基于Matlab的车牌识别算法

合集下载

(完整版)基于matlab的车牌识别(含子程序)

(完整版)基于matlab的车牌识别(含子程序)

基于 matlab 的车牌鉴别系统一、对车辆图像进行预办理1.载入车牌图像:function [d]=main(jpg)[filename, pathname] = uigetfile({'*.jpg',文件 (*.jpg)'});'JPEG if(filename == 0), return, endglobal FILENAME % 定义全局变量FILENAME = [pathname filename];I=imread(FILENAME);figure(1),imshow(I);title(' 原图像 ');% 将车牌的原图显示出来结果以下:2.将彩图变换为灰度图并绘制直方图:I1=rgb2gray(I);%将彩图变换为灰度图figure(2),subplot(1,2,1),imshow(I1);title(' 灰度图像');figure(2),subplot(1,2,2),imhist(I1);title(' 灰度图直方图');% 绘制灰度图的直方图结果以下所示:3.用 roberts 算子进行边缘检测:I2=edge(I1,'roberts',0.18,'both');% 选择阈值,用 roberts 算子进行边缘检测figure(3),imshow(I2);title('roberts算子边缘检测图像');结果以下:4.图像推行腐化操作:se=[1;1;1];I3=imerode(I2,se);% 对图像推行腐化操作,即膨胀的反操作figure(4),imshow(I3);title('腐化后图像');5.圆滑图像se=strel('rectangle',[25,25]);% 构造构造元素以正方形构造一个seI4=imclose(I3,se);%图像聚类、填充图像figure(5),imshow(I4);title('圆滑图像');结果以下所示:6.删除二值图像的小对象I5=bwareaopen(I4,2000);% 去除聚团灰度值小于 2000 的部分figure(6),imshow(I5);title(' 从对象中移除小的对象 ');结果以下所示:二、车牌定位[y,x,z]=size(I5);%返回 I5 各维的尺寸,储藏在x,y,z中myI=double(I5);% 将 I5 变换成双精度tic%tic表示计时的开始,toc 表示计时的结束Blue_y=zeros(y,1);%产生一个y*1 的零阵for i=1:yfor j=1:xif(myI(i,j,1)==1)% 若是myI(i,j,1) 即myI 的图像中坐标为(i,j) 的点值为1,即该点为车牌背景颜色蓝色% 则Blue_y(i,1) 的值加 1Blue_y(i,1)= Blue_y(i,1)+1;% 蓝色像素点统计endendend[temp MaxY]=max(Blue_y);%Y方向车牌地域确定%temp 为向量 white_y的元素中的最大值,MaxY为该值的索引PY1=MaxY;while ((Blue_y(PY1,1)>=5)&&(PY1>1))PY1=PY1-1;endPY2=MaxY;while ((Blue_y(PY2,1)>=5)&&(PY2<y))PY2=PY2+1;endIY=I(PY1:PY2,:,:);%x 方向车牌地域确定%%%%%%方X向 %%%%%%%%%Blue_x=zeros(1,x);%进一步确定x 方向的车牌地域for j=1:xfor i=PY1:PY2if(myI(i,j,1)==1)Blue_x(1,j)= Blue_x(1,j)+1;endendendPX1=1;while ((Blue_x(1,PX1)<3)&&(PX1<x))PX1=PX1+1;endPX2=x;while ((Blue_x(1,PX2)<3)&&(PX2>PX1))PX2=PX2-1;endPX1=PX1-1;%对车牌地域的校正PX2=PX2+1;dw=I(PY1:PY2-8,PX1:PX2,:);t=toc;figure(7),subplot(1,2,1),imshow(IY),title('行方向合理地域');% 行方向车牌地域确定figure(7),subplot(1,2,2),imshow(dw),title('定位裁剪后的车牌彩色图像');的车牌区域以下所示:三、字符切割及办理1.车牌的进一步办理对切割出的彩色车牌图像进行灰度变换、二值化、均值滤波、腐化膨胀以及字符切割以从车牌图像中分别出组成车牌号码的单个字符图像,对切割出来的字符进行预办理(二值化、归一化),此后解析提取,对切割出的字符图像进行鉴别给出文本形式的车牌号码。

《2024年基于MATLAB的车牌识别系统研究》范文

《2024年基于MATLAB的车牌识别系统研究》范文

《基于MATLAB的车牌识别系统研究》篇一一、引言随着智能交通系统的快速发展,车牌识别技术已成为智能交通系统的重要组成部分。

车牌识别技术能够有效地对车辆进行身份识别、交通监控、违法查处等,对于提高交通管理效率和保障交通安全具有重要意义。

本文将基于MATLAB平台,对车牌识别系统进行深入研究。

二、车牌识别系统概述车牌识别系统主要由图像采集、预处理、特征提取和识别四个部分组成。

首先通过摄像头等设备采集包含车牌的图像,然后对图像进行预处理,包括去噪、二值化、边缘检测等操作,使车牌图像更加清晰。

接着,通过特征提取算法提取出车牌上的字符特征,最后通过识别算法对字符进行识别,实现车牌号码的识别。

三、MATLAB在车牌识别系统中的应用MATLAB是一种强大的数学计算软件,具有强大的图像处理和机器学习功能,非常适合用于车牌识别系统的研究和开发。

在车牌识别系统中,MATLAB可以用于图像预处理、特征提取和识别等各个环节。

1. 图像预处理在MATLAB中,可以使用图像处理工具箱中的各种函数对车牌图像进行预处理。

例如,可以使用imread函数读取图像,使用imnoise函数添加噪声模拟实际环境中的干扰,使用gray2ind 函数进行图像二值化等。

此外,MATLAB还提供了许多滤波器和边缘检测算法,如Sobel算子和Canny算子等,可以用于去除图像中的噪声和增强边缘信息。

2. 特征提取特征提取是车牌识别系统中的关键环节。

在MATLAB中,可以使用各种算法对车牌图像进行特征提取。

例如,可以使用投影法、连通域法等算法对车牌字符进行分割和定位,然后使用模板匹配、神经网络等算法对字符进行特征提取和分类。

此外,MATLAB还提供了许多机器学习算法,如支持向量机、决策树等,可以用于训练和优化车牌识别模型。

3. 识别算法在特征提取后,需要使用识别算法对字符进行识别。

在MATLAB中,可以使用各种分类器对字符进行识别。

例如,可以使用最近邻分类器、贝叶斯分类器等基于统计的分类器,也可以使用神经网络、支持向量机等基于机器学习的分类器。

《2024年基于MATLAB的车牌识别系统研究》范文

《2024年基于MATLAB的车牌识别系统研究》范文

《基于MATLAB的车牌识别系统研究》篇一一、引言随着智能化交通系统的不断发展,车牌识别技术在现代交通管理中发挥着越来越重要的作用。

基于MATLAB的车牌识别系统研究,能够为智能交通系统提供准确、高效的车牌信息处理手段。

本文旨在介绍基于MATLAB的车牌识别系统的基本原理、方法以及实际应用。

二、车牌识别系统基本原理车牌识别系统主要包括图像预处理、车牌定位、字符分割和字符识别四个基本环节。

基于MATLAB的车牌识别系统采用数字图像处理技术,对采集到的车牌图像进行处理,以实现车牌的准确识别。

1. 图像预处理图像预处理是车牌识别系统的第一步,主要目的是去除图像中的噪声、增强图像的对比度,以便于后续的车牌定位和字符分割。

MATLAB提供了丰富的图像处理函数,如滤波、二值化、边缘检测等,可以有效地实现图像预处理。

2. 车牌定位车牌定位是车牌识别系统的关键环节,主要采用颜色分割、形态学方法、投影分析等方法。

在MATLAB中,可以通过颜色空间转换、阈值分割等手段,提取出车牌区域,为后续的字符分割和识别提供基础。

3. 字符分割字符分割是将车牌图像中的每个字符进行分离的过程。

在MATLAB中,可以采用投影法、连通域法等方法进行字符分割。

首先对车牌区域进行垂直投影,根据投影峰值的分布情况,确定每个字符的位置,然后进行水平投影,进一步确定每个字符的宽度,从而实现字符的精确分割。

4. 字符识别字符识别是车牌识别系统的最后一步,主要是对分割后的字符进行识别。

在MATLAB中,可以采用模板匹配、神经网络等方法进行字符识别。

模板匹配法是通过将待识别的字符与标准字符模板进行比对,找出最相似的字符作为识别结果。

神经网络法则是通过训练大量的样本数据,建立字符识别的模型,从而实现高精度的字符识别。

三、MATLAB在车牌识别系统中的应用MATLAB作为一种强大的数学计算软件,在车牌识别系统中发挥着重要作用。

首先,MATLAB提供了丰富的图像处理函数和算法库,可以方便地实现图像的预处理、车牌定位、字符分割和字符识别等过程。

基于MATLAB的车牌智能识别设计

基于MATLAB的车牌智能识别设计

基于MATLAB的车牌智能识别设计摘要:车牌智能识别技术是智能交通系统中的重要组成部分,能够提高交通管理效率和安全性。

本文基于MATLAB平台,设计了一种车牌智能识别系统,通过图像处理和模式识别技术实现车牌号码的准确识别。

该系统能够实现对车辆行驶过程中的车牌信息进行实时提取和识别,具有较高的准确性和稳定性,可以有效应用于停车场管理、交通违法抓拍等领域。

关键词:车牌智能识别;MATLAB;图像处理;模式识别一、引言随着汽车数量的快速增长,交通拥堵和交通管理成为社会发展中的一大难题。

为了提高交通管理效率和安全性,智能交通系统得到了广泛的关注和应用。

车牌智能识别技术作为智能交通系统中的重要组成部分,能够实现对车辆行驶过程中的车牌信息进行实时提取和识别,为交通管理和监控提供了重要的支持。

二、相关技术及方法1. 图像处理技术图像处理技术是车牌智能识别系统中的核心技术之一,主要包括灰度化、二值化、边缘检测、形态学处理等操作。

灰度化是将彩色图像转换为灰度图像,简化了图像信息的处理;二值化将灰度图像转换为二值图像,方便进行特征提取和分割操作;边缘检测可以准确提取车牌的轮廓信息;形态学处理可以用于去除图像中的噪声点和填充孔洞,提高字符的连通性。

2. 字符分割与特征提取字符分割是指将车牌图像中的字符分离出来,是车牌识别的关键步骤之一。

在字符分割后,需要进行字符的特征提取,包括字符的大小、形状、像素点分布等特征。

这些特征可以用于字符的识别和分类,提高识别的准确性和鲁棒性。

3. 模式识别算法模式识别算法是车牌智能识别系统中的另一个核心技术,主要包括基于模板匹配的模式识别、基于统计学习的模式识别、基于深度学习的模式识别等方法。

这些算法能够对字符进行准确的识别和分类,为车牌智能识别系统提供了强大的分析和识别能力。

三、车牌智能识别系统设计基于MATLAB平台,设计的车牌智能识别系统主要包括图像预处理、字符分割与特征提取、模式识别和结果输出四个主要模块。

基于Matlab的车牌识别(完整版)

基于Matlab的车牌识别(完整版)

基于Matlab的车牌识别摘要:车牌识别技术是智能交通系统的重要组成部分,在近年来得到了很大的发展。

本文从预处理、边缘检测、车牌定位、字符分割、字符识别五个方面,具体介绍了车牌自动识别的原理。

并用MATLAB软件编程来实现每一个部分,最后识别出汽车车牌。

一、设计原理车辆车牌识别系统的基本工作原理为:将摄像头拍摄到的包含车辆车牌的图像通过视频卡输入到计算机中进行预处理,再由检索模块对车牌进行搜索、检测、定位,并分割出包含车牌字符的矩形区域,然后对车牌字符进行二值化并将其分割为单个字符,然后输入JPEG或BMP格式的数字,输出则为车牌号码的数字。

车牌自动识别是一项利用车辆的动态视频或静态图像进行车牌号码、车牌颜色自动识别的模式识别技术。

其硬件基础一般包括触发设备、摄像设备、照明设备、图像采集设备、识别车牌号码的处理机等,其软件核心包括车牌定位算法、车牌字符分割算法和光学字符识别算法等。

某些车牌识别系统还具有通过视频图像判断车辆驶入视野的功能称之为视频车辆检测。

一个完整的车牌识别系统应包括车辆检测、图像采集、车牌识别等几部分。

当车辆检测部分检测到车辆到达时触发图像采集单元,采集当前的视频图像。

车牌识别单元对图像进行处理,定位出车牌位置,再将车牌中的字符分割出来进行识别,然后组成车牌号码输出。

二、设计步骤总体步骤为:基本的步骤:a.车牌定位,定位图片中的车牌位置;b.车牌字符分割,把车牌中的字符分割出来;c.车牌字符识别,把分割好的字符进行识别,最终组成车牌号码。

车牌识别过程中,车牌颜色的识别依据算法不同,可能在上述不同步骤实现,通常与车牌识别互相配合、互相验证。

(1)车牌定位:自然环境下,汽车图像背景复杂、光照不均匀,如何在自然背景中准确地确定车牌区域是整个识别过程的关键。

首先对采集到的视频图像进行大范围相关搜索,找到符合汽车车牌特征的若干区域作为候选区,然后对这些侯选区域做进一步分析、评判,最后选定一个最佳的区域作为车牌区域,并将其从图象中分割出来。

车牌识别matlab实验报告

车牌识别matlab实验报告

车牌识别matlab实验报告标题:基于Matlab的车牌识别实验报告摘要:车牌识别是计算机视觉领域的一个重要研究方向,具有广泛的应用前景。

本实验基于Matlab平台,设计并实现了一个简单的车牌识别系统。

实验采用了图像处理和模式识别的技术,通过对车牌图像的预处理、字符分割和字符识别等步骤,成功地实现了对车牌的自动识别。

实验结果表明,该系统在不同场景下的车牌识别效果良好。

一、引言随着交通问题的日益突出,车牌识别技术在交通管理、安防等领域得到广泛应用。

车牌识别系统的核心是对车牌图像进行处理和分析,从中提取出车牌的信息。

本实验旨在利用Matlab平台,实现一个简单的车牌识别系统,并对其性能进行评估。

二、实验方法1. 数据收集:收集包含不同角度、光照条件和车牌类型的车牌图像,并建立一个图像库。

2. 图像预处理:对采集到的车牌图像进行预处理,包括图像增强、灰度化、二值化等操作,以减小光照和噪声对后续处理的影响。

3. 车牌定位:利用边缘检测和形态学处理等方法,对预处理后的图像进行车牌定位,提取出车牌区域。

4. 字符分割:对提取到的车牌区域进行字符分割,将车牌中的字符单独切割出来,以便后续的字符识别。

5. 字符识别:利用模式识别算法,对字符进行识别。

本实验采用了支持向量机(SVM)算法进行训练和分类。

6. 性能评估:对实验结果进行评估,包括准确率、召回率和F1值等指标。

三、实验结果与讨论经过实验测试,我们的车牌识别系统在不同场景下表现出良好的性能。

在收集的测试集上,系统的准确率达到了90%,召回率为85%。

在实际应用中,我们注意到系统对于光照条件较好、车牌清晰的图像处理效果更佳,对于遮挡、模糊的车牌图像处理效果有待改进。

四、结论本实验基于Matlab平台,设计并实现了一个简单的车牌识别系统。

通过图像预处理、车牌定位、字符分割和字符识别等步骤,我们成功地实现了对车牌的自动识别。

实验结果表明,该系统在不同场景下的车牌识别效果良好,并能够较为准确地提取出车牌中的字符信息。

基于matlab的车牌识别算法

基于matlab的车牌识别算法

基于Matlab的车牌识别算法摘要车牌系统是计算机视觉和模式识别技术在智能交通领域的重要应用课题之一。

车牌识别系统是以特定目标为对象的专用计算机系统,该系统主要包括三个内容:车牌定位、字符分割和字符识别。

其中车牌定位的目的就是从所拍摄的汽车图像中确定车牌的位置,从而便于后续的字符分割和字符识别工作。

目前常用的方法有:基于模板匹配的方法、基于特征的方法和神经网络法等。

本设计采用基于模板匹配算法和基于人工神经网络算法对车牌进行定位识别,此算法只对蓝底白字车牌进行分割识别,对黑底白字车牌原则上整个算法可直接适用,。

此算法分割出的图像像素值和模板图像达到了一致,由此便避免了切割出的图像像素值不一致所带来的问题。

但对白底黑字车牌、黄底黑字车牌,需要对车牌定位算法进行调整,并将图像反转(0变1、1变0)。

关键词:车牌识别系统;字符分割;车牌定位LICENSE PLATE RECOGNITION ALGORITHM BASEDON MATLABABSTRACTLicense plate system is a computer vision and pattern recognition technology in one of the important application research topic in the field of intelligent transportation. License plate recognition system based on specific goals of a special computer system, the system mainly includes three contents: license plate locating, character segmentation and character recognition. One of the purpose of license plate location is taken from the auto locate the license plate in the image, so as to facilitate the subsequent work character segmentation and character recognition. Now commonly used methods are: based on template matching method, based on the characteristics of the method and neural network, etc.This design USES based on template matching algorithm and based on artificial neural network algorithm to locate license plate recognition, the algorithm is only for blue white license plate segmentation recognition, the algorithm can be directly applicable in principle to the black white plate,. This algorithm to segment the image pixel values and template image, thus to avoid the cut out in the process of image pixel values are not consistent. But black on white background and black text plate, yellow bottom plate, adjustments need to license plate localization algorithm, and the image inversion of (0, 1, 1, 0).Key words: license plate recognition system; Character segmentation; License plate location目录1 前言 (4)1.1车牌号识别研究背景 (4)1.2 车牌号识别技术研究现状和趋势 (5)1.2.1国内外车牌识别技术情况及我国车牌特点 (5)1.2.2车牌识别技术的应用前景 (6)1.3 车牌识别研究内容 (7)2 车牌识别系统设计原理概述 (9)3 车牌识别系统程序设计 (11)3.1图像读取及车牌区域提取 (11)3.1.1图像灰度图转化 (11)3.1.2图像的边缘检测 (13)3.1.3灰度图腐蚀 (14)3.1.4图像平滑处理 (15)3.1.5移除小对象 (16)3.1.6车牌区域的边界值计算 (17)3.2字符切割 (18)3.2.1字符切割前的图像去噪处理 (18)3.2.2字符切割前的图像膨胀和腐蚀处理 (19)3.2.3字符切割 (19)3.3字符识别 (22)3.3.1字符识别方法选择 (22)3.3.2字符归一化 (22)3.3.3字符匹配识别 (23)4 仿真结果及分析 (26)4.1 车牌定位及图像读取及其图像处理 (26)4.2 车牌字符分割及其图像处理 (26)5 结论 (28)参考文献 (29)致谢............................................... 错误!未定义书签。

《2024年基于MATLAB的车牌识别系统研究》范文

《2024年基于MATLAB的车牌识别系统研究》范文

《基于MATLAB的车牌识别系统研究》篇一一、引言随着科技的发展和智能化水平的提升,车牌识别系统在智能交通系统中扮演着越来越重要的角色。

车牌识别技术作为计算机视觉和人工智能领域的一个重要应用,在交通安全、车辆管理、车辆监控等方面有着广泛的应用。

本文将介绍一种基于MATLAB 的车牌识别系统研究,该系统旨在通过图像处理和机器学习算法实现高效、准确的车牌识别。

二、车牌识别系统的原理与架构基于MATLAB的车牌识别系统主要包括以下几个步骤:图像预处理、车牌定位、字符分割和字符识别。

首先,系统将获取的图像进行预处理,包括灰度化、二值化等操作,以提高图像的对比度和清晰度。

然后,通过边缘检测和形态学操作等方法,定位出图像中的车牌区域。

接着,对车牌区域进行字符分割,将每个字符分割出来。

最后,利用机器学习算法对每个字符进行识别,得到车牌号码。

三、图像预处理图像预处理是车牌识别系统的重要步骤之一。

在MATLAB 中,我们首先对获取的图像进行灰度化和二值化处理。

灰度化操作可以将彩色图像转换为灰度图像,减少计算量。

二值化操作可以将灰度图像转换为二值图像,提高图像的对比度和清晰度。

此外,还可以通过滤波、去噪等操作进一步优化图像质量。

四、车牌定位车牌定位是车牌识别系统的关键步骤之一。

在MATLAB中,我们可以通过边缘检测和形态学操作等方法实现车牌定位。

具体而言,我们首先对预处理后的图像进行边缘检测,提取出图像中的边缘信息。

然后,利用形态学操作对边缘信息进行填充、腐蚀等处理,得到车牌区域的轮廓信息。

最后,通过轮廓检测和面积筛选等方法,定位出图像中的车牌区域。

五、字符分割与识别字符分割与识别是车牌识别系统的核心步骤。

在MATLAB 中,我们可以通过投影法或连通域法等方法实现字符分割。

具体而言,我们首先对车牌区域进行投影分析,根据字符在投影图上的特点进行分割。

然后,对每个字符进行归一化处理,使其大小和位置一致。

最后,利用机器学习算法对每个字符进行识别。

《2024年基于MATLAB的车牌识别系统研究》范文

《2024年基于MATLAB的车牌识别系统研究》范文

《基于MATLAB的车牌识别系统研究》篇一一、引言车牌识别系统是现代智能交通系统的重要组成部分,具有广泛的应用前景。

本文将详细探讨基于MATLAB的车牌识别系统的研究,从算法设计到实验结果,全方位地分析系统的性能与特点。

二、车牌识别系统概述车牌识别系统主要通过图像处理和计算机视觉技术,对道路上的车牌进行自动识别。

系统主要包括图像预处理、车牌定位、字符分割和字符识别等几个关键步骤。

基于MATLAB的车牌识别系统,利用其强大的图像处理和矩阵运算能力,为车牌识别提供了有效的技术支持。

三、系统设计1. 图像预处理图像预处理是车牌识别系统的第一步,主要目的是消除图像中的噪声、增强车牌信息、改善图像质量等。

在MATLAB中,可以通过灰度化、滤波、二值化等操作,对图像进行预处理。

2. 车牌定位车牌定位是车牌识别系统的关键步骤之一,主要利用图像处理技术,从整个图像中提取出车牌区域。

常用的车牌定位方法包括投影法、边缘检测法、模板匹配法等。

在MATLAB中,可以通过这些方法实现车牌的快速定位。

3. 字符分割与识别字符分割与识别是车牌识别的核心步骤,主要将定位后的车牌图像中的字符进行分割,并识别出每个字符的具体内容。

在MATLAB中,可以通过连通域分析、投影分析等方法实现字符的分割与识别。

四、实验结果与分析为了验证基于MATLAB的车牌识别系统的性能,我们进行了大量的实验。

实验结果表明,该系统在各种光照条件、不同角度、不同颜色的车牌下均能实现较高的识别率。

同时,该系统还具有实时性高、鲁棒性强等优点。

在实验过程中,我们还对系统的各个步骤进行了详细的分析。

通过调整图像预处理的参数、优化车牌定位算法、改进字符分割与识别的方法等手段,不断提高系统的性能。

最终,我们得到了一个具有较高识别率的车牌识别系统。

五、结论本文研究了基于MATLAB的车牌识别系统,从算法设计到实验结果进行了全面的分析。

实验结果表明,该系统具有较高的识别率、实时性和鲁棒性等优点,能够满足实际需求。

Matlab环境下基于神经网络的车牌识别

Matlab环境下基于神经网络的车牌识别

Matlab环境下基于神经网络的车牌识别一、本文概述随着科技的快速发展和智能交通系统(ITS)的广泛应用,车牌识别技术已成为现代城市管理、交通监控、违法查处等多个领域的关键技术之一。

作为智能交通系统的核心组成部分,车牌识别技术旨在通过图像处理和计算机视觉的方法,从复杂多变的交通图像中准确地提取车牌信息,进而实现车辆的自动识别和跟踪。

在众多的车牌识别方法中,基于神经网络的方法因其强大的特征提取和分类能力而备受关注。

Matlab作为一款强大的数学计算和仿真软件,提供了丰富的神经网络工具箱,为用户提供了便捷的神经网络模型构建、训练和应用环境。

本文旨在探讨在Matlab环境下,如何利用神经网络技术实现高效、准确的车牌识别。

本文首先介绍了车牌识别的研究背景和意义,然后详细阐述了神经网络的基本原理及其在车牌识别中的应用。

接着,文章重点介绍了在Matlab环境下,车牌识别系统的设计和实现过程,包括图像预处理、车牌定位、字符分割和字符识别等关键步骤。

文章通过实验验证了所提出方法的有效性和优越性,并对未来的研究方向进行了展望。

通过本文的研究,旨在为车牌识别技术的发展和应用提供一定的参考和指导,同时也为相关领域的研究者和技术人员提供一种有效的解决方案。

二、车牌识别系统的基本原理车牌识别系统(License Plate Recognition, LPR)是一种通过图像处理技术自动识别和提取车辆牌照信息的系统。

在Matlab环境下,基于神经网络的车牌识别主要依赖于深度学习算法,特别是卷积神经网络(Convolutional Neural Networks, CNN)。

预处理:预处理是车牌识别的第一步,其主要目的是改善图像质量,减少噪声,并突出车牌区域。

常见的预处理步骤包括灰度化、噪声去除、边缘检测、图像增强等。

车牌定位:车牌定位是在预处理后的图像中找出车牌所在的位置。

这通常通过图像处理技术,如颜色分割、形态学操作、边缘检测等实现。

《2024年基于MATLAB的车牌识别系统研究》范文

《2024年基于MATLAB的车牌识别系统研究》范文

《基于MATLAB的车牌识别系统研究》篇一一、引言随着科技的发展,车牌识别系统在交通管理、安全监控、车辆定位等领域的应用越来越广泛。

MATLAB作为一种强大的编程语言和数据处理工具,被广泛应用于图像处理和机器视觉等领域。

本文旨在研究基于MATLAB的车牌识别系统,包括系统的基本原理、实现方法、实验结果和结论。

二、车牌识别系统的基本原理车牌识别系统是一种基于图像处理和机器视觉技术的自动识别系统。

其主要原理包括图像预处理、车牌定位、字符分割和字符识别四个部分。

在MATLAB中,这些过程通过数字图像处理算法、计算机视觉算法以及机器学习算法实现。

(一)图像预处理图像预处理是车牌识别系统的第一步,主要目的是消除图像中的噪声和干扰信息,提高图像的清晰度和对比度,以便后续的图像处理和分析。

常用的预处理方法包括灰度化、二值化、滤波等。

(二)车牌定位车牌定位是车牌识别系统的关键步骤,其主要目的是从图像中准确地检测出车牌的位置。

常用的车牌定位方法包括基于颜色特征的方法、基于形状特征的方法和基于模板匹配的方法等。

在MATLAB中,可以通过边缘检测、Hough变换等方法实现车牌的定位。

(三)字符分割字符分割是将车牌图像中的每个字符分割出来的过程。

常用的字符分割方法包括投影法、连通域法等。

在MATLAB中,可以通过图像形态学操作、阈值分割等方法实现字符的分割。

(四)字符识别字符识别是将分割后的字符进行分类和识别的过程。

常用的字符识别方法包括模板匹配法、神经网络法等。

在MATLAB中,可以通过训练分类器、使用机器学习算法等方法实现字符的识别。

三、车牌识别系统的实现方法在MATLAB中,我们可以通过编写程序实现车牌识别系统的各个步骤。

具体实现方法如下:(一)图像预处理首先,对输入的图像进行灰度化和二值化处理,消除噪声和干扰信息。

然后,通过滤波等操作提高图像的清晰度和对比度。

(二)车牌定位通过边缘检测和Hough变换等方法检测出车牌的轮廓,并确定车牌的位置。

基于MATLAB的车牌识别系统研究

基于MATLAB的车牌识别系统研究

基于MATLAB的车牌识别系统研究车牌识别系统是一种利用计算机视觉技术对车辆上的车牌进行自动识别的系统。

它具有广泛的应用前景,例如车辆管理、交通违法监测、停车场管理等领域。

本文将针对基于MATLAB的车牌识别系统进行研究,探讨系统的实现原理、算法和应用。

车牌识别系统的实现需要借助计算机视觉技术和图像处理技术。

首先,图像采集模块用于获取经过摄像头拍摄的车辆图像。

其次,图像预处理模块对采集到的图像进行几何校正、灰度化和二值化等操作,将其转化为数字图像。

然后,车牌定位模块通过提取图像中的特征,如颜色、形状等,来确定车牌的位置。

接下来,字符分割模块将车牌中的字符分隔开,以便后续的字符识别。

最后,字符识别模块使用模式匹配或者机器学习算法来识别出车牌中的字符。

在车牌识别系统中,字符识别是最核心的任务之一、常见的字符识别算法包括基于模板匹配的方法、基于统计模型的方法和基于深度学习的方法。

其中,基于模板匹配的方法通过计算字符图像与已有模板之间的相似度来进行匹配。

基于统计模型的方法则通过计算字符的特征向量与已知字符样本的特征向量之间的相似度来进行识别。

而基于深度学习的方法则使用深度神经网络来进行字符识别,具有较高的识别准确率。

MATLAB作为一种常用的科学计算和图像处理软件,提供了丰富的函数和工具箱,以支持车牌识别系统的开发。

它包括图像处理工具箱、机器学习工具箱和深度学习工具箱等。

通过使用这些工具箱,可以方便地实现车牌图像的预处理、车牌定位、字符分割和字符识别等功能。

在实际应用中,车牌识别系统可以应用于各种场景。

例如,交通管理部门可以使用车牌识别系统来识别违法车辆,从而提高交通管理的效率和准确性。

停车场管理者可以使用车牌识别系统来实现自动收费和车辆进出场的记录等功能。

此外,车牌识别系统还可以用于车辆追踪和智能交通系统等领域。

总之,基于MATLAB的车牌识别系统是一个具有广泛应用前景的研究领域。

通过利用计算机视觉和图像处理技术,结合MATLAB的强大功能,可以实现对车辆上的车牌进行自动识别,从而提高交通管理的效率和准确性,实现智能化的交通系统。

基于MATLAB的车牌识别系统

基于MATLAB的车牌识别系统

基于MATLAB的车牌识别系统
MATLAB是一款常用的科学计算软件,它具有强大的图像处理功能,因此可以用来实现一些基于图像的应用,如车牌识别系统。

以下是一个基于MATLAB的车牌识别系统的实现步骤:
1. 图像采集:使用摄像头或者其他图像采集设备获取车牌图像。

2. 图像预处理:对采集到的车牌图像进行预处理,实现图像的
灰度化、噪声去除、边缘检测等操作。

3. 车牌定位:在处理后的图像中,通过车牌的大小、形状以及
颜色等特征,确定车牌的位置和范围。

4. 字符切割:根据车牌的字符间距和字符大小等特征,将车牌
区域的字符进行切割和分离,得到每个字符的图像。

5. 字符识别:利用机器学习算法、神经网络等方法,对切割出
的字符进行识别,确定车牌号码。

6. 结果显示:将识别结果显示在屏幕上,以及保存结果。

需要注意的是,在识别车牌号码的过程中,需要大量的实例图
像和标注数据,用来进行训练和测试。

同时,对于车牌识别系统,
还需要考虑一些实际应用中的问题,如光线、角度、车速等因素对
图像质量的影响。

因此,需要设计合适的算法和方法,充分考虑实
际应用中的各种因素,提高识别准确度和可靠性。

《2024年基于MATLAB的车牌识别系统研究》范文

《2024年基于MATLAB的车牌识别系统研究》范文

《基于MATLAB的车牌识别系统研究》篇一一、引言车牌识别系统是一种在计算机视觉领域应用广泛的图像处理技术,它在道路交通管理、智能停车和安全监控等领域有着重要的应用价值。

近年来,随着人工智能技术的飞速发展,车牌识别技术也在不断提高,尤其是基于MATLAB平台的车牌识别系统研究,更是受到了广泛关注。

本文将介绍基于MATLAB的车牌识别系统的研究背景、目的和意义,并详细阐述其基本原理和实现方法。

二、车牌识别系统概述车牌识别系统是一种通过图像处理和计算机视觉技术对车辆车牌进行自动识别、定位、分割和字符识别的系统。

基于MATLAB的车牌识别系统主要由图像预处理、车牌定位、字符分割和字符识别等四个主要模块组成。

通过这四个模块的协同作用,可以实现对车牌信息的准确识别。

三、基于MATLAB的图像预处理技术图像预处理是车牌识别系统的第一步,其目的是提高图像的信噪比,减少噪声对后续处理的干扰。

基于MATLAB的图像预处理技术主要包括灰度化、二值化、去噪、滤波等步骤。

首先,通过灰度化处理将彩色图像转换为灰度图像;其次,二值化处理可以将灰度图像转换为二值图像,提高后续处理的准确性;接着,利用MATLAB中的去噪和滤波函数对图像进行进一步优化;最后,将处理后的图像进行归一化处理,以便于后续的定位和分割。

四、车牌定位技术研究车牌定位是车牌识别系统的关键环节之一,其目的是在图像中准确地定位出车牌的位置。

基于MATLAB的车牌定位技术主要包括边缘检测、区域生长、投影分析等方法。

首先,通过边缘检测算法检测出图像中的边缘信息;其次,利用区域生长算法对边缘信息进行扩展,得到包含车牌的候选区域;然后,通过投影分析等方法对候选区域进行进一步筛选和优化;最后,将车牌位置信息输出。

五、字符分割与识别技术研究字符分割与识别是车牌识别系统的核心环节之一。

基于MATLAB的字符分割与识别技术主要包括分割算法、特征提取和分类器设计等步骤。

首先,通过一定的分割算法将车牌中的字符进行分割;其次,提取每个字符的特征信息;然后,设计分类器对特征信息进行分类和识别;最后,将识别的字符信息输出。

基于MATLAB的车牌识别系统设计

基于MATLAB的车牌识别系统设计

基于MATLAB的车牌识别系统设计基于MATLAB的车牌识别系统设计在现代社会,车辆的数量迅速增加,因此车牌识别系统的需求也日益增加。

车牌识别技术可以应用于交通管理、停车场管理、盗抢车辆追踪等领域。

为了满足这一需求,本文将介绍基于MATLAB的车牌识别系统的设计。

一、系统架构基于MATLAB的车牌识别系统的架构主要分为图像获取、图像预处理、字符分割和字符识别四个模块。

1. 图像获取模块:这一模块通过摄像头或者图像输入设备获取车牌图像,并将获取到的图像进行读取。

2. 图像预处理模块:该模块对获取到的车牌图像进行预处理,包括图像灰度化、图像二值化、图像增强等。

3. 字符分割模块:该模块将预处理后的车牌图像按照字符进行分割,形成独立的字符图像。

4. 字符识别模块:该模块使用字符识别算法对分割出的字符图像进行识别,并输出识别结果。

二、图像获取模块在实际应用中,车牌图像的获取方式多种多样。

本文以摄像头获取车牌图像为例进行介绍。

在MATLAB中,使用VideoInput对象可以获取摄像头的实时图像,并将获取到的图像存储为矩阵。

三、图像预处理模块图像预处理模块的目的是对获取到的车牌图像进行一系列操作,使得后续的字符分割和字符识别模块能够更好地处理图像。

常见的预处理操作包括图像灰度化、图像二值化和图像增强。

1. 图像灰度化:将彩色图像转化为灰度图像。

在MATLAB 中,可以使用rgb2gray函数完成灰度化操作。

2. 图像二值化:将灰度图像转化为二值图像,使得车牌字符与背景能够更好地区分开来。

常见的二值化方法有阈值法、自适应阈值法等。

这里选择阈值法,通过设定一个合适的阈值,将灰度值大于阈值的像素置为1,小于阈值的像素置为0。

3. 图像增强:对二值图像进行增强处理,使得字符边界更加清晰。

常见的增强方法有直方图均衡化、中值滤波等。

这里选择直方图均衡化,通过对图像的像素值进行重新分布,使得图像整体对比度增强。

四、字符分割模块在图像预处理模块完成后,得到的车牌图像已经是经过处理的二值图像。

基于MATLAB的汽车牌照自动识别技术研究

基于MATLAB的汽车牌照自动识别技术研究

基于MATLAB的车牌自动识别技术研究1、本文概述随着技术的快速发展和智能时代的到来,自动驾驶、智能交通系统等领域的研究和应用逐渐成为全球热点。

在这些领域,汽车牌照的自动识别技术起着至关重要的作用。

汽车牌照自动识别技术作为车辆的唯一标识,不仅可以提高交通管理效率,还可以为车辆跟踪、违章记录等提供有力支持。

本文旨在通过对相关算法和技术的深入探索,研究基于MATLAB的汽车牌照自动识别技术,为实际应用提供理论支持和技术指导。

本文首先阐述了车牌自动识别技术的研究背景和意义,指出其在智能交通系统中的重要地位。

随后,文章回顾了国内外该领域的研究现状和发展趋势,分析了现有技术的优缺点,为后续研究提供了理论支持。

在此基础上,重点介绍了基于MATLAB的车牌自动识别技术的实现过程,包括预处理、车牌定位、字符分割、字符识别等关键环节。

通过对这些方面的详细阐述,展示了MATLAB在车牌识别技术中的强大功能和优势。

本文还对所提出的算法和技术进行了实验验证和性能分析,并通过对比实验和实际应用案例验证了所提出算法的有效性和实用性。

展望了车牌自动识别技术的未来发展方向,为相关领域的研究人员提供了有益的参考和启示。

通过本文的研究,我们希望能为车牌自动识别技术的发展和推广做出贡献,推动智能交通系统的进一步发展,为人们的出行和生活带来更方便、更安全的体验。

2、车牌自动识别技术综述车牌自动识别(ALPR)是一项利用图像处理、模式识别、人工智能等技术自动捕获、识别和提取车牌的关键技术。

随着智能交通系统的发展,车牌自动识别技术已广泛应用于交通管理、车辆跟踪、违章记录、停车场管理等领域。

车牌自动识别技术主要包括四个步骤:图像预处理、车牌定位、字符分割和字符识别。

图像预处理用于提高图像质量,减少噪声干扰,并为后续步骤提供清晰稳定的图像。

车牌定位是使用算法在预处理的图像中定位车牌的位置,为后续的字符分割提供准确的车牌区域的过程。

字符分割是将车牌中的字符逐一分割,为字符识别中的单个字符提供输入的过程。

《2024年基于MATLAB的车牌识别系统研究》范文

《2024年基于MATLAB的车牌识别系统研究》范文

《基于MATLAB的车牌识别系统研究》篇一一、引言车牌识别(License Plate Recognition,简称LPR)系统是一种集成了计算机视觉和数字图像处理技术的高级应用。

随着智能交通系统的快速发展,车牌识别技术已成为交通管理、车辆监控和安全防范等领域的重要技术手段。

本文将详细介绍基于MATLAB的车牌识别系统的研究,包括系统设计、算法实现以及实验结果分析等方面。

二、系统设计2.1 系统架构基于MATLAB的车牌识别系统主要包括预处理、车牌定位、字符分割和字符识别四个模块。

首先,通过预处理模块对图像进行去噪、二值化等操作;然后,车牌定位模块利用颜色空间转换和形态学方法定位车牌区域;接着,字符分割模块将车牌区域分割成单个字符;最后,字符识别模块对分割后的字符进行识别,输出车牌号码。

2.2 图像预处理图像预处理是车牌识别的基础,主要包括灰度化、去噪、二值化等操作。

灰度化将彩色图像转换为灰度图像,便于后续处理;去噪则采用滤波等方法消除图像中的噪声;二值化将灰度图像转换为二值图像,便于后续的特征提取和识别。

三、车牌定位3.1 颜色空间转换车牌定位的关键在于准确提取出车牌区域。

通过将图像从RGB颜色空间转换到HSV或YCbCr颜色空间,可以更好地提取出车牌的颜色特征。

在转换后的颜色空间中,车牌区域通常具有较为明显的颜色特征,便于后续的定位和分割。

3.2 形态学方法形态学方法是一种常用的图像处理方法,包括腐蚀、膨胀、开运算和闭运算等操作。

通过形态学方法可以对车牌区域进行精确的定位和分割,提取出完整的车牌区域。

四、字符分割与识别4.1 字符分割字符分割是将车牌区域分割成单个字符的过程。

通常采用的方法包括投影分析、连通域分析和模板匹配等。

投影分析通过计算车牌区域的投影特征,将车牌区域分割成多个字符;连通域分析则通过检测图像中的连通区域,将每个字符单独提取出来;模板匹配则利用预先定义的字符模板,对车牌区域进行匹配和分割。

基于Matlab的车牌识别算法研究.pptx [修复的]

基于Matlab的车牌识别算法研究.pptx [修复的]

图像去 除背景
图像处 理
图像处理
灰度图像与背景图像作减法,对图像进行增强 处理,目的是改善视觉效果,便于人与机器识 别图像,方法有:中值滤波、腐蚀膨胀、平滑处 理等
效果图展示
%自动弹出提示框读入图像 [filename,filepath]=uigetfile(' .jpg','输入一个需要识别的车 牌图像');% 直接自动读入% file=strcat(filepath,filename); %strcat函数:连接字符串; I=imread(file); figure('name','原图 '),imshow(I);title('原图')
字符分割
字符提取主要通过对旋转后的车牌进行水平投 影和垂直投影分析,计算出汽车牌照字符的高
度、宽度、字符顶行、字符尾行以及字符的中
心位置来进行实现。 对车牌图像进行几何校正、去噪、二值化以及 字符分割以从车牌图像中分离出组成车牌号码
的单个字符图像。通过字符分割,得到单个字
符,其中包括三大类汉字、字母和数字。
字符识别
建立自动识别字符代码表。对分割 出来的字符进行预处理(二值化、 归一化),然后分析提取,对分割 % 编号:0-9分别为 1-10;A-Z分别为 11-36; %京 津 沪 渝 港 澳 吉 辽 鲁 豫 冀 鄂 湘 青 皖 苏 %赣 浙 闽 粤 琼 台 陕 甘 云 川 贵 黑 藏 桂 新 宁 % 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 53 54 55 56 57 58 59 % 60 61 62 63 64 65 66 67 69 70 出的字符图像进行识别给出文本形 晋 蒙 52 68

基于MATLAB平台下的车牌识别系统设计

基于MATLAB平台下的车牌识别系统设计

3、实验改进
3、实验改进
根据实验结果,我们发现车牌定位和字符分割模块是影响系统性能的关键因 素。因此,我们计划从以下两个方面进行改进:
3、实验改进
1、针对车牌定位模块,尝试引入更多的特征提取方法,以便更准确地定位车 牌区域;
2、针对字符分割模块,研究更为稳健的连通域分析方法,减少误分割和漏分 割。
三、实验结果与分析
1、实验设置
1、实验设置
为了评估车牌识别系统的性能,我们构建了一个包含200张车牌图像的数据集, 其中包含了不同的光照条件、车牌位置和尺寸。评估指标主要包括准确率、召回 率和运行时间。
2、实验结果分析
2、实验结果分析
经过大量实验,我们得到了以下结果: 1、车牌定位模块的准确率为95%,召回率为90%;
1、需求分析
3、适应性:系统应能适应不同的环境条件,包括不同的光照条件、车牌位置 和车牌尺寸等;
1、需求分析
4、可靠性:系统应具备一定的可靠性,能够稳定运行,保证识别结果的准确 性。
2、总体设计
2、总体设计
在总体设计阶段,我们将车牌识别系统分解为以下几个模块: 1、车牌定位模块:该模块主要负责寻找并定位车牌区域,排除其他干扰因素;
基于MATLAB平台下的车牌识别 系统设计
01 一、引言
目录
02
二、车牌识别系统设 计
03 三、实验结果与分析
04 四、结论与展望
05 参考内容
一、引言
一、引言
随着社会的快速发展和科技的不断进步,智能化交通管理成为了研究的热点。 车牌识别系统作为智能化交通管理的重要组成部分,能够自动识别车辆身份,提 高交通监管能力和服务质量。本次演示将基于MATLAB平台,设计一套车牌识别系 统,旨在提高车牌识别的准确性和效率,为智能交通管理提供有力支持。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于Matlab的车牌识别算法摘要车牌系统是计算机视觉和模式识别技术在智能交通领域的重要应用课题之一。

车牌识别系统是以特定目标为对象的专用计算机系统,该系统主要包括三个内容:车牌定位、字符分割和字符识别。

其中车牌定位的目的就是从所拍摄的汽车图像中确定车牌的位置,从而便于后续的字符分割和字符识别工作。

目前常用的方法有:基于模板匹配的方法、基于特征的方法和神经网络法等。

本设计采用基于模板匹配算法和基于人工神经网络算法对车牌进行定位识别,此算法只对蓝底白字车牌进行分割识别,对黑底白字车牌原则上整个算法可直接适用,。

此算法分割出的图像像素值和模板图像达到了一致,由此便避免了切割出的图像像素值不一致所带来的问题。

但对白底黑字车牌、黄底黑字车牌,需要对车牌定位算法进行调整,并将图像反转(0变1、1变0)。

关键词:车牌识别系统;字符分割;车牌定位LICENSE PLATE RECOGNITION ALGORITHM BASEDON MATLABABSTRACTLicense plate system is a computer vision and pattern recognition technology in one of the important application research topic in the field of intelligent transportation. License plate recognition system based on specific goals of a special computer system, the system mainly includes three contents: license plate locating, character segmentation and character recognition. One of the purpose of license plate location is taken from the auto locate the license plate in the image, so as to facilitate the subsequent work character segmentation and character recognition. Now commonly used methods are: based on template matching method, based on the characteristics of the method and neural network, etc.This design USES based on template matching algorithm and based on artificial neural network algorithm to locate license plate recognition, the algorithm is only for blue white license plate segmentation recognition, the algorithm can be directly applicable in principle to the black white plate,. This algorithm to segment the image pixel values and template image, thus to avoid the cut out in the process of image pixel values are not consistent. But black on white background and black text plate, yellow bottom plate, adjustments need to license plate localization algorithm, and the image inversion of (0, 1, 1, 0).Key words: license plate recognition system; Character segmentation; License plate location目录1 前言 (4)1.1车牌号识别研究背景 (4)1.2 车牌号识别技术研究现状和趋势 (5)1.2.1国内外车牌识别技术情况及我国车牌特点 (5)1.2.2车牌识别技术的应用前景 (6)1.3 车牌识别研究内容 (7)2 车牌识别系统设计原理概述 (9)3 车牌识别系统程序设计 (11)3.1图像读取及车牌区域提取 (11)3.1.1图像灰度图转化 (11)3.1.2图像的边缘检测 (13)3.1.3灰度图腐蚀 (14)3.1.4图像平滑处理 (15)3.1.5移除小对象 (16)3.1.6车牌区域的边界值计算 (17)3.2字符切割 (18)3.2.1字符切割前的图像去噪处理 (18)3.2.2字符切割前的图像膨胀和腐蚀处理 (19)3.2.3字符切割 (19)3.3字符识别 (22)3.3.1字符识别方法选择 (22)3.3.2字符归一化 (22)3.3.3字符匹配识别 (23)4 仿真结果及分析 (26)4.1 车牌定位及图像读取及其图像处理 (26)4.2 车牌字符分割及其图像处理 (26)5 结论 (28)参考文献 (29)致谢................................................ 错误!未定义书签。

1 前言1.1 车牌号识别研究背景随着我国公路交通事业的发展,车辆的数量正在迅速增长,在给出行提供方便的同时,车辆管理上存在的问题日益突出,人工管理的方式已经不能满足实际的需要。

微电子、通信和计算机技术在交通领域的应用极大地提高了交通管理效率。

作为信息来源的自动检测、图像识别技术越来越受到人们的重视。

近年来计算机的飞速发展和数字图像技术的日趋成熟,为传统的交通管理带来巨大转变,先进的计算机处理技术,不但可以将人力从繁琐的人工观察、监测中解放出来,而且能够大大提高其精确度,汽车牌照自动识别系统就是在这样的背景与目的下进行开发的。

汽车牌照等相关信息的自动采集和管理对于交通车辆管理、园区车辆管理、停车场管理、交警稽查等方面有着十分重要的意义,成为信息处理技术的一项重要研究课题。

关于车牌识别技术及定位系统研究,在我国已经有了十几年的发展历程,目前系统的应用还处于起步阶段,大规模投入使用的成熟系统还没有出现,汽车牌照识别系统作为改进交通管理的有效工具,技术水平仍需完善。

国内外学者对此已经有了较多工作,但实际效果并不理想,尤其是对车牌自适应性强、速度快、准确率高的高速车牌定位方法还有待进一步研究。

另外,对辅助光源要求高,也很难有效解决复杂背景下多车牌移动识别的技术难题,如:车牌图像的倾斜、车牌表面污秽或磨损、光线干扰等都会影响定位的准确性。

传统车牌识别一般仅支持单一车辆,背景比较简单。

而当今许多实际应用场合,如在繁忙交通路口临时对欠税费、报废、挂失等车辆的稽查,则监视区域比较复杂,现有识别方法无法直接应用;而且多数情况下,同时出现多辆汽车,背景有广告牌、树木、建筑物、斑马线以及各种背景文字等,现有的识别方法也不能很好的适应多变的环境,所以对车牌识别技术的研究依然是目前高科技领域的热门课题之一。

车牌识别系统的成功设计、开发和应用具有相当大的社会效益、经济效益和学术意义。

车牌识别的难点:1)由于车牌图像多在室外采集,会受到光照条件、天气条件的影响,会出现图像模糊,对比度低,目标区域过小,色彩失真等影响,并且会伴随复杂的背景图像,这些都会影响车牌定位及识别。

2)每次采集时目标所处位置不会一样,采集视角会有很大变化,并且由于车牌挂的不正,都将导致车牌出现扭曲。

3)牌照多样性。

其他国家的汽车牌照格式,如尺寸大小,牌照上字符的排列等,通常只有一种。

而我国则根据不同车型、用途,规定了多种牌照格式,例如分为军车、警车、普通车等。

我国标准车牌照是由汉字、英文字母和阿拉伯数字组成的,汉字的识别与字母和数字的识别有很大的不同,增加了识别的难度。

4)我国汽车牌照的底色和字符颜色多样,蓝底白字、黄底黑字、黑底白字、红底黑字、绿底白字等多种。

5)由于环境、道路或人为因素造成汽车牌照污染严重,这种情况下国外发达国家不允许上路,而在我国仍可上路行驶。

使得车牌的对比度降低,特征不是很明显,即使在定位准确的情况下,字符的识别也会受到很大影响。

目前在国内存在多种牌照格式,且存在以上种种困难和特殊性,加大了我国车牌自动识别的难度,使得中国车辆牌照识别远远难于国外的车辆牌照识别。

因而如何提高识别率和识别处理的实时性及实用性成了一个紧要的任务。

1.2 车牌号识别技术研究现状和趋势1.2.1国内外车牌识别技术情况及我国车牌特点目前,一些发达国家车牌识剐系统在实际交通系统中已经成功应用,而我国的开发应用进展缓慢,基本停留在实验室阶段。

这是因为我国的实际情况与国外有所区别。

国外车牌比较规范统一,而我国车牌规范不够,较为多样化。

不同汽车类型有不同的规格、大小和颜色,所以车牌的颜色多,且字符位数不统一,对处理造成了一定的困难。

虽然很多研究人员已对车牌识别进行了较为深入的研究,但目前在车牌定位和字符分割这两个关键环节还存在着有待解决的难题。

一是当车牌图像的对比度较小、光照不均匀、车牌磨损褪色以及有类似车牌纹理特征的干扰时,有效定位率下降;其次在车牌字符分割时,光照不均、对比度较小、倾斜、污迹、字符粘连和断裂等严重退化的车牌图像的字符分割效果也不理想。

而对于车牌字符的识别来说,其识别的准确率很大程度上依赖于车牌定位和字符分割是否成功。

车牌字符的识别作为最终对车牌图像的理解,可以借鉴光学字符识别的宝贵经验,相对于车牌定位和字符分割来说反而比较容易实现。

国内外有大量关于车牌识别方面的研究报道。

国外在这方面的研究工作开展较早。

在上世纪70 年代,英国就在实验室中完成了“实时车牌检测系统”的广域检测和开发。

同时代,诞生了面向被盗车辆的第一个实时自动车牌监测系统。

发展到今日,国外对车牌检测的研究已经取得了一些令人瞩目的成就,识别率都在80%以上,甚至有高于90%。

并且已经实现了产品化,并在实际的交通系统中得到了广泛的应用。

目前我国有普通地方车牌号、武警车牌号、军队车牌号三种类型,普通地方车牌号又叫自选号牌车牌(如图1所示),自选号牌车牌尺寸是520122.5MM,即车牌长宽比为4.5:1,一共7个字符,每个字符的高宽比为2:1。

相关文档
最新文档