主成分分析 实例

合集下载

主成分分析案例范文

主成分分析案例范文

主成分分析案例范文假设我们有一个包含多个汽车特征的数据集,每个汽车被表示为一个m维向量。

我们想要对数据进行降维,以便更好地理解和可视化数据。

我们可以利用主成分分析,将高维数据转换为低维数据,然后选择其中的几个主成分进行分析。

首先,我们需要对数据进行标准化处理,即使得每个维度的均值为0,方差为1、这是因为PCA是一种基于协方差矩阵的方法,对于不同单位和尺度的变量,会导致主成分的不准确。

接下来,我们计算数据的协方差矩阵。

协方差矩阵描述了数据之间的线性关系,其中每个元素表示两个变量之间的协方差。

对于m维数据,其协方差矩阵为一个大小为mxm的矩阵。

然后,我们计算协方差矩阵的特征向量和特征值。

特征向量描述了协方差矩阵的主要方向,特征值表示了数据在特征向量方向的方差。

特征向量按照对应特征值的大小进行排序,最大的特征值对应的特征向量即为第一主成分,第二大的特征值对应的特征向量即为第二主成分,以此类推。

我们可以选择前k个主成分进行降维,其中k可以根据需求进行选择。

最后,我们将数据投影到所选择的前k个主成分上。

具体做法是将数据与特征向量构成的转换矩阵相乘,得到数据在新的低维空间中的表示。

通过PCA降维,我们可以减少数据的维度,并保留了大部分的方差信息。

这有助于数据可视化和分析。

下面以一个具体的例子说明PCA的应用。

假设我们有一个汽车数据集,其中包含汽车的各种特征,如车速、发动机功率、车重、燃油消耗等。

我们的目标是将这些特征进行降维,并查看是否可以找到一些有趣的模式。

首先,我们对数据进行标准化处理,确保每个特征的均值为0,方差为1然后,我们计算数据的协方差矩阵,找到其特征向量和特征值。

接下来,我们选择前两个特征值最大的特征向量作为第一和第二主成分。

这两个主成分分别表示数据的主要方向。

我们可以将数据投影到这两个主成分上,得到一个二维的表示。

最后,我们可以在二维空间中绘制投影后的数据,并观察数据之间的分布。

如果在二维空间中存在一些有趣的模式,我们可以进一步探索这些模式,并进行更深入的分析。

主成分分析-实例

主成分分析-实例

§8 实例 实例1计算得1x =71.25,2x =67.5分析1:基于协差阵∑ 求主成分。

369.6117.9117.9214.3S ⎛⎫= ⎪⎝⎭特征根与特征向量(S无偏,用SPSS )Factor 1 Factor 2 11x x - 0.880 -0.47422x x -0.474 0.880 特征值 433.12 150.81 贡献率0.7417 0.2583注:样本协差阵为无偏估计11(11)1n n n S X I X n n''=--, 所以,第一、二主成分的表达式为1122120.88(71.25)0.47(67.5)0.47(71.25)0.88(67.5)y x x y x x =-+-⎧⎨=--+-⎩ 第一主成分是英语与数学的加权和(反映了综合成绩),且英语的权数要大于数学的权数。

1y 越大,综合成绩越好。

(综合成分)第二主成分的两个系数异号(反映了两科成绩的均衡性)。

不妨将英语称为文科,数学称为理科。

2y 越大,说明偏科(文、理成绩不均衡),2y 越小,越接近于零,说明不偏科(文、理成绩均衡)。

(结构成分)问题:英语的权数为何大?如何解释? 分析2:基于相关阵R 求主成分。

因为1x =71.25,2x =67.5所以相关阵11R ⎛=⎪⎪⎭解得R 的特征根为:1λ=1.419,2λ=0.581,对应的单位特征向量分别为:Factor 1 Factor 2 111x x s - 0.707 0.707 222x x s - 0.707 -0.707 特征根 1.419 0.581 贡献率0.7090.291所以,第一、二主成分的表达式为12112271.2567.50.7070.70717.9813.6971.2567.50.7070.70717.9813.69x x y x x y --⎧=+=+⎪⎪⎨--⎪=-=-⎪⎩1122120.039(71.25)0.052(67.5)0.039(71.25)0.052(67.5)y x x y x x =-+-⎧⎨=---⎩ 1122120.0390.052 6.2730.0390.0520.671y x x y x x =+-⎧⎨=-+⎩ *2*11707.0707.0x x y += *2*12707.0707.0x x y -=基于相关阵的更说明了:第一主成分是英语与数学的加权总分。

主成分分析之PCA

主成分分析之PCA

95
M
90
85
80
75
70
65
60 64 66 68 70 72 74 76 78 80 82 84
❖ 先假定数据只有二维,即只有两个 变量,它们由横坐标和纵坐标所代表; 因此每个观测值都有相应于这两个坐 标轴的两个坐标值;
❖ 如果这些数据形成一个椭圆形状的 点阵(这在变量的二维正态的假定下 是可能的).
F简化了系统结构,抓住了主要矛盾。
整理课件
35
稍事休息
§3.4 PCA的性质
一、两个线性代数的结论
1、若A是p阶实对称阵,则一定可以找到正交阵U,使
1 0 0
U1AU
0
2
0
0
0
p
pp
其中 i,i1.2. p是A的特征根。
2、若上述矩阵的特征根所对应的单位特征向量 为 u1,,up
例 设 x1,x2,x3的协方差矩阵为
1 2 0
2 5 0 0 0 2
解得特征根为
,,
15.8,32 2.00,30.17
0.383
U1
0 .924
0.000
0
U
2
0
1
0 .924
U
3
0
.383
0 .000
第 一 个 主 成 分 的 贡 献 率 为 5.83/ ( 5.83+2.00+0.17 ) =72.875%,尽管第一个主成分的贡献率并不小,但应该取 两个主成分。97.88%
❖ 注意,和二维情况类似,高维椭球的 主轴也是互相垂直的。这些互相正交 的新变量是原先变量的线性组合,叫 做主成分(principal component)。

主成分分析法实例

主成分分析法实例

主成分分析法实例PCA的基本思想是将原始数据在坐标系下进行变换,使得各个坐标轴之间的相关性最小化。

在变换后的坐标系中,第一个主成分表示数据中方差最大的方向,第二个主成分表示与第一个主成分正交且方差次大的方向,以此类推。

因此,保留前k个主成分就可以达到降维的目的。

下面我们通过一个实例来详细介绍PCA的应用过程。

假设我们有一个二维数据集,其中包含了500个样本点,每个样本点具有两个特征。

我们首先需要对数据进行标准化处理,即对每个特征进行零均值化和单位方差化,这可以通过下面的公式实现:\[x_j' = \frac{x_j - \overline{x_j}}{\sigma_j}\]其中,\(x_j\)表示第j个特征的原始值,\(\overline{x_j}\)表示第j个特征的均值,\(\sigma_j\)表示第j个特征的标准差。

通过标准化处理后,我们可以得到一个均值为0,方差为1的数据集。

接下来,我们计算数据集的协方差矩阵。

协方差矩阵可以帮助我们衡量变量之间的相关性,它的第i行第j列的元素表示第i个特征与第j个特征的协方差。

\[Cov(X) = \frac{1}{n-1}(X - \overline{X})^T(X -\overline{X})\]其中,X是一个n行m列的矩阵,表示数据集,\(\overline{X}\)是一个n行m列的矩阵,表示X的每一列的均值。

协方差矩阵可以通过求解数据集的散布矩阵来得到,散布矩阵的定义如下:\[Scatter(X) = (X - \overline{X})^T(X - \overline{X})\]我们将协方差矩阵的特征值和特征向量求解出来,特征值表示每个特征方向上的方差,特征向量表示每个特征方向上的权重。

我们将特征值按照从大到小的顺序排序,选择前k个特征值对应的特征向量作为主成分。

最后,我们将数据集投影到选取的主成分上,得到降维后的数据集。

投影的过程可以通过下面的公式实现:\[y=XW\]其中,X是一个n行m列的矩阵,表示数据集,W是一个m行k列的矩阵,表示主成分。

R语言主成分分析实例和代码

R语言主成分分析实例和代码

R语言进行主成分分析实例1、基于princomp函数进行实例说明:(中学生身体四项指标的主成分分析)在某中学随机抽取某年级30名学生,测量其身高(X1)、体重(X2)、胸围(X3)和坐高(X4),数据如下。

试对这30名中学生身体四项指标数据做主成分分析将上面这些数据保存在students_data.csv中data <- read.csv('D:/students_data.csv', header = T)注:header = T表示将students_data.csv中的第一行数据设置为列名,这种情况下,students_data.csv中的第二行到最后一行数据作为data中的有效数据。

header = F表示不将students_data.csv中的第一行数据设置为列名,这种情况下,students_data.csv 中的第一行到最后一行数据作为data中的有效数据。

第二步:进行主成分分析student.pr <- princomp(data, cor = T)注:cor = T的意思是用相关系数进行主成分分析。

Screeplot(student.pr,type=”line”,main=”碎石图”,lwd=2)第三步:观察主成分分析的详细情况summary(student.pr, loadings = T)执行完这一步的具体结果如下:说明:结果中的Comp.1、Comp.2、Comp.3和Comp.4是计算出来的主成分,Standard deviation代表每个主成分的标准差,Proportion of Variance代表每个主成分的贡献率,Cumulative Proportion代表各个主成分的累积贡献率。

每个主成分都不属于X1、X2、X 3和X4中的任何一个。

第一主成分、第二主成分、第三主成分和第四主成分都是X1、X2、X3和X4的线性组合,也就是说最原始数据的成分经过线性变换得到了各个主成分。

主成分分析经典案例

主成分分析经典案例

主成分分析经典案例
主成分分析是一种常用的数据降维和模式识别方法,它可以帮助我们发现数据
中隐藏的结构和模式。

在实际应用中,主成分分析有很多经典案例,下面我们将介绍其中一些。

首先,我们来看一个经典的主成分分析案例,手写数字识别。

在这个案例中,
我们需要识别手写的数字,例如0-9。

我们可以将每个数字的图像表示为一个向量,然后利用主成分分析来找到最能代表数字特征的主成分。

通过这种方法,我们可以将复杂的图像数据降维到较低维度,从而更容易进行分类和识别。

另一个经典案例是面部识别。

在这个案例中,我们需要识别不同人脸的特征。

同样地,我们可以将每个人脸的图像表示为一个向量,然后利用主成分分析来找到最能代表人脸特征的主成分。

通过这种方法,我们可以将复杂的人脸数据降维到较低维度,从而更容易进行人脸识别和验证。

此外,主成分分析还可以应用于金融领域。

例如,在投资组合管理中,我们可
以利用主成分分析来发现不同资产之间的相关性和结构。

通过这种方法,我们可以将复杂的资产数据降维到较低维度,从而更容易进行资产配置和风险管理。

在医学领域,主成分分析也有着重要的应用。

例如,在基因表达数据分析中,
我们可以利用主成分分析来发现不同基因之间的相关性和结构。

通过这种方法,我们可以将复杂的基因表达数据降维到较低维度,从而更容易进行基因分析和疾病诊断。

总之,主成分分析在各个领域都有着重要的应用。

通过发现数据中的主要结构
和模式,主成分分析可以帮助我们更好地理解和利用数据。

希望以上经典案例的介绍能够帮助您更好地理解主成分分析的应用。

主成分分析 实例

主成分分析 实例

§8 实例 实例1计算得1x =71.25,2x =67.5分析1:基于协差阵∑ 求主成分。

369.6117.9117.9214.3S ⎛⎫= ⎪⎝⎭特征根与特征向量(S无偏,用SPSS )Factor 1 Factor 2 11x x - 0.880 -0.47422x x -0.474 0.880 特征值 433.12 150.81 贡献率0.7417 0.2583注:样本协差阵为无偏估计11(11)1n n n S X I X n n''=--, 所以,第一、二主成分的表达式为1122120.88(71.25)0.47(67.5)0.47(71.25)0.88(67.5)y x x y x x =-+-⎧⎨=--+-⎩ 第一主成分是英语与数学的加权和(反映了综合成绩),且英语的权数要大于数学的权数。

1y 越大,综合成绩越好。

(综合成分)第二主成分的两个系数异号(反映了两科成绩的均衡性)。

不妨将英语称为文科,数学称为理科。

2y 越大,说明偏科(文、理成绩不均衡),2y 越小,越接近于零,说明不偏科(文、理成绩均衡)。

(结构成分)问题:英语的权数为何大?如何解释? 分析2:基于相关阵R 求主成分。

因为1x =71.25,2x =67.5所以相关阵11R ⎛=⎪⎪⎭解得R 的特征根为:1λ=1.419,2λ=0.581,对应的单位特征向量分别为:Factor 1 Factor 2 111x x s - 0.707 0.707 222x x s - 0.707 -0.707 特征根 1.419 0.581 贡献率0.7090.291所以,第一、二主成分的表达式为12112271.2567.50.7070.70717.9813.6971.2567.50.7070.70717.9813.69x x y x x y --⎧=+=+⎪⎪⎨--⎪=-=-⎪⎩1122120.039(71.25)0.052(67.5)0.039(71.25)0.052(67.5)y x x y x x =-+-⎧⎨=---⎩ 1122120.0390.052 6.2730.0390.0520.671y x x y x x =+-⎧⎨=-+⎩ *2*11707.0707.0x x y += *2*12707.0707.0x x y -=基于相关阵的更说明了:第一主成分是英语与数学的加权总分。

主成分分析例题

主成分分析例题

0.68791zf -0.006045 -0.0054031
6
R的特征值及贡献率见下表
特征值 6.1366
贡献率(%) 0.76708
1.0421
0.13027
0.43595
0.054494
0.22037
0.027547
0.15191
0.018988
0.0088274
0.0011034
0.0029624
71.672 29.029 49.278 49.146 75.404 103.02 6.8215 74.523

8.602 4.7846 3.629 3.6747 5.0022 6.8215 1.137 6.7217
101.62 44.023 39.41 38.718 59.723 74.523 6.7217 102.71
0.32113x*1 +0.29516x*2 +0.38912x*3 +0.38472x*4+0.37955x*5 +0.37087x*6 +0.31996x*7 +0.35546x*8 -0.4151x*1-0.59766x*2 +0.22974x*3 +0.27869x*4+0.31632x*5 +0.37151x*6 -0.27814x*7 -0.15684x*8
主成分分析例题
2021/7/28
zf
1
某市为了全面分析机械类14个企业的经济效益,选择了8个不同的利润指标, 14个企业关于这8个指标的统计数据如下表所示,试比较这 14个企业的经济效 益。
2021/7/28
zf
2
表1 14家企业的利润指标的统计数据

Matlab主成分分析:详解+实例

Matlab主成分分析:详解+实例
主成分分析(PCA)中我们的目标是找到 一个能使个体差异达到最大的变量线性 组合。
主成分分析
总结:
主 原始变量 目标

X1, , Xm
主成分
Z1, ,Zp

线性组合

Z1, , Zp 互不相关
析 的
信息不重合 按‘重要性’排序
求解主 成分

Z1, , Zp
想 Var(Z1) Var(Z2 ) Var(Zp )
r
i r 2(z j , xi ),
j1
这里r(z j , xi )表示zj 与 xi 的相关系数。
主成分分析
1 2 0
例1 设 x [ x1, x2 , x3 ]T 且 R 2 5 0
0 0 0
则可算得1 5.8284,2 0.1716,如果我们仅取第
一个主成分,由于其累积贡献率已经达到97.14%, 似乎很理想了,但如果进一步计算主成分对原变量的
c1 x1+ c2 x2+… +cp xp
我们希望选择适当的权重能更好地区分学生的 成绩. 每个学生都对应一个这样的综合成绩, 记 为s1, s2,…, sn , n为学生人数. 如果这些值很分散, 表明区分好, 即是说, 需要寻找这样的加权, 能使 s1, s2,…, sn 尽可能的分散, 下面来看的统计定义.
x5:交通和通讯,
x6:娱乐教育文化服务,
x7:居住,
x8:杂项商品和服务.
对居民消费数据做主成分分析.
聚类分析
聚类分析
聚类分析
计算的Matlab程序如下:
clc,clear load czjm1999.txt
%把原始数据保存在纯文本文件czjm1999.txt中

主成分分析法例子

主成分分析法例子

x7 0.79 0.009 -0.93 -0.046 0.672 0.658 1 -0.03 0.89
x8 0.156 -0.078 -0.109 -0.031 0.098 0.222 -0.03 1
0.29
x9 0.744 0.094 -0.924 0.073 0.747 0.707 0.89 0.29
▲贡献率:
i
p
k
k 1
(i 1,2,, p)
▲合计贡献率:
i
k
k 1
p
k
k 1
(i 1,2,, p)
一般取合计贡献率达85—95%旳特征值 1, 2 ,, m
所相应旳第一、第二、…、第m(m≤p)个主成份。
④各主成份旳得分
l11 l12 l1p x1
Z
l21
l22
l2
p
x2
二主成份z2代表了人均资源量。
③第三主成份z3,与x8呈显出旳正有关程度 最高,其次是x6,而与x7呈负有关,所以能 够以为第三主成份在一定程度上代表了农业 经济构造。
显然,用三个主成份z1、z2、z3替代原来9个变量(x1, x2,…,x9),描述农业生态经济系统,能够使问题更进
一步简化、明了。
x4
0.0042
0.868
0.0037
75.346
x5
0.813
0.444
-0.0011
85.811
x6
0.819
0.179
0.125
71.843
x7
0.933
-0.133
-0.251
95.118
x8
0.197
-0.1
0.97
98.971

主成分分析案例

主成分分析案例

姓名:XXX学号:XXXXXXX专业:XXXX
用SPSS19软件对下列数据进行主成分分析:
……
一、相关性
由表1
二、
1,表于0.7
由表2
1
2
由表3
较强。

四、解释的总方差
解释的总方差给出了各因素的方差贡献率和累计贡献率。

由表4可知:
1、仅前3个特征根大于1,故SPSS只提取了前三个主成分。

2、第一主成分的方差所占所有主成分方差的33.045%,接近三分之一,而前三个主成分的方差累计贡献率达到88.363%,因此选前三个主成分已足够描述气象因子和卤水因子对蒸发的影响了。

五、主成分系数矩阵
主成分系数矩阵,可以说明各主成分在各变量上的载荷。

由表5可知:
通过主成份矩阵可以得出各主成分的表达式,但是在表达式中各变量是标准化的变量,需要除以一个特征根的平方根才能换算成各主成分的原始数值。

则三个主成分的表达式分别如下:
F1=(0.429辐照-0.24风速+0.354湿度+0.914水温+0.881气温-0.026浓度)/
F2=(0.15辐照+0.822风速+0.118湿度-0.005水温+1.141气温+0.846浓度
结论。

主成分分析实例

主成分分析实例

在统计学中,主成分分析(principal components analysis, PCA)是一种简化数据集的技术。

它是一个线性变换。

这个变换把数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推。

主成分分析经常用减少数据集的维数,同时保持数据集的对方差贡献最大的特征。

这是通过保留低阶主成分,忽略高阶主成分做到的。

这样低阶成分往往能够保留住数据的最重要方面。

在实证问题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。

这些涉及的因素一般称为指标,在多元统计分析中也称为变量。

因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。

在用统计方法研究多变量问题时,变量太多会增加计算量和增加分析问题的复杂性,人们希望在进行定量分析的过程中,涉及的变量较少,得到的信息量较多。

主成分分析正是适应这一要求产生的,是解决这类题的理想工具主成分分析法是一种降维的统计方法,它借助于一个正交变换,将其分量相关的原随机向量转化成其分量不相关的新随机向量,这在代数上表现为将原随机向量的协方差阵变换成对角形阵,在几何上表现为将原坐标系变换成新的正交坐标系,使之指向样本点散布最开的p 个正交方向,然后对多维变量系统进行降维处理,使之能以一个较高的精度转换成低维变量系统,再通过构造适当的价值函数,进一步把低维系统转化成一维系统。

主成分分析的主要作用体现在五个方面,第一,主成分分析能降低所研究的数据空间的维数。

第二,可通过因子负荷的结论,弄清X变量间的某些关系。

第三,可用于多为数据的一种图形表现方法。

第四,可由主成分分析构造回归模型,即把各个主成分作为新自变量代替原来自变量做回归分析。

第五,用主成分分析筛选回归变量。

案例分析:下表是关于全国31个省市的8项经济指标,以此为例,进行主成分分析。

主成分分析经典案例

主成分分析经典案例

主成分分析经典案例主成分分析(Principal Component Analysis, PCA)是一种常用的数据降维技术,它可以帮助我们发现数据中的主要特征,并且可以简化数据集,同时保留最重要的信息。

在本文中,我们将介绍主成分分析的经典案例,以便更好地理解和应用这一技术。

首先,让我们来看一个简单的例子。

假设我们有一个包含身高、体重和年龄的数据集,我们想要将这些特征降维到一个更低维度的空间中。

我们可以使用主成分分析来实现这一目标。

首先,我们需要计算数据集的协方差矩阵,然后找到这个矩阵的特征值和特征向量。

特征值表示了数据中的方差,而特征向量则表示了数据的主要方向。

通过选择最大的特征值对应的特征向量,我们就可以得到一个新的特征空间,将原始数据映射到这个空间中,从而实现数据的降维。

接下来,让我们来看一个更具体的案例。

假设我们有一个包含多个变量的数据集,我们想要找到这些变量之间的主要关系。

我们可以使用主成分分析来实现这一目标。

首先,我们需要对数据进行标准化,以确保不同变量之间的尺度是一致的。

然后,我们可以计算数据集的协方差矩阵,并找到特征值和特征向量。

通过分析特征值的大小,我们可以确定哪些特征是最重要的,从而找到数据集中的主要关系。

在实际应用中,主成分分析经常被用于数据可视化和模式识别。

通过将数据映射到一个更低维度的空间中,我们可以更容易地对数据进行可视化,并且可以发现数据中的隐藏模式和结构。

此外,主成分分析还可以被用于降噪和特征提取,从而提高数据分析的效果和效率。

总之,主成分分析是一种非常有用的数据分析技术,它可以帮助我们发现数据中的主要特征,并且可以简化数据集,同时保留最重要的信息。

通过理解和应用主成分分析,我们可以更好地理解和分析数据,从而更好地解决实际问题。

希望本文介绍的经典案例可以帮助读者更好地掌握主成分分析的原理和应用。

主成份分析和因子分析实例

主成份分析和因子分析实例

• 定义:因子分析是一种降维分析方法,通过研究多个变量之间的相关性,将多个变量归结为少数几个公 共因子
• 原理:基于变量的相关性,通过旋转因子矩阵,使得每个变量仅与一个公共因子高度相关,从而实现对 数据的简化分析 以下是用户提供的信息和标题: 我正在写一份主题为“主成份分析和因子分析实例” 的PPT,现在准备介绍“因子分析的步骤”,请帮我生成“步骤”为标题的内容 步骤
数据来源:某高校学生成 绩数据
数据清洗:去除异常值、缺失值和重复值
数据转换:将非数值型数据转换为数值型数据 数据标准化:将数据进行标准化处理,使每个变量的平均值为0,标准差为 1 数据降维:将高维数据降维到低维空间,保留主要特征
定义:计算变量之间的相关系数矩阵
目的:了解变量之间的相关性
计算方法:使用统计学软件或编程语言计算相关系数矩阵 结果解释:通过相关系数矩阵,可以了解变量之间的线性关系强度 和方向
因子分析缺点:对数据的要求较高,需要数据量足够大且各变量间相关性较强;在确定因子数量 时,需要主观判断。
拓展应用领域:从金融、经济领域拓展到更多领域,如社会学、心理学等 优化算法和模型:提高主成份分析和因子分析的准确性和效率,减少误差 结合其他技术:与数据挖掘、机器学习等技术结合,提高数据分析的深度和广度 强化实际应用:在更多实际问题中应用主成份分析和因子分析,为决策提供支持
根据累积方差贡 献率确定主成份 个数
根据碎石图确定 主成份个数
根据主成份得分 矩阵确定主成份 个数
根据因子载荷矩 阵确定主成份个 数
计算每个观测值 在每个主成份上 的得分
将每个观测值在 每个主成份上的 得分进行加权求 和
得到每个观测值 的主成份得分
将每个观测值的 主成份得分进行 排序,得到主成 份得分排名

主成分分析法实例

主成分分析法实例

【转】主成分分析法概述、案例实例分析主成分分析法主成分分析也称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标。

在实证问题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。

这些涉及的因素一般称为指标,在多元统计分析中也称为变量。

因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。

在用统计方法研究多变量问题时,变量太多会增加计算量和增加分析问题的复杂性,人们希望在进行定量分析的过程中,涉及的变量较少,得到的信息量较多。

主成分分析正是适应这一要求产生的,是解决这类题的理想工具。

主成分分析法是一种数学变换的方法, 它把给定的一组相关变量通过线性变换转成另一组不相关的变量,这些新的变量按照方差依次递减的顺序排列。

在数学变换中保持变量的总方差不变,使第一变量具有最大的方差,称为第一主成分,第二变量的方差次大,并且和第一变量不相关,称为第二主成分。

依次类推,I 个变量就有I个主成分。

这种方法避免了在综合评分等方法中权重确定的主观性和随意性,评价结果比较符合实际情况;同时,主成份分量表现为原变量的线性组合,如果最后综合指标包括所有分量,则可以得到精确的结果,百分之百地保留原变量提供的变差信息,即使舍弃若干分量,也可以保证将85%以上的变差信息体现在综合评分中,使评价结果真实可靠。

是在实际中应用得比较广的一种方法。

由于其第一主成份(因子)在所有的主成分中包含信息量最大,很多学者在研究综合评价问题时常采用第一主成分来比较不同实体间的差别。

综上所述,该方法的优点主要体现在两个方面:1.权重确定的客观性;2.评价结果真实可靠。

1.主成分分析的基本原理主成分分析:把原来多个变量划为少数几个综合指标的一种统计分析方法,是一种降维处理技术。

)记原来的变量指标为x1,x2,…,xP,它们的综合指标——新变量指标为z1,z2,…,zm(m≤p),则z1,z2,…,zm分别称为原变量指标x1,x2,…,xP的第一,第二,…,第m 主成分,在实际问题的分析中,常挑选前几个最大的主成分。

主成份分析和因子分析实例

主成份分析和因子分析实例

主成份分析和因子分析实例主成分分析和因子分析是常用的降维技术,用于对数据进行降维和探索性因子分析。

在本文中,我将为您介绍两种方法,并提供一个数据集的实例来说明它们的应用。

一、主成分分析(PCA)主成分分析是一种广泛应用的数据降维技术,它可以将高维数据转换为低维数据,同时尽可能以保留最大方差的方式来解释数据。

主成分分析的目标是找到一个新的低维度空间,使得投影到该空间的数据具有最大的方差。

下面是一个用于说明主成分分析的实例:假设我们有一组包含5个变量的数据,分别是身高、体重、BMI指数、血压和血糖。

我们希望使用主成分分析将这些变量降维到2维并通过可视化来分析数据。

首先,我们需要对原始数据进行标准化,以消除变量之间的单位差异。

然后,我们计算协方差矩阵,并通过对协方差矩阵进行特征值分解来找到数据的主成分。

在这个例子中,我们得到了两个主成分,分别称为PC1和PC2、PC1是与身高、体重和BMI指数等相关的主成分,而PC2是与血压和血糖相关的主成分。

这两个主成分解释了数据总方差的大部分。

接下来,我们可以使用这两个主成分来可视化数据,并分析数据的聚集和分布情况。

例如,我们可以使用散点图可视化数据的主成分得分,并根据不同类别对数据进行颜色编码,以便观察数据的聚集情况。

通过主成分分析,我们可以将原始高维数据转换为低维数据,并通过可视化来分析数据的分布和聚集情况,进而进行更深入的研究和分析。

二、因子分析(FA)因子分析是一种用于探索性数据分析的统计技术,其目的是揭示变量之间的潜在因子结构。

因子分析假设观测数据由一组潜在因子引起,并尝试将这些因子解释为一组不可观测的变量。

下面是一个用于说明因子分析的实例:假设我们有一组包含10个观测变量的数据,我们希望了解这些变量之间的潜在因子结构。

我们可以使用因子分析来识别可能存在的潜在因子,并了解它们对观测变量的影响。

在进行因子分析之前,我们首先需要检验数据的合适性。

我们可以使用Kaiser-Meyer-Olkin (KMO)测度和巴特利特球形检验来评估数据的适合度。

主成分分析案例

主成分分析案例

Y2得分
-2.06481 2.32993 -1.47145 0.66326 -0.87181 1.25757 -1.40987 -0.36439 0.04577 -2.04139 -0.42078 0.33126 0.07660 0.86909 0.45974 -0.83575
主成分分析在 市场研究中的应用
1——5 组表示男性,6——10 组表示女性 1——5, 6——10 年龄从小到大排序
假若你是该食品加工业决策部 门的高级顾问,为了对食品生 产作出合理决策,请你对以上 的调查资料进行分析,为决策 者提供建议。
特征向量
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
特征根 i
方差贡献率
女性喜欢
一般喜欢
孩子 咖喱饭
炸肉饼、火腿面包
成人 鸡蛋烩饭、炸猪排 酸汤、大头鱼
一般不喜欢 特别不喜欢
孩子 干咖喱、浓汤 成人 煮牛肉、生蛋
菜粥、清汤
饼干、带馅面包 酱面条、烧鱼
服装的定型分类问题
为了较好地满足市场的需要,服装生产厂 要了解所生产的一种服装究竟设计几种型号合 适?这些型号的服装应按怎样的比例分配生产 计划才能达到较好的经济效益?
4、取每一组的中心 ( y1*k , y2*k ) (k=1,2,…,g) 作为该组的 代表点。
相应原16个指标的尺寸:
x1' r11 y1*k r12 y2*k x2' r21 y1*k r22 y2*k
x1' 6 r16,1 y1*k r16,2 y2*k
5、各种型号的比例按 该组样品数/128 确定。
Y2
0.513225 0.203116 -0.182858 0.193618 0.217290 0.113642 -0.164527 -0.114637 -0.509240 -0.025832 0.083471 0.132592 0.105402 0.199407 -0.181330 -0.261367 -0.295756

Matlab中的主成分分析方法与实例分析

Matlab中的主成分分析方法与实例分析

Matlab中的主成分分析方法与实例分析引言主成分分析(Principal Component Analysis,PCA)是一种常用的多变量分析方法,广泛应用于数据降维、特征提取和可视化等领域。

在Matlab中,通过调用PCA函数,可以方便地实现主成分分析。

本文将介绍Matlab中的主成分分析方法,并通过实例分析展示其应用。

一、主成分分析方法概述主成分分析通过线性变换将原始数据转换为新的坐标系,使得转换后的变量彼此之间不相关。

在新的坐标系中,第一个主成分具有最大的方差,第二个主成分具有次大的方差,并且与第一个主成分无关,以此类推。

主成分分析的基本思想是将高维数据投影到低维空间上,保留数据中所包含的主要信息,尽可能地减少信息损失。

二、Matlab中的主成分分析函数在Matlab中,通过调用pca函数可以进行主成分分析。

该函数的基本用法如下:\[coeff, score, latent, tsquared, explained, mu] = pca(X)\]其中,X代表待分析的数据矩阵,coeff是主成分系数矩阵,score是数据在主成分上的投影,latent是各主成分的方差,tsquared是数据的Hotelling T平方统计量,explained是各主成分的方差贡献率,mu是数据的均值。

三、主成分分析的实例分析为了进一步说明主成分分析的应用,我们将通过一个实例来展示其具体步骤。

假设我们有一个数据集,包含了100个样本和5个特征。

首先,我们将数据加载到Matlab中,并进行标准化处理,即将每一列的均值变为0,方差变为1。

这样做可以消除不同特征之间的量纲差异。

接下来,我们调用pca函数对标准化后的数据进行主成分分析。

根据explained 中各主成分的方差贡献率,我们可以选择保留的主成分个数。

通常,我们会选择方差贡献率大于一定阈值(如80%)的主成分。

在实际应用中,保留的主成分个数需要根据具体问题进行调整。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§8 实例 实例1计算得1x =71.25,2x =67.5分析1:基于协差阵∑ 求主成分。

369.6117.9117.9214.3S ⎛⎫= ⎪⎝⎭特征根与特征向量(S无偏,用SPSS )Factor 1 Factor 2 11x x - 0.880 -0.47422x x -0.474 0.880 特征值 433.12 150.81 贡献率0.7417 0.2583注:样本协差阵为无偏估计11(11)1n n n S X I X n n''=--, 所以,第一、二主成分的表达式为1122120.88(71.25)0.47(67.5)0.47(71.25)0.88(67.5)y x x y x x =-+-⎧⎨=--+-⎩ 第一主成分是英语与数学的加权和(反映了综合成绩),且英语的权数要大于数学的权数。

1y 越大,综合成绩越好。

(综合成分)第二主成分的两个系数异号(反映了两科成绩的均衡性)。

不妨将英语称为文科,数学称为理科。

2y 越大,说明偏科(文、理成绩不均衡),2y 越小,越接近于零,说明不偏科(文、理成绩均衡)。

(结构成分)问题:英语的权数为何大?如何解释? 分析2:基于相关阵R 求主成分。

因为1x =71.25,2x =67.5所以相关阵11R ⎛=⎪⎪⎭解得R 的特征根为:1λ=1.419,2λ=0.581,对应的单位特征向量分别为:Factor 1 Factor 2 111x x s - 0.707 0.707 222x x s - 0.707 -0.707 特征根 1.419 0.581 贡献率0.7090.291所以,第一、二主成分的表达式为12112271.2567.50.7070.70717.9813.6971.2567.50.7070.70717.9813.69x x y x x y --⎧=+=+⎪⎪⎨--⎪=-=-⎪⎩1122120.039(71.25)0.052(67.5)0.039(71.25)0.052(67.5)y x x y x x =-+-⎧⎨=---⎩ 1122120.0390.052 6.2730.0390.0520.671y x x y x x =+-⎧⎨=-+⎩ *2*11707.0707.0x x y += *2*12707.0707.0x x y -= 基于相关阵的更说明了:第一主成分是英语与数学的加权总分。

第二主成分是对两科成绩均衡性的度量。

此例说明:基于协差阵与基于相关阵的主成分分析的结果不一致。

结合此例的实际背景,经对比分析可知,基于协差阵的主成分分析更符合实际。

Y1 Y2 Y3 Y4 Y5 Y6x 1:身高 0.469 -0.365 -0.092 -0.122 0.08 -0.786 x2:坐高 0.404 -0.397 -0.613 0.326 -0.027 0.443 x 3:胸围 0.394 0.397 0.279 0.656 -0.405 -0.125 x 4:臂长 0.408 -0.365 0.705 -0.108 0.235 0.371 x 5:肋围 0.337 0.569 -0.164 -0.019 0.731 0.034 x 6:腰围 0.427 0.308 -0.119-0.661 -0.49 0.179 特征值3.287 1.406 0.459 0.426 0.295 0.126 贡献率 0.6373 0.169 0.07190.0508 0.0351 0.0091 累计贡献率 0.6373 0.8063 0.87810.9289 0.964 1从第一主成分可看出,各原始变量的载荷均为正,且近似相等。

若1y 较大,则意味着各原始变量也较大,说明身材高大;若1y 较小,则意味着各原始变量也较小,说明身材矮小。

因此,第一主成分1y 可称为(身材)大小成分。

(规模成分)从第二主成分可看出,在“身高*1x 、坐高*2x 、臂长*4x ”等纵向指标上有中等的负载荷,在“胸围*3x 、肋围*5x 、腰围*6x ”等横向指标上有中等的正载荷。

因此,第二主成分2y 可称为体形成分。

(比例成分—纵、横比例)从第三主成分可看出,在“坐高*2x ”上有较大的负载荷,在“臂长*4x ”上有较大的正载荷,而其他变量上的载荷都较小。

故第三主成分基本上是反映的是“坐高*2x ”与“臂长*4x ”的比例。

因此,第三主成分3y 可称为上身比例成分。

(局部比例成分)第四主成分的贡献率较小,实际意义也不好解释,故取前两个或前三个主成分即可。

例、用“消费支出数据”,从样本相关矩阵出发进行主成分分析,食品服装用品医疗通讯文化居住杂项北京2959.19 730.79 749.41 513.34 467.87 1141.82 478.42 457.64 天津2459.77 495.47 697.33 302.87 284.19 735.97 570.84 305.08 河北1495.63 515.9 362.37 285.32 272.95 540.58 364.91 188.63 山西1406.33 477.77 290.15 208.57 201.5 414.72 281.84 212.1 内蒙古1303.97 524.29 254.83 192.17 249.81 463.09 287.87 192.96 辽宁1730.84 553.9 246.91 279.81 239.18 445.2 330.24 163.86 吉林1561.86 492.42 200.49 218.36 220.69 459.62 360.48 147.76 黑龙江1410.11 510.71 211.88 277.11 224.65 376.82 317.61 152.85 上海3712.31 550.74 893.37 346.93 527 1034.98 720.33 462.03 江苏2207.58 449.37 572.4 211.92 302.09 585.23 429.77 252.54 浙江2629.16 557.32 689.73 435.69 514.66 795.87 575.76 323.36 安徽1844.78 430.29 271.28 126.33 250.56 513.18 314 151.39 福建2709.46 428.11 334.12 160.77 405.14 461.67 535.13 232.29 江西1563.78 303.65 233.81 107.9 209.7 393.99 509.39 160.12 山东1675.75 613.32 550.71 219.79 272.59 599.43 371.62 211.84 河南1427.65 431.79 288.55 208.14 217 337.76 421.31 165.32 湖北1783.43 511.88 282.84 201.01 237.6 617.74 523.52 182.52 湖南1942.23 512.27 401.39 206.06 321.29 697.22 492.6 226.45 广东3055.17 353.23 564.56 356.27 811.88 873.06 1082.82 420.81 广西2033.87 300.82 338.65 157.78 329.06 621.74 587.02 218.27 海南2057.86 186.44 202.72 171.79 329.65 477.17 312.93 279.19 重庆2303.29 589.99 516.21 236.55 403.92 730.05 438.41 225.8 四川1974.28 507.76 344.79 203.21 240.24 575.1 430.36 223.46 贵州1673.82 437.75 461.61 153.32 254.66 445.59 346.11 191.48 云南2194.25 537.01 369.07 249.54 290.84 561.91 407.7 330.95 西藏2646.61 839.7 204.44 209.11 379.3 371.04 269.59 389.33 陕西1472.95 390.89 447.95 259.51 230.61 490.9 469.1 191.34 甘肃1525.57 472.98 328.9 219.86 206.65 449.69 249.66 228.19 青海1654.69 437.77 258.78 303 244.93 479.53 288.56 236.51 宁夏1375.46 480.89 273.84 317.32 251.08 424.75 228.73 195.93 新疆1608.82 536.05 432.46 235.82 250.28 541.3 344.85 214.40.9055 -0.0898 0.3147 -0.1334 -0.1170 -0.0158 -0.0199 0.2023 0.2981 0.8712 0.2515 -0.0968 0.2807 0.0052 0.0204 -0.0154 0.8470 0.0757 -0.3349 -0.3484 -0.0370 0.1956 -0.0550 -0.0282 0.7225 0.4008 -0.3622 0.4199 -0.0321 0.0324 0.0289 0.0833 0.8756 -0.2695 0.2116 0.2331 0.1135 0.0359 -0.2050 -0.0737 0.9163 0.0316 -0.2349 -0.1488 0.0019 -0.2819 -0.0263 -0.0440 0.7367 -0.5768 -0.0257 0.0169 0.3078 0.0321 0.1667 0.0066 0.89480.11160.26180.0684-0.28060.03010.1324-0.1284x 1 0.401 -0.077 -0.415 -0.209 -0.221 0.75 0.065 0.045x2 0.132 0.749 -0.332 -0.152 0.529 -0.057 -0.067 -0.015 x 3 0.375 0.065 0.442 -0.547 -0.07 -0.105 0.181 -0.559 x 4 0.32 0.345 0.478 0.659 -0.061 0.309 -0.095 -0.093 x 5 0.388 -0.232 -0.279 0.366 0.214 -0.273 0.673 -0.103 x 6 0.406 0.027 0.31 -0.233 0.004 -0.163 0.086 0.806 x 7 0.326 -0.496 0.034 0.026 0.58 0.025 -0.548 -0.092 x 8 0.396 0.096 -0.345 0.107 -0.529 -0.476 -0.435 -0.086 特征值 5.098 1.352 0.5750.406 0.281 0.073 0.093 0.122 贡献率 0.6373 0.169 0.07190.0508 0.0351 0.0091 0.0116 0.0153 累计贡献率 0.6373 0.8063 0.87810.9289 0.964 0.9731 0.9848 1从第一主成分可看出,各原始变量的载荷均为正,且近似相等(除了x 2以外),若1y 较大,则意味着各原始变量也较大;若i y 较小,则意味着各原始变量也较小。

相关文档
最新文档