs,nbite]=wavread('j.wav');Y=fft(y,4096);x=fftfilt(h1,y);X=fft(x,4096);figure(2)subplot(211);plot(y);title('原时域波形');subplot(212);plot(x);title('滤波后信号波形');figure(3)subplot(211);plot(abs(Y));title('原频谱频谱');subplot(212);plot(abs(X));title('滤波后信号频谱');sound(x,Fs);设计结果分析(1)语音分析图1图2Fs=22050; n=4096(2)IIR 低通图3滤波器在通带内平滑,通带截止频率为 1000hz,最大衰减 0dB;阻带起始频率为1200hz,最小衰减 100dB;相位不是线性变化, 基本满足性能要求.图4语音信号经过低通滤波器后,基本没发生变化(3) IIR 高通图5数字滤波器在通带内平滑,通带截止频率为0. 5π,最大衰减 0dB;阻带起始频率为 0. 48π,最小衰减 100dB;相位不是线性变化, 基本满足性能要求.语言信号经过高通滤波器后,低频分量基本被衰减。

语音信号实验报告

语音信号实验报告

一、实验目的1. 理解语音信号的基本特性和处理方法。

2. 掌握语音信号的采样、量化、编码等基本过程。

3. 学习使用相关软件对语音信号进行时域和频域分析。

4. 了解语音信号的降噪、增强和合成技术。

二、实验原理语音信号是一种非平稳的、时变的信号,其频谱特性随时间变化。

语音信号处理的基本过程包括:信号采集、信号处理、信号分析和信号输出。

三、实验仪器与软件1. 仪器:计算机、麦克风、耳机。

2. 软件:Matlab、Audacity、Python。

四、实验步骤1. 信号采集使用麦克风采集一段语音信号,并将其存储为.wav格式。

2. 信号处理(1)使用Matlab读取.wav文件,提取语音信号的采样频率、采样长度和采样数据。

(2)将语音信号进行时域分析,包括绘制时域波形图、计算信号的能量和过零率等。

(3)将语音信号进行频域分析,包括绘制频谱图、计算信号的功率谱密度等。

3. 信号分析(1)观察时域波形图,分析语音信号的幅度、频率和相位特性。

(2)观察频谱图,分析语音信号的频谱分布和能量分布。

(3)计算语音信号的能量和过零率,分析语音信号的语音强度和语音质量。

4. 信号输出(1)使用Audacity软件对语音信号进行降噪处理,比较降噪前后的效果。

(2)使用Python软件对语音信号进行增强处理,比较增强前后的效果。

(3)使用Matlab软件对语音信号进行合成处理,比较合成前后的效果。

五、实验结果与分析1. 时域分析从时域波形图可以看出,语音信号的幅度、频率和相位特性随时间变化。

语音信号的幅度较大,频率范围一般在300Hz~3400Hz之间,相位变化较为复杂。

2. 频域分析从频谱图可以看出,语音信号的能量主要集中在300Hz~3400Hz范围内,频率成分较为丰富。

3. 信号处理(1)降噪处理:通过对比降噪前后的时域波形图和频谱图,可以看出降噪处理可以显著降低语音信号的噪声,提高语音质量。

(2)增强处理:通过对比增强前后的时域波形图和频谱图,可以看出增强处理可以显著提高语音信号的幅度和频率,改善语音清晰度。

语音信号时域和频域通俗理解_概述及解释说明

语音信号时域和频域通俗理解_概述及解释说明

语音信号时域和频域通俗理解概述及解释说明1. 引言1.1 概述语音是人类最基本、也是最常用的沟通方式之一。

人们通过声音来传递信息和表达情感。

对于语音信号的分析和处理,时域和频域是两个重要的角度。

时域分析主要关注声音信号在时间上的变化规律,而频域分析则关注声音信号在频率上的成分组成。

1.2 文章结构本文将以通俗易懂的方式,对语音信号的时域和频域进行解释和说明。

首先,我们将介绍时域和频域分析的基本概念及其重要性,然后详细讨论时域与频域分析中涉及到的关键点和方法。

最后,我们将总结观点并给出读者一些启示和建议。

1.3 目的本文旨在帮助读者理解语音信号时域与频域这两个概念,并且能够清晰明了地认识到它们在语音信号处理中所起到的作用。

通过对时域与频域分析方法的说明,读者可以更好地理解并应用这些知识于实际问题中。

同时,本文也希望能够引发读者对语音信号处理的更深层次的思考和探索。

2. 语音信号时域与频域通俗理解:2.1 语音信号时域分析:语音信号的时域分析是对声音在时间上的变化进行研究和处理。

时域分析主要关注声音的振幅和时间之间的关系。

在时域中,我们可以观察到声音振动的波形图。

当我们录制一段语音时,在录制过程中,麦克风会将声音转换为电信号,并按照一定的采样率记录下来。

这些记录的电信号就是我们所说的波形图。

波形图横坐标表示时间,纵坐标表示振幅。

通过观察波形图,我们可以获得很多有用的信息。

例如,振幅可以告诉我们声音的强度或者说响度,而波形图上不同部分振幅大小和模式的变化可以揭示出不同语音特征(如元音、辅音等)以及语速、语调等信息。

2.2 语音信号频域分析:语音信号的频域分析是对声音中各种频率成分进行研究和处理。

频域分析更注重声音中各个频率成分之间的关系以及它们在声谱上呈现出来的特征。

通过傅里叶变换的方法,我们可以将时域中记录的波形图转换为频谱图。

频谱图显示了声音中不同频率成分在整个录制时间内的存在情况。

横坐标表示频率,纵坐标表示声音强度。

基于 MATLAB 分析语音信号频域特征

基于 MATLAB 分析语音信号频域特征

语音信号处理实验报告实验三基于 MATLAB 分析语音信号频域特征所在院系:工学院专业: 电子信息工程班级:电信112姓名:学号:指导教师:***2014年05月06日实验三基于 MATLAB 分析语音信号频域特征一、实验目的信号的傅立叶表示在信号的分析与处理中起着重要的作用。

因为对于线性系统来说,可以很方便地确定其对正弦或复指数和的响应,所以傅立叶分析方法能完善地解决许多信号分析和处理问题。

另外,傅立叶表示使信号的某些特性变得更明显,因此,它能更深入地说明信号的各项红物理现象。

由于语音信号是随着时间变化的,通常认为,语音是一个受准周期脉冲或随机噪声源激励的线性系统的输出。

输出频谱是声道系统频率响应与激励源频谱的乘积。

声道系统的频率响应及激励源都是随时间变化的,因此一般标准的傅立叶表示虽然适用于周期及平稳随机信号的表示,但不能直接用于语音信号。

由于语音信号可以认为在短时间内,近似不变,因而可以采用短时分析法。

本实验要求掌握傅里叶分析原理,会利用已学的知识,编写程序估计短时谱、倒谱,画出语谱图,并分析实验结果,在此基础上,借助频域分析方法所求得的参数分析语音信号的基音周期或共振峰。

二、实验原理1、短时傅立叶变换由于语音信号是短时平稳的随机信号,某一语音信号帧的短时傅立叶变换的定义为:其中 w(n-m)是实窗口函数序列,n 表示某一语音信号帧。

令 n-m=k',则得到同样,不同的窗口函数,将得到不同的傅立叶变换式的结果。

由上式可见,短时傅立叶变换有两个变量:n 和ω,所以它既是时序 n 的离散函数,又是角频率ω的连续函数。

与离散傅立叶变换逼近傅立叶变换一样,如令ω=2πk/N,则得离散的短时傅立叶吧如下:2、语谱图水平方向是时间轴,垂直方向是频率轴,图上的灰度条纹代表各个时刻的语音短谱。

语谱图反映了语音信号的动态频率特性,在语音分析中具有重要的实用价值。

被成为可视语言。

语谱图的时间分辨率和频率分辨率是由窗函数的特性决定的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验三语音信号的频域分析
一、实验名称语音信号的频域分析
二、实验目的
1)掌握傅里叶分析原理,利用Matlab软件估计短时谱、倒谱。

2)借助频域分析方法所求得的参数分析语音信号的基音周期或共振峰。

三、实验设备
Matlab 软件计算机
四、实验步骤
1、语音信号短时谱的求取。

用Matlab软件读取语音文件h.wav数据,取N=256点,求取其短时频谱,记录频谱图,并判断该帧语音是清音还是浊音。

用Matlab软件读取语音文件u.wav数据,取N=256点,求取其短时频谱,记录频谱图,并判断该帧语音是清音还是浊音。

参考程序:
clear
a=wavread('h');
subplot(2,1,1);
plot(a);title('original signal');
grid
N=256;
k=hamming(N);
for m=1:N
b(m)=a(m)*k(m);
end
y=20*log(abs(fft(b,1024)));
pinlv=(0:1:255)*8000/512;%点和频率的对应关系
subplot(2,1,2);
y1(1:256)=y(1:256);
plot(pinlv,y1);title('短时谱');
xlabel('频率/Hz')
ylabel('对数幅度/dB')
grid
2、语音信号的语谱图。

语音信号的语谱图,即水平方向是时间轴,垂直方向是频率轴,图上的灰度条纹代表各个时刻的语音短时谱。

生成hubeis.wav语音文件的语谱图。

参考命令:
>> [x,fs,nbits]=wavread('hubeis');
>> specgram(x,512,fs,100);
3、倒谱分析
浊音信号的倒谱中存在着峰值,它的存在位置正好是该帧语音的基音周期。

清音信号的倒谱中不存在峰值,利用这一特点可以分辨清音与浊音,并可估计浊音的基音周期。

分别计算语音文件“h”及“u”的倒谱,并判断哪个是清音,哪个是浊音,若为浊音请估计它的基音周期。

参考程序:
clear
a=wavread('h');
N=300;
h=hamming(N);
for m=1:N
b(m)=a(m)*h(m);
end
d=rceps(b);
d=fftshift(d);
plot(d);title('h 加汉明窗时的倒谱')。

相关文档
最新文档