解析几何新题型的解题技巧总结
高考复习中解析几何题型分析及解法梳理
![高考复习中解析几何题型分析及解法梳理](https://img.taocdn.com/s3/m/71b70f4cf4335a8102d276a20029bd64783e6293.png)
一、解析几何题型分析:
1. 直线问题:主要考察直线的性质及其特征,如平行、垂直、中心弦定理等。
2. 圆形问题:主要考察圆形的性质及其特征,如圆心角定理、外切内接定理等。
3. 正多面体问题:主要考察正多面体的性质及其特征,如三角形内心定理、四面体最大最小化原理等。
4. 三角形问题:主要考察三角形的性质及其特征,如勾股定理、海伦-泰勒斯定理等。
5. 几何评价法问题: 主要是透过几何图型来评价各部分之间的大小或者数量上的差异,例如由于不同图彩之间存在一些明显差异,所以能够根据这些差异来作出正确判断或者作出正确估测。
二、解法收拾:
1. 第一步应该是将所有信息数字化,即将所有信息由文字表述方式数字化;
2. 第二步应该是根据所数字化后的信息来选用适合的几何方法;
3. 第三步应该是根据前两部中所使用方法来进行相应的代数或者几何运算;
4. 最后一步应该是核对并汇总前三部中所得到的信息,然后作出最合适书写样子上呈上。
解析考研数学解析几何解题技巧
![解析考研数学解析几何解题技巧](https://img.taocdn.com/s3/m/846df2d6dc88d0d233d4b14e852458fb770b3899.png)
解析考研数学解析几何解题技巧解析几何是考研数学中的一大重点,也是相对难度较高的内容之一。
在解析几何的学习中,掌握一些有效的解题技巧是非常重要的。
本文将从几何图形的性质、平面与空间解析几何的基本公式以及解题思路等方面,为大家介绍一些解析考研数学解析几何的解题技巧。
一、几何图形的性质在解析几何的解题过程中,我们经常会遇到各种几何图形,比如点、线、平面等。
了解这些几何图形的性质,能够帮助我们更好地理解问题,并能够快速解决问题。
1. 点和线:在平面直角坐标系中,点的坐标表示为P(x, y),其中x表示横坐标,y表示纵坐标。
点与点之间可以通过距离公式$d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$来计算距离。
直线的方程一般有两种形式:一般式和截距式。
在解题过程中,可以根据具体问题选择合适的直线方程形式。
2. 圆和圆锥曲线:圆的标准方程为$(x-a)^2+(y-b)^2=r^2$,其中(a,b)为圆心坐标,r为圆的半径。
椭圆的标准方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,其中2a为横轴长,2b为纵轴长。
抛物线的标准方程为$y^2=2px$,其中p为焦点到准线的距离。
双曲线的标准方程为$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$,其中2a为横轴长,2b为纵轴长。
二、平面与空间解析几何的基本公式在解析几何中,平面与空间是重要的概念。
我们可以通过一些基本公式来解决与平面和空间相关的问题。
1. 平面相关公式:两点之间的距离公式:设A(x1, y1, z1)、B(x2, y2, z2)是平面上的两点,则两点间的距离为$d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2}$。
点到平面的距离公式:平面的一般方程为Ax+By+Cz+D=0,点P(x0, y0, z0)到该平面的距离为$d=\frac{|Ax_0+By_0+Cz_0+D|}{\sqrt{A^2+B^2+C^2}}$。
高中数学学习中的解析几何解题技巧
![高中数学学习中的解析几何解题技巧](https://img.taocdn.com/s3/m/4cfbd263bdd126fff705cc1755270722192e59e4.png)
高中数学学习中的解析几何解题技巧解析几何是数学中的一个重要分支,也是高中数学中的一项重要内容。
在学习解析几何时,很多学生常常会遇到解题困难的情况。
本文将介绍一些高中数学学习中解析几何解题的技巧,帮助学生更好地应对解析几何题目。
一、利用图形性质确定方程解析几何问题常常涉及到图形的方程,而方程又是解题的基础。
在解析几何问题中,我们可以通过观察图形的性质,来确定方程的形式。
例如,当求解过点A和B的直线方程时,我们可以根据直线的斜率来确定方程的形式。
如果我们已知直线经过点A(-3,5)和B(2,4),我们可以利用两点间的斜率公式来求解直线的斜率,即\[k = \frac{{y_2-y_1}}{{x_2-x_1}} = \frac{{4-5}}{{2-(-3)}} = -\frac{1}{5}\]然后可以通过直线的斜率和已知点的坐标,使用点斜式或者斜截式公式得到直线的方程。
二、利用向量运算简化计算在解析几何中,向量是一项重要的工具。
通过向量的加减和数乘等运算,可以简化计算过程。
例如,当求解两条直线的夹角时,我们可以利用向量的点积公式来求解。
设两条直线的方程分别为\[ax+by+c=0\]和\[px+qy+r=0\],则两条直线的夹角\(\theta\)满足:\[\cos{\theta}=\frac{{|ap+bq|}}{{\sqrt{{a^2+b^2}}\sqrt{{p^2+q^2}}}}\]通过向量的点积公式,我们可以利用方程的系数来求解直线的夹角,而无需对方程进行直接求解。
三、利用平移旋转变换简化题目解析几何中的平移、旋转等变换是解题过程中常常用到的工具。
通过适当的变换,可以将复杂的题目转化为简单的形式,便于求解。
例如,我们在求解直线与圆的位置关系时,可以通过平移变换将圆心移到坐标原点,从而简化题目。
设直线的方程为\(ax+by+c=0\),圆的方程为\((x-h)^2+(y-k)^2=r^2\),我们可以通过平移变换将圆的方程转化为\((x-a)^2+(y-b)^2=r^2\),其中\(a\)和\(b\)为圆心的坐标。
解析几何题型及解题方法总结
![解析几何题型及解题方法总结](https://img.taocdn.com/s3/m/9a8cc03fa9114431b90d6c85ec3a87c240288af7.png)
解析几何题型及解题方法总结
题型:1、求曲线方程(类型确定、类型未定);2、直线与圆锥曲线的
交点题目(含切线题目);3、与曲线有关的最(极)值题目;4、与曲线有关
的几何证实(对称性或求对称曲线、平行、垂直);5、探求曲线方程中几
何量及参数间的数目特征。
解题方法:
1、紧密结合代数知识解题:“求到两定点的距离之比等于常数的点
的轨迹”问题的求解过程中,取平面直角坐标系,使两定点的连线为x轴,且连线段的中点为原点,并设两定点的距离为2b,则两定点分别为M(b,0)N(-b,0),N(x,y)是轨迹上任意一点,常数为n,最终得到轨迹
方程(n2-1)(x2+y2)+2b(n2+1))x+b2(n2-1)=0。
2、充分利用几何图形性质简化解题过程:在对曲线轨迹方程求解的
过程中,通过几何条件,可以对轨迹的曲线类型进行判断,然后通过待定
系数法来求解。
3、用函数(变量)的观点来解决问题:对于解析几何问题而言,由
于线或点发生改变,从而导致图形中其他量的改变,这样类型的题目,往
往可以使用函数的观点来求解。
例如,在次全国高中数学竞赛题中,已知
抛物线y2=6x上的2个动点A(x1,y1)和B(x2,y2),其中x1≠x2且
1+2=4。
线段AB的垂直平分线与x轴交于点C,求AABC面积的最大值。
解析几何解答题技巧
![解析几何解答题技巧](https://img.taocdn.com/s3/m/e0b7ce2da88271fe910ef12d2af90242a995ab52.png)
解析几何解答题技巧
解析几何是数学中的一个重要分支,主要研究空间中点、线、面等几何对象在坐标系中的表示和性质。
在解析几何的解答题中,需要注意以下几点技巧:
1. 建立坐标系:根据题目的具体情况,选择适当的坐标系,如直角坐标系、极坐标系或参数方程。
坐标系的建立有助于将几何问题转化为代数问题,便于进一步求解。
2. 设点坐标:根据题目要求,设出未知点的坐标。
设点坐标时需要注意,所设的坐标应尽量满足题目的条件,便于求解。
3. 列出方程:根据题目的已知条件和设定的坐标,列出所需的方程。
列方程时需要注意,方程应尽可能简单,便于求解。
4. 解方程:根据所列的方程,解出未知数的值。
解方程时需要注意,解方程的方法应尽可能简单,便于计算。
5. 验证答案:解出答案后,需要进行验证,确保答案符合题目的条件和已知条件。
验证答案时需要注意,答案应尽可能准确,避免出现误差。
6. 总结答案:最后需要对答案进行总结,写出完整的答案。
总结答案时需要注意,答案应尽可能清晰,便于阅读和理解。
总之,在解析几何的解答题中,需要注意建立坐标系、设点坐标、列出方程、解方程、验证答案和总结答案等技巧。
同时还需要注意计算准确、思路清晰、表达简洁等要求。
高考解析几何题
![高考解析几何题](https://img.taocdn.com/s3/m/64d9e694ba4cf7ec4afe04a1b0717fd5370cb26a.png)
高考解析几何题高考解析几何题的解题技巧与方法解析几何作为高中数学的重要组成部分,在高考数学试题中占有不可忽视的地位。
它主要研究图形的几何性质与代数表达式之间的联系,通过坐标系将几何问题转化为代数问题进行求解。
本文将从几个方面探讨高考解析几何题的解题技巧与方法,帮助考生在面对这类题目时能够更加得心应手。
一、掌握基本概念和公式解析几何的基本概念包括点、线、面的位置关系,以及圆、椭圆、双曲线、抛物线等圆锥曲线的性质。
熟练掌握这些概念及其相关公式是解题的基础。
例如,直线的方程有一般式、点斜式、两点式等,每种形式都有其适用的场合。
圆的标准方程、椭圆的焦点性质等,都需要考生牢记于心。
二、培养图形的直观感知能力解析几何题目往往需要考生能够在脑海中构建出题目所描述的图形,并能够对图形进行操作和变换。
因此,培养良好的图形直观感知能力对于解题至关重要。
考生可以通过多做练习题、观察生活中的几何图形等方式来提高这方面的能力。
三、运用代数方法解决问题解析几何的特点就是将几何问题转化为代数问题。
因此,考生需要掌握如何通过代数运算来求解几何问题。
例如,通过联立方程组求交点,利用向量方法求解角度和距离,或者运用坐标变换简化问题等。
这些方法都需要考生在解题时灵活运用。
四、注意解题步骤的条理性在高考中,解析几何题目往往步骤较多,需要考生条理清晰地进行解题。
首先,要仔细审题,弄清楚题目的要求和所给条件;其次,要合理规划解题步骤,避免在解题过程中出现混乱;最后,要仔细检查,确保每一步的计算都是正确的。
五、总结常见题型和解题模板高考解析几何题目虽然千变万化,但总有规律可循。
考生可以通过总结历年高考题,找出常见的题型和解题模板。
例如,直线与圆的位置关系、动点轨迹问题、最值问题等,都有其特定的解题思路和方法。
掌握这些模板,可以帮助考生在面对新题目时能够迅速找到解题的切入点。
六、提高解题速度和准确性高考是一场与时间赛跑的考试,提高解题速度和准确性是提高分数的关键。
解答解析几何问题的几个“妙招”
![解答解析几何问题的几个“妙招”](https://img.taocdn.com/s3/m/5871c1f832d4b14e852458fb770bf78a64293a72.png)
解题宝典仔细研究可以发现,解析几何问题通常具有以下几个特点:(1)解题过程中的运算量较大;(2)选择题和填空题侧重于考查抛物线、椭圆、双曲线的定义和几何性质,解答题侧重于考查直线与椭圆、抛物线、双曲线的位置关系;(3)可从代数和几何两个角度入手,寻找解题的思路.在解答解析几何问题时,我们要抓住解析几何问题的特点,选用一些技巧来简化运算,提升解题的效率.一、巧用定义在解答与圆锥曲线定义有关的问题时,要将问题中的动点、定点、定直线与圆锥曲线上的点、焦点、准线等关联起来,根据圆锥曲线的定义来建立关于动点的关系式,求得各个参数a 、b 、c 、p 、r 的值,便可求得动点的轨迹方程或焦半径的长.例1.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 2且斜率为-3的直线与双曲线在第一象限的交点为A ,若 AF 1·AF 2=0,a =3-1,则F 2的坐标为.解:因为 AF 1·AF 2=0,所以AF 1⊥AF 2,因为k AF 2=-3,所以∠AF 1F 2=π6,则AF 1=3c ,AF 2=c ,由双曲线的定义得AF 1-AF 2=3c -c =2a ,则c =3=2,所以F 2已知条件中涉及了双曲线的两个焦半径AF 1、AF 2,于是联想到双曲线的定义:平面内与两个定点F 1,F 2的距离的差的绝对值等于常数(小于|F 1F 2|)的点的轨迹,据此建立关于AF 1、AF 2的关系式,即可解题.运用圆锥曲线的定义来解题,能快速建立起焦点弦、参数之间的联系,起到简化运算的效果.二、数形结合在解答解析几何问题时,根据题意画出相应的曲线、直线,并将数量关系转化为几何关系,这样把数形结合起来,可使问题变得更加直观,便于分析.运用数形结合法解题,关键是画出相应的平面几何图形,灵活运用平面几何知识,如三角形、圆、平行四边形、梯形的性质来求解.例2.(2021年高考数学上海卷,第11题)已知抛物线C :y 2=2px (p >0),若第一象限内的点A ,B 在抛物线C 上,焦点为F ,且|AF |=2,|BF |=4,|AB |=3,则直线AB 的斜率为______.解:如图所示,过点A ,B 作抛物线C 的准线的垂线,垂足分别为P ,Q ,作AM ⊥BQ ,垂足为M ,根据抛物线的定义可知|AP |=|MQ |=|AF |=2,|BQ |=|BF |=4,则|BM |=2,在Rt△AMB 中,由|AB |=3可得|AM |=|AB |2-|BM |2=5,所以直线AB 的斜率k =tan ∠ABM =|AM ||BM |=根据题目中所给的条件,作出相应的平面几何图形,将题目中的数量关系转化为几何关系,便可将数形结合起来,通过合理添加辅助线,构造出直角三角形,根据直角三角形的性质和勾股定理就能求得直线AB 的斜率.三、设而不求设而不求是指设出相关的参数,但不求出参数的具体值,得到直线的方程、曲线的方程、点的坐标等,将其代入题设中进行运算,最后通过消元求得问题的答案.利用设而不求法解答解析几何问题,只需设出相关的参数,根据题意建立关系式,合理进行整体代换、消元即可.例3.(2021年福建省福州市高考数学调研试卷)已知椭圆C :x 2a 2+y 2b 2=1(a>b>0)的左、右顶点分别为A ,B ,O 为坐标原点.正方形OPBQ 的顶点P ,Q 在椭圆C 上.(1)求C 的离心率;(2)若a=2,直线l 过点(1,0)且x 轴不重合,与椭圆C 交于M ,N 两点(M 在x 轴上方),直线AM ,BN 的斜率分别为k 1,k 2,试判断k 1k 2是否为定值.若是,求出定值;若不是,请说明理由.解:(1)略;(2)当a =2时,b =,所以椭圆C 的方程为x 2+3y 2=4,设直线l 的方程为x =my +1,m ≠0,M (x 1,y 1),N (x 2,y 2),则y 2<0<y 1,由题意可得ìíîx =my +1,x 2+3y 2=4,消去x 可得(m 2+3)y 2+2my -3=0,得y 1+y 2=-2m m 2+3,y 1y 2=-3m 2+3,林毓琴41解题宝典N k OM 42。
数学新高考二卷解析几何题答题技巧
![数学新高考二卷解析几何题答题技巧](https://img.taocdn.com/s3/m/9a70d8286d175f0e7cd184254b35eefdc9d31567.png)
数学新高考二卷解析几何题答题技巧数学新高考二卷解析几何题答题技巧引言在数学新高考二卷中,解析几何题占据了相当的比重。
解析几何作为数学的重要分支和应用工具,在高考中占据了相当的重要性。
本文将介绍一些针对解析几何题的答题技巧,帮助考生高效解题。
技巧一:熟悉基本公式和定理•需要熟练掌握点、线、面之间的距离公式和斜率公式,这是解析几何题解答的基础。
•熟悉三角形、四边形等图形的周长和面积公式,能够快速运用并进行变形。
技巧二:画图解题•解析几何题通常需要通过画图来帮助理解和分析。
画图可以更直观地看出问题中的条件和求解思路。
•细心观察图形中给出的线段、角度等信息,合理选择参考点和坐标系,有助于简化计算。
技巧三:几何性质的灵活运用•利用几何性质来解析几何题是解题的关键。
比如利用垂直角、对称性、相似三角形、共线等性质来辅助求解。
•注意总结并熟悉一些常见的几何性质和定理,如垂心、重心、外心等,能够快速应用于解题过程中。
技巧四:建立方程求解•对于一些解析几何题目,可以通过建立方程解决问题。
这要求我们善于将几何条件转化为方程,并利用方程进行进一步的推导。
•熟悉直线、圆等几何图形的方程表达式,并掌握解方程的方法,能够帮助快速解决相关问题。
技巧五:几何题与代数题互相转化•高考数学考题中的解析几何与代数题经常有联系,可以通过将几何问题转化为代数问题或者将代数问题图像化的方式来解决。
•将几何问题转化为代数问题可以通过引入变量、利用直线的斜率等方式进行,能够帮助快速解决相关问题。
结论解析几何作为数学的一部分,在高考中占有重要地位。
熟悉基本公式和定理,善于画图、灵活运用几何性质,掌握建立方程和几何与代数互相转化的技巧,将会有助于考生在解析几何题上取得更好的成绩。
通过不断练习和积累,相信考生们能够更加熟练地运用这些技巧,提高解题效率。
技巧六:分类讨论•在解析几何题中,有时候问题较为复杂,无法直接得到结论。
这时候可以采用分类讨论的方法,将问题进行分情况讨论,找到每种情况下的解决方法。
解析几何求解技巧
![解析几何求解技巧](https://img.taocdn.com/s3/m/382644e25122aaea998fcc22bcd126fff7055d85.png)
解析几何求解技巧解析几何是高等数学的重要分支之一,它主要研究几何图形的性质和相关问题的解法。
解析几何的求解技巧是解决几何问题的关键,下面将介绍几种常用的解析几何求解技巧。
一、坐标法:坐标法是解析几何中最常见的求解技巧。
它利用坐标系和坐标代数的方法,通过确定几何图形上的点的坐标,将几何问题转化为代数方程的求解问题。
具体的求解步骤可以概括为:1. 建立坐标系。
根据题目所给条件,确定适当的坐标系,并选择合适的单位长度。
2. 确定几何图形上的点的坐标。
根据题目所给条件,推导出几何图形上点的坐标关系。
可以运用平面几何中的基本性质和定理,通过代数方法求解。
3. 转化为代数方程。
根据几何图形的性质和定理,将几何问题转化为代数方程的求解问题。
这一步骤需要灵活应用代数方程的解法技巧。
4. 求解代数方程。
根据所得的代数方程,运用代数解法将方程求解。
5. 检验结果。
将求得的解代入原方程中,验证是否满足题目所给条件。
如果满足,即为几何问题的解;如果不满足,需重新检查求解过程。
二、向量法:向量法是解析几何中另一种常用的求解技巧。
它运用向量的概念和运算,通过向量的相等、垂直、平行等性质,推导出几何图形和问题的解法。
具体的求解步骤可以概括为:1. 确定坐标系和向量的表示。
建立适当的坐标系,确定向量的表示方法。
常用的表示方法有坐标表示法、定点表示法和参数表示法等。
2. 利用向量的性质和运算推导条件。
根据题目所给条件,利用向量的性质和运算,推导出几何图形上的条件和关系。
3. 利用向量之间的关系求解。
根据所得的几何图形上的条件,利用向量的关系,运用向量的加减、数量积、向量积等运算进行求解。
4. 检验结果。
将求得的解代入原方程中,验证是否满足题目所给条件。
如果满足,即为几何问题的解;如果不满足,需重新检查求解过程。
三、分析法:分析法是解析几何中辅助性的求解技巧。
它通过对几何图形的分析,将几何问题转化为具有明确几何意义的问题,并通过几何性质和定理的应用,求解问题。
解析几何题型及解题方法总结
![解析几何题型及解题方法总结](https://img.taocdn.com/s3/m/a83275264b7302768e9951e79b89680203d86ba0.png)
解析几何题型及解题方法总结
几何是小学、中学数学的基础内容,对理解和掌握数学有着重要的作用,而解析几何就是从图形出发,把它们构成的性质表示出来。
随着数学应用范围的不断扩大,解析几何也变得越来越重要。
一般来说,解析几何题型包括:直线、线段、圆、三角形、椭圆、正方形等。
在解析这些几何题型时,有一些总体的解题思路与解题方法。
首先,把问题翻译成几何模型,也是解题的第一步。
其次,通过绘图的方法,让图形的性质更加清晰,即确定结构。
最后,运用相关的几何知识、定理,进行计算、判断和证明。
举例来说,解决一道给定两线段判断是否相交的问题,可以这样做:首先,用两个不同的色彩表示这两条线段,绘出它们的图形;其次,利用类似两线段角平分线定理的几何原理,计算出两线段的角平分线,判断它们是否相交。
此外,解决解析几何问题还需要熟练掌握和推导各种常见的几何定理,如勾股定理、等腰三角形定理、角平分线定理等,并且应该能够根据情况,判断出此类定理的使用范围。
另外,还要深入理解几何中角度、边长之间的各种关系:一条线段所围成的角的几何关系,一个三角形的边长与其垂直边、对边角的几何关系,一个椭圆的边长与其顶点角的几何关系等。
最后,解析几何中突出的一般性知识,:平行线、垂直线、对称中心、交点、垂足等,也要熟练掌握,这样方便在解决具体问题时正
确使用正确的几何知识。
解析几何题型及解题方法
![解析几何题型及解题方法](https://img.taocdn.com/s3/m/dc924a4cba68a98271fe910ef12d2af90242a8e4.png)
解析几何题型及解题方法
解析几何是数学中的一个重要分支,主要研究空间中点、线、面等几何对象在坐标系中的表示和性质。
以下是一些常见的解析几何题型及其解题方法:
1. 求轨迹方程:给定一些条件,求动点的轨迹方程。
解题方法包括直接法、参数法、代入法等。
2. 判断位置关系:判断两条直线、两个圆、两条圆锥曲线等是否相交、相切、相离。
解题方法包括联立方程组消元法、判别式法、一元二次方程根的判别式法等。
3. 求弦长、面积、体积等:给定一个几何对象,求其长度、面积、体积等。
解题方法包括公式法、参数法、极坐标法等。
4. 求最值:给定一个几何对象,求其长度的最大值、最小值等。
解题方法包括导数法、不等式法、极坐标法等。
5. 证明不等式:通过几何图形证明不等式。
解题方法包括构造法、极坐标法、数形结合法等。
6. 探索性问题:通过观察、猜想、证明等方式探索几何对象的性质。
解题方法包括归纳法、反证法、构造法等。
以上是一些常见的解析几何题型及其解题方法,掌握这些方法可以帮助我们更好地解决解析几何问题。
同时,需要注意题目中的条件和限制,以及图形的位置和形状,以便更准确地解决问题。
数学解析几何题解题技巧
![数学解析几何题解题技巧](https://img.taocdn.com/s3/m/9f821f0d3868011ca300a6c30c2259010202f3a3.png)
数学解析几何题解题技巧解析几何作为高中数学重要的一部分,是数学中的一门重要学科。
解析几何题目通常涉及到点、线、面等几何元素,并结合数学分析的方法进行求解。
解析几何题解题技巧的掌握对于学生的考试成绩和数学水平有着重要的影响。
本文将介绍一些解析几何题解题的常见技巧和方法。
一、坐标表示法在解析几何中,常常使用坐标表示法来解决问题。
坐标表示法利用数轴上的点与数的对应关系,将几何问题转化为数学问题进行求解。
在解析几何题目中,常用的坐标表示法包括直角坐标系、极坐标系等。
直角坐标系是最常见的坐标表示法之一。
在直角坐标系中,我们用x和y两个坐标轴来表示二维平面上的点。
在解析几何题目中,可以通过设定坐标原点,确定x轴和y轴的正负方向,来表示点的位置。
利用直角坐标系,我们可以计算线的斜率、距离等问题,从而解决解析几何题目。
极坐标系是另一种常用的坐标表示法。
在极坐标系中,我们用极径和极角来表示平面上的点。
极径表示点到坐标原点的距离,极角表示点与极轴的夹角。
利用极坐标系,我们可以更方便地表示圆、曲线等等问题,从而解决解析几何题目。
二、方程表示法方程表示法是解析几何题目中另一个重要的解题方法。
通过建立方程,可以用代数的方法求解几何问题。
在解析几何题目中,常常利用点、线、曲线的方程来表示几何元素的性质和关系。
例如,对于一条直线,可以通过两点式、点斜式、一般式等不同形式的方程来表示。
在解析几何题目中,可以通过已知条件,建立直线的方程,并结合其他几何元素的方程,解得问题的答案。
对于一条曲线,通常可以通过解析几何的知识,建立其方程,并通过求解方程,得到曲线上的点坐标等问题。
在解析几何题目中,方程表示法是解决问题的重要手段之一。
三、向量表示法向量表示法是解析几何题目中另一个常用的技巧。
向量表示法利用向量的性质和运算,可以更方便地表示点、线、面等几何元素,从而解决解析几何问题。
在解析几何题目中,常常通过设立向量的起点和终点,来表示点或线段。
解析几何解答题的答题策略和技巧
![解析几何解答题的答题策略和技巧](https://img.taocdn.com/s3/m/e863545d15791711cc7931b765ce0508763275ec.png)
解析几何解答题的答题策略和技巧解析几何解答题答题策略和技巧解析几何题目的解答通常涉及到代数和几何原理相结合。
要有效解决这些问题,遵循以下策略和技巧至关重要:理解题意仔细阅读题目,并确保理解要求。
确定您需要找到的内容,例如点的坐标、线的方程或图形的性质。
选择适当的坐标系根据问题中的信息,选择合适的坐标系。
笛卡尔坐标系(直线坐标系)通常用于描述二维空间,而极坐标系则适用于某些涉及角度或极半径的问题。
建立方程或不等式使用代数和几何原理建立方程或不等式。
这可能包括使用点-斜率形式、斜截距形式、点-线距离公式或其他相关概念。
求解方程或不等式运用代数技巧求解方程或不等式。
这可能涉及因子分解、平方、化简或三角函数的使用。
验证解将找到的解代回原始方程或不等式中,以确保其满足问题条件。
几何直觉在求解过程中,运用几何直觉来了解图形的形状和位置。
这可以帮助您做出假设和做出明智的决策。
技巧和注意事项简化问题:如果可能,将复杂的问题分解成更简单的部分,以便更容易解答。
利用对称性:在某些情况下,图形或方程可能具有对称性。
利用这些对称性可以简化问题。
使用图形计算器:图形计算器可以用于可视化图形并检查解。
保持整洁和有条理:使用清晰的数学符号并以有条理的方式显示您的工作步骤。
复查解:在完成解决方案后,花时间复查您的工作,以确保准确性和一致性。
特定类型问题的技巧点和线:使用点-斜率形式、斜截距形式或点-线距离公式求解点的坐标或线的方程。
圆:使用标准圆方程或圆心和半径来确定圆的性质。
双曲线:使用双曲线的标准方程或渐近线来求解焦点、顶点和渐近线。
抛物线:使用抛物线的标准方程来确定顶点、焦点和准线。
椭圆:使用椭圆的标准方程来确定中心、半轴和焦距。
通过遵循这些策略和技巧,您可以大大提高解析几何问题的解答能力。
记住,熟能生巧,因此定期练习和学习相关概念至关重要。
数学几何与解析几何题解题技巧总结
![数学几何与解析几何题解题技巧总结](https://img.taocdn.com/s3/m/3ea8a04ea517866fb84ae45c3b3567ec102ddc90.png)
数学几何与解析几何题解题技巧总结数学几何和解析几何是数学中非常重要的分支,它们有着广泛的应用领域,如物理学、工程学、计算机图形学等。
解决数学几何和解析几何问题需要一定的技巧和方法,下面将总结一些常用的解题技巧。
一、数学几何题解题技巧1. 图形的性质分析法在解决数学几何题目时,首先要对给定的图形进行性质分析。
通过观察图形的形状、角度、边长等特征,可以找到一些规律和关系,从而帮助解决问题。
例如,在判断一个四边形是否为矩形时,可以观察其四个角是否都为直角,四条边是否相等等。
2. 利用相似三角形相似三角形是数学几何中常用的重要概念。
当两个三角形的对应角相等,对应边成比例时,可以判断它们为相似三角形。
利用相似三角形的性质,可以求解一些难题。
例如,当两个三角形相似时,可以利用相似比例关系求解未知边长或角度。
3. 利用平行线和垂直线的性质平行线和垂直线是几何中常见的重要概念。
利用平行线和垂直线的性质,可以解决一些几何问题。
例如,当两条直线平行时,它们的对应角相等;当两条直线垂直时,它们的斜率乘积为-1。
4. 利用勾股定理和三角函数勾股定理是解决直角三角形问题的基本工具。
当一个三角形中有一个直角,可以利用勾股定理求解未知边长。
此外,三角函数也是解决三角形问题的重要工具,例如正弦定理、余弦定理等。
二、解析几何题解题技巧1. 坐标系的建立解析几何中,常常需要建立坐标系来描述几何图形。
建立坐标系可以将几何问题转化为代数问题,从而更容易求解。
在建立坐标系时,需要选择合适的原点和坐标轴方向,使得问题的求解更加简便。
2. 利用距离公式和中点公式距离公式和中点公式是解析几何中常用的工具。
距离公式可以求解两点之间的距离,中点公式可以求解线段的中点坐标。
利用这两个公式,可以计算线段的长度、判断三角形是否为等边三角形等。
3. 利用直线和曲线的方程直线和曲线的方程是解析几何中的重要工具。
通过求解直线和曲线的交点,可以解决一些几何问题。
解析几何解题技巧归纳
![解析几何解题技巧归纳](https://img.taocdn.com/s3/m/874a7020dcccda38376baf1ffc4ffe473368fdfb.png)
解析几何解题技巧归纳解析几何是几何学题目的解答和分析。
它涉及到在给定的几何形状和条件下,用逻辑和推理的方法解决几何问题。
解析几何解题技巧是在解析几何题目中的一些常用方法和技巧,用于快速和准确地解决问题。
下面将总结几个常用的解析几何解题技巧。
1.图形的性质和相似性:在解析几何中,了解图形的性质和相似性是非常重要的。
通过观察图形的属性,可以获得有关图形的重要信息。
例如,对于一道问题,如果已知一个图形是一个直角三角形,那么可以迅速推断出两条边是垂直的。
另外,相似性也是解析几何中常用的技巧。
当一个图形与另一个图形相似时,它们的属性和比例关系也是相似的。
2.平移和旋转:平移和旋转是解析几何中常用的技巧,可以通过改变图形的位置和方向来解决问题。
通过将图形平移或旋转,可以使问题更加易于解决。
例如,如果已知两条直线相交于一个点,可以通过将其中一条直线平移到与另一条直线重合来简化问题,并推导出其他性质。
3.弧和角度:在解析几何中,弧和角度是常见的概念。
了解弧和角度的性质和关系可以帮助我们解决几何问题。
例如,当涉及到圆弧和圆心角时,可以使用圆内外角定理和同弧相等定理来解决问题。
此外,了解其他特殊角度的性质,如直角、锐角和钝角,也有助于解决问题。
4.坐标系和方程:坐标系和方程是解析几何中常用的工具。
通过在坐标系中引入坐标和方程,可以将几何问题转化为代数问题。
通过求解方程,可以确定几何图形的特性。
例如,通过设置适当的坐标系和方程,可以求解两条直线的交点或两个图形的相交区域。
5.矩阵和向量:矩阵和向量是解析几何中的一种数学工具,可以用于表示和转换几何对象。
通过使用矩阵和向量的运算,可以实现图形的平移、旋转、缩放等。
例如,将一个向量乘以一个矩阵可以实现图形的旋转。
此外,矩阵和向量还可以用于解决线性方程组等代数问题。
6.直观推理和逻辑推论:解析几何经常需要进行直观推理和逻辑推论。
通过观察和分析图形的性质,进行逻辑推理,可以得出结论。
快速解决解析几何题目的技巧
![快速解决解析几何题目的技巧](https://img.taocdn.com/s3/m/115cc1c86429647d27284b73f242336c1eb930c8.png)
快速解决解析几何题目的技巧解析几何是高中数学中的一个重要分支,它运用代数和几何的知识来解决平面和空间中的几何问题。
对于许多学生来说,解析几何是一个相对较难的主题。
然而,如果我们掌握一些技巧和方法,就能够更快速地解决解析几何题目。
本文将介绍一些有效的技巧,帮助大家快速解决解析几何题目。
一、画图是必要的在解析几何题目中,画图是必不可少的一步。
通过画图,我们可以更好地理解题目,把抽象的问题转化为具体的几何图形。
在画图时,我们需要按照题目的要求合理规划图形的大小和比例,保证画出的图形能准确地反映出题目的几何特征。
画图的同时,我们要注重细节,标注出各个角、边、点的关系,以便后续的解题过程。
二、理清问题的关键信息解析几何题目通常会给出一些关键信息,我们需要仔细阅读题目,理清这些关键信息。
这些关键信息有时会出现在题目的开头、中间或末尾,我们需要将其整理出来,在解题时用到。
理清问题的关键信息可以帮助我们更快地确定解题的方向和方法,减少解题过程中的迷惑。
三、利用几何性质和定理解析几何题目中,有许多几何性质和定理可以用来解决问题。
熟悉并合理运用这些几何性质和定理,可以大大提高解题的效率。
例如,对于平面几何问题,我们可以利用平行线与交线的性质、相似三角形的性质、等腰三角形的性质等来解决问题。
对于立体几何问题,我们可以利用立体的体积、表面积、空间几何关系等来解题。
因此,我们需要熟悉并灵活运用这些几何性质和定理,以便更快地解决解析几何题目。
四、代数与几何的结合解析几何是代数和几何知识的结合,因此我们可以通过代数的方法来解决一些几何问题。
例如,可以通过设置未知数,建立方程组来解决问题。
代数方法常常能够简化解题过程,帮助我们更快地求解问题。
在运用代数方法解决几何问题时,我们需要根据题目的要求设定合理的未知数,建立准确的方程,并通过方程组的解来得出问题的答案。
五、巧用试错法在遇到复杂的解析几何题目时,我们可以尝试使用试错法来解决。
解析几何小题方法总结
![解析几何小题方法总结](https://img.taocdn.com/s3/m/d2a62349773231126edb6f1aff00bed5b9f373f8.png)
解析几何小题方法总结解析几何小题的方法总结如下:1. 将题目中的几何图形转化为代数表达式进行求解。
这种方法适用于熟悉几何图形的性质,并能将其转化为代数表达式求解的情况。
例如,将直角三角形的边长表示为变量,然后利用勾股定理进行联立方程求解。
2. 利用几何图形的对称性质进行推导。
这种方法适用于几何图形具有对称性的情况。
例如,求一个多边形的对角线个数,可以根据图形的对称性质进行推导,而不需要具体计算。
3. 利用相似三角形进行比较和推导。
这种方法适用于几何图形中存在相似三角形的情况。
例如,利用相似三角形的边长比例关系求解未知边长。
4. 利用等腰三角形或等边三角形的性质进行推导。
这种方法适用于利用等腰三角形或等边三角形的性质求解问题的情况。
例如,利用等腰三角形的底角相等的性质进行推导。
5. 利用圆的性质进行推导。
这种方法适用于利用圆的性质进行求解的问题。
例如,利用圆的弧度定义和圆心角的性质进行推导。
6. 利用平行线与等角线的性质进行推导。
这种方法适用于利用平行线和等角线的性质进行推导的情况。
例如,利用平行线的性质推导出两个角相等或对应角相等。
7. 利用向量的性质进行推导。
这种方法适用于利用向量的性质进行推导的情况。
例如,利用向量的加减法和数量积的定义进行推导。
总之,解析几何小题的求解方法主要依靠几何图形的性质和代数表达式的推导,需要熟练掌握各种几何图形的性质和定理,以及代数运算和方程的求解技巧。
同时,灵活运用不同方法结合题目的特点进行求解,可以更有效地解决问题。
解析几何新题型的解题技巧
![解析几何新题型的解题技巧](https://img.taocdn.com/s3/m/5e3a225c168884868762d64d.png)
解析几何新题型的解题技巧【命题趋向】解析几何例命题趋势:1.注意考查直线的基本概念,求在不同条件下的直线方程,直线的位置关系,此类题大多都属中、低档题,以选择、填空题的形式出现,每年必考2.考查直线与二次曲线的普通方程,属低档题,对称问题常以选择题、填空题出现3.考查圆锥曲线的基础知识和基本方法的题多以选择题和填空题的形式出现,有时会出现有一定灵活性和综合性较强的题,如求轨迹,与向量结合,与求最值结合,属中档题分值一般在17---22分之间,题型一般为1个选择题,1个填空题,1个解答题.【考点透视】一.直线和圆的方程1.理解直线的斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程.2.掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式,能够根据直线的方程判断两条直线的位置关系.3.了解二元一次不等式表示平面区域.4.了解线性规划的意义,并会简单的应用.5.了解解析几何的基本思想,了解坐标法.6.掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程.二.圆锥曲线方程1.掌握椭圆的定义、标准方程和椭圆的简单几何性质.2.掌握双曲线的定义、标准方程和双曲线的简单几何性质.3.掌握抛物线的定义、标准方程和抛物线的简单几何性质.4.了解圆锥曲线的初步应用.【例题解析】考点1.求参数的值求参数的值是高考题中的常见题型之一,其解法为从曲线的性质入手,构造方程解之.例1.(2006年安徽卷)若抛物线的焦点与椭圆的右焦点重合,则的值为() A.B.C.D.考查意图:本题主要考查抛物线、椭圆的标准方程和抛物线、椭圆的基本几何性质.解答过程:椭圆的右焦点为(2,0),所以抛物线的焦点为(2,0),则,故选D.考点2.求线段的长求线段的长也是高考题中的常见题型之一,其解法为从曲线的性质入手,找出点的坐标,利用距离公式解之.例2.(2007年四川卷文)已知抛物线y-x23上存在关于直线xy=0对称的相异两点A、B,则|AB|等于A.3B.4C.3D.4考查意图:本题主要考查直线与圆锥曲线的位置关系和距离公式的应用. 解:设直线的方程为,由,进而可求出的中点,又由在直线上可求出,∴,由弦长公式可求出.故选C。
高中数学解析几何解题技巧
![高中数学解析几何解题技巧](https://img.taocdn.com/s3/m/07463d055b8102d276a20029bd64783e09127d07.png)
高中数学解析几何解题技巧
高中数学解析几何解题技巧主要包括以下几个方面:
1. 理解基本概念:解析几何的基本概念是解题的基础,包括直线、平面、向量、点、线段等。
在解题过程中,要确保对这些基本概念的理解准确。
2. 熟悉性质定理:解析几何中有许多性质定理,例如平行线性质、垂直线性质、相似三角形性质等。
熟悉这些性质定理,可以帮助理解和解决解析几何题目。
3. 运用向量法解题:向量法是解析几何中常用的一种解题方法。
通过引入向量的概念,可以简化解析几何题目的计算过程,提高解题效率。
4. 利用几何变换:几何变换是解析几何中常用的一种方法,包括平移、旋转、镜像等。
通过利用几何变换,可以将原题转化为更简单的几何问题进行求解。
5. 善用相似性质:相似性质在解析几何中有着重要的应用。
通过发现和利用图形的相似性质,可以得到一些有用的信息,从而解决解析几何题目。
6. 注意特殊情况:解析几何题目中经常会涉及到一些特殊情况,例如对称性、平行四边形、等腰三角形等。
在解题过程中,要特别注意这些特殊情况,以充分利用它们带来的信息。
7. 多画图辅助:在解析几何题目中,通过画图可以更好地理解和分析题目。
因此,解析几何解题过程中,多画图进行辅助,有助于
提高解题的思路和准确性。
8. 注意技巧和方法:解析几何题目中有一些常用的技巧和方法,例如相似比例、平行线截比、垂直线截比等。
要熟悉这些技巧和方法,并在解题过程中加以运用。
最后,解析几何题目的解题技巧需要通过大量的练习和实践来逐渐掌握和提高。
不断总结经验,加强对解析几何知识的理解和掌握,才能在解析几何题目中游刃有余。
解析几何解题技巧归纳
![解析几何解题技巧归纳](https://img.taocdn.com/s3/m/53a31f2c571252d380eb6294dd88d0d233d43cc0.png)
解析几何是数学中的一个重要分支,主要研究平面和空间中的点、直线、曲线以及它们之间的关系。
在解析几何中,解题技巧的掌握对于提高解题效率和准确性至关重要。
下面将从以下几个方面对解析几何解题技巧进行归纳总结。
1. 理解基本概念和性质解析几何的基本概念包括点、直线、曲线等,而基本性质则包括距离、角度、斜率等。
在解题过程中,首先要对题目中涉及的基本概念和性质有清晰的理解,这样才能准确地运用相关公式和方法进行求解。
2. 利用坐标系解析几何中,坐标系是解决问题的重要工具。
通过建立合适的坐标系,可以将问题转化为代数方程或函数的形式,从而利用代数方法进行求解。
在建立坐标系时,要考虑到题目的特点和要求,选择合适的坐标系类型,如直角坐标系、极坐标系等。
3. 利用几何性质解析几何中的几何性质是解题的关键。
通过观察和分析几何图形的性质,可以得出一些结论和关系,从而简化问题的求解过程。
例如,利用平行线的性质可以解决与平行线相关的题目;利用垂直线的性质可以解决与垂直线相关的题目等。
4. 利用相似三角形相似三角形是解析几何中常用的一个工具。
通过构造相似三角形,可以将问题转化为已知条件和未知量之间的关系,从而进行求解。
在构造相似三角形时,要注意选择合适的基准点和基准线,以及利用已知条件和几何性质进行推导。
5. 利用对称性对称性是解析几何中的一个重要性质。
通过利用对称性,可以将问题转化为已知条件和未知量之间的关系,从而进行求解。
在利用对称性时,要注意选择合适的对称轴和对称中心,以及利用已知条件和几何性质进行推导。
6. 利用参数方程参数方程是解析几何中常用的一种表示方法。
通过将问题转化为参数方程的形式,可以简化问题的求解过程。
在利用参数方程时,要注意选择合适的参数和参数范围,以及利用已知条件和几何性质进行推导。
7. 利用三角函数三角函数是解析几何中常用的一个工具。
通过利用三角函数,可以将问题转化为已知条件和未知量之间的关系,从而进行求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七讲 解析几何新题型的解题技巧【命题趋向】解析几何例命题趋势:1.注意考查直线的基本概念,求在不同条件下的直线方程,直线的位置关系,此类题大多都属中、低档题,以选择、填空题的形式出现,每年必考2.考查直线与二次曲线的普通方程,属低档题,对称问题常以选择题、填空题出现3.考查圆锥曲线的基础知识和基本方法的题多以选择题和填空题的形式出现,有时会出现有一定灵活性和综合性较强的题,如求轨迹,与向量结合,与求最值结合,属中档题分值一般在17---22分之间,题型一般为1个选择题,1个填空题,1个解答题. 【考点透视】一.直线和圆的方程1.理解直线的斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程.2.掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式,能够根据直线的方程判断两条直线的位置关系.3.了解二元一次不等式表示平面区域. 4.了解线性规划的意义,并会简单的应用. 5.了解解析几何的基本思想,了解坐标法.6.掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程. 二.圆锥曲线方程1.掌握椭圆的定义、标准方程和椭圆的简单几何性质. 2.掌握双曲线的定义、标准方程和双曲线的简单几何性质. 3.掌握抛物线的定义、标准方程和抛物线的简单几何性质. 4.了解圆锥曲线的初步应用. 【例题解析】 考点1.求参数的值求参数的值是高考题中的常见题型之一,其解法为从曲线的性质入手,构造方程解之.例1.(2006年安徽卷)若抛物线22y px =的焦点与椭圆22162x y +=的右焦点重合,则p 的值为( )A .2-B .2C .4-D .4考查意图: 本题主要考查抛物线、椭圆的标准方程和抛物线、椭圆的基本几何性质.解答过程:椭圆22162x y +=的右焦点为(2,0),所以抛物线22y px =的焦点为(2,0),则4p =,故选D.考点2. 求线段的长求线段的长也是高考题中的常见题型之一,其解法为从曲线的性质入手,找出点的坐标,利用距离公式解之. 例2.(2007年四川卷文)已知抛物线y-x 2+3上存在关于直线x+y=0对称的相异两点A 、B ,则|AB|等于A.3B.4C.32D.42 考查意图: 本题主要考查直线与圆锥曲线的位置关系和距离公式的应用.解:设直线AB 的方程为y x b =+,由22123301y x x x b x x y x b⎧=-+⇒++-=⇒+=-⎨=+⎩,进而可求出AB 的中点11(,)22M b --+,又由11(,)22M b --+在直线0x y +=上可求出1b =,∴220x x +-=,由弦长公式可求出221114(2)32AB =+-⨯-=故选C例3.(2006年四川卷)如图,把椭圆2212516x y +=的长轴AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部分于1234567,,,,,,P P P P P P P 七个点,F 是椭圆的一个焦点, 则1234567PF P F P F P F P F P F P F ++++++=____________. 考查意图: 本题主要考查椭圆的性质和距离公式的灵活应用. 解答过程:由椭圆2212516x y +=的方程知225, 5.a a =∴=∴12345677277535.2a PF P F P F P F P F P F P F a ⨯++++++==⨯=⨯= 故填35.考点3. 曲线的离心率曲线的离心率是高考题中的热点题型之一,其解法为充分利用: (1)椭圆的离心率e =ac ∈(0,1) (e 越大则椭圆越扁);(2) 双曲线的离心率e =ac ∈(1, +∞) (e 越大则双曲线开口越大).结合有关知识来解题. 例4.(2007年全国卷)文(4)理(4)已知双曲线的离心率为2,焦点是(4,0)-,(4,0),则双曲线方程为A .221412x y -=B .221124x y -=C .221106x y -=D .221610x y -=考查意图:本题主要考查双曲线的标准方程和双曲线的离心率以及焦点等基本概念. 解答过程: 2,4,c e c a===Q 所以22,12.a b ∴==故选(A).小结: 对双曲线的标准方程和双曲线的离心率以及焦点等基本概念,要注意认真掌握.尤其对双曲线的焦点位置和双曲线标准方程中分母大小关系要认真体会.例5.(2006年广东卷)已知双曲线9322=-y x ,则双曲线右支上的点P 到右焦点的距离与点P 到右准线的距离之比等于( ) A.2 B.332 C. 2 D.4考查意图: 本题主要考查双曲线的性质和离心率e =a c ∈(1, +∞) 的有关知识的应用能力.解答过程:依题意可知 3293,322=+=+==b a c a .考点4.求最大(小)值求最大(小)值, 是高考题中的热点题型之一.其解法为转化为二次函数问题或利用不等式求最大(小)值:特别是,一些题目还需要应用曲线的几何意义来解答.例6.(2006年山东卷)已知抛物线y 2=4x ,过点P (4,0)的直线与抛物线相交于A(x 1,y 1),B(x 2,y 2)两点,则y 12+y 22的最小值是 .考查意图: 本题主要考查直线与抛物线的位置关系,以及利用不等式求最大(小)值的方法. 解:设过点P (4,0)的直线为()()224,8164,y k x k x x x =-∴-+=()()122222222122284160,8414416232.k x k x k k y y x x k k ∴-++=+⎛⎫∴+=+=⨯=+≥ ⎪⎝⎭故填32.考点5 圆锥曲线的基本概念和性质圆锥曲线第一定义中的限制条件、圆锥曲线第二定义的统一性,都是考试的重点内容,要能够熟练运用;常用的解题技巧要熟记于心. 例7.(2007年广东卷文)在平面直角坐标系xOy 中,已知圆心在第二象限、半径为22的圆C 与直线y =x 相切于坐标原点O .椭圆9222y ax +=1与圆C的一个交点到椭圆两焦点的距离之和为10. (1)求圆C 的方程;(2)试探究圆C 上是否存在异于原点的点Q ,使Q 到椭圆右焦点F 的距离等于线段OF 的长.若存在,请求出点Q 的坐标;若不存在,请说明理由.[考查目的]本小题主要考查直线、椭圆等平面解析几何的基础知识,考查综合运用数学知识进行推理运算的能力和解决问题的能力.[解答过程] (1) 设圆C 的圆心为 (m, n)则,222,m n n =-⎧⎪⎨⋅=⎪⎩ 解得2,2.m n =-⎧⎨=⎩ 所求的圆的方程为 22(2)(2)8x y ++-= (2) 由已知可得 210a = , 5a =.椭圆的方程为 221259x y += , 右焦点为 F( 4, 0) ;假设存在Q 点()222cos ,222sin θθ-++使QF OF =,()()22222cos 4222sin 4θθ-+-++=.整理得 sin 3cos 22θθ=+, 代入 22sin cos 1θθ+=.得:210cos 122cos 70θθ++= , 122812222cos 1θ-±-±==<-.因此不存在符合题意的Q 点. 例8.(2007年安徽卷理)如图,曲线G 的方程为)0(22≥=y x y .以原点为圆心,以)0(>t t为半径的圆分别与曲线G 和y 轴的 正半轴相交于 A 与点B . 直线 AB 与 x 轴相交于点C .(Ⅰ)求点 A 的横坐标 a 与点 C 的横坐标c 的关系式;(Ⅱ)设曲线G 上点D 的横坐标为2+a ,求证:直线CD 的斜率为定值.[考查目的]本小题综合考查平面解析几何知识,主要涉及平面直角坐标素中的 两点间距离公式、直线的方程与斜率、抛物线上的点与曲线方程的关系 ,考查运算能力与思维能力,综合分析问题的能力. [解答过程](I )由题意知,).2,(a a A 因为.2,||22t a a t OA =+=所以 由于.2,02a a t t +=>故有 (1)由点B (0,t ),C (c ,0)的坐标知,直线BC 的方程为.1=+ty cx又因点A 在直线BC 上,故有,12=+ta ca将(1)代入上式,得,1)2(2=++a a a ca 解得 )2(22+++=a a c .(II )因为))2(22(++a a D ,所以直线CD 的斜率为1)2(2)2(2))2(22(2)2(22)2(2-=+-+=+++-++=-++=a a a a a a c a a k CD ,所以直线CD 的斜率为定值.例9.已知椭圆2222x y E :1(a b 0)a b +=>>,AB 是它的一条弦,M(2,1)是弦AB 的中点,若以点M(2,1)为焦点,椭圆E的右准线为相应准线的双曲线C 和直线AB 交于点N(4,1)-,若椭圆离心率e 和双曲线离心率1e 之间满足1ee 1=,求:(1)椭圆E 的离心率;(2)双曲线C 的方程.解答过程:(1)设A 、B 坐标分别为1122A(x ,y ),B(x ,y ), 则221122x y 1a b +=,222222x y 1a b+=,二式相减得:21212AB21212y y (x x )b kx x (y y )a-+==-=-+2MN 22b 1(1)k 1a 24---===--, 所以2222a 2b 2(a c )==-,22a 2c =, 则c 2e a==;(2)椭圆E 的右准线为22a (2c)x 2c c ===,双曲线的离心率11e 2e==,设P(x,y)是双曲线上任一点,则:22(x 2)(y 1)|PM |2|x 2c |-+-==-,两端平方且将N(4,1)-代入得:c 1=或c 3=,当c 1=时,双曲线方程为:22(x 2)(y 1)0---=,不合题意,舍去; 当c 3=时,双曲线方程为:22(x 10)(y 1)32---=,即为所求.小结:(1)“点差法”是处理弦的中点与斜率问题的常用方法;(2)求解圆锥曲线时,若有焦点、准线,则通常会用到第二定义. 考点6 利用向量求曲线方程和解决相关问题利用向量给出题设条件,可以将复杂的题设简单化,便于理解和计算. 典型例题:例10.(2006年山东卷)双曲线C 与椭圆22184x y +=有相同的焦点,直线y =x 3为C 的一条渐近线.(1)求双曲线C 的方程;(2)过点P (0,4)的直线l ,交双曲线C 于A,B 两点,交x 轴于Q 点(Q 点与C 的顶点不重合).当12PQ QA QB λλ==u u u ru u u ru u u r,且3821-=+λλ时,求Q 点的坐标.考查意图: 本题考查利用直线、椭圆、双曲线和平面向量等知识综合解题的能力,以及运用数形结合思想,方程和转化的思想解决问题的能力.解答过程:(Ⅰ)设双曲线方程为22221x y a b-=,由椭圆22184x y +=,求得两焦点为(2,0),(2,0)-,∴对于双曲线:2C c =,又3y x =为双曲线C 的一条渐近线∴3b a= 解得 221,3a b ==,∴双曲线C 的方程为2213y x -=(Ⅱ)解法一:由题意知直线l 的斜率k 存在且不等于零.设l 的方程:114,(,)y kx A x y =+,22(,)B x y ,则4(,0)Q k-.1PQ QA λ=u u u r u u u rQ ,11144(,4)(,)x y kkλ∴--=+.111111114444()44x k k x k k y y λλλλ⎧=--⎧⎪-=+⎪⎪∴⇒⎨⎨⎪⎪-==-⎩⎪⎩Q 11(,)A x y 在双曲线C 上, ∴2121111616()10kλλλ+--=.∴222211161632160.3k k λλλ++--=∴2221116(16)32160.3k k λλ-++-=同理有:2222216(16)32160.3k k λλ-++-=若2160,k -=则直线l 过顶点,不合题意.2160,k ∴-≠12,λλ∴是二次方程22216(16)32160.3k x x k -++-=的两根.122328163k λλ∴+==--,24k ∴=,此时0,2k ∆>∴=±. ∴所求Q 的坐标为(2,0)±.解法二:由题意知直线l 的斜率k 存在且不等于零 设l 的方程,11224,(,),(,)y kx A x y B x y =+,则4(,0)Q k-.1PQ QAλ=u u u r u u u r Q , Q ∴分PA u u u r 的比为1λ. 由定比分点坐标公式得1111111111144(1)14401x x k k y y λλλλλλλ⎧⎧-==-+⎪⎪+⎪⎪→⎨⎨+⎪⎪=-=⎪⎪+⎩⎩下同解法一解法三:由题意知直线l 的斜率k 存在且不等于零 设l 的方程:11224,(,),(,)y kx A x y B x y =+,则4(,0)Q k-.12PQ QA QB λλ==u u u r u u u r u u u rQ , 111222444(,4)(,)(,)x y x y kkkλλ∴--=+=+.11224y y λλ∴-==, 114y λ∴=-,224y λ=-,又1283λλ+=-, 121123y y ∴+=,即12123()2y y y y +=.将4y kx =+代入2213y x -=得222(3)244830k y y k --+-=.230k -≠Q ,否则l 与渐近线平行.212122224483,33k y y y y k k -∴+==--.222244833233k k k -∴⨯=⨯--.2k ∴=± (2,0)Q ∴±.解法四:由题意知直线l 得斜率k 存在且不等于零,设l 的方程:4y kx =+,1122(,),(,)A x y B x y ,则4(,0)Q k-1PQ QA λ=u u u v u u u vQ ,11144(,4)(,)x y kkλ∴--=+.∴1114444k kx x k λ-==-++.同理 1244kx λ=-+.1212448443kx kx λλ+=--=-++.即 2121225()80k x x k x x +++=. (*)又 22413y kx y x =+⎧⎪⎨-=⎪⎩消去y 得22(3)8190k x kx ---=.当230k -=时,则直线l 与双曲线得渐近线平行,不合题意,230k -≠.由韦达定理有: 12212283193k x x k x x k ⎧+=⎪⎪-⎨⎪=-⎪-⎩代入(*)式得 24,2k k ==±.∴所求Q 点的坐标为(2,0)±.例11.(2007年江西卷理)设动点P 到点A (-l ,0)和B (1,0)的距离分别为d 1和d 2, ∠APB =2θ,且存在常数λ(0<λ<1=,使得d 1d 2 sin 2θ=λ. (1)证明:动点P 的轨迹C 为双曲线,并求出C 的方程;(2)过点B 作直线交双曲线C 的右支于M 、N 两点,试确定λ的范围,使OM ·ON =0,其中点O 为坐标原点.[考查目的]本小题主要考查直线、双曲线等平面解析几何的基础知识,考查综合 运用数学知识进行推理运算的能力和解决问题的能力.[解答过程]解法1:(1)在PAB △中,2AB =,即222121222cos 2d d d d θ=+-, 2212124()4sin d d d d θ=-+,即2121244sin 212d d d d θλ-=-=-<(常数), 点P 的轨迹C 是以A B ,为焦点,实轴长221a λ=-的双曲线.方程为:2211x y λλ-=-.(2)设11()M x y ,,22()N x y ,①当MN 垂直于x 轴时,MN 的方程为1x =,(11)M ,,(11)N -,在双曲线上. 即211151101λλλλλ-±-=⇒+-=⇒=-,因为01λ<<,所以51λ-=.②当MN 不垂直于x 轴时,设MN 的方程为(1)y k x =-.由2211(1)x y y k x λλ⎧-=⎪-⎨⎪=-⎩得:2222(1)2(1)(1)()0k x k x k λλλλλ⎡⎤--+---+=⎣⎦,C BA oyx由题意知:2(1)0k λλ⎡⎤--≠⎣⎦,所以21222(1)(1)k x x k λλλ--+=--,2122(1)()(1)k x x k λλλλ--+=--.于是:22212122(1)(1)(1)k y y k x x k λλλ=--=--.因为0=⋅ON OM ,且M N ,在双曲线右支上,所以2121222122212(1)0(1)2101131001x x y y k x x k x x λλλλλλλλλλλλλλλ-⎧+=⎧-⎧=⎪>⎪⎪⎪+-+>⇒⇒⇒<+--⎨⎨⎨⎪⎪⎪>+->>⎩⎩⎪-⎩.23λ<.解法2:(1)同解法1(2)设11()M x y ,,22()N x y ,,MN 的中点为00()E x y ,. ①当121x x ==时,221101MB λλλλλ=-=⇒+-=-, 因为01λ<<,所以λ=②当12x x ≠时,002222212111111y x k y x y x MN ⋅-=⇒⎪⎪⎩⎪⎪⎨⎧=--=--λλλλλλ. 又001MN BE y k k x ==-.所以22000(1)y x x λλλ-=-;由2MON π=∠得222002MN x y ⎛⎫+= ⎪⎝⎭,由第二定义得2212()222MN e x x a ⎛⎫+-⎡⎤= ⎪⎢⎥⎣⎦⎝⎭220001(1)21x x λλ==+---. 所以222000(1)2(1)(1)y x x λλλλ-=--+-.于是由22000222000(1),(1)2(1)(1),y x x y x x λλλλλλλ⎧-=-⎪⎨-=--+-⎪⎩得20(1).23x λλ-=- 因为01x >,所以2(1)123λλ->-,又01λ<<,23λ<<23λ<.考点7 利用向量处理圆锥曲线中的最值问题利用向量的数量积构造出等式或函数关系,再利用函数求最值的方法求最值,要比只利用解析几何知识建立等量关系容易.例12.设椭圆E 的中心在坐标原点O ,焦点在xC(1,0)-的直线交椭圆E 于A 、B 两点,且CA 2BC =u u u r u u u r,求当AOB ∆的面积达到最大值时直线和椭圆E 的方程.解答过程:故可设椭圆方程为222x 3y t(t 0)+=>,直线方程为my x 1=+,由222x 3y t my x 1⎧+=⎨=+⎩得:22(2m 3)y 4my 2t 0+-+-=,设1122A(x ,y ),B(x ,y ),则1224m y y 2m 3+=+…………① 又CA 2BC =u u u r u u u r,故1122(x 1,y )2(1x ,y )+=---,即12y 2y =-…………②由①②得:128m y 2m 3=+,224m y 2m 3-=+, 则AOB 1221mS |y y |6||22m 3∆=-=+=632|m ||m |≤+当23m 2=,即m =AOB ∆面积取最大值,此时2122222t 32m y y 2m 3(2m 3)-==-++,即t 10=,所以,直线方程为x 10+=,椭圆方程为222x 3y 10+=.小结:利用向量的数量积构造等量关系要比利用圆锥曲线的性质构造等量关系容易.例13.已知PA (x y)=u u u r,PB (x y)=u u u r ,且|PA ||PB |6+=u u u r u u u r, 求|2x 3y 12|--的最大值和最小值. 解答过程:设P(x,y),A(,,因为|PA ||PB |6+=u u u r u u u r,且|AB |6=<,所以,动点P 的轨迹是以A 、B 为焦点,长轴长为6的椭圆, 椭圆方程为22x y 194+=,令x 3cos ,y 2sin =θ=θ,则|2x 3y 12|--=|)12|4πθ+-,当cos()14πθ+=-时,|2x 3y 12|--取最大值12+当cos()14πθ+=时,|2x 3y 12|--取最小值12- 小结:利用椭圆的参数方程,可以将复杂的代数运算化为简单的三角运算. 考点8 利用向量处理圆锥曲线中的取值范围问题解析几何中求变量的范围,一般情况下最终都转化成方程是否有解或转化成求函数的值域问题. 例14.(2006年福建卷) 已知椭圆2212x y +=的左焦点为F ,O 为坐标原点.(I )求过点O 、F ,并且与椭圆的左准线l 相切的圆的方程; (II )设过点F 且不与坐标轴垂直的直线交椭圆于A 、B 两点, 线段AB 的垂直平分线与x 轴交于点G ,求点G 横坐标的取值范围. 考查意图:本小题主要考查直线、圆、椭圆和不等式等基本知识,考 查平面解析几何的基本方法,考查运算能力和综合解题能力. 解答过程:(I )222,1,1,(1,0),: 2.a b c F l x ==∴=-=-QQ 圆过点O 、F ,∴圆心M 在直线12x =-上.设1(,),2M t -则圆半径13()(2).22r =---=由,OM r =3,2解得t=∴所求圆的方程为2219()(.24x y ++=(II )设直线AB 的方程为(1)(0),y k x k =+≠ 代入221,2x y +=整理得2222(12)4220.k x k x k +++-=Q 直线AB 过椭圆的左焦点F ,∴方程有两个不等实根.记1122(,),(,),A x y B x y AB 中点00(,),N x y则21224,21k x x k +=-+AB ∴的垂直平分线NG 的方程为001().y y x x k-=--令0,y =得222002222211.21212124210,0,2G G k k k x x ky k k k k k x =+=-+=-=-+++++≠∴-<<Q ∴点G 横坐标的取值范围为1(,0).2-例15.已知双曲线C :2222x y 1(a 0,b 0)a b-=>>,B 是右顶点,F 是右焦点,点A 在x 轴正半轴上,且满足|OA |,|OB |,|OF |u u u r u u u r u u u r成等比数列,过F 作双曲线C 在第一、三象限的渐近线的垂线l ,垂足为P ,(1)求证:PA OP PA FP ⋅=⋅u u u r u u u r u u u r u u r;(2)若l 与双曲线C 的左、右两支分别相交于点D,E ,求双曲线C 的离心率e 的取值范围.解答过程:(1)因|OA |,|OB |,|OF |u u u r u u u r u u u r 成等比数列,故22|OB |a |OA |c|OF |==u u u ru u u r u u u r ,即2a A(,0)c,直线l :a y (x c)b=--, 由2a y (x c)a ab b P(,)bc c y x a ⎧=--⎪⎪⇒⎨⎪=⎪⎩, 故:22ab a ab b ab PA (0,),OP (,),FP (,)c c c c c=-==-u u u r u u u r u u r 则:222a b PA OP PA FP c⋅=-=⋅u u u r u u u r u u ur u u r ,即PA OP PA FP ⋅=⋅u u u r u u u r u u u r u u r ;(或PA (OP FP)PA (PF PO)PA OF 0⋅-=⋅-=⋅=u u u r u u u r u u r u u u r u u r u u u r u u u r u u u r,即PA OP PA FP ⋅=⋅u u u r u u u r u u u r u u r ) (2)由44422222222222222a y (x c)a a a c (b )x 2cx (a b )0bb b b b x a y a b ⎧=--⎪⇒-+-+=⎨⎪-=⎩,由4222212422a c (ab )b x x 0a b b -+=<-得:4422222b a b c a a e 2e >⇒=->⇒>⇒> (或由DF DO k k >⇒a b b a->-⇒22222b c a a e 2e =->⇒>⇒>小结:向量的数量积在构造等量关系中的作用举足轻重,而要运用数量积,必须先恰当地求出各个点的坐标.例16.已知a (x,0)=r ,b (1,y)=r,(a (a +⊥-r r ,(1)求点P(x,y)的轨迹C 的方程;(2)若直线y kx m(m 0)=+≠与曲线C 交于A 、B 两点,D(0,1)-,且|AD ||BD |=, 试求m 的取值范围.解答过程:(1)a r=(x,0)y)(x +=+,a -r=(x,0)y)(x =,因(a (a +⊥-r r,故(a (a 0⋅-=r r ,即22(x (x x 3y 30⋅-=--=,故P 点的轨迹方程为22x y 13-=. (2)由22y kx mx 3y 3=+⎧⎨-=⎩得:222(13k )x 6kmx 3m 30----=,设1122A(x ,y ),B(x ,y ),A 、B 的中点为00M(x ,y )则22222(6km)4(13k )(3m 3)12(m 13k )0∆=----=+->,1226km x x 13k +=-,1202x x 3km x 213k +==-,002my kx m 13k=+=-, 即A 、B 的中点为223km m(,)13k 13k--, 则线段AB 的垂直平分线为:22m 13kmy ()(x )13k k 13k -=----,将D(0,1)-的坐标代入,化简得:24m 3k 1=-,则由222m 13k 04m 3k 1⎧+->⎪⎨=-⎪⎩得:2m 4m 0->,解之得m 0<或m 4>, 又24m 3k 11=->-,所以1m 4>-, 故m 的取值范围是1(,0)(4,)4-+∞U .小结:求变量的范围,要注意式子的隐含条件,否则会产生增根现象. 考点9 利用向量处理圆锥曲线中的存在性问题存在性问题,其一般解法是先假设命题存在,用待定系数法设出所求的曲线方程或点的坐标,再根据合理的推理,PQCB A xy O若能推出题设中的系数,则存在性成立,否则,不成立.例17.已知A,B,C 是长轴长为4的椭圆上的三点,点A 是长轴的一个顶点,BC 过椭圆的中心O ,且AC BC 0⋅=u u u r u u u r,|BC |2|AC |=u u u r u u u r ,(1)求椭圆的方程;(2)如果椭圆上的两点P ,Q 使PCQ ∠的平分线垂直于OA ,是否总存在实数λ,使得PQ λAB =u u u r u u u r?请说明理由;解答过程:(1)以O 为原点,OA 所在直线为x 轴建立 平面直角坐标系,则A(2,0),设椭圆方程为222x y 14b +=,不妨设C 在x 轴上方, 由椭圆的对称性,|BC |2|AC |2|OC ||AC ||OC |==⇒=u u u r u u u r u u u r u u u r u u u r,又AC BC 0⋅=u u u r u u u rAC OC ⇒⊥,即ΔOCA 为等腰直角三角形,由A(2,0)得:C(1,1),代入椭圆方程得:24b 3=, 即,椭圆方程为22x 3y 144+=; (2)假设总存在实数λ,使得PQ λAB =u u u r u u u r,即AB//PQ ,由C(1,1)得B(1,1)--,则AB 0(1)1k 2(1)3--==--,若设CP :y k(x 1)1=-+,则CQ :y k(x 1)1=--+,由22222x 3y 1(13k )x 6k(k 1)x 3k 6k 1044y k(x 1)1⎧+=⎪⇒+--+--=⎨⎪=-+⎩, 由C(1,1)得x 1=是方程222(13k )x 6k(k 1)x 3k 6k 10+--+--=的一个根,由韦达定理得:2P P 23k 6k 1x x 113k --=⋅=+,以k -代k 得2Q 23k 6k 1x 13k+-=+, 故P Q P Q PQ P QP Qy y k(x x )2k1k x x x x 3-+-===--,故AB//PQ , 即总存在实数λ,使得PQ λAB =u u u r u u u r.评注:此题考察了坐标系的建立、待定系数法、椭圆的对称性、向量的垂直、向量的共线及探索性问题的处理方法等,是一道很好的综合题.考点10 利用向量处理直线与圆锥曲线的关系问题直线和圆锥曲线的关系问题,一般情况下,是把直线的方程和曲线的方程组成方程组,进一步来判断方程组的解的情况,但要注意判别式的使用和题设中变量的范围.例18.设G 、M 分别是ABC ∆的重心和外心,A(0,a)-,B(0,a)(a 0)>,且GM AB =λu u u u r u u u r,(1)求点C 的轨迹方程;(2)是否存在直线m ,使m 过点(a,0)并且与点C 的轨迹交于P 、Q 两点,且OP OQ 0⋅=u u u r u u u r?若存在,求出直线m的方程;若不存在,请说明理由.解答过程:(1)设C(x,y),则x y G(,)33,因为GM AB =λu u u u r u u u r ,所以GM//AB ,则xM(,0)3,由M 为ABC ∆的外心,则|MA ||MC |==整理得:2222x y 1(x 0)3a a+=≠;(2)假设直线m 存在,设方程为y k(x a)=-,由2222y k(x a)x y 1(x 0)3aa =-⎧⎪⎨+=≠⎪⎩得:22222(13k )x 6k ax 3a (k 1)0+++-=, 设1122P(x ,y ),Q(x ,y ),则21226k ax x 13k +=+,221223a (k 1)x x 13k -=+, 22212121212y y k (x a)(x a)k [x x a(x x )a ]=--=-++=2222k a 13k -+,由OP OQ 0⋅=u u u r u u u r得:1212x x y y 0+=,即2222223a (k 1)2k a 013k 13k--+=++,解之得k = 又点(a,0)在椭圆的内部,直线m 过点(a,0), 故存在直线m,其方程为y a)=-.小结:(1)解答存在性的探索问题,一般思路是先假设命题存在,再推出合理或不合理的结果,然后做出正确的判断;(2)直线和圆锥曲线的关系问题,一般最终都转化成直线的方程和圆锥曲线的方程所组成的方程组的求解问题. 【专题训练与高考预测】 一、选择题1.如果双曲线经过点,且它的两条渐近线方程是1y x 3=±,那么双曲线方程是()A .22x y 1369-= B .22x y 1819-= C .22x y 19-= D .22x y 1183-=2.已知椭圆2222x y 13m 5n +=和双曲线2222x y 12m 3n-=有公共的焦点,那么双曲线的的渐近线方程为( )A.x =B. y =C. x =D. y =3.已知12F ,F 为椭圆2222x y 1(a b 0)a b+=>>的焦点,M 为椭圆上一点,1MF 垂直于x 轴, 且12FMF 60∠=︒,则椭圆的离心率为() A.12B.24.二次曲线22x y 14m+=,当m [2,1]∈--时,该曲线的离心率e 的取值范围是()A.B.C.D.5.直线m 的方程为y kx 1=-,双曲线C 的方程为22x y 1-=,若直线m 与双曲线C的右支相交于不重合的两点,则实数k 的取值范围是()A.(B.C.[D.6.已知圆的方程为22x y 4+=,若抛物线过点A(1,0)-,B(1,0),且以圆的切线为准线,则抛物线的焦点的轨迹方程为( )A. 22x y 1(y 0)34+=≠ B. 22x y 1(y 0)43+=≠C. 22x y 1(x 0)34-=≠D. 22x y 1(x 0)43-=≠ 二、填空题7.已知P 是以1F 、2F 为焦点的椭圆)0(12222>>=+b a b y a x 上一点,若021=⋅PF PF 21tan 21=∠F PF ,则椭圆的离心率为______________ .8.已知椭圆x 2+2y 2=12,A 是x 轴正方向上的一定点,若过点A ,斜率为1的直线被椭圆截得的弦长为3134,点A 的坐标是______________ .9.P 是椭圆22x y 143+=上的点,12F ,F 是椭圆的左右焦点,设12|PF ||PF |k⋅=,则k 的最大值与最小值之差是______________ . 10.给出下列命题:①圆22(x 2)(y 1)1++-=关于点M(1,2)-对称的圆的方程是22(x 3)(y 3)1++-=;②双曲线22x y 1169-=右支上一点P 到左准线的距离为18,那么该点到右焦点的距离为292; ③顶点在原点,对称轴是坐标轴,且经过点(4,3)--的抛物线方程只能是29y x 4=-;④P 、Q 是椭圆22x 4y 16+=上的两个动点,O 为原点,直线OP ,OQ 的斜率之积为14-,则22|OP ||OQ |+等于定值20 .把你认为正确的命题的序号填在横线上_________________ .三、解答题11.已知两点,B(0),动点P 在y 轴上的射影为Q ,2PA PB 2PQ ⋅=u u u u r u u u r u u u r,(1)求动点P 的轨迹E 的方程;(2)设直线m 过点A ,斜率为k ,当0k 1<<C 到直线m 试求k 的值及此时点C 的坐标. 12.如图,1F (3,0)-,2F (3,0)是双曲线C 4x 3=是双曲线C 的右准线,12A ,A 是FQoyx双曲线C 的两个顶点,点P 是双曲线C 右支上异于2A 的一动点,直线1A P 、2A P 交双曲线C 的右准线分别于M,N 两点,(1)求双曲线C 的方程;(2)求证:12FM F N ⋅u u u u r u u u u r是定值.13.已知OFQ ∆的面积为S ,且OF FQ 1⋅=u u u r u u u r,建立如图所示坐标系,(1)若1S 2=,|OF |2=u u u r,求直线FQ 的方程;当|OQ |u u u r取得最小值时(2)设|OF |c(c 2)=≥u u u r,3S c 4=,若以O 为中心,F 为焦点的椭圆过点Q ,求的椭圆方程.14.已知点H(3,0)-,点P 在y 轴上,点Q 在x 轴的正半轴上,点M 在直线PQ 上,且满足HP PM 0⋅=u u u r u u u r,3PM MQ 2=-u u u r u u u u r,(1)当点P 在y 轴上移动时,求点M 的轨迹C ;ABE ∆为等边三(2)过点T(1,0)-作直线m 与轨迹C 交于A 、B 两点,若在x 角形,求0x 的值.15.已知椭圆)0(12222>>=+b a by ax 的长、短轴端点分别为A 、B x 轴作垂线,恰好通过椭圆的左焦点1F ,向量与OM 是共线向量. (1)求椭圆的离心率e ;(2)设Q 是椭圆上任意一点, 1F 、2F 分别是左、右焦点,求∠21QF F 的取值范围;16.已知两点M (-1,0),N (1,0)且点P 使⋅⋅⋅,,成公差小于零的等差数列, (Ⅰ)点P 的轨迹是什么曲线?(Ⅱ)若点P 坐标为),(00y x ,θ为PM 与的夹角,求tan θ.【参考答案】一. 1.C .提示,设双曲线方程为11(x y)(x y)33+-=λ,将点代入求出λ即可.2.D .因为双曲线的焦点在x 轴上,故椭圆焦点为,双曲线焦点为,由22223m 5n 2m 3n -=+得|m |n |=,所以,双曲线的渐近线为y == .3.C .设1|MF |d =,则2|MF |2d =,12|FF |=,1212|FF |c 2c e a 2a |MF ||MF |====+.4.C .1>,故选C ;或用2a 4=,2b m =-来计算.5.B .将两方程组成方程组,利用判别式及根与系数的关系建立不等式组. 6.B .数形结合,利用梯形中位线和椭圆的定义.二.7.解:设c 为为椭圆半焦距,∵021=⋅PF ,∴21PF PF ⊥ .又21tan 21=∠F PF ∴⎪⎪⎪⎩⎪⎪⎪⎨⎧==+=+212)2(122122221PF PF a PF PF c PF PF解得:25()93,cc e aa === . 选D . 8. 解:设A (x 0,0)(x 0>0),则直线l 的方程为y=x-x 0,设直线l 与椭圆相交于P (x 1,y 1),Q (x 2、y 2),由 y=x-x 0可得3x 2-4x 0x+2x 02-12=0,x 2+2y 2=12 34021x x x =+,31222021-=⋅x x x ,则20202021221212363234889164)(||x x x x x x x x x -=--=-+=-.∴||13144212x x x -⋅+=,即202363223144x -⋅⋅=.∴x 02=4,又x 0>0,∴x 0=2,∴A (2,0).9.1;22212k |PF ||PF |(a ex)(a ex)a e x =⋅=+-=- .10.②④.三. 11.解(1)设动点P 的坐标为(x,y),则点Q(0,y),PQ (x,0)=-u u u r,PA x,y)=-u u u r,PB (x,y)=-u u u r ,22PA PB x 2y ⋅=-+u u u r u u u r,因为2PA PB 2PQ ⋅=u u u u r u u u r u u u r ,所以222x 2y 2x -+=,即动点P 的轨迹方程为:22y x 2-=; (2)设直线m :y k(x k 1)=<<,依题意,点C 在与直线m 平行,且与m设此直线为1m :y kx b =+2b 2+=,……①把y kx b =+代入22y x 2-=,整理得:222(k 1)x 2kbx (b 2)0-++-=,则22224k b 4(k 1)(b 2)0∆=---=,即22b 2k 2+=,…………②由①②得:k =b =此时,由方程组22yy x2⎧=⎪⎨⎪-=⎩.12.解:(1)依题意得:c3=,2a4c3=,所以a2=,2b5=,所求双曲线C的方程为22x y145-=;(2)设00P(x,y),11M(x,y),22N(x,y),则1A(2,0)-,2A(2,0),100A P(x2,y)=+u u u u r,200A P(x2,y)=-u u u u r,1110A M(,y)3=u u u u r,222A N(,y)3=-u u u u r,因为1A Pu u u u r与1A Mu u u u r共线,故01010(x2)y y3+=,0110yy3(x2)=+,同理:022yy3(x2)=--,则1113FM(,y)3=u u u u r,225F N(,y)3=-u u u u r,所以12FM F N⋅u u u u r u u u u r=1265y y9-+=20220y6599(x4)---=225(x4)206541099(x4)-⨯--=--.13.解:(1)因为|OF|2=u u u r,则F(2,0),OF(2,0)=u u u r,设00Q(x,y),则00FQ(x2,y)=-u u u r,0OF FQ2(x2)1⋅=-=u u u r u u u r,解得5x2=,由0011S|OF||y||y|22=⋅==u u u r,得1y2=±,故51Q(,)22±,所以,PQ所在直线方程为y x2=-或y x2=-+;(2)设00Q(x,y),因为|OF|c(c2)=≥u u u r,则00FQ(x c,y)=-u u u r,由OF FQ c(x c)1⋅=-=u u u r u u u r得:1x cc=+,又13S c|y|c24==,则3y2=±,13Q(c,)c2+±,2219|OQ|(c)c4=++u u u r,易知,当c2=时,|OQ|u u u r最小,此时53Q(,)22±,设椭圆方程为2222x y1,(a b0)a b+=>>,则2222a b425914a4b⎧-=⎪⎨+=⎪⎩,解得22a10b6⎧=⎪⎨=⎪⎩,所以,椭圆方程为22x y1106+=.14.解:(1)设M(x,y),由3PM MQ2=-u u u r u u u u r得:yP(0,)2-,xQ(,0)3,由HP PM0⋅=u u u r u u u r得:y3y(3,)(x,)022-=,即2y4x=,由点Q 在x 轴的正半轴上,故x 0>,即动点M 的轨迹C 是以(0,0)为顶点,以(1,0)为焦点的抛物线,除去原点; (2)设m :y k(x 1)(k 0)=+≠,代入2y 4x =得:2222k x 2(k 2)x k 0+-+=…………①设11A(x ,y ),22B(x ,y ),则12x ,x 是方程①的两个实根,则21222(k 2)x x k -+=-,12x x 1=,所以线段AB 的中点为222k 2(,)k k-, 线段AB 的垂直平分线方程为22212k y (x )k k k--=--,令y 0=,022x 1k=+,得22E(1,0)k+, 因为ABE ∆为正三角形,则点E 到直线ABAB |,又|AB|,=k =011x 3= . 15.解:(1)∵ab yc x c F M M 21,),0,(=-=-则,∴acb k OM 2-= .∵OM a b k AB 与,-=是共线向量,∴a b ac b -=-2,∴b=c,故22=e .(2)设1122121212,,,2,2,FQr F Q r F QF r r a F F c θ==∠=∴+==22222221212122121212124()24cos 11022()2r r c r r r r c a a r r r r r r r r θ+-+--===-≥-=+当且仅当21r r =时,cos θ=0,∴θ]2,0[π∈ .16.解:(Ⅰ)记P (x,y ),由M (-1,0)N (1,0)得(1,),PM MP x y =-=---u u u u r u u u r ),1(y x NP PN ---=-=, )0,2(=-= . 所以 )1(2x +=⋅ . 122-+=⋅y x PN PM , )1(2x -=⋅ .于是, NP NM PN PM MN MP ⋅⋅⋅,,是公差小于零的等差数列等价于⎪⎩⎪⎨⎧<+---++=-+0)1(2)1(2)]1(2)1(2[21122x x x x y x 即 ⎩⎨⎧>=+0322x y x .所以,点P 的轨迹是以原点为圆心,3为半径的右半圆.(Ⅱ)点P 的坐标为),(00y x 。