函数---变量与常量

合集下载

沪教版八年级数学第一学期18.1:函数的概念、正比例函数

沪教版八年级数学第一学期18.1:函数的概念、正比例函数

第七讲 函数的概念、正比例函数函数的概念 一、知识点 1. 变量与常量在问题研究过程中,可以取不同数值的量叫做变量,保持数值不变的量叫做常量. 2. 函数的定义在某个变化过程中有两个变量x 和y ,如果在x 的允许取值范围内,变量y 随着x 的变化而变化,它们存在确定的依赖关系,那么变量y 叫做变量x 的函数,x 叫做自变量。

3. 函数的定义域与函数值函数的自变量允许取值的范围叫做这个函数的定义域. 如果y 是x 的函数,那么对于x 在定义域内取定的一个值a ,变量y 的对应值叫做当x a =时的函数值.符号“()y f x =”表示y 是x 的函数,f 表示y 随x 变化而变化的规律. 二、例题讲解例1 物体所受的重力与它的质量之间有如下的关系:G mg =,其中,m 表示质量,G 表示重力,9.8g =牛/千克,物体所受的重力G 是不是它的质量m 的函数?解:物体所受的重力G 随它的质量m 的变化而变化,由G mg =可知,这两个变量之间存在确定的依赖关系,所以物体所受的重力G 是它的质量m 的函数.例2 汽车的速度为50千米/时,写出汽车匀速运动时行驶的路程y (千米)关于时间x (时)的函数解析式及定义域.分析: 本题依据公式“路程=时间X速度”列出数量关系,因为时间为非负数,所以定义域为0x ≥. 解:函数解析式为50y x =,定义域为0x ≥. 例3 求下列函数的定义域:(1)23y x =+; (2)11y x =-; (3)y = 解:(1)对于整式23x +,无论x 取什么实数,它都有意义,所以函数23y x =+的定义域是一切实数;(2)对于分式11x -,当1x =时,它没有意义.所以函数11y x =-的定义域是1x ≠;(3,当12x ≥-时,它有意义,所以函数y = 域是12x ≥-.说明:求函数的定义域应该根据解析式的特征进行思考. 例4 已知()f x =12f ⎛⎫- ⎪⎝⎭的值. 分析:函数与函数值是不同的概念.函数是指两个变量之间的某种关系,而函数值指的是当自变量取某一数值时,函数的一个对应值.求12f ⎛⎫- ⎪⎝⎭的值,就是当12x =-时,求21y x =-+的值,只需要把12x =-代入后计算即可. 解:131322.241212f ⎛⎫⨯- ⎪⎛⎫⎝⎭-==- ⎪⎝⎭⎛⎫-⨯-+ ⎪⎝⎭例5 等腰三角形的周长等于20cm ,请写出这个等腰三角形的底边长()x cm 和腰长()y cm 之间的解析式. 分析 根据周长的定义,得220x y +=,整理得20220,2xy x y -=-=, 即 1102y x =-+.函数解析式就是一个等式,求函数解析式时,有时可以利用一些现成的等式或公式,比如周长公式、面积公式等等.答案:1102y x =-+ 说明:1. 变量2x +是不是变量x 的函数?解: 对于代数式2x +,给定x 的一个值,可以求出这个代数式的一个值.所以2x +与x 有着确定的依赖关系,可以把变量2x +看做y .由函数的概念:在某个变化过程中有两个变量x 和y ,如果在x 的允许取值范围内,变量y 随着x 的变化而变化,它们之间存在确定的依赖关系,那么变量y 叫做变量x 的2. 对于“”中的“f ”怎样理解?答:记号“()f x ”表示“y 是x 的函数”,这个记号比较抽象,“f ”并不是表示一个变量,()f x 也不是表示“f ”与“x ”的积,而是指明在变化过程中的自变量为x ,用f 表示变量y 随着x 的变化而变化的规律;在同时研究几个函数时,应选用不同字母表示不同函数变量间相互依赖的变化规律,如()()g x h x 、等,以免引起混乱.三、 巩固练习1. 说出下列变化过程中,哪些量是常量,哪些量是变量,变量之间是函数关系吗? (1)正方形的周长C 与它的边长a ;(2)银行一年定期存款的本金x 元与利息y 元; (3)等腰三角形顶角的度数x 与底角的度数y ; (4)长方形的宽一定时,其长与面积; (5)等腰三角形的底边长与面积;(6)关系式y x=中的y 与x .答案:(1)变量是周长C 与边长a ,是函数关系;(2)变量是本金x 元与利息y 元,是函数关系; (3)变量是顶角的度数x 与底角的度数y ,是函数关系;(4)变量是长方形的宽与面积,是函数关系; (5)变量是等腰三角形的底边长与面积,不是函数关系;(6)变量是y 与x ,不是函数关系. 2. 写出下列个函数的定义域;(1)2y x =-; (2)y =答案: 一切实数 答案:1x ≥- (3)234y x x =+-; (4)11y x =-;答案:一切实数 答案:1x ≠(5)1y x x =+; (6)y =答案:0x ≠ 答案:0x ≥≠且x 23. 在ABC 中,它的底边长是a ,底边上的高是h ,则三角形面积12S ah=,当a 为定长时,在此式子中( A ).A. S 、h 是变量,a 是常量B. ,,S h a 是变量,12是常量 C. ,a h 是变量,1,2S 是常量 D. S 是变量,1,,2a h是常量4. 下列函数中,自变量的取值范围是113x <<的是( D ).A.y =B.y =C.y = D.y = 5. 如果()f x =()3f =___6. 已知()234x f x x +=+,则()0f =___34____,f=____814_____. 7. 若12y x y -=+,则y 用x 的代数式表示为y =___211x x+-___.8. 设某种电报收费标准是每个字0.1元,写出电报费y (元)与字数x (个)之间的函数关系式,并求自变量x 的取值范围.答案:()0.10y x x x =≥且是整数 提高题1. 若函数2221x x y x --=-,则与函数值0y =对应的x 的值是( D ). A. 1x =-或2x =B. 1x =或2x =-C. 1x =-且2x =D. 2x = 2. 把一块边长为20厘米的正方形铁皮,四角各截去边长为x 厘米的小正方形后折成一个无盖盒子,则盒子的容积V (立方厘米)关于自变量x (厘米)的函数解析式为__()2202V x x =-__,定义域为_010x <<_. 3. 洗衣机在洗衣的过程中经历了进水、清洗、排水等过程.下图能反映洗衣机工作时的水量y (升)与时间x (分)之间关系的图像大致是( C )A.正比例函数 一、知识点1. 正比例函数的概念如果两个变量的每一组对应值的比值是一个非零常数,那么称两个变量成正比例.用数学符号语言记为yk x =或()0y kx k =≠.解析式形如()0y kx k =≠的函数叫做正比例函数,其中,常数k 叫做比例系数,正比例函数y kx =的定义域是一切实数.2. 正比例函数的图像和基本性质 XXX二、例题 例1 若函数()31m y m x -=-是正比例函数,则m =_________,函数的图像经过_________象限.分析 由正比例函数的解析式可知,31m -=,所以4m =.把4m =代入函数解析式,得3y x =,再由正比例函数的性质,得到它的图像经过第一、三象限. 解:4m =,图像经过第一、三象限. 例2 若y 与21x +成正比例,且函数图像经过点()3,1A -,求y 与x 的函数解析式. 分析 由y 与21x +成正比例,可以设()()210y k x k =+≠.再把点A 的坐标()3,1-代入函数解析式,即可求出k 的值,这种求函数解析式的方法叫做待定系数法.解:y 与21x +成正比例,∴ 设()()210y k x k =+≠.把点A()3,1-代入,得15k =-,()1215y x ∴=-+例3 已知点()11,x y 和()22,x y 在正比例函数()2y k x =-的图像上,当12x x >时,12y y <,那么k 的取值范围是多少? 分析 由条件当12x x >时,12y y <,联系正比例函数的图像和性质,可知函数值y 随着x 的值增大而减小,即比例系数小于零.解 :由题意,函数值y 的值随着x 的值增大而减小,0,2k k ∴<<例4 直角三角形的一条直角边是6,写出它的面积y 关于另一条直角边x 的函数关系式并画出这个函数的图像.解:由直角三角形的面积公式,得162x y ⨯=.()30y x x ∴=>说明:由于直角三角形的边长为正数,在画函数图像时要特别注意自变量x 的取值范围,因为定义域为X0x >,此时函数图像为一条射线,并且要除去端点.1. 如何理解正比例函数的性质:当0k >时,y 随着x 的值增大而逐渐增大,当0k <时,y 随着x 的值增大而逐渐减小?答:从解析式来看,当0k >时,若12x x <,由不等式的性质有12kx kx <,即12y y <;当0k <时,若12x x <由不等式的性质有12kx kx >,即12y y >;也可以结合正比例函数的图像去理解:当0k >时,从左往右看,直线上的点的横坐标从小到大逐渐变化,点的位置随着从低到高逐渐变化,说明此时函数值y 相应地从小到大逐渐变化.当0k <时类似.2. 学习函数的性质要掌握的一个重要数学思想是“数形结合”,学会利用函数的图像直观的研究函数的性质.三、 巩固练习 1. 填空:(1)如果正比例函数的图像过点(1,-2),那么它的解析式是_2y x =-__;函数的图像经过第__二、四__象限.(2)正比例函数2y x =-的图像上一点横坐标为2,纵坐标是__-4___, 函数值随x 的值增大而__减小___. (3)由图写直线PO 的解析式:___34y x =___. (4)某函数具有下列两条性质:① 它的图像是经过 原点(0,0)的一条直线;② y 的值随x 的值增大而增大.请你举出一个满足上述条件的函数:____2y x =_(答案不唯一)___. 2. 选择:(1)下列函数中,正比例函数的是( B )A.3y x =B. 32y x =- C.213x y += D. 2y x = (2)下列各点中,在直线2y x =上的点有( A ).A.21⎫-⎪⎪⎝⎭ B. (2,2 C. 5,10D. ()2,1-(3)函数y kx =的图像经过点(1,4),那么()2y k x=-的图像经过第( B )象限.P-3/2-20yXA. 一、三B. 二、四C. 一、二D. 三、四 3. 已知y 是x 的正比例函数,当2x =时,12y =(1)求y 与x 的函数解析式; (2)求当x =y 的值; (3)在直角坐标系内画出该函数的图像. 答案:(1)14y x =;(2)4y =;(3)略 4. 正比例函数2112y k x k ⎛⎫=++- ⎪⎝⎭的图像经过第二、四象限,求函数的解析式.答案:12y x =-5. 已知3y -与x 成正比例函数,且它的图像经过点(2,7) (1)求y 与x 的函数解析式; (2)求当4x =时,y 的值; (3)求当3y =-时,x 的值.答案:(1)23y x =+; (2)11; (3)-3 6. 如果28my mx -=是正比例函数,而且对于它的每一组非零的对应值(),x y ,有0xy <.求m 的值.答案:-37. 小明早上骑自行车离开家去学校,下图反映了小明离开家的距离y (米)与时间x (分)之间的关系.根据图像回答:(1) 小明家与学校的距离是___3000__米;(2) 小明骑自行车的平均速度是___200___米/分; (3) 写出小明汽车途中,离开家的距离y (米)与时间x (分)的函数关系式及定义域:___()200015y x x =≤≤提高题1. 正比例函数y kx =的图像上有一点A ,过点A 向x 轴作垂线,垂足为点B ,点B 的坐标为(2,0).若三角形OAB 的面积为6,试求k 的值. 答案:3或-32. 已知正比例函数的自变量x 减小2时,对应的函数值增加4.求该正比例函数的解析式. 答案:2y x =-3. 已知点()()122,,1,A y B y -是正比例函数y kx =的图像上的两个点.若12y y >,试判断k 的取值范围. 答案:0k <家庭作业一、 填空题: 1. 若()21m y m x=+是正比例函数,则m =___1___.2. 已知函数()g x =,则()2g =___3___. 3. 在直角坐标系中,若点(),4M x -和点()3,N y 关于x 轴对称,则x y +=_7__.4. 如果正比例函数3xy =的图像过点()6,k ,那么k =___2___. 5. 已知矩形的周长为12,若矩形一边长为x ,面积为y ,则y 与x 的函数关系式及定义域是__()2606y x x x =-+<<___.6. 若等腰三角形顶角的度数为y ,底角的度数为x ,则y 与x 的函数关系式及定义域是__()1802090y x x =-<<___.7. 若等腰三角形的周长是20cm ,腰长与底边长分别是ycm 和xcm ,那么y 与x 的函数关系式为__102xy =-__,定义域为__010x <<__. 8. 若()25y a x b =+-+是正比例函数,且其图像恰为第二、四象限的角平分线,则a b +=__2__. 9. 若等腰梯形的周长为20cm ,上底长ycm ,底角为30,腰长xcm ,则y 与x 的函数关系式为__2102y x +=-__.10. 若y 成正比例,且当4x =时,3y =-则当32x =时,y =__-___. 二、选择题11. 若()2,P x y 是1P 关于y 轴的对称点,而点1P 在第三象限内,则( A )A. 0,0x y >>B. 0,0x y ><C. 0,0x y <<D. 0,0x y <> 12. 若点()111,P x y 与()222,P x y 在同一个正比例函数的图像上,则( D )A. 1212x x y y +=+;B. 1212x x y y -=-;C.1212y y x x =; D. 1221x y x y =. 13. 平面直角坐标系中有点()4,3A -,那么点A 到x 轴的距离是( A )A. 3 ;B. -3 ;C. 4 ;D. -4. 14. 点()11,A x y 与()11,B y y 之间的距离是( A )A. 11x y -;11y - ;C.D. 15. 下列问题中,两个变量成正比例的是( D ) A. 三角形的面积一定,它的底边与底边上的高; B. 等边三角形的面积与它的高;C. 长方形的一边长确定,它的周长与另一边长;D. 商品的价格确定时,销售额与销售量;E. 点到横坐标的距离确定时,它的纵坐标与横坐标;F. 商品的价格确定时,利润与成本. 三、 简答题16. 求下列函数的定义域:(1)322612y x x x =--+; (2)y =;答案:一切实数 答案:72x ≥(3)6y x =-; (3)y =答案:126x x ≥-≠且 答案:143x <17. 已知()225f x x =-+,求()()5+13f f a f a ⎛⎫- ⎪⎝⎭、、.答案:5539f ⎛⎫-=-⎪⎝⎭;()225f a a =-+;2243a a --+ 18. 已知正比例函数23y x =-. (1) 当x 取何值时,3y >-; (2) 当x 取何值时,3y =-; (3) 当x 取何值时,3y <-;(4) 画出图像,并结合图像说明理由. 答案:(1)()()999;2;3(4)222x x x <=>略 四、综合题已知函数()0y kx k =≠的图像与函数34y x =的图像关于y 轴对称,依照要求画图,并完成以下各 (1) 在函数34y x =的图像上取一点A (横坐标为4),点A 的坐标是__()4,3__;设点A 关于y 轴对称的点为A ’,那么A ’的坐标是__()4,3-__;(2) 过原点和点A ’画直线OA ’,它与直线34y x =关于y 轴对称吗?___对称____; (3) 如果在函数34y x =的图像上选取另一点B ,点B 关于y 轴对称的点B ’在直线OA ’上吗? ________在_______;(4) 已知函数()0y kx k =≠的图像与函数34y x =的图像关于y 轴对称,那么k 的值是多少? _____34y x =-____.x(分)。

函数常量与变量

函数常量与变量

函数常量与变量
在数学中,函数是一种描述变量之间关系的规则或映射。

在函数中,常量和变量是两个基本的元素,它们在函数的定义和表示中扮演不同的角色。

函数中的常量是指在整个函数定义域内保持不变的数值。

这意味着,对于给定的函数,无论输入是什么,常量的值都保持恒定。

常量可以是任何实数或复数,但在函数中始终保持固定的值。

函数中的变量是指函数的输入,它可以取不同的值。

变量是函数中可能发生变化的部分,函数的定义通常包括对变量的描述,指明如何根据输入值计算输出值。

人教版八年级数学下册讲义(中等班)19.1 函数

人教版八年级数学下册讲义(中等班)19.1 函数

第十九章一次函数19.1 函数1.常量和变量在一个变化过程中,我们称数值发生变化的量为变量,数值始终不变的量为__________.(1)变量和常量是相对而言的,变化过程不同,它们可能发生改变,判断的前提条件是“在同一个变化过程中”,当变化过程改变时,同一个量的身份也可能随之改变,例如,在s=vt中,当s一定时,v,t为变量,s为常量;当t一定时,s,v为变量,而t为常量.(2)“常量”是已知数,是指在整个变化过程中保持不变的量,不能认为式中出现的字母就是变量,如在一个匀速运动中的速度v就是一个常量.(3)变量、常量与字母的指数没有关系,如S=πr2中,变量是“S”和“r”,常量是“π”.(4)判断一个量是不是变量,关键是看其数值是否发生变化.2.函数的定义一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有__________确定的值与其对应,那么我们就说x是自变量,y是x的函数.对函数定义的理解,主要抓住以下三点:(1)有两个变量.(2)函数不是数,函数的本质是对应,函数关系就是变量之间的对应关系,且是一种特殊的对应关系,一个变量的数值随着另一个变量数值的变化而变化.(3)函数的定义中包括了对应值的存在性和唯一性两重意思,即对自变量的每一个确定的值,函数有且只有一个值与之对应,对自变量x的不同取值,y的值可以相同.在某个变化过程中处于主导地位的变量即为自变量,随之变化且对应值有唯一确定性的另一个变量即为该自变量的函数.3.自变量取值范围的确定使函数有意义的自变量的取值的全体叫做__________的取值范围.当用函数关系式表示实际问题时,自变量的取值不但要使函数关系式有意义,而且还必须使实际问题有意义.4.函数解析式及函数值函数解析式:用关于自变量的数学式子表示函数与自变量之间的关系,是描述函数的常用方法,这种式子叫做函数的__________.(1)函数解析式是等式.(2)函数解析式中指明了哪个是自变量,哪个是函数,通常等式右边的代数式中的变量是自变量,等式左边的变量表示函数.(3)用数学式子表示函数的方法叫做解析式法.函数值:对于自变量x在取值范围内的某个确定的值a,函数y所对应的值为b,即当x=a,y=b时,b 叫做自变量x的值为a时的函数值.5.函数的图象及其画法一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.K知识参考答案:1.常量2.唯一3.自变量4.解析式K—重点常量与变量的判断,函数自变量取值范围的确定,函数解析式及函数值的确定,函数的图象及其画法K—难点函数的定义的理解K—易错求自变量的取值范围时,考虑不周出错一、常量和变量常量和变量不是绝对的,必须根据具体的变化过程进行判断.【例1】在圆的面积公式S=πr2中,是常量的是A.S B.πC.r D.S和r 【答案】B【解析】在圆的面积公式S=πr2中,π是常量,S、r是变量,故选B.二、函数的定义判断一个关系是不是函数关系的方法:第一要看是不是一个变化过程;第二要看在这个变化过程中是不是有两个变量;第三要看其中一个变量每取一个确定的值,另一个变量是否有唯一确定的值与它对应. 【例2】下列变量之间的关系中,具有函数关系的有①三角形的面积与底边;②多边形的内角和与边数;③圆的面积与半径;④y =21x -中的y 与x . A .1个B .2个C .3个D .4个【答案】C【解析】对于①,设三角形的面积为S ,底边为a ,高为h ,则有S =12ah ,由于h 为变量,故不满足函数关系; 对于②,设多边形的内角和为y ,边数为n (n ≥3且n 为整数则有y =(n -2)⨯180°,满足函数关系;对于③,设圆的面积为S ,半径为r ,则有S =πr 2,满足函数关系;对于④,21y x =-满足函数关系,故具有函数关系的有三个,故选C .三、自变量取值范围的确定函数关系式中有分式、二次根式、零指数幂等情况综合时,自变量的取值范围一定要满足每一种情况,不要出现遗漏.【例3】函数y =3x -+12x -中自变量x 的取值范围是 A .3x ≤B .3x <且2x ≠C .3x ≤且2x ≠D .2x ≠【答案】C【解析】由题意,得3020x x -≥⎧⎨-≠⎩,解得x ≤3且x ≠2,故选C .四、函数解析式及函数值(1)要正确理解函数与函数值:函数是一个关系式,是一种对应关系,是对变量而言的;函数值是对具体数值而言的.(2)一个函数的函数值一般是随着自变量的变化而变化的.(3)求函数值的方法:将自变量的取值代入函数解析式进行运算即可.【例4】在一定条件下,若物体运动的路程s(米)与时间t(秒)的关系式为s=3t2+2t+1,则当t=4时,该物体所经过的路程为A.28米B.48米C.57米D.88米【答案】C【解析】把t=4代入s=3t2+2t+1,得s=3×42+2×4+1=57(米).故选C.五、函数的图象(1)函数图象上的任意点(x,y)中的x,y满足函数解析式.(2)满足函数解析式的任意一对(x,y)的值,所对应的点一定在函数的图象上.(3)利用函数国象可以求方程的解、不等式的解集、方程组的解,还可以预测变量的变化趋势.【例5】小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车速度,下面是小明离家后他到学校剩下的路程s关于时间t的图象,那么符合小明行驶情况的图象大致是A.B.C.D.【答案】D【解析】因为开始以正常速度匀速行驶---停下修车---加快速度匀驶,可得s先缓慢减小,再不变,在加速减小.故选D.【例6】如图,图象(折线OEFPMN)描述了某汽车在行驶过程中速度与时间的函数关系,下列说法中错误的是A.第3分时汽车的速度是40千米/时B.第12分时汽车的速度是0千米/时C.从第3分到第6分,汽车行驶了120千米D.从第9分到第12分,汽车的速度从60千米/时减少到0千米/时【答案】C【解析】横轴表示时间,纵轴表示速度.当第3分的时候,对应的速度是40千米/时,A 对; 第12分的时候,对应的速度是0千米/时,B 对;从第3分到第6分,汽车的速度保持不变,是40千米/时,行驶的路程为40×120=2千米,C 错; 从第9分到第12分,汽车对应的速度分别是60千米/时,0千米/时,所以汽车的速度从60千米/时减少到0千米/时,D 对.综上可得:错误的是C .故选C .1.在三角形面积公式S =12ah ,a =2中,下列说法正确的是 A .S ,a 是变量,12,h 是常量 B .S ,h 是变量,12是常量 C .S ,h 是变量,12,a 是常量D .S ,h ,a 是变量,12是常量2.某市居民用电价格是0.58元/度,居民应付电费为y 元,用电量为x 度,其中 A .0.58,x 是常量,y 是变量 B .0.58是常量,x ,y 是变量 C .0.58,y 是常量,x 是变量D .x ,y 是常量,0.58是变量3.关于变量x ,y 有如下关系:①x -y =5;②y 2=2x ;③:y =|x |;④y =3x.其中y 是x 的函数的是 A .①②③B .①②③④C .①③D .①③④4.下列关系式:①x 2-3x =4;②S =3.5t ;③y =32x -;④y =5x -3;⑤C =2πR ;⑥S =v 0t +12at 2;⑦2y +y 2=0,其中不是函数关系的是 A .①⑦B .①②③④C .④⑥D .①②⑦5.函数2y x =+的自变量的取值范围是A .x ≥-2B .x <-2C .x >-2D .x ≤-26.一根弹簧长8 cm ,它所挂物体的质量不能超过5 kg ,并且所挂的物体每增加1 kg ,弹簧就伸长0.5 cm ,则挂上物体后弹簧的长度y (cm )与所挂物体的质量x (kg )(0≤x ≤5)之间的关系式为A.y=0.5(x+8)B.y=0.5x-8 C.y=0.5(x-8)D.y=0.5x+87.小明同学准备从家打车去南坪,出门后发现到了拥堵使得车辆停滞不前,等了几分钟后他决定步行前往地铁站乘地铁直达南坪站(忽略中途等站和停靠站的时间),在此过程中,他离南坪站的距离y(km)与时间x(h)的函数关系的大致图象是A.B.C.D.8.如图是某市某一天的温度随时间变化的图象,下列说法错误的是A.15点时温度最高B.3点时温度最低C.最高温度与最低温度的差是12 °CD.21点时的温度是30 °C9.小亮帮母亲预算家庭4月份电费开支情况,下表是小亮家4月初连续8天每天早上电表显示的读数:日期/日 1 2 3 4 5 6 7 8电表读数/度21 24 28 33 39 42 46 49 表格中反映的变量是__________,自变量是__________,因变量是__________.10.函数y=23xx-+的自变量x的取值范围是__________.11.已知点M(3,5)在函数y=ax2-2x+2的图象上,则a等于__________.12.“十一”期间,小明和父母一起开车到距家200 km的景点旅游,出发前,汽车油箱内储油45 L,当行驶150 km时,发现油箱余油量为30 L(假设行驶过程中汽车的耗油量是均匀的).(1)求该车平均每千米的耗油量,并写出行驶路程x(km)与剩余油量Q(L)的关系式;(2)当x=280 km时,求剩余油量Q的值.13.在等腰△ABC中,底角x为(单位:度),顶角y(单位:度).(1)写出y与x的函数解析式;(2)求自变量x的取值范围.14.已知两个变量x,y之间的变化情况如图所示,根据图象回答下列问题:(1)写出y的变化范围;(2)求当x=0,-3时,y的对应值;(3)求当y=0,3时,对应的x的值;(4)当x为何值时,y的值最大?(5)当x在什么范围内时,y的值在不断增加?15.已知函数y=212xx-+,当x=a时的函数值为1,则a的值为A.3 B.-1 C.-3 D.116.如图①,在Rt△ABC中,∠ACB=90°,D是斜边AB的中点,动点P从B点出发,沿B→C→A运动,设S△PDB=y,点P运动的路程为x,若y与x之间的函数图象如图②所示,则AC的长为A.14 B.7 C.4 D.217.长方形的周长为20,一边长为x,另一边长为y,写出y随x变化的函数表达式__________.18.如图1,在矩形ABCD中,动点P从点B出发,沿BC-CD-DA运动至点A停止,设点P运动的路程为x,△ABP的面积为y.如果y关于x的函数图象如图2所示,则△ABC的面积是__________.19.已知如图,一天上午6点钟,言老师从学校出发,乘车上市里开会,8点准时到会场,中午12点钟回到学校,他这一段时间内的行程s(km)(即离开学校的距离)与时间(时)的关系可用图中的折线表示,根据图中提供的有关信息,解答下列问题:(1)开会地点离学校多远?(2)请你用一段简短的话,对言老师从上午6点到中午12点的活动情况进行描述.20.(2018·湖南岳阳)函数y3x=-中自变量x的取值范围是A.x>3 B.x≠3C.x≥3D.x≥021.(2018·湖南永州)函数y13x=-中自变量x的取值范围是A.x≥3B.x<3 C.x≠3D.x=322.(2018·内蒙古赤峰)有一天,兔子和乌龟赛跑.比赛开始后,兔子飞快地奔跑,乌龟缓慢的爬行.不一会儿,乌龟就被远远的甩在了后面.兔子想:“这比赛也太轻松了,不如先睡一会儿.”而乌龟一刻不停地继续爬行.当兔子醒来跑到终点时,发现乌龟已经到达了终点.正确反映这则寓言故事的大致图象是()A.B.C.D.23.(2018·广东韶关)如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A B C D→→→路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为A.B.C.D.24.(2018·宁夏)如图,一个长方体铁块放置在圆柱形水槽容器内,向容器内按一定的速度均匀注水,60秒后将容器内注满,容器内水面的高度h(cm)与注水时间t(s)之间的函数关系图象大致是A.B.C.D.25.(2018·黑龙江齐齐哈尔)如图是自动测温仪记录的图象,它反映了齐齐哈尔市的春季某天气温T如何随时间t的变化而变化,下列从图象中得到的信息正确的是A.0点时气温达到最低B.最低气温是零下4 °CC.0点到14点之间气温持续上升D.最高气温是8 °C26.(2018·浙江丽水)某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是A.每月上网时间不足25 h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35 h时,选择B方式最省钱D.每月上网时间超过70 h时,选择C方式最省钱27.(2018·辽宁辽阳)晓琳和爸爸到太子河公园运动,两人同时从家出发,沿相同路线前行,途中爸爸有事返回,晓琳继续前行5分钟后也原路返回,两人恰好同时到家,晓琳和爸爸在整个运动过程中离家的路程y1(米),y2(米)与运动时间x(分)之间的函数关系如图所示,下列结论:①两人同行过程中的速度为200米/分;②m的值是15,n的值是3000;③晓琳开始返回时与爸爸相距1800米;④运动18分钟或30分钟时,两人相距900米,其中正确结论的个数是A.1个B.2个C.3个D.4个28.(2018·江苏镇江)甲、乙两地相距80 km,一辆汽车上午9:00从甲地出发驶往乙地,匀速行驶了一半的路程后将速度提高了20 km/h,并继续匀速行驶至乙地,汽车行驶的路程y(km)与时间x(h)之间的函数关系如图所示,该车到达乙地的时间是当天上午A.10:35 B.10:40 C.10:45 D.10:5029.(2018·四川攀枝花)如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作Rt△ABC,使∠BAC=90°,∠ACB=30°,设点B的横坐标为x,点C的纵坐标为y,能表示y与x的函数关系的图象大致是A.B. C.D.30.(2018·湖北咸宁)甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了32分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有300米,其中正确的结论有A.1个B.2个C.3个D.4个31.(2018·湖南长沙)小明家、食堂、图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回家,如图反映了这个过程中,小明离家的距离y与时间x之间的对应关系.根据图象,下列说法正确的是A.小明吃早餐用了25 min B.小明读报用了30 minC.食堂到图书馆的距离为0.8 km D.小明从图书馆回家的速度为0.8 km/min32.(2018·四川巴中)函数y=112xx-+-中自变量x的取值范围是__________.33.(2018·湖北恩施州)函数y=213xx+-的自变量x的取值范围是__________.34.(2018·山东枣庄)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P 运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是__________.35.(2018·吉林)小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30 min.小东骑自行车以300 m/min的速度直接回家,两人离家的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示(1)家与图书馆之间的路程为多少米,小玲步行的速度为多少;(2)求小东离家的路程y关于x的函数解析式,并写出自变量的取值范围;(3)求两人相遇的时间.36.(2018·黑龙江牡丹江)在一条笔直的公路上依次有A,C,B三地,甲、乙两人同时出发,甲从A地骑自行车去B地,途经C地休息1分钟,继续按原速骑行至B地,甲到达B地后,立即按原路原速返回A地;乙步行从B地前往A地.甲、乙两人距A地的路程y(米)与时间x(分)之间的函数关系如图所示,请结合图象解答下列问题:(1)请写出甲的骑行速度为__________米/分,点M的坐标为__________;(2)求甲返回时距A地的路程y与时间x之间的函数关系式(不需要写出自变量的取值范围);(3)请直接写出两人出发后,在甲返回A地之前,经过多长时间两人距C地的路程相等.37.(2018·辽宁本溪)“五·一”期间,九年一班同学从学校出发,去距学校6千米的本溪水洞游玩,同学们分为步行和骑自行车两组,在去水洞的全过程中,骑自行车的同学比步行的同学少用40分钟,已知骑自行车的速度是步行速度的3倍.(1)求步行同学每分钟...走多少千米?(2)如图是两组同学前往水洞时的路程y(千米)与时间x(分钟)的函数图象.完成下列填空:①表示骑车同学的函数图象是线段__________;②已知A点坐标(30,0),则B点的坐标为(__________).38.(2018·山东日照)“低碳生活,绿色出行”的理念已深入人心,现在越来越多的人选择骑自行车上下班或外出旅游.周末,小红相约到郊外游玩,她从家出发0.5小时后到达甲地,玩一段时间后按原速前往乙地,刚到达乙地,接到妈妈电话,快速返回家中.小红从家出发到返回家中,行进路程y(km)随时间x (h )变化的函数图象大致如图所示.(1)小红从甲地到乙地骑车的速度为__________km /h ;(2)当1.5≤x ≤2.5时,求出路程y (km )关于时间x (h )的函数解析式,并求乙地离小红家多少千米?39.(2018·黑龙江绥化)端午节期间,甲、乙两人沿同一路线行驶,各自开车同时去离家560千米的景区游玩,甲先以每小时60千米的速度匀速行驶1小时,再以每小时m 千米的速度匀速行驶,途中体息了一段时间后,仍按照每小时m 千米的速度匀速行驶,两人同时到达目的地,图中折线、线段分别表示甲、乙两人所走的路程(km)y 甲,(km)y 乙与时间(h)x 之间的函数关系的图象.请根据图象提供的信息,解决下列问题:(1)图中E 点的坐标是__________,题中m __________km/h ,甲在途中休息__________h ; (2)求线段CD 的解析式,并写出自变量x 的取值范围; (3)两人第二次相遇后,又经过多长时间两人相距20 km ?1.【答案】C【解析】在三角形面积公式S=12ah,a=2中,S,h是变量,12,a是常量,故选C.2.【答案】B【解析】某市居民用电价格是0.58元/度,0.58是常量;居民应付电费为y元,用电量为x度,其中x,y是变量,故选B.3.【答案】D【解析】y是x函数的是①x-y=5;③y=|x|;④y=3x.当x=1时,在y2=2x中y=±2,则不是函数,故选D.4.【答案】A【解析】函数是指两个变量之间的关系,而①⑦只有一个变量,故①⑦不是函数;②③④⑤都有两个变量,并且给等号右边的变量一个确定的值,等号左边的变量都只有唯一的值与之对应,所以②③④⑤都是函数;⑥是以后将要学习的一个物理公式,对于一个确定的运动过程而言,v0和a都是不变的,只有S和t两个变量,并且满足一一对应,故⑥也是函数,故选A.5.【答案】A【解析】二次根式有意义的条件是根号下被开方数非负,所以x+2≥0,即x≥-2,故选A.6.【答案】D【解析】∵挂上1 kg的物体后,弹簧伸长0.5 cm,∴挂上质量为x kg的物体后,弹簧伸长0.5x cm,∴弹簧的长度y=0.5x+8,故选D.7.【答案】D【解析】小明同学出校门后发现道路拥堵使得车辆停滞不前,等了几分钟,他离南坪站的距离没有变化,然后她步行前往地铁站他离南坪站的距离y(km)随时间x(h)的增大而减小,最后她乘地铁直达南坪站他离南坪站的距离y(km)随时间x(h)的增大而减小,并且增加的速度更快了,符合以上的图象是D.故选D.8.【答案】C【解析】横轴表示时间,纵轴表示温度.A、温度最高应找到函数图象的最高点所对应的x值与y值:为15时,38 °C.故本选项正确;B、温度最低应找到函数图象的最低点所对应的x值与y值:为3时,22 °C,故本选项正确;C、这天最高温度与最低温度的差应让前面的两个y值相减,即38-22=16 °C,故本选项错误;D、从图象看出,这天21时的温度是30 °C,故本选项正确.故选C.9.【答案】日期和电表读数,日期,电表读数【解析】表格中反映的变量是:日期和电表读数,自变量为日期,因变量为电表读数.故答案为:日期和电表读数,日期,电表读数.10.【答案】x≥2【解析】根据题意可得:2030xx-≥⎧⎨+≠⎩,解得x≥2,故答案为:x≥2.11.【答案】1【解析】∵函数y=ax2-2x+2过M(3,5),∴5=9a-2×3+2,解得a=1,故答案为:1.12.【解析】(1)该车平均每千米的耗油量为(45-30)÷150=0.1(L/km),行驶路程x(km)与剩余油量Q(L)的关系式为Q=45-0.1x.(2)当x=280时,Q=45-0.1×280=17.故当x=280 km时,剩余油量Q的值为17 L.13.【解析】(1)由题意得:x+x+y=180,∴y=180-2x.(2)由y>0得:x<90,又x>0,故0<x<90.14.【解析】(1)根据函数图象可得:y的变化范围为-2~4.(2)当x=0时,y=3;当x=-3时,y=1.(3)当y=0时,x1=-2.5,x2=-1.5,x3=3.5.当y=3时,x1=0,x2=2.(4)当x=1时,图象有最高点,此时y最大.(5)当x在-2~1时,函数图象上升,y的值在不断增加.15.【答案】A【解析】∵函数y=212xx-+中,当x=a时的函数值为1,∴2112aa-=+,∴2a−1=a+2,∴a=3,故选A.16.【答案】C【解析】如图所示,过点D作DE⊥BC于点E,则S△DPB=12BP·DE,即12y=DE·x,由题图②中的信息可知,当点P运动到点C时,y最大=7,此时x=BC=7,即12DE×7=7,解得DE=2,∵在△ABC中,∠ACB=90°,点D是AB边的中点,∴CD=DB,又∵DE⊥BC于点E,∴CE=BE,又∵点D是AB边的中点,∴DE是△ABC的中位线,∴AC=2DE=4,故选C.17.【答案】y=10-x(0<x<10)【解析】设长方形的另一条边长为y,则y=2022x-,即y=10-x,∵y>0,∴10-x>0,x<10,∵x>0,∴0<x<10.∴y关于x的函数解析式是y=10-x,x的取值范围是0<x<10.故答案为:y=10-x(0<x<10).18.【答案】10【解析】由题可知点P的运动过程分三种情况:P在BC上;P在CD上;P在AD上,该三种情况对应图象上的三段线段,由此可知P在第一段的运动路程为4,第二段的运动路程为9-4=5,即AD=BC=4,CD=AB=5,∴1=2ABCS BC AB⨯⨯△=1452⨯⨯=10,故答案为:10.19.【解析】(1)开会地点离学校有60千米.(2)答案不唯一,如:言老师上午6点钟从学校出发,开车走普通公路,出发1小时后,车坏了,半小时后修好了以原速度继续前进,8点钟准时赶到了会场,开会持续了3小时结束,会后改走高速公路,12点钟到学校.20.【答案】C【解析】由题意得:x-3≥0,解得x≥3,故选C.21.【答案】C【解析】根据题意得:x-3≠0,解得:x≠3,故选C.22.【答案】D【解析】乌龟运动的图象是一条直线,兔子运动的图象路程先增大,而后不变,再增大,并且乌龟所用时间最短.故选D.23.【答案】B【解析】设菱形的高为h,有三种情况:①当P在AB边上时,如图1,y=12AP·h,∵AP随x的增大而增大,h不变,∴y随x的增大而增大,故选项C不正确;②当P在边BC上时,如图2,y=12AD·h,AD和h都不变,∴在这个过程中,y不变,故选项A不正确;③当P在边CD上时,如图3,y=12PD·h,∵PD随x的增大而减小,h不变,∴y随x的增大而减小,∵P点从点A出发沿A→B→C→D路径匀速运动到点D,∴P在三条线段上运动的时间相同,故选项D不正确,故选B.24.【答案】D【解析】已知一个长方体铁块放置在圆柱形水槽容器内,向容器内按一定的速度均匀注水,60秒后将容器内注满,因为长方体是均匀的,所以初期的图象应是直线,当水越过长方体后,注水需填充的体积变大,因此此时的图象也是直线,但斜率小于初期,综上所述选D.25.【答案】D【解析】A.根据图象4时气温最低,故A错误;B.最低气温为零下3 °C,故B错误;C.0点到14点之间气温先下降后上升,故C错误;D描述正确,故选D.26.【答案】D【解析】观察函数图象,可知:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;观察函数图象,可知:当每月上网费用大于等于50元时,B方式可上网的时间比A方式多,结论B正确;设当x≥25时,y A=kx+b,将(25,30)、(55,120)代入y A=kx+b,得253055120k bk b+=⎧⎨+=⎩,解得345kb=⎧⎨=-⎩,∴y A=3x-45(x≥25),当x=35时,y A=3x-45=60>50,∴每月上网时间为35 h时,选择B方式最省钱,结论C正确;设当x≥50时,y B=mx+n,将(50,50)、(55,65)代入y B=mx+n,得50505565m nm n+=⎧⎨+=⎩,解得3100mn=⎧⎨=-⎩,∴y B=3x-100(x≥50),当x=70时,y B=3x-100=110<120,∴结论D错误.故选D.27.【答案】C【解析】①4000÷20=200米/分,∴两人同行过程中的速度为200米/分,①正确;②m=20-5=15,n=200×15=3000,②正确;③晓琳开始返回时,爸爸和晓琳各走5分钟,爸爸返回的速度为100,所以他们的距离为:300×5=1500(米),③不正确;④设爸爸返回的解析式为y2=kx+b,把(15,3000)(45,0)代入得153000 450k bk b+=⎧⎨+=⎩,解得1004500kb=-⎧⎨=⎩,∴y2=-100x+4500,∴当0≤x≤20时,y1=200x,y1-y2=900,∴200x-(-100x+4500)=900,∴x=18,当20≤x≤45时,y1=ax+b,将(20,4000)(45,0)代入得204000450a ba b+=⎧⎨+=⎩,∴1607200kb=-⎧⎨=⎩,y1=-160x+7200,y1-y2=900,(-160x+7200)-(-100x+4500)=900,x=30,∴④正确,故选C.28.【答案】B【解析】由图象知走前一半路程用的时间为1小时,所以走前一半路程时的速度为40 km/h,因为匀速行驶了一半的路程后将速度提高了20 km/h,所以以后的速度为20+40=60 km/h,时间为4060×60=40分钟,故该车到达乙地的时间是当天上午10:40,故选B.29.【答案】C【解析】如图,过点C作CD⊥y轴于点D,∵∠BAC=90°,∴∠DAC+∠OAB=90°,∵∠DCA+∠DAC=90°,∴∠DCA=∠OAB,又∵∠CDA=∠AOB=90°,∴△CDA∽△AOB,∴OB OA ABDA DC AC===tan30°,则313xy=-,故y=3x+1(x>0),则选项C符合题意.故选C.30.【答案】A【解析】由图可得,甲步行的速度为:240÷4=60米/分,故①正确,乙走完全程用的时间为:2400÷(16×60÷12)=30(分钟),故②错误,乙追上甲用的时间为:16-4=12(分钟),故③错误,乙到达终点时,甲离终点距离是:2400-(4+30)×60=360米,故④错误,故选A.31.【答案】B【解析】小明吃早餐用了(25-8)=17 min,A错误;小明读报用了(58-28)=30 min,B正确;食堂到图书馆的距离为(0.8-0.6)=0.2 km,C错误;小明从图书馆回家的速度为0.8÷10=0.08 km/min,D错误,故选B.32.【答案】x ≥1且x ≠2【解析】由题意得1020x x -≥⎧⎨-≠⎩,解得:x ≥1且x ≠2,故答案为:x ≥1且x ≠2. 33.【答案】x ≥-12且x ≠3 【解析】根据题意得2x +1≥0,x -3≠0,解得x ≥-12且x ≠3.故答案为:x ≥-12且x ≠3. 34.【答案】12【解析】根据题意观察图象可得BC =5,点P 在AC 上运动时,BP ⊥AC 时,BP 有最小值,观察图象可得,BP 的最小值为4,即BP ⊥AC 时BP =4,又勾股定理求得CP =3,因点P 从点C 运动到点A ,根据函数的对称性可得CP =AP =3,所以ABC ∆的面积是1(3+3)42⨯⨯=12,故答案为:12. 35.【解析】(1)结合题意和图象可知,线段CD 为小玲路程与时间函数图象,折线O -A -B 为为小东路程与时间图象,则家与图书馆之间路程为4000 m ,小玲步行速度为2000÷10=200 m /s . (2)∵小东从离家4000 m 处以300 m /min 的速度返回家,则x min 时,∴他离家的路程y =4000-300x ,自变量x 的范围为0≤x ≤403. (3)由图象可知,两人相遇是在小玲改变速度之前,∴4000-300x =200x ,解得x =8,∴两人相遇时间为第8分钟.36.【解析】(1)由题意得:甲的骑行速度为:10202114-=240(米/分), 240×(11-1)÷2=1200(米), 则点M 的坐标为(6,1200),故答案为:240,(6,1200).(2)设MN 的解析式为:y =kx +b (k ≠0),∵y =kx +b (k ≠0)的图象过点M (6,1200)、N (11,0),∴61200 110k bk b+=⎧⎨+=⎩,解得2402640kb=-⎧⎨=⎩,∴直线MN的解析式为:y=-240x+2640.即甲返回时距A地的路程y与时间x之间的函数关系式:y=-240x+2640.(3)设甲返回A地之前,经过x分两人距C地的路程相等,乙的速度:1200÷20=60(米/分),如图1所示:∵AB=1200,AC=1020,∴BC=1200-1020=180,分5种情况:①当0<x≤3时,1020-240x=180-60x,x=143>3,此种情况不符合题意;②当3<x<214-1时,即3<x<174,甲、乙都在A、C之间,∴1020-240x=60x-180,x=4,③当214<x≤6时,甲在B、C之间,乙在A、C之间,∴240x-1020=60x-180,x=143<214,此种情况不符合题意;④当x=6时,甲到B地,距离C地180米,乙距C地的距离:6×60-180=180(米),即x=6时两人距C地的路程相等,⑤当x>6时,甲在返回途中,。

《常量和变量》课件

《常量和变量》课件

02
在数据分析中,变量可以用来存储不同类型的数据,例如销售
额、客户数量等,以便进行数据分析和可视化。
在游戏开发中,变量可以用来存储玩家的得分、等级和状态等
03
,以便于游戏逻辑的实现和控制。
04
常量和变量的比较与选择
常量和变量的优缺点
常量的优点
常量可以作为程序中的固定参数,提高代码的可 读性和可维护性,同时可以减少内存占用。
函数的常量和变量
在函数中,常数可以是自变量或因变量。例如,在二次函数$y=ax^2+bx+c$中,$a$、 $b$和$c$是常数,而$x$和$y$是变量。
微积分中的常量和变量
在微积分中,常数和变量的概念常常与函数一起出现。例如,在求导数时,函数的一阶导 数是关于自变量的函数,而常数项则可以表示为$f'(x)=lim\frac{\Delta f}{\Delta x}=a$。
编程语言中的常量和变量应用
01
定义常量和变量
在编程语言中,常量和变量的定义方式可能因语言而异,但它们的作
用基本相同。常量和变量都用于存储程序中的值,供程序使用。
02 03
常量使用场景
在程序中,常量的使用场景很多。例如,在计算圆的面积时,圆周率 $\pi$就是一个常量,可以将其定义为一个常量变量,方便程序调用 。
常量和变量的未来发展
发展方向多样化
随着数学和其他学科的不断发展,常量和变量的定义和应用方式也在不断变化和 拓展。未来,常量、变量的概念和性质将继续演变和发展。
与计算机科学的结合
计算机科学中,常量和变量的概念被广泛应用。例如,计算机程序中变量是用来 存储数据的基本单元,而常量则用来表示固定的值或参数。
03

高中信息技术课件常量、变量、函数、表达式

高中信息技术课件常量、变量、函数、表达式

函数的功能 x的绝对值 取不大于x的最大整数 x的平方根 产生[0,1)的随机数 x的正弦值(x单位为弧度) x的余弦值(x单位为弧度) 将字符型数据转化为数值型数据 将数值型数据转化为字符型数据
函数值类型 数值 数值 数值 数值 数值 数值 数值 字符
练习~~
函数
Abs(86) Abs(-86)
常量、变量、函数、表达式
常量和变量
常量是指在程序运行过程中保持不变的量 变量时用来存放数据的,在程序运行中,变 量的值是不确定的。 变量必须有一个变量名,如a、x1等。定义变 量名的原则:以字母或汉字开头,由字母、 数字、汉字及下划线组成。但是不能取VB中 的保留字,如End、Print等。

变量的命名规则
① 必须以字母或汉字开头。 ② 只能由字母、汉字、数字和下划线组成。 ③ 字符个数不超过255 个。 ④ 变量名不能使用VB 中的保留字。 ⑤ VB 不区分变量名中字母的大小写。 ⑥ 为增加程序的可读性,变量名最好取有意义的名 称,建议前面加上数据类型的缩写。
变量声明的形式:
Dim 变量名 As 数据类型
Not:取反 And:与 Or:或


运算符的执行顺序(优先级): 算术运算符>字符串连接运算符>关系运算符>逻辑运算符
练习


1、写出下列表达式的 值 123+“321”&“ABCD” Not(2*5<>11)
答案: “444ABCD” False
(x+y)/(x-y) 1/2*g*t*t
2、比较两段程序,它们有哪些不同点和相同点?你觉得哪段更 好?
函数

函数是一段用来完成某种特定运算或功能的 程序。函数的格式一般为: 函数名(参数1,参数2,…) 函数的参数可以是一个或几个,甚至没有。 一般情况下,函数总要返回一个函数值。

第11课时 常量与变量、一次函数的概念

第11课时   常量与变量、一次函数的概念

第11课时 常量与变量、一次函数的概念知识点函数及其相关概念1.常量与变量:在某一变化过程中,可以取不同数值的量叫做变量;在某一变化过程中保持数值不变的量叫做常量.2.函数:在某一变化过程中的两个变量x 和y ,如果对于x 在某一范围内的每一个确定的值,y 都有唯一确定的值和它对应,那么y 就叫做x 的函数,其中x 做自变量,y 是关于x 的函数.3、函数值:对于自变量在取值范围内的一个值所求得的函数的对应值.4、函数常用的表示方法:(1)图象法:(2)列表法:(3)解析法:5、正比例函数和一次函数的概念一般地,如果b kx y +=(k ,b 是常数,k ≠0),那么y 叫做x 的一次函数。

特别地,当一次函数b kx y +=中的b 为0时,kx y =(k 为常数,k ≠0)。

这时,y 叫做x 的正比例函数。

范例讲解1.设路程为s ,时间为t ,速度为v ,当v =60时,路程和时间的关系式为 ,这个关系式中, 是常量, 是变量, 是 的函数。

2.圆的周长c =2πr (π表示圆周率,r 表示圆的半径,c 表示圆的周长)中,变量是 ,常量是 。

3.某种经营中润是销售额的30%,设销售为x 万元,利润为y 万元,其中常量是 ,变量是 ,y 关于x 的关系式是 。

4.函数5y x =-中自变量x 的取值范围是___________.5.一次函数y=-2x+4,当函数值为正时,x 的取值范围是______6.若23y x b =+-是正比例函数,则b 的值是 ( ) A.0 B.23 C.23- D.32- 7.当k_____________时,()2323y k x x =-++-是一次函数;8.某地出租车收费标准是:起步价10元,可乘3千米,以后每增加1千米,收费1.8元(不足1千米的按1千米计),某位乘客乘坐了x 千米(x >3)的路程,他应支付的路费y 元。

(1)这一过程中,常量是 ,变量是 。

第4讲 常量、变量、表达式和函数

第4讲 常量、变量、表达式和函数

上一页
下一页
返 回
2
4.1 常 量
4.1.1 数值型常量
数值型常量也就是常数,是由数字 ~ 、小数点和正负号构成的数字序列。 数值型常量也就是常数 是由数字0~9、小数点和正负号构成的数字序列。 是由数字 例如:123,123.45,-123.45等。 例如: , , 等
4.1.2 字符型常量
字符型常量又称字符串,是由英文状态的单引号、 字符型常量又称字符串,是由英文状态的单引号、双引号和方括号括起来的字符序 这里的单引号、双引号和方括号又称定界符。 列,这里的单引号、双引号和方括号又称定界符。 例如: 系统开发', 计算机 计算机]等 例如:”Visual FoxPro”, 'VF系统开发 ,[计算机 等。 , 系统开发
上一页 下一页 返 回
7
2.内存变量的赋值命令 . 格式1 内存变量名>=<表达式> >=<表达式 格式1:<内存变量名>=<表达式> 格式2 <表达式 表达式> <内存变量名表 内存变量名表> 格式2:STORE <表达式> TO <内存变量名表> 功能:计算表达式,并将计算结果赋值给内存变量。 功能:计算表达式,并将计算结果赋值给内存变量。 4.3】定义内存变量并将其赋值。 【例4.3】定义内存变量并将其赋值。 解:在命令窗口输入以下命令: 在命令窗口输入以下命令: Y=500 张三” STORE “张三” TO 姓名 张三 STORE 8 TO M,N 注意:格式2可以同时为多个变量赋相同的值,格式1只能为单个变量赋值。 注意:格式2可以同时为多个变量赋相同的值,格式1只能为单个变量赋值。 例如: M,N=8。 例如:STORE 8 TO M,N 就不能改写为 M,N=8。 3.表达式值的显示命令 . 格式1:? <表达式表> 格式1 <表达式表> 表达式表 格式2 <表达式表 表达式表> 格式2:?? <表达式表> 功能:计算表达式,并将计算结果在主屏幕中显示。 功能:计算表达式,并将计算结果在主屏幕中显示。 区别:格式1自动产生换行符,表示要换行显示结果,而格式2 区别:格式1自动产生换行符,表示要换行显示结果,而格式2不会产生换 行符,表示要在当前行光标所在位置起显示结果。 行符,表示要在当前行光标所在位置起显示结果。

1函数常量与变量

1函数常量与变量

课 题: 15.1.1常量与变量学习目标:1、通过丰富的实例,使学生在具体环境中领悟学习函数的意义。

2、了解常量与变量的含义,能分清实例中的常量与变量。

3、发展符号感,探索实际问题中的数量关系,增强数学建模意识.重难点:会判断一个关系式中的常量和变量,能够列出实际问题中的关系式并能指出其中的常量,变量 学情分析:教学过程: 一、探究新知1.阅读教材第1页,认真体会“万物皆变”,体会学习函数的意义.问题1:从甲地到乙地,坐在匀速行使的列车上,小明、小丽、小亮和小华谈论着车速、路程和时间,谈论着数量的变化和位置的变化. 思考:(1)列车在行使,位置在改变,因此与位置有关的数量在改变,这里有不变的数量吗?(2)除了小丽、小明所说的那些不变的数量外,在这个问题中还有不变的数量吗?(3)除了小亮和小华所说的那些变的数量外,在这个问题中还有变的数量吗?常量:在一个_______的过程中,只取________的量叫做常量 变量:在一个_______的过程中,可以取________的量叫做变量常量与变量必须存在于一个变化过程中.判断一个量是常量还是变量,需要两个方面:①看它是否存在一个变化的过程中,②看它在这个变化过程中的取值情况. 二、巩固新知例1:指出下列各关系中的变量和常量:①周长C 与半径r 的关系式是2C r =π;常量是_________,变量是_________;②多边形的内角和A 与边数n 之间的关系式是A =(n -2)×180°;常量是_________,变量是_________; ③底边为定值a 的三角形面积与底边上的高h 之间的关系式为12S ah =.常量是_____,变量是________. ④以45km/h 的速度匀速行驶的汽车,t h 所行驶的路程有s km ;常量是_________,变量是_________; ⑤边长为x cm 的正方体,它的表面积为2scm .常量是_________,变量是_________;⑥设路程为s (千米),速度为v (千米/时),时间为t (时),当s=60千米时,t 与v 的关系式是t=v60,在这个变化过程中( )A .路程和t 是变量,v 是常量 B.v 和t 是常量,路程是变量 C .路程是常量,v 和t 是变量 D.以上说法都不正确 2、列出实际问题中的关系式,指出其中的常量和变量例2.(1)若1吨民用自来水的价格为2.8元,则所交水费金额y (元)与使用自来水的数量x (吨)关系式为__________________________,其中常量是__________,变量是_________(2)一个三角形的底边长5cm,高h,则面积S 随h 变化关系式为__________,其中常量是_______,变量是_________ (3)一幢商住楼底层为店面房,底层高为4米,底层以上每层高3米,则楼高h 与层数n 之间的关系式为 ,其中 是变量, 是常量. 三、拓展提高1.向平静湖面投一石子,便会形成以落水点为圆心的一系列同心圆。

人教版2023中考数学专题复习: 函数基础知识精讲精练

人教版2023中考数学专题复习: 函数基础知识精讲精练

函数基础知识精讲精练学校:___________姓名:___________班级:___________考号:___________知识点精讲1、变量与常量变量:在一个变化过程中可以取不同数值的量。

常量:在一个变化过程中只能取同一数值的量。

2、函数的概念一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。

注意:要判断一个关系式是不是函数,首先看这个变化过程中是否只有两个变量,其次看每一个x的值是否对应唯一确定的y值.3、函数三种表示方法列表法:列一张表,第一行表示自变量取的各个值,第二行表示相应的函数值(即应变量的对应值)解析法:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。

一般情况下,等号右边的变量是自变量,等号左边的变量是因变量。

用函数解析式表示函数关系的方法就是公式法。

图象法:一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.以上三种方法的特点(1):列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。

(2):解析法:即函数解析式,简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。

(3):图象法:形象直观,但只能近似地表达两个变量之间的函数关系。

4、确定函数自变量取值范围的方法:(1)关系式为整式时,函数自变量取值范围为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数自变量取值范围还要和实际情况相符合,使之有意义5、求函数的值(1)当已知函数解析式时,求函数值就是求代数式的值;函数值是唯一的,而对应的自变量可以是多个.(2)函数表达式中只有两个变量,给定一个变量的值,将其代入函数表达式即可求另一个变量的值,即给自变量的值可求函数值,给函数值可求自变量的值.6、描点法画函数图形的一般步骤(通常选五点法)第一步:列表(根据自变量的取值范围从小到大或从中间向两边取值);第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。

函数表达式常量变量函数.ppt

函数表达式常量变量函数.ppt

例 i=3; j=5; a=(++i)*j; a=(i++)*j;
i=i+1=4 a=4*5=20 a=3*5=15 i=i+1=4
常量 变量 运算符 函 数 表 达式






运算符 及表 达 式
注意 : 自加,自减的运算量只能是整型变量, 不能是
常量或表达式 如 8++ (x*y)++ 是 错误的。
/* 输出“%” 号, 则 printf (“ a%%c=%d \n ”, a%(int) c);
在其前加“%” 号 */ }
常量 变量 运算符 函 数 表 达式






运算符 及表 达 式
(2) 算术表达式-- 用算术运算符将可操作对象连接起来 算式.
例: a ,100 ,a+100 , a+3/2.0….均是算术表达式.
常量 变量 运算符 函 数 表 达式






运算符 及表 达 式
main( ) { int a1, a2, a3;
a1=97; a2=98; a3=99;
/* a1,a2,a3 分别为‘a’, ‘b’,‘c’ 的ASCII 码*/
printf(“ %c,%c,%c\n ”,a1 ,a2, a3);
例 k=3;
j= -++k; j= -(++k);
k=4 j= -4
j= -k++; j= -(k++); 表达式使用的说明:
j= -3 k=4

函数 常量与变量

函数  常量与变量

B 函数(9)知识梳理:1、我们称数值发生变化的量为变量,数值始终不变的量为常量。

2、一般地,在一个变化过程中,如果两个量x 和y,并且对于x 的每一个确定的值,y 都有唯一的值与其对应,那么我们就说x 是自变量,y 是x 的函数。

如果当x=a 时y=b ,那么b 叫做自变量的值为a 时的函数值.3、用关于自变量的数学式子表示函数与自变量之间的的关系的式子叫做函数解析式。

知识归纳:(1)一般地,在一个变化过程中,如果有两个变量x 与y ,y 随x 的_____________ ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说x 是_______,y 是x 的________.如果当x =a 时y =b ,那么b 叫做当自变量的值为a 时的_________.(2)判断两个变量之间是不是函数关系,需满足两个特征:①必须有;②在某个范围内取值;③给定其中一个变量(变量)的值,相应的另一个变量()有值与其对应.(3)确定自变量的取值范围时,不仅要考虑使函数关系式_______,而且还要注意问题的________.(4)用关于自变量的数学式子表示_________________________,是描述函数的常用方法,这种式子叫__________________.典型例题:1、小强在劳动技术课中用一个周长为30cm 的铁丝围一个等腰三角形,他发现等腰三角形的腰长和底边都可以变化.请你写出底边长y (cm )与一腰长x (cm )的函数关系式,并求出自变量x 的取值范围.当堂练习:1.骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化,在这一问题中,自变量是()A .沙漠B .体温C .时间D .骆驼2.下列关系式中,y 不是x 的函数的是()A .x y ±=(x >0)B .2x y =C .x y 2-=(x >0)D .2)(x y =(x >0)3.下列说法中,正确的是()A 变量x 、y 满足x +3y =1,则y 是x 的函数B 变量x 、y 满足32--=x y ,则y 是x 的函数C .变量x 、y 满足x y =,则y 是x 的函数D .变量x 、y 满足x y =2,则y 是x 的函数4.下列各曲线中,反映了变量y 是x 的函数的是()5.函数431-+=x x y 中,自变量x 的取值范围是( )A . 34≠xB . 1≠xC .134-≠<x x 且D .34>x 6.学校计划购买50元的乒乓球,则所购买的乒乓球总数y (个)与单价x (元)的函数关系式是.其中是的函数,是自变量.7.已知函数22--=x x y ,当x=2时,函数值为. 8.汽车由甲地驶往相距120km 的乙地,它的平均速度为30km/h ,则汽车距乙地的距离s (km )与行驶时间t (h )的函数解析式是__________________,自变量t 的取值范围是_____________.9.已知2x -3y =1,若把y 看成x 的函数,则可以表示为___________.x 的取值范围是. 当x =4时,函数值y =.10.等腰△ABC 中,AB =AC ,则顶角y 与底角x 之间的函数关系式为_____________.其中变量是_______,常量是________.自变量是,是的函数,x 的取值范围是.课后巩固:1.下列关系式中,y 不是x 的函数的是()A .x y 23-=(x >0) B .x y 1= C .2x y = D .x y = 2.已知两个变量x 和y ,它们之间的3组对应值如下,则y 与x 之间的函数关系式可能是()A .x y =B .12+=x yC .12++=x x yD .xy 3= 3.若y 与x 的函数关系式为y =30x -6,当x =13时,y 的值为() A .5 B .10 C .4 D .-44.已知函数y =212x x -+中,当x =a 时的函数值为1,则a 的值是() A .-1 B .1 C .-3 D .35.函数112++--=x x x y 的自变量x 的取值范围为() A .x ≠1 B .1->x C .1-≥x D .1-≥x 且x ≠16.校园里栽下一棵小树高1.8米,以后每年长0.3米,则n 年后的树高L 与年数n 之间的函数关系式,是的函数,n 的取值范围是.7.若每升高1km ,气温就下降6 o C ,则气温降低数T (o C )与增加高度h (km )之间的函数关系式是。

4.函数的常量和变量

4.函数的常量和变量

教育学科教师辅导讲义讲义编号:组长签字:签字日期:学员编号:年级:八年级课时数:3 学员姓名:辅导科目:数学学科教师:课题常量和变量、函数授课日期及时段2015年月日教学目标1、掌握常量和变量的关系2、掌握函数的概念3、掌握函数自变量的取值范围的确定重点、难点函数的取值范围的确定教学内容一、疑难讲解二、知识点梳理一.常量与变量:1.概念;在某一变化过程中,我们称数值发生变化的量为变量,有些量的数值始终不变,我们称它们为常量.2.了解变量的概念,会区别常量与变量.3.注意:区别自变量与因变量和常量二:函数的概念1.了解函数的概念,弄清自变量与函数之间的关系2.概念:一般地,在一个变化过程中,如果有两个变量x与y,并且对于x•的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.3.注意:①两个变量x与y②对于x•的每一个确定的值,y都有唯一确定的值与其对应③一个变量的数值随着另一个变量的数值变化而变化三:自变量的取值范围的确定1.自变量的取值必须使含自变量的代数式(数学式子)有意义①整式:全体实数②分式:分母不等于0③二次根式下含自变量:开偶数次方中的被开方数必须大于等于0。

④有分式也有二次根式下含自变量:两个的公共部分2.当函数解析式表示实际问题时,自变量的取值必须使实际问题有意义3.注意:自变量的取值范围可以是有限也可以是无限,可以是一个或几个数4.有的要列不等式或不等式组来求三、典型例题1、骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化,在这一问题中,自变量是( ) A 、沙漠 B 、体温 C 、时间 D 、骆驼2.圆的面积S (cm 2)与圆的半径r(cm)之间的函数关系式是S=Πr2,,此关系式中的变量是( ) A ,r 2B ,r C,S, Π, r 2D,S 和r3、下列各种表达方式中,能表示变量y 与变量x 之间的函数关系的有( )A ,1个B ,2个C ,3个D ,4个4.下列函数中,不是函数关系的是( )A,y=x (x>0); B ,y=x -(x<0) C,y=±x (x>0); D, y=-x (x>0);5、下列各图象中,y 不是x 函数的是 ( )6.. 下列函数中,表示同一函数的是( )A.y=x 与.y=x x 2; B.y=x 与y=(x )2; C.y= x 与y=33x ; D.y= x 与y=2x7、在函数y=xx 32+中,自变量的取值范围是( ) A 、x ≥-2且x ≠0; B 、x ≤2且x ≠0; C 、x ≠0; D 、x ≤-2;8、函数212-++=x x y 的自变量x 的取值范围是( )A 、x ≥-2;B 、x >-2且x ≠2;C 、x ≥0且x ≠2;D 、x ≥-2且x ≠2。

函数变量与常量(课堂PPT)

函数变量与常量(课堂PPT)
八 年 (4) 班
并非一般
24
声音在空气中传播的速度v m / s
与温度 t 0 C 之间有关系 v3310.6t
试问其中的常量和变量分别是什么?
25
(选字答题) 每个字背后都有一个题目,请一位同学来出题.
八 年 (4) 班
并非一般
26
据科学研究,10至50岁的人每天所需睡眠时
变量是S,v
说明:常常量思量一考和定:变是速量具度是体一对的定某数是一吗常变?量化吗过? 程
来说,不是绝对的而是相对的。 10
2、某种报纸每份a元,购买n份此种报 纸共需b元,则 b=an中的常量是
____a_____,变量是__b_,__n___ 注意:常量不一定是具体的数, 也可以用字母表示的。
6
合作学习
1.圆的面积公式为S=πR2, 请取r的一些不同的值, 算
出相应的S的值:
r_2__cm
S_4____cm2
r_3__cm
3
r_2__cm
S__9_ __cm2 S__94 ___cm2
……
……
思考: 在计算半径不同的圆的面积时,请问:在这一
过程中,什么量是不变的? 什么量是变化的? 7
一定的起跳姿势,其跳远的距离 s (米)与
助跑的速度 v (米/秒)有关,根据经验,跳
远的距离 s0.085v2请说出其中的常量 和变量各是什么?
17
(选字答题) 每个字背后都有一个题目,请一位同学来出题.
八 年 (4) 班
并非一般
18
腾蛟镇居民生活用电的单价是0.53
元/千瓦时.若我校生活用电 x (千瓦时)与
应付电费 y (元)之间有关系式 y 0.53x .

一次函数(一)

一次函数(一)

知识点部分:1.常量与变量(1)变量和常量的定义:在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量.(2)方法:①常量与变量必须存在于同一个变化过程中,判断一个量是常量还是变量,需要看两个方面:一是它是否在一个变化过程中;二是看它在这个变化过程中的取值情况是否发生变化;②常量和变量是相对于变化过程而言的.可以互相转化;③不要认为字母就是变量.2.函数的概念函数的定义:设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,x是自变量.说明:对于函数概念的理解:①有两个变量;②一个变量的数值随着另一个变量的数值的变化而发生变化;③对于自变量的每一个确定的值,函数值有且只有一个值与之对应,即单对应.3.函数关系式用来表示函数关系的等式叫做函数解析式,也称为函数关系式.注意:①函数解析式是等式.②函数解析式中,通常等式的右边的式子中的变量是自变量,等式左边的那个字母表示自变量的函数.③函数的解析式在书写时有顺序性,例如,y=x+9时表示y是x的函数,若写成x=﹣y+9就表示x是y的函数.4.函数自变量的取值范围自变量的取值范围必须使含有自变量的表达式都有意义.①当表达式的分母不含有自变量时,自变量取全体实数..②当表达式的分母中含有自变量时,自变量取值要使分母不为零.③当函数的表达式是偶次根式时,自变量的取值范围必须使被开方数不小于零.④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.5.函数值函数值是指自变量在取值范围内取某个值时,函数与之对应唯一确定的值.注意:①当已知函数解析式时,求函数值就是求代数式的值;当已知函数解析式,给出函数值时,求相应的自变量的值就是解方程;②当自变量确定时,函数值是唯一确定的.但当函数值唯一确定时,对应的自变量可以是多个.6.函数的图象函数的图象定义对于一个函数,如果把自变量与函数的每一对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形就是这个函数的图象.注意:①函数图形上的任意点(x,y)都满足其函数的解析式;②满足解析式的任意一对x、y的值,所对应的点一定在函数图象上;③判断点P(x,y)是否在函数图象上的方法是:将点P(x,y)的x、y的值代入函数的解析式,若能满足函数的解析式,这个点就在函数的图象上;如果不满足函数的解析式,这个点就不在函数的图象上.7.函数的表示方法函数的三种表示方法:列表法、解析式法、图象法.其特点分别是:列表法能具体地反映自变量与函数的数值对应关系,在实际生活中应用非常广泛;解析式法准确地反映了函数与自变量之间的对应规律,根据它可以由自变量的取值求出相应的函数值,反之亦然;图象法直观地反映函数值随自变量的变化而变化的规律.例题练习部分:1.在圆的面积公式S=πR2中,常量与变量分别是()A.2是常量,S、π、R是变量B.π是常量,S、R是变量C.2是常量,R是变量D.2是常量,S、R是变量2.一个圆柱的高h为10cm,当圆柱的底面半径r由小到大变化时,圆柱的体积V也发生了变化,在这个变化过程中()A.r是因变量,V是自变量B.r是自变量,V是因变量C.r是自变量,h是因变量D.h是自变量,V是因变量3.某品牌豆浆机成本为70元,销售商对其销量定价的关系进行了调查,结果如下():定价(元)100 110 120 130 140 150销量(个)80 100 110 100 80 60A.定价是常量,销量是变量B.定价是变量,销量是不变量C.定价与销售量都是变量,定价是自变量,销量是因变量D.定价与销量都是变量,销量是自变量,定价是因变量4.在△ABC中,它的底边是a,底边上的高是h,则三角形面积S=ah,当a为定长时,在此式中()A.S,h是变量,,a是常量B.S,h,a是变量,是常量C.S,h是变量,,S是常量D.S是变量,,a,h是常量5.某学校计划用100元钱买乒乓球,所购买球的个数W(个)与单价n(元)的关系式W=中()A.100是常量,W,n是变量B.100,W是常量,n是变量C.100,n是常量,W是变量D.无法确定6.下列图象中,y不是x的函数的是()A. B. C. D.7.下列图象中,哪些表示y是x的函数?有()个.A.1个B.2个C.3个D.4个8.下列关于变量x,y的关系,其中y不是x的函数的是()A. B. C. D.9.下列各曲线中,表示y是x的函数的是()A. B. C. D.10.下面各问题中给出的两个变量x,y,其中y是x的函数的是:()①x是正方形的边长,y是这个正方形的面积;②x是矩形的一边长,y是这个矩形的周长;③x是一个正数,y是这个正数的平方根;④x是一个正数,y是这个正数的算术平方根.A.①②③B.①②④C.②④D.①④11.下列关系式中,y不是x的函数的是()A.y=B.y=2x2C.y=(x≥0)D.|y|=x(x≥0)12.电话每台月租费28元,市区内电话(三分钟以内)每次0.20元,若某台电话每次通话均不超过3分钟,则每月应缴费y(元)与市内电话通话次数x之间的函数关系式是()A.y=28x+0.20 B.y=0.20x+28xC.y=0.20x+28 D.y=28﹣0.20x13.已知汽车油箱内有油50L,每行驶100km耗油10L,那么汽车行驶过程中油箱内剩余的油量Q(L)与行驶路程S(km)之间的关系式是()A.Q=50﹣B.Q=50+C.Q=50﹣D.Q=50+14.某函数图象如图所示,则该函数解析式可能为()A.y=﹣B.y=C.y=﹣D.y=15.为促进棚户区改造,圆百姓安居梦,2019年元月某省政府投入专项资金a亿元,2份投入专项资金比元月份增长8%,3月份投入专项资金比2月份增长10%,若2019年3月份省政府共投入专项资金b亿元,则b与a之间满足的关系是()A.b=(1+8%+10%)a B.b=(1﹣8%)(1﹣10%)aC.a=(1+8%)(1+10%)b D.b=(1+8%)(1+10%)a16.若等腰三角形的周长为60cm,底边长为x cm,一腰长为y cm,则y与x的函数关系式及自变量x的取值范围是()A.y=60﹣2x(0<x<60)B.y=60﹣2x(0<x<30)C.y=(60﹣x)(0<x<60)D.y=(60﹣x)(0<x<30)17.函数y=中自变量x的取值范围是()A.x>7 B.x≠7 C.x≤7 D.x≥718.函数y=中,自变量x的取值范围是()A.x≥2且x≠﹣2 B.x≥2 C.x≥﹣2且x≠﹣2 D.x≥﹣219.函数y=中自变量x的取值范围是()A.x≠2 B.x≥0 C.x>0且x≠2 D.x≥0且x≠220.函数中自变量x的取值范围是()A.x≥3 B.x≤7 C.3≤x≤7 D.x≤3或x≥721.如图是用程序计算函数值,若输入x的值为3,则输出的函数值y为()A.2 B.6 C.D.22.y关于x函数关系如图所示,当﹣3≤x≤3时,函数值y的取值范围是()A.0≤y≤3 B.0≤y≤2 C.1≤y≤3 D.﹣3≤y≤323.若定义f(x)=3x﹣2,如f(﹣2)=3×(﹣2)﹣2=﹣8,下列说法中:①当f(x)=1时,x=1;②对于正数x,f(x)>f(﹣x)均成立;③f(x﹣1)+f(1﹣x)=0;④当a=2时,f(a﹣x)=a﹣f(x).其中正确的是()A.①②B.①③C.①②④D.①③④24.根据如图的程序,计算当输入x=3时,输出的结果y是()A.2 B.4 C.6 D.825.已知函数y=,则当y=10时,x的值为()A.B.或﹣C.或5 D.﹣或526.下列各图分别近似地刻画了现实生活中两变量之间的变化关系,其中,能大致刻画张老师从住家小区单元的2楼坐电梯到5楼(中途不停)中高度与时间关系的变化图是()A. B. C. D.27.如图,火车匀速通过隧道(隧道长大于火车长)时,火车在隧道内的长度y随着火车进入隧道的时间x的变化而变化的大致图象是()A. B. C. D.28.甲、乙两同学骑自行车从A地沿同一条路到B地,已知乙比甲先出发他们离出发地的距离s/km和骑行时间t/h之间的函数关系如图所示.根据图象信息,以上说法错误的是()A.他们都骑了20kmB.两人在各自出发后半小时内的速度相同C.甲和乙两人同时到达目的地D.相遇后,甲的速度大于乙的速度29.大家知道乌鸦喝水的故事,如图,它看到一个水位较低的瓶子,喝不着水,沉思一会后聪明的乌鸦衔来一个个小石子放入瓶中,水位上升后,乌鸦喝到了水.从乌鸦看到瓶子的那刻起开始计时,设时间变量为x,水位高度变量为y,下列图象中最符合故事情景的大致图象是()A. B. C. D.30.寓言故事《乌鸦喝水》教导我们遇到困难要运用智慧、认真思考才能让问题迎刃而解.如图,一个紧口瓶中盛有一些水,可乌鸦的嘴够不到瓶中的水.于是乌鸦衔来一些小石子放入瓶中,瓶中的水面高度得到提升.由于放入的石子较多,水都快溢出来了,乌鸦成功喝到了水,如果衔入瓶中石子的体积为x,水面高度为y,下面图象能大致表示该故事情节的是()A. B. C. D.31.一蓄水池中有水50m3,打开排水阀门开始放水后水池的水量与放水时间有如下关系:放水时间/分 1 2 3 4 …水池中水量/m348 46 44 42 …下列说法不正确的是()A.蓄水池每分钟放水2m3B.放水18分钟后,水池中水量为14m3C.蓄水池一共可以放水25分钟D.放水12分钟后,水池中水量为24m332.在关系式y=3x+5中,下列说法:①x是自变量,y是因变量;②x的数值可以任意选择;③y是变量,它的值与x无关;④y与x的关系还可以用图象法表示,其中说法正确的是()A.①②B.①②④C.①③D.①④33.若函数y=,则自变量的取值范围是.34.某复印社的收费y元)与复印页数x(页)的关系如下表,则y与x的关系式为.x100 200 400 1000 …y40 80 160 400 …35.小明从家跑步到学校,接着马上原路步行回家.如图是小明离家的路程y(米)与时间t (分)的关系图象,则小明回家的速度是每分钟步行米.36.如图,下列每个三角形中的三个数之间均具有相同的规律,按此规律,最后一个三角形中y与x之间关系的表达式是.37.已知一个圆柱的底面半径是3cm,当圆柱的高h(cm)变化时,圆柱的体积V(cm3)也随之变化.(1)在这个变化过程中,自变量是,因变量是.(2)在这个变化过程中,写出圆柱的体积V与高h之间的关系式;(3)当h由3cm变化到6cm时,V是怎样变化的?38.张华上午8点骑自行车外出办事,如图表示他离家的距离S(千米)与所用时间(小时)之间的函数图象.根据这个图象回答下列问题:(1)在这个过程中自变量、因变量各指什么?(2)张华何时体息?休息了多少时间?这时离家多远?(3)他何时到达目的地?在那里逗留了多长时间?目的地离家多远?(4)他何时返回?何时到家?返回的平均速度是多少?39.某课外学习小组根据学习函数的经验,对函数y=x3﹣3x的图象与性质进行了探究.请补充完整以下探索过程:(1)列表:x…﹣2 ﹣1 0 1 2 …y…﹣2 m 2 0 n 2 …请直接写出m,n的值;(2)根据上表中的数据,在平面直角坐标系内补全该函数的图象;(3)若函数y=x3﹣3x的图象上有三个点A(x1,y1),B(x2,y2),C(x3,y3),且x1<﹣2<x2<2<x3,则y1,y2,y3之间的大小关系为(用“<”连接)(4)若方程x3﹣3x=k有三个不同的实数根.请根据函数图象,直接写出k的取值范围.40.快车与慢车分別从甲乙两地同时相向出发,匀速而行,快车到达乙地后停留1h,然后按原路原速返回,快车比慢车晚1h到达甲地,快慢两车距各自出发地的路程y(km)与所用的时x(h)的关系如图所示.(1)甲乙两地之间的路程为km;快车的速度为km/h;慢车的速度为km/h;(2)出发h,快慢两车距各自出发地的路程相等;(3)快慢两车出发h相距150km.41.吴京同学根据学习函数的经验,对一个新函数y=的图象和性质进行了如下探究,请帮他把探究过程补充完整(1)该函数的自变量x的取值范围是.(2)列表:x…﹣2 ﹣1 0 1 2 3 4 5 6 …y…m﹣1 ﹣5 n﹣1 …表中m=,n=.(3)描点、连线在下面的格点图中,建立适当的平面直角坐标系xOy中,描出上表中各对对应值为坐标的点(其中x为横坐标,y为纵坐标),并根据描出的点画出该函数的图象:(4)观察所画出的函数图象,写出该函数的两条性质:①;②.42.小关为探索函数y=的图形性质,通过以下过程画出图象:(1)列表:根据表中x的取值,根据解析式求出对应的y值,将空白处填写完整.x…﹣2 ﹣1 0 0.5 1 1.5 2 3 4 …y… 3.46 2.64 1.81 1.73 1.81 2.64 3.46 …(2)以表中各组对应值为点的坐标,在平面直角坐标系中描点并画出函数图象;(3)小关观察图象分析可知,图象上纵坐标是横坐标3倍的点的横坐标x的范围是A.0<x<0.5B.0.5<x<1C.1<x<1.5D.1.5<x<243.如图,矩形ABCD中,AB=4,BC=9,动点Q沿着C﹣D﹣A﹣B的方向运动至点B停止,设点Q运动的路程为x,△QCB的面积为y.(1)当点Q在CD上运动时,请写出y与x的关系式.(2)当x=时,y=.(3)当点Q在AB上运动时,请写出y与x的关系式为.(4)当y=时,x=.44.有这样一个问题:探究函数y=﹣+|x|的图象与性质.小军根据学习函数的经验,对函数y=﹣+|x|的图象与性质进行了探究.下面是小军的探究过程,请补充完整:(1)函数y=﹣+|x|的自变量x的取值范围是;(2)表是y与x的几组对应值x﹣2 ﹣1.9 ﹣1.5 ﹣1 ﹣0.5 0 1 2 3 4 …y 2 1.60 0.80 0 ﹣0.72 ﹣1.41 ﹣0.37 0 0.76 1.55 …在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(3)观察图象,函数的最小值是;(4)进一步探究,结合函数的图象,写出该函数的一条性质(函数最小值除外):.45.如果设f(x)=,那么f(a)表示当x=a时,的值,即f(a)=.如:f(1)==.(1)求f(2)+f()的值;(2)求f(x)+f()的值;(3)计算:f(1)+f(2)+f()+f(3)+f()+…+f(n)+f()(结果用含有n的代数式表示,n为正整数)46.若f(x)=2x﹣1(如f(﹣2)=2×(﹣2)﹣1,f(3)=2×3﹣1),求的值.47.设y=|x﹣2|+|x﹣4|﹣|2x﹣6|,其中2≤x≤8,求y的最大值和最小值.48.端午节假期间,小亮一家到某度假村度假.小亮和他妈妈坐公交车先出发,他爸爸自驾车沿着相同的道路后出发.他爸爸到达度假村后,发现忘了东西在家里,于是立即返回家里取,取到东西后又马上驾车前往度假村.如图是他们离家的距离s(km)与小明离家的时间t(h)的关系图.请根据图回答下列问题:(1)图中的自变量是.因变量是;(2)小亮家到该度假村的距离是km;(3)小亮出发小时后爸爸驾车出发:当爸爸第一次到达度假村后,小亮离度假村的距离是km;(4)图中点A表示;(5)小亮从家到度假村期间,他离家的距离s(km)与离家的时间t(h)的关系式为;(6)小亮从家到度假村的路途中,当他与他爸爸相遇时.离家的距离约是km.。

函数知识点总结

函数知识点总结

)区分常量和变量就是在某个变化过程中该量的值是否发生变化。

2( )变量是可以变化的,而常量是已知数,且它是不会发生变化的;1( 【注意】常量:在一个变化过程中数值始终不变的量。

变量:在一个变化过程中数值发生变化的量。

函数2变量与常量1三种表示法及其优缺点2.7)两个函数图像交点的坐标就是这两个解析式所组成的方程组的解。

2( )将点的坐标代入到解析式中,如解析式两边成立,则点在解析式上,反之不在;1 函数( 函数图像上点的坐标与解析式之间的关系2.6)连线。

3)描点;(2)列表;(1画函数图像的一般步骤:(2.5)实际问题中,函数自变量的取值范围还要和实际情况相符合,使之有意义。

5( ;底数不等于零)关系式中含有指数为零的式子时,4( ;被开方数大于等于零)关系式含有二次根式时,3( ;分母不等于零)关系式含有分式时,分式的2( ;全体实数)关系式为整式时,函数自变量的取值范围为1( 确定函数自变量的取值范围的方法2.4函数解析式:用来表示函数关系的数学式子叫做函数解析式或函数关系式。

2.3时的函数值。

a 为叫做当自变量取值b ,那么b ,函数对应的值为a 函数值:如果在自变量取值范围内给定一个值2.2)对于自变量每一个确定的值,函数有且只有一个值与之对应。

3( )一个变量的数值随另一个变量的数值变化而变化;2( )有两个变量;1( 【解读】。

函数值时的a 叫做当自变量的值为b ,那么y=b 时x=a 当的函数。

如果x 是y ,因变量称为y ,把自变量称为x 都有唯一确定的值与其对应,那么我们就把y 的每一个确定的值,x ,并且对于y 和x 定义:一般的,在一个变化过程中,如果有两个变量2.1(1)解析法①定义:两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法;②优:准确反映整个变化过程中自变量与函数的关系;③缺:求对应值要经过比较复杂的计算,而且实际问题中有的函数值不一定能用解析式表示。

函数---变量与常量

函数---变量与常量

(选字答题) 每个字背后都有一个题目,请一位同学来出题.
八 并


(4)



腾蛟镇居民生活用电的单价是0.53 元/千瓦时.若我校生活用电 x(千瓦时)与
应付电费 y (元)之间有关系式 y 0.53x .
请问其中的常量和变量分别是什么?
(选字答题) 每个字背后都有一个题目,请一位同学来出题.
1.32 1.52
(1)如果用x表示时间,y表示我国人口总数, 那么随着x的变化,y的变化趋势是什么? (2)X和 y哪个是自变量 ?哪个是因变量 ? (3)从1949年起,时间每向后推移10年,我国人口是怎样的变化?
(4)你能根据此表格预测2009年时我国人口将会是多少?
随堂练习
氮肥施用 量/(千克/ 公顷)
(1)上述哪些量在变化?自变量和因变量分别是什么? (2)第5排、第6排各有多少个座位? (3)第n排有多少个座位?请说明你的理由.
过程中,什么量是不变的? 什么量是变化的?
合作学习
2.假设规定钟点工的工资标准为10元/时,设工作时
数为t时,应得工资额为M元, 则 M=10t.取一些不同 的t的值,求出相应的M的值:
2 时 t =_____ 2.5 时 t =_____ 3 时 t =_____
20 元 M=______
M=______ 25 元 M=______ 30 元
八 并


(4)



我校第九届运动会800米决赛中, 我班杨恩静同学获得了好成绩,其所花
的时间 t (秒)与平均速度v(米/秒)的等
量关系是什么?其中的常量和变量分别 是什么?
V t =800
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

变化过程1:若公共汽车以30千米/小时的速度行驶,则其中
常量、变量分别是什么? 常量是30千米/小时 变量是S,t 变量是v,t 变量是S,v
变化过程2:若公共汽车行驶了0.8千米的路程,则其中常
量、变量分别是什么? 常量是0.8千米
量分别是什么? 常量是0.2小时
变化过程3:若公共汽车行驶了0.2小时,则其中常量、变
合作学习
2.假设规定钟点工的工资标准为10元/时,设工作时
数为t时,应得工资额为M元, 则 M=10t.取一些不同 的t的值,求出相应的M的值:
2 t =_____时 2.5 t =_____时 3 t =_____时
20 M=______元
M=______元 25 M=______元 30
t =_____时 5 50 M=______元 …… …… 思考:在计算钟点工应得工资额时,请问:在这一过 程中,什么量是不变的? 什么量是变化的?
说明:常量和变量是对某一变化过程 思考: 速度一定是常量吗?
常量一定是具体的数吗? 来说,不是绝对的而是相对的。
2、某种报纸每份a元,购买n份此种报 纸共需b元,则 b=an中的常量是 b,n a _________,变量是________
注意:常量不一定是具体的数, 也可以用字母表示的。
(选字答题) 每个字背后都有一个题目,请一位同学来出题.
10 20 30 40 50 60 70 80 90 100
实验
单位:cm 100 80
60 40
20
0
实验结果
下面是王波学习小组得到的数据:
支撑物高度/厘米
10
4.23 1.23
20
3.00 0.55
30
2.45
40
50
60
70
80
1.50
90
100
h
小车下滑时间/秒
t
2.13 1.89
1.71


(4)



为美化校园,我校设想在宿舍楼后设立
圆形花坛,试问:花坛的周长 c与半径 r 的等 量关系是 C 2 r 其中常量和变量分 别是什么?
(选字答题) 每个字背后都有一个题目,请一位同学来出题.
八 并


(4)



声音在空气中传播的速度v m / s 与温度 t 0 C 之间有关系 v 331 0.6t
1.32 1.52
(1)如果用x表示时间,y表示我国人口总数, 那么随着x的变化,y的变化趋势是什么? (2)X和y哪个是自变量?哪个是因变量? (3)从1949年起,时间每向后推移10年,我国人口是怎样的变化?
(4)你能根据此表格预测2009年时我国人口将会是多少?
随堂练习
氮肥施用 量/(千克/ 公顷)
的时间 t (秒)与平均速度v(米/秒)的等
量关系是什么?其中的常量和变量分别 是什么?
V t =800
(选字答题) 每个字背后都有一个题目,请一位同学来出题.
八 并


(4)



我校第九届运动会期间,我班周瑶 同学在跳远运动中获得了第一名,其按 一定的起跳姿势,其跳远的距离 s (米)与 助跑的速度 v (米/秒)有关,根据经验,跳 远的距离 s 0.085v 2 请说出其中的常量 和变量各是什么?
试问其中的常量和变量分别是什么?
(选字答题) 每个字背后都有一个题目,请一位同学来出题.
八 并


(4)



王波学习小组做了一个实验:小车下滑的时间.
王波学习小组做了一个实验:小车下滑的时间.
小组利用同一块木板,测量小车从不同的高度下滑的时间,然后将 得到的数据填入下表: 支撑物高度/厘米 小车下滑时间/秒
(选字答题) 每个字背后都有一个题目,请一位同学来出题.
八 并


(4)



腾蛟镇居民生活用电的单价是0.53 元/千瓦时.若我校生活用电 x(千瓦时)与
应付电费 y (元)之间有关系式 y 0.53x .
请问其中的常量和变量分别是什么?
(选字答题) 每个字背后都有一个题目,请一位同学来出题.
随堂练习
某河受暴雨袭击,某天此河水的水位记录为下表:
时间/小时048 Nhomakorabea12
16
20
24
水位/米
2
2.5
3
4
5
6
8
(1)上表中反映了哪两个变量之间的关系?自 变量和因变量各是什么? (2)12小时,水位是多少? (3)哪一时段水位上升最快?
某电影院地面的一部分是扇形,座位按下列方式设置: 排数 座位数 1 60 2 64 3 68 4 72
研究表明,当钾肥和磷肥的施用量一定 时,土豆的产量与氮肥的施用量有如下关系:
0 34 67 101 135
202 259
336
43.46
404
471
土豆产量 15.18 /(吨/公顷)
21.36 25.72 32.29 34.03
39.45
43.15
40.83 30.75
(1)上表反映了哪两个变量之间的关系? 哪个是自变量?哪 个是因变量? (2)当氮肥的施用量是101千克/公顷时,土豆的产量是多少? 如果不施氮肥呢? (3)根据表格中的数据,你认为氮肥的施用量是多少时比较适宜? 说说你的理由. (4)粗略说一说氮肥的施用量对土豆产量的影响.
合作学习
1.圆的面积公式为S=π R2, 请取r的一些不同的值, 算
出相应的S的值:
2 r ___ cm
r ___ cm 3 r
3 ___ cm 2
……
4 S _____ cm 9 cm2 S _____
S
9 cm2 _____ 4
……
2
思考: 在计算半径不同的圆的面积时,请问:在这一 过程中,什么量是不变的? 什么量是变化的?
练习1:“名师出高徒”可以解释为教师的水平 越高,学生的水平就越高,那么学生的学业成绩与 教师的教学水平之间的关系是一种确定关系吗?
练习2:有关法律规定,香烟盒上必须印上 “吸烟有害健康”的警示语.吸烟是否一定会引 起健康问题?你认为“健康问题不一定是由吸烟 引起的,所以可以吸烟”的说法对吗?
答:从已经掌握的知识来看 ,吸烟会损害身体 的健康.但是除了吸烟之外,还有许多其它的随机因 素影响身体健康,人体健康是有很多因素共同作用的 结果.我们可以找到长寿的吸烟者,也更容易发现由 于吸烟而引发的患病者,所以吸烟不一定引起健康问 题.但吸烟引起健康问题的可能性大,因此“健康问 题不一定是由吸烟引起的,所以可以吸烟”的说法是 不对的.
八 并


(4)



我校后勤部为了给同学们准备课间餐, 了解到某水果店橘子的单价为 2.5元/千克,
共买 x 千克橘子,共付费 y 元. 其中:
常量是 变量是
2.5元/千克
x, y
(选字答题) 每个字背后都有一个题目,请一位同学来出题.
八 并


(4)



我校第九届运动会800米决赛中, 我班杨恩静同学获得了好成绩,其所花
生活中哪些例子反映了变量之间的关系?
与同伴交流.并指出谁是自变量?谁是因变量 ?
议一议
我国从1949年到1999年的人口统计数据如下:(精确到0.01亿):
时间/年 x 人口/亿 y
1949
1959
1969
1979
1989
1999
5.42
1.30
6.72
1.35
8.07
1.68
9.75
11.07 12.59

数学成绩 物理成绩


我们可以发现自己的数学成绩和物理成绩存在 某种关系.(似乎就是数学好的,物理也好;数学差 的,物理也差,但又不全对.)物理成绩和数学成绩 是两个变化的量,从经验看,由于物理学习要用到 比较多的数学知识和数学方法.数学成绩的高低对物 理成绩的高低是有一定影响的.但决非唯一因素,还 有其它因素,如是否喜欢物理,用在物理学习上的 时间等等.
1.在一个过程中,固定不变的量 称为常量
比如:刚才例子中π,10是常量
2.在一个过程中,可以取不同数值的量 称为变量
比如: S与r, t与M是变量
思考: 为何要加上“在一个过程中”呢?
1、老师从离开家乘车到学校这一过程中,设离开家的路程S、 公共汽车的速度v、行驶的时间t三者的关系是 S=vt.请回答:
(1)上述哪些量在变化?自变量和因变量分别是什么? (2)第5排、第6排各有多少个座位? (3)第n排有多少个座位?请说明你的理由.
早晨,我们从家里骑自行车到 学校,这一过程中涉及哪些量,哪 些量不变?哪些量在变?
2、在一条高速公路上,一辆轿车以80千米/时的速 度匀速行驶.随着时间t 的变化汽车行驶的路程s也相 应发生着变化.
思考:在中学校园里,有这样一种说法:“如 果你的数学成绩好,那么你的物理学习就不会有什 么大问题.”按照这种说法,似乎学生的物理成绩与 数学成绩之间存在着某种相关关系,这种说法有没 有根据呢? 请同学们如实填写下表(在空格中打“√” )
在《小车下滑的时间》 中:
支撑物的高度h和小车下滑的时间t都在变化, 它们都是变量(variable).
其中小车下滑的时间t随支撑物的高度h的变化而变化,
支撑物的高度h是自变量(independent
variale),
小车下滑的时间t是因变量 (dependent
相关文档
最新文档