高考物理动能定理的综合应用技巧(很有用)及练习题
高中物理动能定理的综合应用解题技巧分析及练习题(含答案)含解析
高中物理动能定理的综合应用解题技巧分析及练习题(含答案)含解析一、高中物理精讲专题测试动能定理的综合应用1.一辆汽车发动机的额定功率P =200kW ,若其总质量为m =103kg ,在水平路面上行驶时,汽车以加速度a 1=5m/s 2从静止开始匀加速运动能够持续的最大时间为t 1=4s ,然后保持恒定的功率继续加速t 2=14s 达到最大速度。
设汽车行驶过程中受到的阻力恒定,取g =10m/s 2.求:(1)汽车所能达到的最大速度;(2)汽车从启动至到达最大速度的过程中运动的位移。
【答案】(1)40m/s ;(2)480m 【解析】 【分析】 【详解】(1)汽车匀加速结束时的速度11120m /s v a t ==由P=Fv 可知,匀加速结束时汽车的牵引力11F Pv ==1×104N 由牛顿第二定律得11F f ma -=解得f =5000N汽车速度最大时做匀速直线运动,处于平衡状态,由平衡条件可知, 此时汽车的牵引力F=f =5000N由P Fv =可知,汽车的最大速度:v=P PF f==40m/s (2)汽车匀加速运动的位移x 1=1140m 2v t = 对汽车,由动能定理得2112102F x Pt fs mv =--+解得s =480m2.如图所示,倾斜轨道AB 的倾角为37°,CD 、EF 轨道水平,AB 与CD 通过光滑圆弧管道BC 连接,CD 右端与竖直光滑圆周轨道相连.小球可以从D 进入该轨道,沿轨道内侧运动,从E 滑出该轨道进入EF 水平轨道.小球由静止从A 点释放,已知AB 长为5R ,CD 长为R ,重力加速度为g ,小球与斜轨AB 及水平轨道CD 、EF 的动摩擦因数均为0.5,sin37°=0.6,cos37°=0.8,圆弧管道BC 入口B 与出口C 的高度差为l.8R .求:(在运算中,根号中的数值无需算出)(1)小球滑到斜面底端C 时速度的大小. (2)小球刚到C 时对轨道的作用力.(3)要使小球在运动过程中不脱离轨道,竖直圆周轨道的半径R /应该满足什么条件? 【答案】(1285gR(2)6.6mg ,竖直向下(3)0.92R R '≤ 【解析】试题分析:(1)设小球到达C 点时速度为v ,a 球从A 运动至C 过程,由动能定理有0021(5sin 37 1.8)cos3752c mg R R mg R mv μ+-⋅=(2分) 可得 5.6c v gR 1分)(2)小球沿BC 轨道做圆周运动,设在C 点时轨道对球的作用力为N ,由牛顿第二定律2c v N mg m r-=, (2分) 其中r 满足 r+r·sin530=1.8R (1分) 联立上式可得:N=6.6mg (1分)由牛顿第三定律可得,球对轨道的作用力为6.6mg ,方向竖直向下. (1分) (3)要使小球不脱离轨道,有两种情况:情况一:小球能滑过圆周轨道最高点,进入EF 轨道.则小球b 在最高点P 应满足2P v m mg R'≥(1分)小球从C 直到P 点过程,由动能定理,有2211222P c mgR mg R mv mv μ--'⋅=-(1分) 可得230.9225R R R ='≤(1分) 情况二:小球上滑至四分之一圆轨道的Q 点时,速度减为零,然后滑回D .则由动能定理有2102c mgR mg R mv μ--⋅='-(1分)2.3R R '≥(1分)若 2.5R R '=,由上面分析可知,小球必定滑回D ,设其能向左滑过DC 轨道,并沿CB 运动到达B 点,在B 点的速度为v B ,,则由能量守恒定律有22111.8222c B mv mv mg R mgR μ=+⋅+(1分) 由⑤⑨式,可得0B v =(1分)故知,小球不能滑回倾斜轨道AB ,小球将在两圆轨道之间做往返运动,小球将停在CD 轨道上的某处.设小球在CD 轨道上运动的总路程为S ,则由能量守恒定律,有212c mv mgS μ=(1分) 由⑤⑩两式,可得 S=5.6R (1分)所以知,b 球将停在D 点左侧,距D 点0.6R 处. (1分)考点:本题考查圆周运动、动能定理的应用,意在考查学生的综合能力.3.如图所示,光滑斜面AB 的倾角θ=53°,BC 为水平面,BC 的长度l BC =1.10 m ,CD 为光滑的14圆弧,半径R =0.60 m .一个质量m =2.0 kg 的物体,从斜面上A 点由静止开始下滑,物体与水平面BC 间的动摩擦因数μ=0.20.轨道在B ,C 两点光滑连接.当物体到达D 点时,继续竖直向上运动,最高点距离D 点的高度h =0.20 m ,sin 53°=0.8,cos 53°=0.6.g 取10 m/s 2.求:(1)物体运动到C 点时速度大小v C (2)A 点距离水平面的高度H(3)物体最终停止的位置到C 点的距离s . 【答案】(1)4 m/s (2)1.02 m (3)0.4 m 【解析】 【详解】(1)物体由C 点到最高点,根据机械能守恒得:()212c mg R h mv += 代入数据解得:4/C v m s =(2)物体由A 点到C 点,根据动能定理得:2102BC c mgH mgl mv μ-=- 代入数据解得: 1.02H m =(3)从物体开始下滑到停下,根据能量守恒得:mgx mgH μ= 代入数据,解得: 5.1x m =由于40.7BC x l m =+所以,物体最终停止的位置到C 点的距离为:0.4s m =. 【点睛】本题综合考查功能关系、动能定理等;在处理该类问题时,要注意认真分析能量关系,正确选择物理规律求解.4.一质量为0.5kg 的小物块放在水平地面上的A 点,距离A 点5m 的位置B 处是一面墙,如图所示,物块以v 0=9m/s 的初速度从A 点沿AB 方向运动,在与墙壁碰撞前瞬间的速度为7m/s ,碰后以6m/s 的速度反向运动直至静止.g 取10m/s 2.(1)求物块与地面间的动摩擦因数μ;(2)若碰撞时间为0.05s ,求碰撞过程中墙面对物块平均作用力的大小F . 【答案】(1)0.32μ= (2)F =130N 【解析】试题分析:(1)对A 到墙壁过程,运用动能定理得:,代入数据解得:μ=0.32.(2)规定向左为正方向,对碰墙的过程运用动量定理得:F △t=mv′﹣mv , 代入数据解得:F=130N .5.如图所示,ABC 是一条长L =10m 的绝缘水平轨道,固定在离水平地面高h =1.25m 处,A 、C 为端点,B 为中点,轨道BC 处在方向竖直向上,大小E =5×105N/C 的匀强电场中,一质量m =0.5kg ,电荷量q =+1.0×10-5C 的可视为质点的滑块以初速度v 0=6m/s 在轨道上自A 点开始向右运动,经B 点进入电场,从C 点离开电场,已知滑块与轨道间动摩擦因数μ=0.2,g 取10m/s 2。
高中物理动能定理的综合应用及其解题技巧及练习题(含答案)及解析
高中物理动能定理的综合应用及其解题技巧及练习题(含答案)及解析一、高中物理精讲专题测试动能定理的综合应用1.在某电视台举办的冲关游戏中,AB 是处于竖直平面内的光滑圆弧轨道,半径R=1.6m ,BC 是长度为L 1=3m 的水平传送带,CD 是长度为L 2=3.6m 水平粗糙轨道,AB 、CD 轨道与传送带平滑连接,参赛者抱紧滑板从A 处由静止下滑,参赛者和滑板可视为质点,参赛者质量m=60kg ,滑板质量可忽略.已知滑板与传送带、水平轨道的动摩擦因数分别为μ1=0.4、μ2=0.5,g 取10m/s 2.求:(1)参赛者运动到圆弧轨道B 处对轨道的压力;(2)若参赛者恰好能运动至D 点,求传送带运转速率及方向; (3)在第(2)问中,传送带由于传送参赛者多消耗的电能.【答案】(1)1200N ,方向竖直向下(2)顺时针运转,v=6m/s (3)720J 【解析】(1) 对参赛者:A 到B 过程,由动能定理 mgR(1-cos 60°)=12m 2B v 解得v B =4m /s在B 处,由牛顿第二定律N B -mg =m 2Bv R解得N B =2mg =1 200N根据牛顿第三定律:参赛者对轨道的压力 N′B =N B =1 200N ,方向竖直向下. (2) C 到D 过程,由动能定理-μ2mgL 2=0-12m 2C v 解得v C =6m /sB 到C 过程,由牛顿第二定律μ1mg =ma 解得a =4m /s 2(2分) 参赛者加速至v C 历时t =C Bv v a-=0.5s 位移x 1=2B Cv v +t =2.5m <L 1 参赛者从B 到C 先匀加速后匀速,传送带顺时针运转,速率v =6m /s .(3) 0.5s 内传送带位移x 2=vt =3m 参赛者与传送带的相对位移Δx =x 2-x 1=0.5m 传送带由于传送参赛者多消耗的电能 E =μ1mg Δx +12m 2C v -12m 2B v =720J .2.如图所示,小物体沿光滑弧形轨道从高为h 处由静止下滑,它在水平粗糙轨道上滑行的最远距离为s ,重力加速度用g 表示,小物体可视为质点,求:(1)求小物体刚刚滑到弧形轨道底端时的速度大小v ; (2)水平轨道与物体间的动摩擦因数均为μ。
高考物理动能定理的综合应用技巧小结及练习题及解析
高考物理动能定理的综合应用技巧小结及练习题及解析一、高中物理精讲专题测试动能定理的综合应用1.如图所示,轨道ABC 被竖直地固定在水平桌面上,A 距水平地面高H =0.75m ,C 距水平地面高h =0.45m 。
一个质量m =0.1kg 的小物块自A 点从静止开始下滑,从C 点以水平速度飞出后落在地面上的D 点。
现测得C 、D 两点的水平距离为x =0.6m 。
不计空气阻力,取g =10m/s 2。
求(1)小物块从C 点运动到D 点经历的时间t ; (2)小物块从C 点飞出时速度的大小v C ;(3)小物块从A 点运动到C 点的过程中克服摩擦力做的功。
【答案】(1) t=0.3s (2) v C =2.0m/s (3)0.1J 【解析】 【详解】(1)小物块从C 水平飞出后做平抛运动,由212h gt = 得小物块从C 点运动到D 点经历的时间20.3ht g==s (2)小物块从C 点运动到D ,由C x v t = 得小物块从C 点飞出时速度的大小C xv t==2.0m/s (3)小物块从A 点运动到C 点的过程中,根据动能定理 得()2102f C mg Hh W mv -+=- ()212f C W mv mg Hh =--= -0.1J 此过程中克服摩擦力做的功f f W W '=-=0.1J2.如图所示,光滑圆弧的半径为80cm ,一质量为1.0kg 的物体由A 处从静止开始下滑到B 点,然后又沿水平面前进3m ,到达C 点停止。
物体经过B 点时无机械能损失,g 取10m/s 2,求:(1)物体到达B 点时的速度以及在B 点时对轨道的压力; (2)物体在BC 段上的动摩擦因数; (3)整个过程中因摩擦而产生的热量。
【答案】(1)4m/s ,30N ;(2)415;(3)8J 。
【解析】 【分析】 【详解】(1)根据机械能守恒有212mgh mv =代入数据解得4m/s v =在B 点处,对小球受力分析,根据牛顿第二定律可得2N mv F mg R-= 代入数据解得30N N F =由牛顿第三定律可得,小球对轨道的压力为30N NN F F '== 方向竖直向下(2)物体在BC 段上,根据动能定理有2102mgx mv μ-=-代入数据解得415μ=(3)小球在整个运动过程中只有摩擦力做负功,重力做正功,由能量守恒可得8J Q mgh ==3.如图,I 、II 为极限运动中的两部分赛道,其中I 的AB 部分为竖直平面内半径为R 的14光滑圆弧赛道,最低点B 的切线水平; II 上CD 为倾角为30°的斜面,最低点C 处于B 点的正下方,B 、C 两点距离也等于R.质量为m 的极限运动员(可视为质点)从AB 上P 点处由静止开始滑下,恰好垂直CD 落到斜面上.求:(1) 极限运动员落到CD 上的位置与C 的距离; (2)极限运动员通过B 点时对圆弧轨道的压力; (3)P 点与B 点的高度差.【答案】(1)45R (2)75mg ,竖直向下(3)15R【解析】 【详解】(1)设极限运动员在B 点的速度为v 0,落在CD 上的位置与C 的距离为x ,速度大小为v ,在空中运动的时间为t ,则xcos300=v 0t R-xsin300=12gt 2 0tan 30v gt = 解得x=0.8R(2)由(1)可得:025v gR =通过B 点时轨道对极限运动员的支持力大小为F N20N v F mg m R-=极限运动员对轨道的压力大小为F N ′,则F N ′=F N , 解得'75N F mg =,方向竖直向下; (3) P 点与B 点的高度差为h,则mgh=12mv 02 解得h=R/54.某电视娱乐节目装置可简化为如图所示模型.倾角θ=37°的斜面底端与水平传送带平滑接触,传送带BC 长L =6m ,始终以v 0=6m/s 的速度顺时针运动.将一个质量m =1kg 的物块由距斜面底端高度h 1=5.4m 的A 点静止滑下,物块通过B 点时速度的大小不变.物块与斜面、物块与传送带间动摩擦因数分别为μ1=0.5、μ2=0.2,传送带上表面距地面的高度H =5m ,g 取10m/s 2,sin37°=0.6,cos37°=0.8.⑴求物块由A点运动到C点的时间;⑵若把物块从距斜面底端高度h2=2.4m处静止释放,求物块落地点到C点的水平距离;⑶求物块距斜面底端高度满足什么条件时,将物块静止释放均落到地面上的同一点D.【答案】⑴4s;⑵6m;⑶1.8m≤h≤9.0m【解析】试题分析:(1)A到B过程:根据牛顿第二定律mgsinθ﹣μ1mgcosθ=ma1,代入数据解得,t 1=3s.所以滑到B点的速度:v B=a1t1=2×3m/s=6m/s,物块在传送带上匀速运动到C,所以物块由A到C的时间:t=t1+t2=3s+1s=4s(2)斜面上由根据动能定理.解得v=4m/s<6m/s,设物块在传送带先做匀加速运动达v0,运动位移为x,则:,,x=5m<6m所以物体先做匀加速直线运动后和皮带一起匀速运动,离开C点做平抛运动s=v 0t0,H=解得 s=6m.(3)因物块每次均抛到同一点D,由平抛知识知:物块到达C点时速度必须有v C=v0①当离传送带高度为h3时物块进入传送带后一直匀加速运动,则:,解得h3=1.8m②当离传送带高度为h4时物块进入传送带后一直匀减速运动,h4=9.0m所以当离传送带高度在1.8m~9.0m的范围内均能满足要求即1.8m≤h≤9.0m5.如图所示,质量m=2.0×10-4 kg、电荷量q=1.0×10-6 C的带正电微粒静止在空间范围足够大的电场强度为E1的匀强电场中.取g=10 m/s2.(1)求匀强电场的电场强度 E1的大小和方向;(2)在t=0时刻,匀强电场强度大小突然变为E2=4.0×103N/C,且方向不变.求在t=0.20 s时间内电场力做的功;(3)在t =0.20 s 时刻突然撤掉第(2)问中的电场,求带电微粒回到出发点时的动能.【答案】(1)2.0×103N/C ,方向向上 (2)8.0×10-4J (3)8.0×10-4J 【解析】 【详解】(1)设电场强度为E ,则:Eq mg =,代入数据解得:4362.01010/ 2.010/1010mg E N C N C q --⨯⨯===⨯⨯,方向向上 (2)在0t =时刻,电场强度突然变化为:32 4.010/E N C =⨯,设微粒的加速度为a ,在0.20t s =时间内上升高度为h ,电场力做功为W ,则:21qE mg ma -=解得:2110/a m s =根据:2112h a t =,解得:0.20=h m 电场力做功:428.010J W qE h -==⨯(3)设在0.20t s =时刻突然撤掉电场时粒子的速度大小为v ,回到出发点时的动能为k E ,则:v at =,212k E mgh mv =+解得:48.010J k E -=⨯6.如图所示,光滑斜面AB 的倾角θ=53°,BC 为水平面,BC 的长度l BC =1.10 m ,CD 为光滑的14圆弧,半径R =0.60 m .一个质量m =2.0 kg 的物体,从斜面上A 点由静止开始下滑,物体与水平面BC 间的动摩擦因数μ=0.20.轨道在B ,C 两点光滑连接.当物体到达D 点时,继续竖直向上运动,最高点距离D 点的高度h =0.20 m ,sin 53°=0.8,cos 53°=0.6.g 取10 m/s 2.求:(1)物体运动到C 点时速度大小v C (2)A 点距离水平面的高度H(3)物体最终停止的位置到C 点的距离s .【答案】(1)4 m/s (2)1.02 m (3)0.4 m 【解析】 【详解】(1)物体由C 点到最高点,根据机械能守恒得:()212c mg R h mv += 代入数据解得:4/C v m s =(2)物体由A 点到C 点,根据动能定理得:2102BC c mgH mgl mv μ-=- 代入数据解得: 1.02H m =(3)从物体开始下滑到停下,根据能量守恒得:mgx mgH μ= 代入数据,解得: 5.1x m = 由于40.7BC x l m =+所以,物体最终停止的位置到C 点的距离为:0.4s m =. 【点睛】本题综合考查功能关系、动能定理等;在处理该类问题时,要注意认真分析能量关系,正确选择物理规律求解.7.如图所示,质量为1m kg =的滑块,在水平力作用下静止在倾角为o 30θ=的光滑斜面上,斜面的末端B 与水平传送带相接(物块经过此位置滑上皮带时无能量损失),传送带的运行速度为03/v m s =,长为 1.4L m =.今将水平力撤去,当滑块滑到传送带右端C 时,恰好与传送带速度相同.已知滑块与传送带间的动摩擦因数为0.25μ=(210/g m s =).求:(1)水平力撤去后,滑块(在斜面上)的加速度大小; (2)滑块下滑的高度;(3)若滑块进入传送带时速度大于3/m s ,则滑块在传送带上滑行的整个过程中产生的热量为多少.【答案】(1)5m/s 2(2)0.1m 或0.8m (3)5J 【解析】 【分析】 【详解】(1)对撤去外力F 后的滑块受力分析,由牛顿第二定律:sin mg ma θ= 解得:25m /s a =(2)设滑块从高为h 处上滑,到达斜面底端速度为v ,下滑过程机械能守恒:212mgh mv = 解得:v若滑块冲上传送带的速度小于传送带速度,则滑块在带上由于受到向右的滑动摩擦力而做匀加速运动,根据动能定理有:2201122mgL mv mv μ=- 联立解得:200.8m 2v h L gμ=+=若滑块冲上传送带时的速度大于传送带的速度,则滑块由于受天向左的滑动摩擦力而做匀速运动,根据动能定理:2201122mgL mv mv μ-=- 解得:200.8m 2v h L gμ=+=(3)设滑块在传送带上运动的时间为t ,则t 时间内传送带的位移:0s v t = 由机械能守恒可知:212mgh mv = 对滑块由运动学公式知:0v v at =- 联立解得:0v v s v a-=⋅滑块相对传送带滑动的位移:s L s ∆=- 相对滑动生成的热量:0.5J Q mg s μ=∆=8.遥控电动玩具车的轨道装置如图所示,轨道ABCDEF 中水平轨道AB 段和BD 段粗糙,AB =BD =2.5R ,小车在AB 和BD 段无制动运行时所受阻力是其重力的0.02倍,轨道其余部分摩擦不计。
高考物理动能定理的综合应用的基本方法技巧及练习题及练习题(含答案)含解析
高考物理动能定理的综合应用的基本方法技巧及练习题及练习题(含答案)含解析一、高中物理精讲专题测试动能定理的综合应用1.由相同材料的细杆搭成的轨道如图所示,其中细杆AB 、BC 、CD 、DE 、EF ……长均为 1.5m L =,细杆OA 和其他细杆与水平面的夹角都为()37sin370.6,cos370.8β︒︒︒===,一个可看成质点的小环套在细杆OA 上从图中离轨道最低点的竖直高度 1.32m h =处由静止释放,小环与细杆的动摩擦因数都为0.2μ=,最大静摩擦力等于相同压力下的滑动摩擦力,在两细杆交接处都用短小曲杆相连,不计动能损失,使小环能顺利地经过,重力加速度g 取210m /s ,求: (1)小环在细杆OA 上运动的时间t ; (2)小环运动的总路程s ; (3)小环最终停止的位置。
【答案】(1)1s ;(2)8.25m ;(3)最终停在A 点 【解析】 【分析】 【详解】(1)因为sin cos mg mg βμβ>,故小环不能静止在细杆上,小环下滑的加速度为2sin cos 4.4m/s mg mg a mβμβ-==设物体与A 点之间的距离为0L ,由几何关系可得0 2.2m sin37hL ︒== 设物体从静止运动到A 所用的时间为t ,由2012L at =,得 1s t =(2)从物体开始运动到最终停下的过程中,设总路程为s ,由动能定理得cos3700mgh mgs μ︒=--代入数据解得s =8.25m(3)假设物体能依次到达B 点、D 点,由动能定理有201(sin37)cos37()2B mg h L mg L L mv μ︒︒+=-- 解得20B v <说明小环到不了B 点,最终停在A 点处2.如图所示,一条带有竖直圆轨道的长轨道水平固定,底端分别与两侧的直轨道相切,半径R =0.5m 。
物块A 以v 0=10m/s 的速度滑入圆轨道,滑过最高点N ,再沿圆轨道滑出,P 点左侧轨道光滑,右侧轨道与物块间的动摩擦因数都为μ=0.4,A 的质量为m =1kg (A 可视为质点) ,求:(1)物块经过N 点时的速度大小; (2)物块经过N 点时对竖直轨道的作用力; (3)物块最终停止的位置。
高考物理动能定理的综合应用技巧和方法完整版及练习题含解析
高考物理动能定理的综合应用技巧和方法完整版及练习题含解析一、高中物理精讲专题测试动能定理的综合应用1.质量 1.5m kg =的物块(可视为质点)在水平恒力F 作用下,从水平面上A 点由静止开始运动,运动一段距离撤去该力,物块继续滑行 2.0t s =停在B 点,已知A 、B 两点间的距离 5.0s m =,物块与水平面间的动摩擦因数0.20μ=,求恒力F 多大.(210/g m s =)【答案】15N 【解析】 设撤去力前物块的位移为,撤去力时物块的速度为,物块受到的滑动摩擦力对撤去力后物块滑动过程应用动量定理得由运动学公式得对物块运动的全过程应用动能定理由以上各式得 代入数据解得思路分析:撤去F 后物体只受摩擦力作用,做减速运动,根据动量定理分析,然后结合动能定律解题试题点评:本题结合力的作用综合考查了运动学规律,是一道综合性题目.2.为了研究过山车的原理,某同学设计了如下模型:取一个与水平方向夹角为37°、长为L =2.5 m 的粗糙倾斜轨道AB ,通过水平轨道BC 与半径为R =0.2 m 的竖直圆轨道相连,出口为水平轨道DE ,整个轨道除AB 段以外都是光滑的。
其中AB 与BC 轨道以微小圆弧相接,如图所示。
一个质量m =2 kg 小物块,当从A 点以初速度v 0=6 m/s 沿倾斜轨道滑下,到达C 点时速度v C =4 m/s 。
取g =10 m/s 2,sin37°=0.60,cos37°=0.80。
(1)小物块到达C 点时,求圆轨道对小物块支持力的大小; (2)求小物块从A 到B 运动过程中,摩擦力对小物块所做的功;(3)小物块要能够到达竖直圆弧轨道的最高点,求沿倾斜轨道滑下时在A 点的最小初速度v A 。
【答案】(1) N =180 N (2) W f =−50 J (3) 30A v m/s 【解析】 【详解】(1)在C 点时,设圆轨道对小物块支持力的大小为N ,则:2c mv N mg R-= 解得 N =180 N(2)设A →B 过程中摩擦力对小物块所做的功为W f ,小物块A →B →C 的过程,有22011sin 3722f c mgL W mv mv ︒+=- 解得 W f =−50 J 。
高考物理高考物理动能定理的综合应用技巧和方法完整版及练习题
高考物理高考物理动能定理的综合应用技巧和方法完整版及练习题一、高中物理精讲专题测试动能定理的综合应用1.如图所示,小物体沿光滑弧形轨道从高为h 处由静止下滑,它在水平粗糙轨道上滑行的最远距离为s ,重力加速度用g 表示,小物体可视为质点,求:(1)求小物体刚刚滑到弧形轨道底端时的速度大小v ; (2)水平轨道与物体间的动摩擦因数均为μ。
【答案】(12gh (2)h s【解析】 【详解】解:(1)小物体沿弧形轨道下滑的过程,根据机械能守恒定律可得:212mgh mv = 解得小物体刚滑到弧形轨道底端时的速度大小:2v gh(2)对小物体从开始下滑直到最终停下的过程,根据动能定理则有:0mgh mgs μ-= 解得水平轨道与物体间的动摩擦因数:h sμ=2.一种氢气燃料的汽车,质量为m =2.0×103kg ,发动机的额定输出功率为80kW ,行驶在平直公路上时所受阻力恒为车重的0.1倍。
若汽车从静止开始先匀加速启动,加速度的大小为a =1.0m/s 2。
达到额定输出功率后,汽车保持功率不变又加速行驶了800m ,直到获得最大速度后才匀速行驶。
求:(g =10m/s 2) (1)汽车的最大行驶速度。
(2)汽车从静止到获得最大行驶速度所用的总时间。
【答案】(1)40m/s ;(2)55s 【解析】 【详解】(1)设汽车的最大行驶速度为v m .汽车做匀速直线运动,牵引力等于阻力,速度达到最大,即有:F =f根据题意知,阻力为:f =0.1mg =2000N 再根据公式 P=Fv 得:v m =P /f =40m/s ; 即汽车的最大行驶速度为40m/s(2)汽车匀变速行驶的过程中,由牛顿第二定律得F f ma -=得匀变速运动时汽车牵引力4000N F =则汽车匀加速运动行驶得最大速度为020/Pv m s F== 由a 1t 1=v 0,得汽车匀加速运动的时间为:t 1=20s汽车实际功率达到额定功率后到速度达到最大的过程,由动能定理W F +W f =△E k ,即得: Pt 2-0.1mgs 2=2201122m mv mv - 得:t 2=35s所以汽车从静止到获得最大行驶速度所用的总时间为:t =t 1+t 2=55s3.为了研究过山车的原理,某同学设计了如下模型:取一个与水平方向夹角为37°、长为L =2.5 m 的粗糙倾斜轨道AB ,通过水平轨道BC 与半径为R =0.2 m 的竖直圆轨道相连,出口为水平轨道DE ,整个轨道除AB 段以外都是光滑的。
高考物理动能定理的综合应用技巧和方法完整版及练习题及解析
由⑥⑦⑧得:f= mg
7.质量为 2kg 的物体,在竖直平面内高 h = 1m 的光滑弧形轨道 A 点,以 v=4m/s 的初速度
沿轨道滑下,并进入 BC 轨道,如图所示。已知 BC 段的动摩擦系数 0.4 。(g 取
10m/s2)求: (1)物体滑至 B 点时的速度; (2)物体最后停止在离 B 点多远的位置上。
有哪些力做功,再结合动能定理进行求解,本题也可以结合动力学知识进行求解.
3.如图所示,位于竖直平面内的轨道 BCDE,由一半径为 R=2m 的 1 光滑圆弧轨道 BC 和光 4
滑斜直轨道 DE 分别与粗糙水平面相切连接而成.现从 B 点正上方 H=1.2m 的 A 点由静止释
放一质量 m=1kg 的物块,物块刚好从 B 点进入 1 圆弧轨道.已知 CD 的距离 L=4m,物块 4
则在竖直方向上有:2R-h= 1 gt2 2
gt 由小球垂直打在斜面上可知: vc =tan 45°
联立解得:h=0.2 m 【点睛】 本题关键是对小球在最高点处时受力分析,然后根据向心力公式和牛顿第二定律求出平抛 的初速度,最后根据平抛运动的分位移公式列式求解.
2.某滑沙场的示意图如图所示,某旅游者乘滑沙橇从 A 点由静止开始滑下,最后停在水 平沙面上的 C 点.设滑沙橇和沙面间的动摩擦因数处处相同,斜面和水平面连接处可认为 是圆滑的,滑沙者保持一定姿势坐在滑沙橇上不动,若测得 AC 间水平距离为 x,A 点高为 h,求滑沙橇与沙面间的动摩擦因数 μ.
“气垫”,从而大大减小雪地对滑雪板的摩擦.然而当滑雪板对雪地速度较小时,与雪地接 触时间超过某一值就会陷下去,使得它们间的摩擦力增大.假设滑雪者的速度超过 4 m/s 时,滑雪板与雪地间的动摩擦因数就会由 μ1=0.25 变为 μ2=0.125.一滑雪者从倾角为 θ=37°的坡顶 A 由静止开始自由下滑,滑至坡底 B(B 处为一光滑小圆弧)后又滑上一段水平 雪地,最后停在 C 处,如图所示.不计空气阻力,坡长为 l=26 m,g 取 10 m/s2,sin 37°=0.6,cos 37°=0.8.求:
高考物理动能定理的综合应用常见题型及答题技巧及练习题(含答案)及解析
高考物理动能定理的综合应用常见题型及答题技巧及练习题(含答案)及解析一、高中物理精讲专题测试动能定理的综合应用1.如图所示,一条带有竖直圆轨道的长轨道水平固定,底端分别与两侧的直轨道相切,半径R =0.5m 。
物块A 以v 0=10m/s 的速度滑入圆轨道,滑过最高点N ,再沿圆轨道滑出,P 点左侧轨道光滑,右侧轨道与物块间的动摩擦因数都为μ=0.4,A 的质量为m =1kg (A 可视为质点) ,求:(1)物块经过N 点时的速度大小; (2)物块经过N 点时对竖直轨道的作用力; (3)物块最终停止的位置。
【答案】(1)5m/s v =;(2)150N ,作用力方向竖直向上;(3)12.5m x = 【解析】 【分析】 【详解】(1)物块A 从出发至N 点过程,机械能守恒,有22011222mv mg R mv =⋅+ 得20445m /s v v gR =-=(2)假设物块在N 点受到的弹力方向竖直向下为F N ,由牛顿第二定律有2N v mg F m R+=得物块A 受到的弹力为2N 150N v F m mg R=-=由牛顿第三定律可得,物块对轨道的作用力为N N 150N F F '==作用力方向竖直向上(3)物块A 经竖直圆轨道后滑上水平轨道,在粗糙路段有摩擦力做负功,动能损失,由动能定理,有20102mgx mv μ-=-得12.5m x =2.为了研究过山车的原理,某物理小组提出了下列设想:取一个与水平方向夹角为θ=60°、长为L 1=23m的倾斜轨道AB ,通过微小圆弧与长为L 2=32m 的水平轨道BC 相连,然后在C 处设计一个竖直完整的光滑圆轨道,出口为水平轨道上D 处,如图所示.现将一个小球从距A 点高为h =0.9m 的水平台面上以一定的初速度v 0水平弹出,到A 点时小球的速度方向恰沿AB 方向,并沿倾斜轨道滑下.已知小球与AB 和BC 间的动摩擦因数均为μ=3,g 取10m/s 2.(1)求小球初速度v 0的大小; (2)求小球滑过C 点时的速率v C ;(3)要使小球不离开轨道,则竖直圆弧轨道的半径R 应该满足什么条件? 【答案】(16m/s (2)6m/s (3)0<R ≤1.08m 【解析】试题分析:(1)小球开始时做平抛运动:v y 2=2gh代入数据解得:22100.932/y v gh m s =⨯⨯==A 点:60y x v tan v ︒=得:032/6/603yx v v v s m s tan ==︒== (2)从水平抛出到C 点的过程中,由动能定理得:()2211201122C mg h L sin mgL cos mgL mv mv θμθμ+---=代入数据解得:36/C v m s =(3)小球刚刚过最高点时,重力提供向心力,则:21mv mg R =22111 222C mv mgR mv += 代入数据解得R 1=1.08 m当小球刚能到达与圆心等高时2212C mv mgR = 代入数据解得R 2=2.7 m当圆轨道与AB 相切时R 3=BC•tan 60°=1.5 m即圆轨道的半径不能超过1.5 m综上所述,要使小球不离开轨道,R应该满足的条件是 0<R≤1.08 m.考点:平抛运动;动能定理3.如图所示,AB是竖直面内的四分之一圆弧形光滑轨道,下端B点与水平直轨道相切.一个小物块自A点由静止开始沿轨道下滑,已知轨道半径为R=0.2m,小物块的质量为m=0.1kg,小物块与水平面间的动摩擦因数μ=0.5,g取10m/s2.求:(1)小物块在B点时受到的圆弧轨道的支持力大小;(2)小物块在水平面上滑动的最大距离.【答案】(1)3N (2)0.4m【解析】(1)由机械能守恒定律,得在B点联立以上两式得F N=3mg=3×0.1×10N=3N.(2)设小物块在水平面上滑动的最大距离为l,对小物块运动的整个过程由动能定理得mgR-μmgl=0,代入数据得【点睛】解决本题的关键知道只有重力做功,机械能守恒,掌握运用机械能守恒定律以及动能定理进行解题.4.如图所示,竖直平面内的轨道由直轨道AB和圆弧轨道BC组成,直轨道AB和圆弧轨道BC平滑连接,小球从斜面上A点由静止开始滑下,滑到斜面底端后又滑上一个半径为R的圆轨道;=0.4m(1)若接触面均光滑,小球刚好能滑到圆轨道的最高点C,求斜面高h;(2)若已知小球质量m=0.1kg,斜面高h=2m,小球运动到C点时对轨道压力为mg,求全过程中摩擦阻力做的功.【答案】(1)1m ;(2) -0.8J ; 【解析】 【详解】(1)小球刚好到达C 点,重力提供向心力,由牛顿第二定律得:2v mg m R=从A 到C 过程机械能守恒,由机械能守恒定律得:()2122mg h R mv -=, 解得:2.5 2.50.4m 1m h R ==⨯=;(2)在C 点,由牛顿第二定律得:2Cv mg mg m R+=,从A 到C 过程,由动能定理得:()21202f C mgh R W mv -+=-, 解得:0.8J f W =-;5.质量为m =0.5kg 、可视为质点的小滑块,从光滑斜面上高h 0=0.6m 的A 点由静止开始自由滑下。
高考物理动能定理的综合应用技巧和方法完整版及练习题及解析
高考物理动能定理的综合应用技巧和方法完整版及练习题及解析一、高中物理精讲专题测试动能定理的综合应用1.如图所示,小物体沿光滑弧形轨道从高为h 处由静止下滑,它在水平粗糙轨道上滑行的最远距离为s ,重力加速度用g 表示,小物体可视为质点,求:(1)求小物体刚刚滑到弧形轨道底端时的速度大小v ; (2)水平轨道与物体间的动摩擦因数均为μ。
【答案】(12gh (2)h s【解析】 【详解】解:(1)小物体沿弧形轨道下滑的过程,根据机械能守恒定律可得:212mgh mv = 解得小物体刚滑到弧形轨道底端时的速度大小:2v gh(2)对小物体从开始下滑直到最终停下的过程,根据动能定理则有:0mgh mgs μ-= 解得水平轨道与物体间的动摩擦因数:h sμ=2.一种氢气燃料的汽车,质量为m =2.0×103kg ,发动机的额定输出功率为80kW ,行驶在平直公路上时所受阻力恒为车重的0.1倍。
若汽车从静止开始先匀加速启动,加速度的大小为a =1.0m/s 2。
达到额定输出功率后,汽车保持功率不变又加速行驶了800m ,直到获得最大速度后才匀速行驶。
求:(g =10m/s 2) (1)汽车的最大行驶速度。
(2)汽车从静止到获得最大行驶速度所用的总时间。
【答案】(1)40m/s ;(2)55s 【解析】 【详解】(1)设汽车的最大行驶速度为v m .汽车做匀速直线运动,牵引力等于阻力,速度达到最大,即有:F =f根据题意知,阻力为:f =0.1mg =2000N 再根据公式 P=Fv 得:v m =P /f =40m/s ; 即汽车的最大行驶速度为40m/s(2)汽车匀变速行驶的过程中,由牛顿第二定律得F f ma -=得匀变速运动时汽车牵引力4000N F =则汽车匀加速运动行驶得最大速度为020/Pv m s F== 由a 1t 1=v 0,得汽车匀加速运动的时间为:t 1=20s汽车实际功率达到额定功率后到速度达到最大的过程,由动能定理W F +W f =△E k ,即得: Pt 2-0.1mgs 2=2201122m mv mv - 得:t 2=35s所以汽车从静止到获得最大行驶速度所用的总时间为:t =t 1+t 2=55s3.某电视娱乐节目装置可简化为如图所示模型.倾角θ=37°的斜面底端与水平传送带平滑接触,传送带BC 长L =6m ,始终以v 0=6m/s 的速度顺时针运动.将一个质量m =1kg 的物块由距斜面底端高度h 1=5.4m 的A 点静止滑下,物块通过B 点时速度的大小不变.物块与斜面、物块与传送带间动摩擦因数分别为μ1=0.5、μ2=0.2,传送带上表面距地面的高度H =5m ,g 取10m/s 2,sin37°=0.6,cos37°=0.8.⑴求物块由A 点运动到C 点的时间;⑵若把物块从距斜面底端高度h 2=2.4m 处静止释放,求物块落地点到C 点的水平距离; ⑶求物块距斜面底端高度满足什么条件时,将物块静止释放均落到地面上的同一点D . 【答案】 ⑴4s ;⑵6m ;⑶1.8m≤h≤9.0m 【解析】试题分析:(1)A 到B 过程:根据牛顿第二定律 mgsinθ﹣μ1mgcosθ=ma 1, 代入数据解得,t 1=3s .所以滑到B 点的速度:v B =a 1t 1=2×3m/s=6m/s , 物块在传送带上匀速运动到C ,所以物块由A 到C 的时间:t=t 1+t 2=3s+1s=4s(2)斜面上由根据动能定理.解得v=4m/s <6m/s ,设物块在传送带先做匀加速运动达v 0,运动位移为x ,则:,, x=5m <6m所以物体先做匀加速直线运动后和皮带一起匀速运动,离开C 点做平抛运动s=v 0t 0,H=解得 s=6m .(3)因物块每次均抛到同一点D ,由平抛知识知:物块到达C 点时速度必须有v C =v 0 ①当离传送带高度为h 3时物块进入传送带后一直匀加速运动,则:,解得h 3=1.8m②当离传送带高度为h 4时物块进入传送带后一直匀减速运动,h 4=9.0m所以当离传送带高度在1.8m ~9.0m 的范围内均能满足要求 即1.8m≤h≤9.0m4.如图所示,固定斜面的倾角α=30°,用一沿斜面向上的拉力将质量m =1kg 的物块从斜面底端由静止开始拉动,t =2s 后撤去该拉力,整个过程中物块上升的最大高度h =2.5m ,物块与斜面间的动摩擦因数μ=3.重力加速度g =10m/s 2.求:(1)拉力所做的功; (2)拉力的大小.【答案】(1)40J F W = (2)F =10N 【解析】 【详解】(1)物块从斜面底端到最高点的过程,根据动能定理有:cos 0sin F hW mg mgh μαα-⋅-= 解得拉力所做的功40F W J = (2)F W Fx =由位移公式有212x at = 由牛顿第二定律有cos sin F mg mg ma μαα--=解得拉力的大小F=10N.5.如图所示,质量m =2.0×10-4 kg 、电荷量q =1.0×10-6 C 的带正电微粒静止在空间范围足够大的电场强度为E1的匀强电场中.取g =10 m/s 2. (1)求匀强电场的电场强度 E1的大小和方向;(2)在t =0时刻,匀强电场强度大小突然变为E2=4.0×103N/C ,且方向不变.求在t =0.20 s 时间内电场力做的功;(3)在t =0.20 s 时刻突然撤掉第(2)问中的电场,求带电微粒回到出发点时的动能.【答案】(1)2.0×103N/C ,方向向上 (2)8.0×10-4J (3)8.0×10-4J 【解析】 【详解】(1)设电场强度为E ,则:Eq mg =,代入数据解得:4362.01010/ 2.010/1010mg E N C N C q --⨯⨯===⨯⨯,方向向上 (2)在0t =时刻,电场强度突然变化为:32 4.010/E N C =⨯,设微粒的加速度为a ,在0.20t s =时间内上升高度为h ,电场力做功为W ,则:21qE mg ma -=解得:2110/a m s =根据:2112h a t =,解得:0.20=h m 电场力做功:428.010J W qE h -==⨯(3)设在0.20t s =时刻突然撤掉电场时粒子的速度大小为v ,回到出发点时的动能为k E ,则:v at =,212k E mgh mv =+解得:48.010J k E -=⨯6.一质量为m =0.1kg 的滑块(可视为质点)从倾角为θ=37°、长为L =6m 的固定租糙斜面顶端由静止释放,滑块运动到斜面底端时的速度大小为v ,所用的时间为t .若让此滑块从斜面底端以速度v 滑上斜面,利滑块在斜面上上滑的时间为12t .已知重力加速度g 取10m/s 2,sin37°=0.6,cos37°=0.8.求: (1)滑块通过斜面端时的速度大小v ;(2)滑块从斜而底端以速度v 滑上斜面又滑到底端时的动能. 【答案】(1)43;(2)1.2J 【解析】 【详解】解:(1)设滑块和斜面间的动摩擦因数为μ,滑块下滑时的加速度大小为1a ,滑块上滑时的加速度大小为2a ,由牛顿第二定律可得滑块下滑时有1mgsin mgcos ma θμθ-= 滑块上滑时有2mgsin mgcos ma θμθ+= 由题意有122t v a t a == 联立解得μ=0.25则滑块在斜面上下滑时的加速度1a =4m/s 2,滑块上滑时的加速度大小2a =8m/s 2由运动学公式有212v a L =联立解得43v =m/s(2)设滑块沿斜面上滑的最大位移为x ,则有222v a x =解得:x =3m则滑块从斜面底端上滑到下滑到斜面底端的过程中,由动能定理有:21cos 22k mg x E mv μθ-⋅=-解得:k E =1.2J7.如图所示,在光滑的水平地面上有一平板小车质量为M =2kg ,靠在一起的滑块甲和乙质量均为m =1kg ,三者处于静止状态。
高考物理动能定理的综合应用答题技巧及练习题(含答案)含解析
高考物理动能定理的综合应用答题技巧及练习题(含答案)含解析一、高中物理精讲专题测试动能定理的综合应用1.如图所示,竖直平面内的轨道由直轨道AB 和圆弧轨道BC 组成,直轨道AB 和圆弧轨道BC 平滑连接,小球从斜面上A 点由静止开始滑下,滑到斜面底端后又滑上一个半径为=0.4m R 的圆轨道;(1)若接触面均光滑,小球刚好能滑到圆轨道的最高点C ,求斜面高h ;(2)若已知小球质量m =0.1kg ,斜面高h =2m ,小球运动到C 点时对轨道压力为mg ,求全过程中摩擦阻力做的功.【答案】(1)1m ;(2) -0.8J ; 【解析】 【详解】(1)小球刚好到达C 点,重力提供向心力,由牛顿第二定律得:2v mg m R=从A 到C 过程机械能守恒,由机械能守恒定律得:()2122mg h R mv -=, 解得:2.5 2.50.4m 1m h R ==⨯=;(2)在C 点,由牛顿第二定律得:2Cv mg mg m R+=,从A 到C 过程,由动能定理得:()21202f C mgh R W mv -+=-, 解得:0.8J f W =-;2.某滑沙场的示意图如图所示,某旅游者乘滑沙橇从A 点由静止开始滑下,最后停在水平沙面上的C 点.设滑沙橇和沙面间的动摩擦因数处处相同,斜面和水平面连接处可认为是圆滑的,滑沙者保持一定姿势坐在滑沙橇上不动,若测得AC 间水平距离为x ,A 点高为h ,求滑沙橇与沙面间的动摩擦因数μ.【答案】h/x 【解析】 【分析】对A 到C 的全过程运用动能定理,抓住动能的变化量为零,结合动能定理求出滑沙橇与沙面间的动摩擦因数. 【详解】设斜面的倾角为θ,对全过程运用动能定理得,因为,则有,解得.【点睛】本题考查了动能定理的基本运用,运用动能定理解题关键选择好研究的过程,分析过程中有哪些力做功,再结合动能定理进行求解,本题也可以结合动力学知识进行求解.3.如图所示,质量m =2.0×10-4 kg 、电荷量q =1.0×10-6 C 的带正电微粒静止在空间范围足够大的电场强度为E1的匀强电场中.取g =10 m/s 2. (1)求匀强电场的电场强度 E1的大小和方向;(2)在t =0时刻,匀强电场强度大小突然变为E2=4.0×103N/C ,且方向不变.求在t =0.20 s 时间内电场力做的功;(3)在t =0.20 s 时刻突然撤掉第(2)问中的电场,求带电微粒回到出发点时的动能.【答案】(1)2.0×103N/C ,方向向上 (2)8.0×10-4J (3)8.0×10-4J【解析】 【详解】(1)设电场强度为E ,则:Eq mg =,代入数据解得:4362.01010/ 2.010/1010mg E N C N C q --⨯⨯===⨯⨯,方向向上 (2)在0t =时刻,电场强度突然变化为:32 4.010/E N C =⨯,设微粒的加速度为a ,在0.20t s =时间内上升高度为h ,电场力做功为W ,则:21qE mg ma -=解得:2110/a m s =根据:2112h a t =,解得:0.20=h m电场力做功:428.010J W qE h -==⨯(3)设在0.20t s =时刻突然撤掉电场时粒子的速度大小为v ,回到出发点时的动能为k E ,则:v at =,212k E mgh mv =+解得:48.010J k E -=⨯4.如图所示,光滑坡道顶端距水平面高度为h ,质量为m 的小物块A 从坡道顶端由静止滑下,进入水平面上的滑道时无机械能损失,为使A 制动,将轻弹簧的一端固定在水平滑道延长线M 处的墙上,另一端恰位于滑道的末端O 点.已知在OM 段,物块A 与水平面间的动摩擦因数均为μ,其余各处的摩擦不计,重力加速度为g ,求:(1)物块速度滑到O 点时的速度大小;(2)弹簧为最大压缩量d 时的弹性势能 (设弹簧处于原长时弹性势能为零) (3)若物块A 能够被弹回到坡道上,则它能够上升的最大高度是多少? 【答案】(12gh 2)mgh mgd μ-;(3)2h d μ- 【解析】 【分析】根据题意,明确各段的运动状态,清楚各力的做功情况,再根据功能关系和能量守恒定律分析具体问题. 【详解】(1)从顶端到O 点的过程中,由机械能守恒定律得:212mgh mv =解得:2v gh(2)在水平滑道上物块A 克服摩擦力所做的功为:W mgd μ=由能量守恒定律得:212P mv E mgd μ=+ 联立上式解得:P E mgh mgd μ=-(3)物块A 被弹回的过程中,克服摩擦力所做的功仍为;W mgd μ=由能量守恒定律得 :P mgh E mgd μ'=-解得物块A 能够上升的最大高度为:2h h d μ'=-【点睛】考察功能关系和能量守恒定律的运用.5.在真空环境内探测微粒在重力场中能量的简化装置如图所示,P 是一个微粒源,能持续水平向右发射质量相同、初速度不同的微粒.高度为h 的探测屏AB 竖直放置,离P 点的水平距离为L ,上端A 与P 点的高度差也为h .(1)若微粒打在探测屏AB 的中点,求微粒在空中飞行的时间; (2)求能被屏探测到的微粒的初速度范围;(3)若打在探测屏A 、B 两点的微粒的动能相等,求L 与h 的关系. 【答案】3h g 42g g v h h≤≤22h 【解析】 【分析】 【详解】(1)若微粒打在探测屏AB 的中点,则有:32h =12gt 2, 解得:3h t g=(2)设打在B 点的微粒的初速度为V1,则有:L=V 1t 1,2h=12gt 12 得:14g v h=同理,打在A 点的微粒初速度为:22g v h= 所以微粒的初速度范围为:4g h ≤v≤2g h(3)打在A 和B 两点的动能一样,则有:12mv 22+mgh=12mv 12+2mgh联立解得:L=22h6.如图所示,质量为1m kg =的滑块,在水平力作用下静止在倾角为o 30θ=的光滑斜面上,斜面的末端B 与水平传送带相接(物块经过此位置滑上皮带时无能量损失),传送带的运行速度为03/v m s =,长为 1.4L m =.今将水平力撤去,当滑块滑到传送带右端C 时,恰好与传送带速度相同.已知滑块与传送带间的动摩擦因数为0.25μ=(210/g m s =).求:(1)水平力撤去后,滑块(在斜面上)的加速度大小; (2)滑块下滑的高度;(3)若滑块进入传送带时速度大于3/m s ,则滑块在传送带上滑行的整个过程中产生的热量为多少.【答案】(1)5m/s 2(2)0.1m 或0.8m (3)5J 【解析】 【分析】 【详解】(1)对撤去外力F 后的滑块受力分析,由牛顿第二定律:sin mg ma θ= 解得:25m /s a =(2)设滑块从高为h 处上滑,到达斜面底端速度为v ,下滑过程机械能守恒:212mgh mv = 解得:2v gh若滑块冲上传送带的速度小于传送带速度,则滑块在带上由于受到向右的滑动摩擦力而做匀加速运动,根据动能定理有:2201122mgL mv mv μ=- 联立解得:200.8m 2v h L gμ=+=若滑块冲上传送带时的速度大于传送带的速度,则滑块由于受天向左的滑动摩擦力而做匀速运动,根据动能定理:2201122mgL mv mv μ-=- 解得:200.8m 2v h L gμ=+=(3)设滑块在传送带上运动的时间为t ,则t 时间内传送带的位移:0s v t = 由机械能守恒可知:212mgh mv = 对滑块由运动学公式知:0v v at =- 联立解得:0v v s v a-=⋅滑块相对传送带滑动的位移:s L s ∆=- 相对滑动生成的热量:0.5J Q mg s μ=∆=7.滑板运动是深受青少年喜爱的一项极限运动。
高考物理高考物理动能定理的综合应用技巧和方法完整版及练习题
高考物理高考物理动能定理的综合应用技巧和方法完整版及练习题一、高中物理精讲专题测试动能定理的综合应用1.如图所示,人骑摩托车做腾跃特技表演,以1.0m/s 的初速度沿曲面冲上高0.8m 、顶部水平的高台,若摩托车冲上高台的过程中始终以额定功率1.8kW 行驶,经过1.2s 到达平台顶部,然后离开平台,落至地面时,恰能无碰撞地沿圆弧切线从A 点切入光滑竖直圆弧轨道,并沿轨道下滑.A 、B 为圆弧两端点,其连线水平.已知圆弧半径为R =1.0m ,人和车的总质量为180kg ,特技表演的全过程中不计一切阻力(计算中取g =10m/s2,sin53°=0.8,cos53°=0.6).求:(1)人和车到达顶部平台的速度v ;(2)从平台飞出到A 点,人和车运动的水平距离x ; (3)圆弧对应圆心角θ;(4)人和车运动到圆弧轨道最低点O 时对轨道的压力. 【答案】(1)3m/s (2)1.2m (3)106°(4)7.74×103N 【解析】 【分析】 【详解】(1)由动能定理可知:221011Pt mgH mv 22mv -=- v =3m/s (2)由2221H gt ,s vt 2==可得:2H s v 1.2m g== (3)摩托车落至A 点时,其竖直方向的分速度y 2v gt 4m /s ==设摩托车落地时速度方向与水平方向的夹角为α,则4tan 3yv v α==,即α=53° 所以θ=2α=106° (4)在摩托车由最高点飞出落至O 点的过程中,由机械能守恒定律可得:2211mg[H R(1cos )]mv mv 22α'+-=-在O 点:2v N mg m R-= 所以N =7740N由牛顿第三定律可知,人和车在最低点O 时对轨道的压力为7740N2.如图所示,竖直平面内的轨道由直轨道AB 和圆弧轨道BC 组成,直轨道AB 和圆弧轨道BC 平滑连接,小球从斜面上A 点由静止开始滑下,滑到斜面底端后又滑上一个半径为=0.4m R 的圆轨道;(1)若接触面均光滑,小球刚好能滑到圆轨道的最高点C ,求斜面高h ;(2)若已知小球质量m =0.1kg ,斜面高h =2m ,小球运动到C 点时对轨道压力为mg ,求全过程中摩擦阻力做的功.【答案】(1)1m ;(2) -0.8J ; 【解析】 【详解】(1)小球刚好到达C 点,重力提供向心力,由牛顿第二定律得:2v mg m R=从A 到C 过程机械能守恒,由机械能守恒定律得:()2122mg h R mv -=, 解得:2.5 2.50.4m 1m h R ==⨯=;(2)在C 点,由牛顿第二定律得:2Cv mg mg m R+=,从A 到C 过程,由动能定理得:()21202f C mgh R W mv -+=-, 解得:0.8J f W =-;3.我国将于2022年举办冬奥会,跳台滑雪是其中最具观赏性的项目之一.如图1-所示,质量m=60 kg的运动员从长直助滑道AB的A处由静止开始以加速度a=3.6 m/s2匀加速滑下,到达助滑道末端B时速度v B=24 m/s,A与B的竖直高度差H=48 m.为了改变运动员的运动方向,在助滑道与起跳台之间用一段弯曲滑道衔接,其中最低点C处附近是一段以O为圆心的圆弧.助滑道末端B与滑道最低点C的高度差h=5 m,运动员在B、C间运动时阻力做功W=-1530 J,g取10 m/s2.(1)求运动员在AB段下滑时受到阻力F f的大小;(2)若运动员能够承受的最大压力为其所受重力的6倍,则C点所在圆弧的半径R至少应为多大?【答案】(1)144 N (2)12.5 m【解析】试题分析:(1)运动员在AB上做初速度为零的匀加速运动,设AB的长度为x,斜面的倾角为α,则有v B2=2ax根据牛顿第二定律得mgsinα﹣F f=ma 又sinα=H x由以上三式联立解得 F f=144N(2)设运动员到达C点时的速度为v C,在由B到达C的过程中,由动能定理有mgh+W=12mv C2-12mv B2设运动员在C点所受的支持力为F N,由牛顿第二定律得 F N﹣mg=m2 C v R由运动员能承受的最大压力为其所受重力的6倍,即有 F N=6mg 联立解得 R=12.5m考点:牛顿第二定律;动能定理【名师点睛】本题中运动员先做匀加速运动,后做圆周运动,是牛顿第二定律、运动学公式、动能定理和向心力的综合应用,要知道圆周运动向心力的来源,涉及力在空间的效果,可考虑动能定理.4.如图所示,一质量为m的小球从半径为R的竖直四分之一圆弧轨道的顶端无初速释放,圆弧轨道的底端水平,离地面高度为R。
高中物理高考物理动能定理的综合应用技巧(很有用)及练习题
高中物理高考物理动能定理的综合应用技巧(很有用)及练习题一、高中物理精讲专题测试动能定理的综合应用1.为了备战2022年北京冬奥会,一名滑雪运动员在倾角θ=30°的山坡滑道上进行训练,运动员及装备的总质量m=70 kg.滑道与水平地面平滑连接,如图所示.他从滑道上由静止开始匀加速下滑,经过t=5s到达坡底,滑下的路程 x=50 m.滑雪运动员到达坡底后又在水平面上滑行了一段距离后静止.运动员视为质点,重力加速度g=10m/s2,求:(1)滑雪运动员沿山坡下滑时的加速度大小a;(2)滑雪运动员沿山坡下滑过程中受到的阻力大小f;(3)滑雪运动员在全过程中克服阻力做的功W f.【答案】(1)4m/s2(2)f = 70N (3)1.75×104J【解析】【分析】(1)运动员沿山坡下滑时做初速度为零的匀加速直线运动,已知时间和位移,根据匀变速直线运动的位移时间公式求出下滑的加速度.(2)对运动员进行受力分析,根据牛顿第二定律求出下滑过程中受到的阻力大小.(3)对全过程,根据动能定理求滑雪运动员克服阻力做的功.【详解】(1)根据匀变速直线运动规律得:x=1at22解得:a=4m/s2(2)运动员受力如图,根据牛顿第二定律得:mgsinθ-f=ma解得:f=70N(3)全程应用动能定理,得:mgxsinθ-W f =0解得:W f =1.75×104J【点睛】解决本题的关键要掌握两种求功的方法,对于恒力可运用功的计算公式求.对于变力可根据动能定理求功.2.如图所示,AB是竖直面内的四分之一圆弧形光滑轨道,下端B点与水平直轨道相切.一个小物块自A点由静止开始沿轨道下滑,已知轨道半径为R=0.2m,小物块的质量为m=0.1kg,小物块与水平面间的动摩擦因数μ=0.5,g取10m/s2.求:(1)小物块在B点时受到的圆弧轨道的支持力大小;(2)小物块在水平面上滑动的最大距离.【答案】(1)3N (2)0.4m【解析】(1)由机械能守恒定律,得在B点联立以上两式得F N=3mg=3×0.1×10N=3N.(2)设小物块在水平面上滑动的最大距离为l,对小物块运动的整个过程由动能定理得mgR-μmgl=0,代入数据得【点睛】解决本题的关键知道只有重力做功,机械能守恒,掌握运用机械能守恒定律以及动能定理进行解题.3.某滑沙场的示意图如图所示,某旅游者乘滑沙橇从A点由静止开始滑下,最后停在水平沙面上的C点.设滑沙橇和沙面间的动摩擦因数处处相同,斜面和水平面连接处可认为是圆滑的,滑沙者保持一定姿势坐在滑沙橇上不动,若测得AC间水平距离为x,A点高为h,求滑沙橇与沙面间的动摩擦因数μ.【答案】h/x【解析】【分析】对A到C的全过程运用动能定理,抓住动能的变化量为零,结合动能定理求出滑沙橇与沙面间的动摩擦因数.【详解】设斜面的倾角为θ,对全过程运用动能定理得,因为,则有,解得.【点睛】本题考查了动能定理的基本运用,运用动能定理解题关键选择好研究的过程,分析过程中有哪些力做功,再结合动能定理进行求解,本题也可以结合动力学知识进行求解.4.我国将于2022年举办冬奥会,跳台滑雪是其中最具观赏性的项目之一.如图1-所示,质量m=60 kg的运动员从长直助滑道AB的A处由静止开始以加速度a=3.6 m/s2匀加速滑下,到达助滑道末端B时速度v B=24 m/s,A与B的竖直高度差H=48 m.为了改变运动员的运动方向,在助滑道与起跳台之间用一段弯曲滑道衔接,其中最低点C处附近是一段以O为圆心的圆弧.助滑道末端B与滑道最低点C的高度差h=5 m,运动员在B、C间运动时阻力做功W=-1530 J,g取10 m/s2.(1)求运动员在AB段下滑时受到阻力F f的大小;(2)若运动员能够承受的最大压力为其所受重力的6倍,则C点所在圆弧的半径R至少应为多大?【答案】(1)144 N (2)12.5 m【解析】试题分析:(1)运动员在AB上做初速度为零的匀加速运动,设AB的长度为x,斜面的倾角为α,则有v B2=2ax根据牛顿第二定律得mgsinα﹣F f=ma 又sinα=H x由以上三式联立解得 F f=144N(2)设运动员到达C点时的速度为v C,在由B到达C的过程中,由动能定理有mgh+W=12mv C2-12mv B2设运动员在C点所受的支持力为F N,由牛顿第二定律得 F N﹣mg=m2 C v R由运动员能承受的最大压力为其所受重力的6倍,即有 F N=6mg 联立解得 R=12.5m考点:牛顿第二定律;动能定理【名师点睛】本题中运动员先做匀加速运动,后做圆周运动,是牛顿第二定律、运动学公式、动能定理和向心力的综合应用,要知道圆周运动向心力的来源,涉及力在空间的效果,可考虑动能定理.5.在某电视台举办的冲关游戏中,AB是处于竖直平面内的光滑圆弧轨道,半径R=1.6m,BC是长度为L1=3m的水平传送带,CD是长度为L2=3.6m水平粗糙轨道,AB、CD轨道与传送带平滑连接,参赛者抱紧滑板从A 处由静止下滑,参赛者和滑板可视为质点,参赛者质量m=60kg ,滑板质量可忽略.已知滑板与传送带、水平轨道的动摩擦因数分别为μ1=0.4、μ2=0.5,g 取10m/s 2.求:(1)参赛者运动到圆弧轨道B 处对轨道的压力;(2)若参赛者恰好能运动至D 点,求传送带运转速率及方向; (3)在第(2)问中,传送带由于传送参赛者多消耗的电能.【答案】(1)1200N ,方向竖直向下(2)顺时针运转,v=6m/s (3)720J 【解析】(1) 对参赛者:A 到B 过程,由动能定理 mgR(1-cos 60°)=12m 2B v 解得v B =4m /s在B 处,由牛顿第二定律N B -mg =m 2Bv R解得N B =2mg =1 200N根据牛顿第三定律:参赛者对轨道的压力 N′B =N B =1 200N ,方向竖直向下. (2) C 到D 过程,由动能定理-μ2mgL 2=0-12m 2C v 解得v C =6m /sB 到C 过程,由牛顿第二定律μ1mg =ma 解得a =4m /s 2(2分) 参赛者加速至v C 历时t =C Bv v a-=0.5s 位移x 1=2B Cv v +t =2.5m <L 1 参赛者从B 到C 先匀加速后匀速,传送带顺时针运转,速率v =6m /s . (3) 0.5s 内传送带位移x 2=vt =3m 参赛者与传送带的相对位移Δx =x 2-x 1=0.5m 传送带由于传送参赛者多消耗的电能E =μ1mg Δx +12m 2C v -12m 2B v =720J .6.如图所示,一质量为m 的滑块从高为h 的光滑圆弧形槽的顶端A 处无初速度地滑下,槽的底端B 与水平传送带相接,传送带的运行速度恒为v 0,两轮轴心间距为L ,滑块滑到传送带上后做匀加速运动,滑到传送带右端C 时,恰好加速到与传送带的速度相同,求:(1)滑块到达底端B 时的速度大小v B ; (2)滑块与传送带间的动摩擦因数μ;(3)此过程中,由于克服摩擦力做功而产生的热量Q.【答案】(12gh 2)2022v gh gl μ-=(3)(2022m v gh-【解析】试题分析:(1)滑块在由A 到B 的过程中,由动能定理得:2102B mgh mv -=, 解得:2B gh ν=(2)滑块在由B 到C 的过程中,由动能定理得:μmgL =12mv 02−12mv B 2, 解得,2022v ghgLμ-=;(3)产生的热量:Q=μmgL 相对,()2200(2)2B gh L g相对=νννμ--=(或200(2) gh ν-), 解得,201(2)2Q m gh ν=; 考点:动能定理【名师点睛】本题考查了求物体速度、动摩擦因数、产生的热量等问题,分析清楚运动过程,熟练应用动能定理即可正确解题.7.如图甲所示,带斜面的足够长木板P ,质量M =3kg 。
高考物理动能定理的综合应用技巧和方法完整版及练习题及解析
高考物理动能定理的综合应用技巧和方法完整版及练习题及解析一、高中物理精讲专题测试动能定理的综合应用1.如图所示,半径2R m =的四分之一粗糙圆弧轨道AB 置于竖直平面内,轨道的B 端切线水平,且距水平地面高度为h =1.25m ,现将一质量m =0.2kg 的小滑块从A 点由静止释放,滑块沿圆弧轨道运动至B 点以5/v m s =的速度水平飞出(g 取210/m s ).求:(1)小滑块沿圆弧轨道运动过程中所受摩擦力做的功; (2)小滑块经过B 点时对圆轨道的压力大小; (3)小滑块着地时的速度大小.【答案】(1) 1.5f W J = (2) 4.5N F N = (3)152/v m s = 【解析】 【分析】 【详解】(1)滑块在圆弧轨道受重力、支持力和摩擦力作用,由动能定理mgR -W f =12mv 2W f =1.5J(2)由牛顿第二定律可知:2N v F mg m R-=解得:4.5N F N =(3)小球离开圆弧后做平抛运动根据动能定理可知:22111m m 22mgh v v =-解得:152m/s v =2.一个平板小车置于光滑水平面上,其右端恰好和一个光滑圆弧轨道AB 的底端等高对接,如图所示.已知小车质量M=3.0kg ,长L=2.06m ,圆弧轨道半径R=0.8m .现将一质量m=1.0kg 的小滑块,由轨道顶端A 点无初速释放,滑块滑到B 端后冲上小车.滑块与小车上表面间的动摩擦因数.(取g=10m/s2)试求:(1)滑块到达B端时,轨道对它支持力的大小;(2)小车运动1.5s时,车右端距轨道B端的距离;(3)滑块与车面间由于摩擦而产生的内能.【答案】(1)30 N(2)1 m(3)6 J【解析】(1)滑块从A端下滑到B端,由动能定理得(1分)在B点由牛顿第二定律得(2分)解得轨道对滑块的支持力N (1分)(2)滑块滑上小车后,由牛顿第二定律对滑块:,得m/s2 (1分)对小车:,得m/s2 (1分)设经时间t后两者达到共同速度,则有(1分)解得s (1分)由于s<1.5s,故1s后小车和滑块一起匀速运动,速度v="1" m/s (1分)因此,1.5s时小车右端距轨道B端的距离为m (1分)(3)滑块相对小车滑动的距离为m (2分)所以产生的内能J (1分)3.如图,I、II为极限运动中的两部分赛道,其中I的AB部分为竖直平面内半径为R的1 4光滑圆弧赛道,最低点B的切线水平; II上CD为倾角为30°的斜面,最低点C处于B点的正下方,B、C两点距离也等于R.质量为m的极限运动员(可视为质点)从AB上P点处由静止开始滑下,恰好垂直CD落到斜面上.求:(1) 极限运动员落到CD上的位置与C的距离;(2)极限运动员通过B点时对圆弧轨道的压力;(3)P 点与B 点的高度差.【答案】(1)45R (2)75mg ,竖直向下(3)15R【解析】 【详解】(1)设极限运动员在B 点的速度为v 0,落在CD 上的位置与C 的距离为x ,速度大小为v ,在空中运动的时间为t ,则xcos300=v 0t R-xsin300=12gt 2 0tan 30v gt =解得x=0.8R(2)由(1)可得:025v gR =通过B 点时轨道对极限运动员的支持力大小为F N20N v F mg m R-=极限运动员对轨道的压力大小为F N ′,则F N ′=F N , 解得'75N F mg =,方向竖直向下; (3) P 点与B 点的高度差为h,则mgh=12mv 02 解得h=R/54.我国将于2022年举办冬奥会,跳台滑雪是其中最具观赏性的项目之一.如图1-所示,质量m =60 kg 的运动员从长直助滑道AB 的A 处由静止开始以加速度a =3.6 m/s 2匀加速滑下,到达助滑道末端B 时速度v B =24 m/s ,A 与B 的竖直高度差H =48 m .为了改变运动员的运动方向,在助滑道与起跳台之间用一段弯曲滑道衔接,其中最低点C 处附近是一段以O 为圆心的圆弧.助滑道末端B 与滑道最低点C 的高度差h =5 m ,运动员在B 、C 间运动时阻力做功W =-1530 J ,g 取10 m/s 2.(1)求运动员在AB 段下滑时受到阻力F f 的大小;(2)若运动员能够承受的最大压力为其所受重力的6倍,则C 点所在圆弧的半径R 至少应为多大?【答案】(1)144 N (2)12.5 m 【解析】试题分析:(1)运动员在AB 上做初速度为零的匀加速运动,设AB 的长度为x ,斜面的倾角为α,则有 v B 2=2ax根据牛顿第二定律得 mgsinα﹣F f =ma 又 sinα=H x由以上三式联立解得 F f =144N(2)设运动员到达C 点时的速度为v C ,在由B 到达C 的过程中,由动能定理有 mgh+W=12mv C 2-12mv B 2 设运动员在C 点所受的支持力为F N ,由牛顿第二定律得 F N ﹣mg=m 2Cv R由运动员能承受的最大压力为其所受重力的6倍,即有 F N =6mg 联立解得 R=12.5m 考点:牛顿第二定律;动能定理【名师点睛】本题中运动员先做匀加速运动,后做圆周运动,是牛顿第二定律、运动学公式、动能定理和向心力的综合应用,要知道圆周运动向心力的来源,涉及力在空间的效果,可考虑动能定理.5.某人欲将质量50kg m =的货箱推上高 1.0m h =的卡车,他使用的是一个长 5.0m L =的斜面(斜面与水平面在A 处平滑连接)。
高考物理动能定理的综合应用解题技巧(超强)及练习题(含答案)及解析
高考物理动能定理的综合应用解题技巧(超强)及练习题(含答案)及解析一、高中物理精讲专题测试动能定理的综合应用1.由相同材料的细杆搭成的轨道如图所示,其中细杆AB 、BC 、CD 、DE 、EF ……长均为 1.5m L =,细杆OA 和其他细杆与水平面的夹角都为()37sin370.6,cos370.8β︒︒︒===,一个可看成质点的小环套在细杆OA 上从图中离轨道最低点的竖直高度 1.32m h =处由静止释放,小环与细杆的动摩擦因数都为0.2μ=,最大静摩擦力等于相同压力下的滑动摩擦力,在两细杆交接处都用短小曲杆相连,不计动能损失,使小环能顺利地经过,重力加速度g 取210m /s ,求: (1)小环在细杆OA 上运动的时间t ; (2)小环运动的总路程s ; (3)小环最终停止的位置。
【答案】(1)1s ;(2)8.25m ;(3)最终停在A 点 【解析】 【分析】 【详解】(1)因为sin cos mg mg βμβ>,故小环不能静止在细杆上,小环下滑的加速度为2sin cos 4.4m/s mg mg a mβμβ-==设物体与A 点之间的距离为0L ,由几何关系可得0 2.2m sin37hL ︒== 设物体从静止运动到A 所用的时间为t ,由2012L at =,得 1s t =(2)从物体开始运动到最终停下的过程中,设总路程为s ,由动能定理得cos3700mgh mgs μ︒=--代入数据解得s =8.25m(3)假设物体能依次到达B 点、D 点,由动能定理有201(sin37)cos37()2B mg h L mg L L mv μ︒︒+=-- 解得20B v <说明小环到不了B 点,最终停在A 点处2.如图所示,AC 为光滑的水平桌面,轻弹簧的一端固定在A 端的竖直墙壁上.质量1m kg =的小物块将弹簧的另一端压缩到B 点,之后由静止释放,离开弹簧后从C 点水平飞出,恰好从D 点以10/D v m s =的速度沿切线方向进入竖直面内的光滑圆弧轨道(DEF 小物体与轨道间无碰撞).O 为圆弧轨道的圆心,E 为圆弧轨道的最低点,圆弧轨道的半径1R m =,60DOE ∠=o ,37.EOF ∠=o小物块运动到F 点后,冲上足够长的斜面FG ,斜面FG 与圆轨道相切于F 点,小物体与斜面间的动摩擦因数0.5.sin370.6μ==o ,cos370.8=o ,取210/.g m s =不计空气阻力.求:(1)弹簧最初具有的弹性势能;(2)小物块第一次到达圆弧轨道的E 点时对圆弧轨道的压力大小;(3)判断小物块沿斜面FG 第一次返回圆弧轨道后能否回到圆弧轨道的D 点?若能,求解小物块回到D 点的速度;若不能,求解经过足够长的时间后小物块通过圆弧轨道最低点E 的速度大小.【答案】()11?.25J ;()2 30N ;()3 2/m s . 【解析】 【分析】 【详解】(1)设小物块在C 点的速度为C v ,则在D 点有:C D v v cos60o=设弹簧最初具有的弹性势能为p E ,则:2P C 1E mv 2= 代入数据联立解得:p E 1.25J =;()2设小物块在E 点的速度为E v ,则从D 到E 的过程中有:()22E D 11mgR 1cos60mv mv 22-=-o 设在E 点,圆轨道对小物块的支持力为N ,则有:2E v N mg R-=代入数据解得:E v 25m /s =,N 30N =由牛顿第三定律可知,小物块到达圆轨道的E 点时对圆轨道的压力为30 N ;()3设小物体沿斜面FG 上滑的最大距离为x ,从E 到最大距离的过程中有:()()2E 1mgR 1cos37mgsin37μmgcos37x 0mv 2o o o ---+=-小物体第一次沿斜面上滑并返回F 的过程克服摩擦力做的功为f W ,则f W 2x μmgcos37=o小物体在D 点的动能为KD E ,则:2KD D 1E mv 2=代入数据解得:x 0.8m =,f W 6.4J =,KD E 5J = 因为KD f E W <,故小物体不能返回D 点.小物体最终将在F 点与关于过圆轨道圆心的竖直线对称的点之间做往复运动,小物体的机械能守恒,设最终在最低点的速度为Em v ,则有:()2Em 1mgR 1cos37mv 2-=o 代入数据解得:Em v 2m /s =答:()1弹簧最初具有的弹性势能为1.25J ;()2小物块第一次到达圆弧轨道的E 点时对圆弧轨道的压力大小是30 N ;()3小物块沿斜面FG 第一次返回圆弧轨道后不能回到圆弧轨道的D 点.经过足够长的时间后小物块通过圆弧轨道最低点E 的速度大小为2 m /s . 【点睛】(1)物块离开C 点后做平抛运动,由D 点沿圆轨道切线方向进入圆轨道,知道了到达D 点的速度方向,将D 点的速度分解为水平方向和竖直方向,根据角度关系求出水平分速度,即离开C 点时的速度,再研究弹簧释放的过程,由机械能守恒定律求弹簧最初具有的弹性势能;()2物块从D 到E ,运用机械能守恒定律求出通过E 点的速度,在E 点,由牛顿定律和向心力知识结合求物块对轨道的压力;()3假设物块能回到D 点,对物块从A 到返回D 点的整个过程,运用动能定理求出D 点的速度,再作出判断,最后由机械能守恒定律求出最低点的速度.3.如图所示,小物体沿光滑弧形轨道从高为h 处由静止下滑,它在水平粗糙轨道上滑行的最远距离为s ,重力加速度用g 表示,小物体可视为质点,求:(1)求小物体刚刚滑到弧形轨道底端时的速度大小v ; (2)水平轨道与物体间的动摩擦因数均为μ。
高考物理动能定理的综合应用技巧(很有用)及练习题含解析
高考物理动能定理的综合应用技巧(很有用)及练习题含解析一、高中物理精讲专题测试动能定理的综合应用1.质量 1.5m kg =的物块(可视为质点)在水平恒力F 作用下,从水平面上A 点由静止开始运动,运动一段距离撤去该力,物块继续滑行 2.0t s =停在B 点,已知A 、B 两点间的距离 5.0s m =,物块与水平面间的动摩擦因数0.20μ=,求恒力F 多大.(210/g m s =)【答案】15N 【解析】 设撤去力前物块的位移为,撤去力时物块的速度为,物块受到的滑动摩擦力对撤去力后物块滑动过程应用动量定理得由运动学公式得对物块运动的全过程应用动能定理由以上各式得 代入数据解得思路分析:撤去F 后物体只受摩擦力作用,做减速运动,根据动量定理分析,然后结合动能定律解题试题点评:本题结合力的作用综合考查了运动学规律,是一道综合性题目.2.如图,I 、II 为极限运动中的两部分赛道,其中I 的AB 部分为竖直平面内半径为R 的14光滑圆弧赛道,最低点B 的切线水平; II 上CD 为倾角为30°的斜面,最低点C 处于B 点的正下方,B 、C 两点距离也等于R.质量为m 的极限运动员(可视为质点)从AB 上P 点处由静止开始滑下,恰好垂直CD 落到斜面上.求:(1) 极限运动员落到CD 上的位置与C 的距离; (2)极限运动员通过B 点时对圆弧轨道的压力; (3)P 点与B 点的高度差.【答案】(1)45R (2)75mg ,竖直向下(3)15R【解析】 【详解】(1)设极限运动员在B 点的速度为v 0,落在CD 上的位置与C 的距离为x ,速度大小为v ,在空中运动的时间为t ,则xcos300=v 0t R-xsin300=12gt 2 0tan 30v gt =解得x=0.8R(2)由(1)可得:025v gR =通过B 点时轨道对极限运动员的支持力大小为F N20N v F mg m R-=极限运动员对轨道的压力大小为F N ′,则F N ′=F N , 解得'75N F mg =,方向竖直向下; (3) P 点与B 点的高度差为h,则mgh=12mv 02 解得h=R/53.某人欲将质量50kg m =的货箱推上高 1.0m h =的卡车,他使用的是一个长 5.0m L =的斜面(斜面与水平面在A 处平滑连接)。
高考物理动能定理的综合应用的基本方法技巧及练习题及练习题(含答案)及解析
高考物理动能定理的综合应用的基本方法技巧及练习题及练习题(含答案)及解析一、高中物理精讲专题测试动能定理的综合应用1.由相同材料的细杆搭成的轨道如图所示,其中细杆AB 、BC 、CD 、DE 、EF ……长均为 1.5m L =,细杆OA 和其他细杆与水平面的夹角都为()37sin370.6,cos370.8β︒︒︒===,一个可看成质点的小环套在细杆OA 上从图中离轨道最低点的竖直高度 1.32m h =处由静止释放,小环与细杆的动摩擦因数都为0.2μ=,最大静摩擦力等于相同压力下的滑动摩擦力,在两细杆交接处都用短小曲杆相连,不计动能损失,使小环能顺利地经过,重力加速度g 取210m /s ,求: (1)小环在细杆OA 上运动的时间t ; (2)小环运动的总路程s ; (3)小环最终停止的位置。
【答案】(1)1s ;(2)8.25m ;(3)最终停在A 点 【解析】 【分析】 【详解】(1)因为sin cos mg mg βμβ>,故小环不能静止在细杆上,小环下滑的加速度为2sin cos 4.4m/s mg mg a mβμβ-==设物体与A 点之间的距离为0L ,由几何关系可得0 2.2m sin37hL ︒== 设物体从静止运动到A 所用的时间为t ,由2012L at =,得 1s t =(2)从物体开始运动到最终停下的过程中,设总路程为s ,由动能定理得cos3700mgh mgs μ︒=--代入数据解得s =8.25m(3)假设物体能依次到达B 点、D 点,由动能定理有201(sin37)cos37()2B mg h L mg L L mv μ︒︒+=-- 解得20B v <说明小环到不了B 点,最终停在A 点处2.某人欲将质量50kg m =的货箱推上高 1.0m h =的卡车,他使用的是一个长 5.0m L =的斜面(斜面与水平面在A 处平滑连接)。
假设货箱与水平面和斜面的动摩擦因数均为0.30μ=。
高中物理动能定理的综合应用解题技巧讲解及练习题(含答案)
高中物理动能定理的综合应用解题技巧讲解及练习题(含答案)一、高中物理精讲专题测试动能定理的综合应用1.一辆汽车发动机的额定功率P =200kW ,若其总质量为m =103kg ,在水平路面上行驶时,汽车以加速度a 1=5m/s 2从静止开始匀加速运动能够持续的最大时间为t 1=4s ,然后保持恒定的功率继续加速t 2=14s 达到最大速度。
设汽车行驶过程中受到的阻力恒定,取g =10m/s 2.求:(1)汽车所能达到的最大速度;(2)汽车从启动至到达最大速度的过程中运动的位移。
【答案】(1)40m/s ;(2)480m 【解析】 【分析】 【详解】(1)汽车匀加速结束时的速度11120m /s v a t ==由P=Fv 可知,匀加速结束时汽车的牵引力11F Pv ==1×104N 由牛顿第二定律得11F f ma -=解得f =5000N汽车速度最大时做匀速直线运动,处于平衡状态,由平衡条件可知, 此时汽车的牵引力F=f =5000N由P Fv =可知,汽车的最大速度:v=P PF f==40m/s (2)汽车匀加速运动的位移x 1=1140m 2v t = 对汽车,由动能定理得2112102F x Pt fs mv =--+解得s =480m2.如图所示,轨道ABC 被竖直地固定在水平桌面上,A 距水平地面高H =0.75m ,C 距水平地面高h =0.45m 。
一个质量m =0.1kg 的小物块自A 点从静止开始下滑,从C 点以水平速度飞出后落在地面上的D 点。
现测得C 、D 两点的水平距离为x =0.6m 。
不计空气阻力,取g =10m/s 2。
求(1)小物块从C 点运动到D 点经历的时间t ; (2)小物块从C 点飞出时速度的大小v C ;(3)小物块从A 点运动到C 点的过程中克服摩擦力做的功。
【答案】(1) t=0.3s (2) v C =2.0m/s (3)0.1J 【解析】 【详解】(1)小物块从C 水平飞出后做平抛运动,由212h gt = 得小物块从C 点运动到D 点经历的时间20.3ht g==s (2)小物块从C 点运动到D ,由C x v t = 得小物块从C 点飞出时速度的大小C xv t==2.0m/s (3)小物块从A 点运动到C 点的过程中,根据动能定理 得()2102f C mg Hh W mv -+=- ()212f C W mv mg Hh =--= -0.1J 此过程中克服摩擦力做的功f f W W '=-=0.1J3.如图所示,竖直平面内的轨道由直轨道AB 和圆弧轨道BC 组成,直轨道AB 和圆弧轨道BC 平滑连接,小球从斜面上A 点由静止开始滑下,滑到斜面底端后又滑上一个半径为=0.4m R 的圆轨道;(1)若接触面均光滑,小球刚好能滑到圆轨道的最高点C ,求斜面高h ;(2)若已知小球质量m =0.1kg ,斜面高h =2m ,小球运动到C 点时对轨道压力为mg ,求全过程中摩擦阻力做的功.【答案】(1)1m ;(2) -0.8J ; 【解析】 【详解】(1)小球刚好到达C 点,重力提供向心力,由牛顿第二定律得:2v mg m R=从A 到C 过程机械能守恒,由机械能守恒定律得:()2122mg h R mv -=, 解得:2.5 2.50.4m 1m h R ==⨯=;(2)在C 点,由牛顿第二定律得:2Cv mg mg m R+=,从A 到C 过程,由动能定理得:()21202f C mgh R W mv -+=-, 解得:0.8J f W =-;4.某滑沙场的示意图如图所示,某旅游者乘滑沙橇从A 点由静止开始滑下,最后停在水平沙面上的C 点.设滑沙橇和沙面间的动摩擦因数处处相同,斜面和水平面连接处可认为是圆滑的,滑沙者保持一定姿势坐在滑沙橇上不动,若测得AC 间水平距离为x ,A 点高为h ,求滑沙橇与沙面间的动摩擦因数μ.【答案】h/x 【解析】 【分析】对A 到C 的全过程运用动能定理,抓住动能的变化量为零,结合动能定理求出滑沙橇与沙面间的动摩擦因数. 【详解】设斜面的倾角为θ,对全过程运用动能定理得,因为,则有,解得.【点睛】本题考查了动能定理的基本运用,运用动能定理解题关键选择好研究的过程,分析过程中有哪些力做功,再结合动能定理进行求解,本题也可以结合动力学知识进行求解.5.如图光滑水平导轨AB 的左端有一压缩的弹簧,弹簧左端固定,右端前放一个质量为m =1kg 的物块(可视为质点),物块与弹簧不粘连,B 点与水平传送带的左端刚好平齐接触,传送带的长度BC 的长为L =6m ,沿逆时针方向以恒定速度v =2m/s 匀速转动.CD 为光滑的水平轨道,C 点与传送带的右端刚好平齐接触,DE 是竖直放置的半径为R =0.4m 的光滑半圆轨道,DE 与CD 相切于D 点.已知物块与传送带间的动摩擦因数μ=0.2,取g =10m/s 2.(1)若释放弹簧,物块离开弹簧,滑上传送带刚好能到达C 点,求弹簧储存的弹性势能p E ;(2)若释放弹簧,物块离开弹簧,滑上传送带能够通过C 点,并经过圆弧轨道DE ,从其最高点E 飞出,最终落在CD 上距D 点的距离为x =1.2m 处(CD 长大于1.2m ),求物块通过E 点时受到的压力大小;(3)满足(2)条件时,求物块通过传送带的过程中产生的热能. 【答案】(1)p 12J E =(2)N =12.5N (3)Q =16J 【解析】 【详解】(1)由动量定理知:2102mgL mv μ-=-由能量守恒定律知:2p 12E mv =解得:p 12J E =(2)由平抛运动知:竖直方向:2122y R gt ==水平方向:E x v t =在E 点,由牛顿第二定律知:2E v N mg m R+=解得:N =12.5N(3)从D 到E ,由动能定理知:2211222D E mg R mv mv -⋅=- 解得:5m /s D v =从B 到D ,由动能定理知221122D B mv mg v L m μ--= 解得:7m /s B v =对物块2B Dv v L t +=解得:t =1s ;621m 8m s L vt ∆=+=+⨯=相对由能量守恒定律知:mgL Q s μ=⋅∆相对 解得:Q =16J6.如图所示,在海滨游乐场里有一种滑沙运动.某人坐在滑板上从斜坡的高处A 点由静止开始滑下,滑到斜坡底端B 点后,沿水平的滑道再滑行一段距离到C 点停下来.如果人和滑板的总质量m =60kg ,滑板与斜坡滑道和水平滑道间的动摩擦因数均为μ=0.5,斜坡的倾角θ=37°(sin 37°=0.6,cos 37°=0.8),斜坡与水平滑道间是平滑连接的,整个运动过程中空气阻力忽略不计,重力加速度g 取10m/s 2. 求:(1)人从斜坡上滑下的加速度为多大?(2)若由于场地的限制,水平滑道的最大距离BC 为L =20.0m ,则人在斜坡上滑下的距离AB 应不超过多少?【答案】(1)2.0 m/s 2; (2)50m 【解析】 【分析】(1)根据牛顿第二定律求出人从斜坡上下滑的加速度.(2)根据牛顿第二定律求出在水平面上运动的加速度,结合水平轨道的最大距离求出B 点的速度,结合速度位移公式求出AB 的最大长度. 【详解】(1)根据牛顿第二定律得,人从斜坡上滑下的加速度为:a 1=3737mgsin mgcos mμ︒-︒=gsin37°-μgcos37°=6-0.5×8m/s 2=2m/s 2.(2)在水平面上做匀减速运动的加速度大小为:a 2=μg =5m /s 2,根据速度位移公式得,B 点的速度为:222520/102/B v a L m s m s ⨯⨯===. 根据速度位移公式得:212005024B AB v L m m a ===. 【点睛】本题考查了牛顿第二定律和运动学公式的基本运用,知道加速度是联系力学和运动学的桥梁,本题也可以结合动能定理进行求解.7.如图甲所示,静止在水平地面上一个质量为m =4kg 的物体,其在随位移均匀减小的水平推力作用下运动,推力F 随位移x 变化的图象如图乙所示.已知物体与地面之间的动摩擦因数为μ=0.5,g =10m/s 2.求:(1)运动过程中物体的最大加速度大小为多少; (2)距出发点多远时物体的速度达到最大; (3)物体最终停在何处?【答案】(1)20m/s 2(2)3.2m (3)10m 【解析】 【详解】(1)物体加速运动,由牛顿第二定律得:F -μmg =ma当推力F =100N 时,物体所受的合力最大,加速度最大,代入数据得:2max 20m/s Fa g mμ=-=, (2)由图象得出,推力F 随位移x 变化的数值关系为:F =100 – 25x ,速度最大时,物体加速度为零,则F=μmg=20N ,即x = 3.2m(3)F 与位移x 的关系图线围成的面积表示F 所做的功,即01200J 2F W Fx ==对全过程运用动能定理,W F −μmgx m =0代入数据得:x m =10m8.如图,与水平面夹角θ=37°的斜面和半径R =1.0m 的光滑圆轨道相切于B 点,且固定于竖直平面内。
高中物理动能定理的综合应用技巧和方法完整版及练习题
高中物理动能定理的综合应用技巧和方法完整版及练习题一、高中物理精讲专题测试动能定理的综合应用1.由相同材料的细杆搭成的轨道如图所示,其中细杆AB 、BC 、CD 、DE 、EF ……长均为 1.5m L =,细杆OA 和其他细杆与水平面的夹角都为()37sin370.6,cos370.8β︒︒︒===,一个可看成质点的小环套在细杆OA 上从图中离轨道最低点的竖直高度 1.32m h =处由静止释放,小环与细杆的动摩擦因数都为0.2μ=,最大静摩擦力等于相同压力下的滑动摩擦力,在两细杆交接处都用短小曲杆相连,不计动能损失,使小环能顺利地经过,重力加速度g 取210m /s ,求: (1)小环在细杆OA 上运动的时间t ; (2)小环运动的总路程s ; (3)小环最终停止的位置。
【答案】(1)1s ;(2)8.25m ;(3)最终停在A 点 【解析】 【分析】 【详解】(1)因为sin cos mg mg βμβ>,故小环不能静止在细杆上,小环下滑的加速度为2sin cos 4.4m/s mg mg a mβμβ-==设物体与A 点之间的距离为0L ,由几何关系可得0 2.2m sin37hL ︒== 设物体从静止运动到A 所用的时间为t ,由2012L at =,得 1s t =(2)从物体开始运动到最终停下的过程中,设总路程为s ,由动能定理得cos3700mgh mgs μ︒=--代入数据解得s =8.25m(3)假设物体能依次到达B 点、D 点,由动能定理有201(sin37)cos37()2B mg h L mg L L mv μ︒︒+=-- 解得20B v <说明小环到不了B 点,最终停在A 点处2.如图所示,一条带有竖直圆轨道的长轨道水平固定,底端分别与两侧的直轨道相切,半径R =0.5m 。
物块A 以v 0=10m/s 的速度滑入圆轨道,滑过最高点N ,再沿圆轨道滑出,P 点左侧轨道光滑,右侧轨道与物块间的动摩擦因数都为μ=0.4,A 的质量为m =1kg (A 可视为质点) ,求:(1)物块经过N 点时的速度大小; (2)物块经过N 点时对竖直轨道的作用力; (3)物块最终停止的位置。
高考物理动能定理的综合应用的基本方法技巧及练习题及练习题(含答案)含解析
高考物理动能定理的综合应用的基本方法技巧及练习题及练习题(含答案)含解析一、高中物理精讲专题测试动能定理的综合应用1.某电视娱乐节目装置可简化为如图所示模型.倾角θ=37°的斜面底端与水平传送带平滑接触,传送带BC长L=6m,始终以v0=6m/s的速度顺时针运动.将一个质量m=1kg 的物块由距斜面底端高度h1=5.4m的A点静止滑下,物块通过B点时速度的大小不变.物块与斜面、物块与传送带间动摩擦因数分别为μ1=0.5、μ2=0.2,传送带上表面距地面的高度H=5m,g取10m/s2,sin37°=0.6,cos37°=0.8.⑴求物块由A点运动到C点的时间;⑵若把物块从距斜面底端高度h2=2.4m处静止释放,求物块落地点到C点的水平距离;⑶求物块距斜面底端高度满足什么条件时,将物块静止释放均落到地面上的同一点D.【答案】⑴4s;⑵6m;⑶1.8m≤h≤9.0m【解析】试题分析:(1)A到B过程:根据牛顿第二定律mgsinθ﹣μ1mgcosθ=ma1,代入数据解得,t 1=3s.所以滑到B点的速度:v B=a1t1=2×3m/s=6m/s,物块在传送带上匀速运动到C,所以物块由A到C的时间:t=t1+t2=3s+1s=4s(2)斜面上由根据动能定理.解得v=4m/s<6m/s,设物块在传送带先做匀加速运动达v0,运动位移为x,则:,,x=5m<6m所以物体先做匀加速直线运动后和皮带一起匀速运动,离开C点做平抛运动s=v 0t0,H=解得 s=6m.(3)因物块每次均抛到同一点D,由平抛知识知:物块到达C点时速度必须有v C=v0①当离传送带高度为h3时物块进入传送带后一直匀加速运动,则:,解得h3=1.8m②当离传送带高度为h4时物块进入传送带后一直匀减速运动,h 4=9.0m所以当离传送带高度在1.8m ~9.0m 的范围内均能满足要求 即1.8m≤h≤9.0m2.如图所示,在粗糙水平面上有一质量为M 、高为h 的斜面体,斜面体的左侧有一固定障碍物Q,斜面体的左端与障碍物的距离为d .将一质量为m 的小物块置于斜面体的顶端,小物块恰好能在斜面体上与斜面体一起保持静止;现给斜面体施加一个水平向左的推力,使斜面体和小物块一起向左匀加速运动,当斜面体到达障碍物与其碰撞后,斜面体立即停止运动,小物块水平抛出,最后落在障碍物的左侧P 处(图中未画出),已知斜面体与地面间的动摩擦因数为μ1,斜面倾角为θ,重力加速度为g,滑动摩擦力等于最大静摩擦力,求:(1)小物块与斜面间的动摩擦因数μ2;(2)要使物块在地面上的落点P 距障碍物Q 最远,水平推力F 为多大; (3)小物块在地面上的落点P 距障碍物Q 的最远距离. 【答案】(1)2tan μθ= (2)()()1sin cos tan M m g F M m g sin θμθθθ+=++-(3)2sin cos tan tan hd hsin θθθθθ- 【解析】 【分析】对m 受力分析,由共点力平衡条件可以求出动摩擦因数;以m 为研究对象,求出最大加速度,以系统为研究对象,由牛顿第二定律求出最大推力;对系统由动能定理求出最大速度,然后由平抛运动规律求出最大水平位移. 【详解】(1)对m 由平衡条件得:mgsinθ-μ2mgcosθ=0 解得:μ2=tanθ(2)对m 设其最大加速度为a m ,由牛顿第二定律得 水平方向:Nsinθ+μ2Ncosθ=ma m 竖直方向:Ncosθ-μ2Nsinθ-mg =0 解得:2sin cos tan sin g a θθθθ=-对M 、m 整体由牛顿第二定律得:F -μ1(M +m )g =(M +m )a m 解得:()()12sin cos tan sin M m g F M m g θμθθθ+=++- (3)对M 、m 整体由动能定理得:()()2112Fd M m gd M m v μ-+=+ 解得:sin cos tan sindgvθθθθ=-对m由平抛运动规律得:水平方向:tanphx vtθ+=竖直方向:212h gt=解得:2sin2cos tan sin tanphd hxθθθθθ=--【点睛】本题主要考查了应用平衡条件、牛顿第二定律、动能定理、平抛运动规律即可正确解题.3.如图所示,一质量为m的滑块从高为h的光滑圆弧形槽的顶端A处无初速度地滑下,槽的底端B与水平传送带相接,传送带的运行速度恒为v0,两轮轴心间距为L,滑块滑到传送带上后做匀加速运动,滑到传送带右端C时,恰好加速到与传送带的速度相同,求:(1)滑块到达底端B时的速度大小v B;(2)滑块与传送带间的动摩擦因数μ;(3)此过程中,由于克服摩擦力做功而产生的热量Q.【答案】(12gh2)222v ghglμ-=(3)(222m v gh-【解析】试题分析:(1)滑块在由A到B的过程中,由动能定理得:212Bmgh mv-=,解得:2Bghν=(2)滑块在由B到C的过程中,由动能定理得:μmgL=12mv02−12mv B2,解得,222v ghgLμ-=;(3)产生的热量:Q=μmgL相对,()2200(2)2BghLg相对=νννμ--=(或2 0(2)ghLν-),解得,21(2)2Q m ghν-=;考点:动能定理【名师点睛】本题考查了求物体速度、动摩擦因数、产生的热量等问题,分析清楚运动过程,熟练应用动能定理即可正确解题.4.如图所示,四分之一的光滑圆弧轨道AB 与水平轨道平滑相连,圆弧轨道的半径为R=0.8m,有一质量为m=1kg 的滑块从A端由静止开始下滑,滑块与水平轨道间的动摩擦因数为μ=0.5,滑块在水平轨道上滑行L=0.7m 后,滑上一水平粗糙的传送带,传送带足够长且沿顺时针方向转动,取g=10m/s2,求:(1)滑块第一次滑上传送带时的速度v1 多大?(2)若要滑块再次经过B点,传送带的速度至少多大?(3)试讨论传送带的速度v与滑块最终停下位置x(到B点的距离)的关系。
高中物理高考物理动能定理的综合应用技巧和方法完整版及练习题
高中物理高考物理动能定理的综合应用技巧和方法完整版及练习题一、高中物理精讲专题测试动能定理的综合应用1.为了研究过山车的原理,某物理小组提出了下列设想:取一个与水平方向夹角为θ=60°、长为L 1=23m的倾斜轨道AB ,通过微小圆弧与长为L 2=32m 的水平轨道BC 相连,然后在C 处设计一个竖直完整的光滑圆轨道,出口为水平轨道上D 处,如图所示.现将一个小球从距A 点高为h =0.9m 的水平台面上以一定的初速度v 0水平弹出,到A 点时小球的速度方向恰沿AB 方向,并沿倾斜轨道滑下.已知小球与AB 和BC 间的动摩擦因数均为μ=3,g 取10m/s 2.(1)求小球初速度v 0的大小; (2)求小球滑过C 点时的速率v C ;(3)要使小球不离开轨道,则竖直圆弧轨道的半径R 应该满足什么条件? 【答案】(16m/s (2)6m/s (3)0<R ≤1.08m 【解析】试题分析:(1)小球开始时做平抛运动:v y 2=2gh代入数据解得:22100.932/y v gh m s =⨯⨯==A 点:60y x v tan v ︒=得:032/6/603yx v v v s m s tan ==︒== (2)从水平抛出到C 点的过程中,由动能定理得:()2211201122C mg h L sin mgL cos mgL mv mv θμθμ+---=代入数据解得:36/C v m s =(3)小球刚刚过最高点时,重力提供向心力,则:21mv mg R =22111 222C mv mgR mv += 代入数据解得R 1=1.08 m当小球刚能到达与圆心等高时2212C mv mgR = 代入数据解得R 2=2.7 m当圆轨道与AB相切时R3=BC•tan 60°=1.5 m即圆轨道的半径不能超过1.5 m综上所述,要使小球不离开轨道,R应该满足的条件是 0<R≤1.08 m.考点:平抛运动;动能定理2.如图所示,AB是竖直面内的四分之一圆弧形光滑轨道,下端B点与水平直轨道相切.一个小物块自A点由静止开始沿轨道下滑,已知轨道半径为R=0.2m,小物块的质量为m=0.1kg,小物块与水平面间的动摩擦因数μ=0.5,g取10m/s2.求:(1)小物块在B点时受到的圆弧轨道的支持力大小;(2)小物块在水平面上滑动的最大距离.【答案】(1)3N (2)0.4m【解析】(1)由机械能守恒定律,得在B点联立以上两式得F N=3mg=3×0.1×10N=3N.(2)设小物块在水平面上滑动的最大距离为l,对小物块运动的整个过程由动能定理得mgR-μmgl=0,代入数据得【点睛】解决本题的关键知道只有重力做功,机械能守恒,掌握运用机械能守恒定律以及动能定理进行解题.3.某物理小组为了研究过山车的原理提出了下列的设想:取一个与水平方向夹角为θ=53°,长为L1=7.5m的倾斜轨道AB,通过微小圆弧与足够长的光滑水平轨道BC相连,然后在C处连接一个竖直的光滑圆轨道.如图所示.高为h=0.8m光滑的平台上有一根轻质弹簧,一端被固定在左面的墙上,另一端通过一个可视为质点的质量m=1kg的小球压紧弹簧,现由静止释放小球,小球离开台面时已离开弹簧,到达A点时速度方向恰沿AB方向,并沿倾斜轨道滑下.已知小物块与AB间的动摩擦因数为μ=0.5,g取10m/s2,sin53°=0.8.求:(1)弹簧被压缩时的弹性势能; (2)小球到达C 点时速度v C 的大小;(3)小球进入圆轨道后,要使其不脱离轨道,则竖直圆弧轨道的半径R 应该满足什么条件. 【答案】(1)4.5J ;(2)10m/s ;(3)R ≥5m 或0<R ≤2m 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考物理动能定理的综合应用技巧(很有用)及练习题一、高中物理精讲专题测试动能定理的综合应用1.小明同学根据上海迪士尼乐园游戏项目“创极速光轮”设计了如图所示的轨道。
一条带有竖直圆轨道的长轨道固定在水平面上,底端分别与两侧的直轨道相切,其中轨道AQ 段粗糙、长为L 0=6.0m ,QNP 部分视为光滑,圆轨道半径R =0.2m ,P 点右侧轨道呈粗糙段、光滑段交替排列,每段长度都为L =0.5m 。
一玩具电动小车,通电以后以P =4W 的恒定功率工作,小车通电加速运动一段时间后滑入圆轨道,滑过最高点N ,再沿圆轨道滑出。
小车的质量m =0.4kg ,小车在各粗糙段轨道上所受的阻力恒为f =0.5N 。
(重力加速度g =10m/s 2;小车视为质点,不计空气阻力)。
(1)若小车恰能通过N 点完成实验,求进入Q 点时速度大小; (2)若小车通电时间t =1.4s ,求滑过N 点时小车对轨道的压力; (3)若小车通电时间t≤2.0s ,求小车可能停在P 点右侧哪几段轨道上。
【答案】(1)22m/s ;(2)6N ,方向竖直向上;(3)第7段和第20段之间 【解析】 【分析】 【详解】(1)小车恰能过N 点,则0N v =,Q →N 过程根据动能定理2211222N mg R mv mv -⋅=- 代入解得22m/s v =(2)A →N 过程2011202Pt fL mg R mv --⋅=- 代入解得15m/s v =在N 点时21N mv mg F R+= 代入解得N 6N F =根据牛顿第三定律可得小汽车对轨道压力大小6N ,方向竖直向上。
(3)设小汽车恰能过最高点,则0020Pt fL mg R --⋅=代入解得0 1.15s 2s t =<此时小汽车将停在12mg R n fL ⋅=代入解得1 6.4n =因此小车将停在第7段; 当通电时间 2.0s t =时020Pt fL n fL --=代入解得220n =因此小车将停在第20段;综上所述,当t ≤2.0s 时,小汽车将停在第7段和第20段之间。
2.如图所示,轨道ABC 被竖直地固定在水平桌面上,A 距水平地面高H =0.75m ,C 距水平地面高h =0.45m 。
一个质量m =0.1kg 的小物块自A 点从静止开始下滑,从C 点以水平速度飞出后落在地面上的D 点。
现测得C 、D 两点的水平距离为x =0.6m 。
不计空气阻力,取g =10m/s 2。
求(1)小物块从C 点运动到D 点经历的时间t ; (2)小物块从C 点飞出时速度的大小v C ;(3)小物块从A 点运动到C 点的过程中克服摩擦力做的功。
【答案】(1) t=0.3s (2) v C =2.0m/s (3)0.1J 【解析】 【详解】(1)小物块从C 水平飞出后做平抛运动,由212h gt = 得小物块从C 点运动到D 点经历的时间20.3ht g==s (2)小物块从C 点运动到D ,由C x v t = 得小物块从C 点飞出时速度的大小C xv t==2.0m/s(3)小物块从A 点运动到C 点的过程中,根据动能定理 得()2102f C mg Hh W mv -+=- ()212f C W mv mg Hh =--= -0.1J 此过程中克服摩擦力做的功f f W W '=-=0.1J3.一种氢气燃料的汽车,质量为m =2.0×103kg ,发动机的额定输出功率为80kW ,行驶在平直公路上时所受阻力恒为车重的0.1倍。
若汽车从静止开始先匀加速启动,加速度的大小为a =1.0m/s 2。
达到额定输出功率后,汽车保持功率不变又加速行驶了800m ,直到获得最大速度后才匀速行驶。
求:(g =10m/s 2) (1)汽车的最大行驶速度。
(2)汽车从静止到获得最大行驶速度所用的总时间。
【答案】(1)40m/s ;(2)55s 【解析】 【详解】(1)设汽车的最大行驶速度为v m .汽车做匀速直线运动,牵引力等于阻力,速度达到最大,即有:F =f根据题意知,阻力为:f =0.1mg =2000N 再根据公式 P=Fv 得:v m =P /f =40m/s ; 即汽车的最大行驶速度为40m/s(2)汽车匀变速行驶的过程中,由牛顿第二定律得F f ma -=得匀变速运动时汽车牵引力4000N F =则汽车匀加速运动行驶得最大速度为020/Pv m s F== 由a 1t 1=v 0,得汽车匀加速运动的时间为:t 1=20s汽车实际功率达到额定功率后到速度达到最大的过程,由动能定理W F +W f =△E k ,即得: Pt 2-0.1mgs 2=2201122m mv mv - 得:t 2=35s所以汽车从静止到获得最大行驶速度所用的总时间为:t =t 1+t 2=55s4.如图所示,在粗糙水平面上有一质量为M 、高为h 的斜面体,斜面体的左侧有一固定障碍物Q,斜面体的左端与障碍物的距离为d .将一质量为m 的小物块置于斜面体的顶端,小物块恰好能在斜面体上与斜面体一起保持静止;现给斜面体施加一个水平向左的推力,使斜面体和小物块一起向左匀加速运动,当斜面体到达障碍物与其碰撞后,斜面体立即停止运动,小物块水平抛出,最后落在障碍物的左侧P 处(图中未画出),已知斜面体与地面间的动摩擦因数为μ1,斜面倾角为θ,重力加速度为g,滑动摩擦力等于最大静摩擦力,求:(1)小物块与斜面间的动摩擦因数μ2;(2)要使物块在地面上的落点P 距障碍物Q 最远,水平推力F 为多大; (3)小物块在地面上的落点P 距障碍物Q 的最远距离. 【答案】(1)2tan μθ= (2)()()1sin cos tan M m g F M m g sin θμθθθ+=++-(3)2sin cos tan tan hd hsin θθθθθ- 【解析】 【分析】对m 受力分析,由共点力平衡条件可以求出动摩擦因数;以m 为研究对象,求出最大加速度,以系统为研究对象,由牛顿第二定律求出最大推力;对系统由动能定理求出最大速度,然后由平抛运动规律求出最大水平位移. 【详解】(1)对m 由平衡条件得:mgsinθ-μ2mgcosθ=0 解得:μ2=tanθ(2)对m 设其最大加速度为a m ,由牛顿第二定律得 水平方向:Nsinθ+μ2Ncosθ=ma m 竖直方向:Ncosθ-μ2Nsinθ-mg =0 解得:2sin cos tan sin g a θθθθ=-对M 、m 整体由牛顿第二定律得:F -μ1(M +m )g =(M +m )a m 解得:()()12sin cos tan sin M m g F M m g θμθθθ+=++- (3)对M 、m 整体由动能定理得:()()2112Fd M m gd M m v μ-+=+ 解得:sin cos tan sin dg v θθθθ=-对m 由平抛运动规律得: 水平方向:tan p hx vt θ+= 竖直方向:212h gt = 解得:2sin cos tan sin tan p hd hx θθθθθ=-【点睛】本题主要考查了应用平衡条件、牛顿第二定律、动能定理、平抛运动规律即可正确解题.5.如图所示,光滑斜面AB 的倾角θ=53°,BC 为水平面,BC 的长度l BC =1.10 m ,CD 为光滑的14圆弧,半径R =0.60 m .一个质量m =2.0 kg 的物体,从斜面上A 点由静止开始下滑,物体与水平面BC 间的动摩擦因数μ=0.20.轨道在B ,C 两点光滑连接.当物体到达D 点时,继续竖直向上运动,最高点距离D 点的高度h =0.20 m ,sin 53°=0.8,cos 53°=0.6.g 取10 m/s 2.求:(1)物体运动到C 点时速度大小v C (2)A 点距离水平面的高度H(3)物体最终停止的位置到C 点的距离s . 【答案】(1)4 m/s (2)1.02 m (3)0.4 m 【解析】 【详解】(1)物体由C 点到最高点,根据机械能守恒得:()212c mg R h mv += 代入数据解得:4/C v m s =(2)物体由A 点到C 点,根据动能定理得:2102BC c mgH mgl mv μ-=- 代入数据解得: 1.02H m =(3)从物体开始下滑到停下,根据能量守恒得:mgx mgH μ= 代入数据,解得: 5.1x m = 由于40.7BC x l m =+所以,物体最终停止的位置到C 点的距离为:0.4s m =. 【点睛】本题综合考查功能关系、动能定理等;在处理该类问题时,要注意认真分析能量关系,正确选择物理规律求解.6.如图的竖直平面内,一小物块(视为质点)从H =10m 高处,由静止开始沿光滑弯曲轨道AB 进入半径R =4m 的光滑竖直圆环内侧,弯曲轨道AB 在B 点与圆环轨道平滑相接。
之后物块沿CB 圆弧滑下,在B 点(无动量损失)进入右侧的粗糙水平面上压缩弹簧。
已知物块的质量m =2kg ,与水平面间的动摩擦因数为0.2,弹簧自然状态下最左端D 点与B 点距离L =15m ,求:(g =10m/s 2)(1)物块从A滑到B时的速度大小;(2)物块到达圆环顶点C时对轨道的压力;(3)若弹簧最短时的弹性势能,求此时弹簧的压缩量。
【答案】(1)m/s;(2)0N;(3)10m。
【解析】【分析】【详解】(1)对小物块从A点到B点的过程中由动能定理解得:;(2)小物块从B点到C由动能定理:在C点,对小物块受力分析:代入数据解得C点时对轨道压力大小为0N;(3)当弹簧压缩到最短时设此时弹簧的压缩量为x,对小物块从B点到压缩到最短的过程中由动能定理:由上式联立解得:x=10m【点睛】动能定理的优点在于适用任何运动包括曲线运动,了解研究对象的运动过程是解决问题的前提,根据题目已知条件和求解的物理量选择物理规律解决问题。
动能定理的应用范围很广,可以求速度、力、功等物理量,特别是可以去求变力功。
7.如图所示,在光滑的水平地面上有一平板小车质量为M=2kg,靠在一起的滑块甲和乙质量均为m =1kg ,三者处于静止状态。
某时刻起滑块甲以初速度v 1=2m/s 向左运动,同时滑块乙以v 2=4m/s 向右运动。
最终甲、乙两滑块均恰好停在小车的两端。
小车长L =9.5m ,两滑块与小车间的动摩擦因数相同,(g 取10m/s 2,滑块甲和乙可视为质点)求: (1)最终甲、乙两滑块和小车的共同速度的大小; (2)两滑块与小车间的动摩擦因数; (3)两滑块运动前滑块乙离右端的距离。
【答案】(1)0.5m/s (2)0.1 (3)7.5m 【解析】 【详解】(1)两滑块与小车组成的系统动量守恒,以向右为正方向,由动量守恒定律得21()mv mv M m m v -=++解得v=0.5m/s(2)对整体由能量守恒定律得()22212111222mv mv M m m v mgL μ+=+++ 解得:0.1μ=(3)经分析,滑块甲运动到左端时速度刚好减为0,在滑块甲运动至左端前,小车静止,之后滑块甲和小车一起向右做匀加速运动到三者共速。